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Abstract 

Most drugs used in the clinic and drug candidates target multiple proteins, and thus 

detailed characterization of their efficacy targets is required. While current methods rely on 

quantitative measurements at thermodynamic equilibrium, kinetic parameters such as the 

residence time of a drug on its target provide a better proxy for efficacy in vivo. Here, we 

present Residence Time Proteome Integral Solubility Alteration (ResT-PISA) assay which 

provides monitoring temporal protein solubility profiles after drug removal (“off-curve”) in 

cell lysate or intact cells, quantifying the lifetime of drug-target interaction. A compressed 

version of the assay measures the integral under the off-curve enabling the multiplexing of 

binding affinity and residence time assessments into a single proteomic analysis. We 

introduce a combined scoring system for three parametric dimensions to improve 

prioritization of targets. By providing complementary information to other characteristics of 

drug-target interaction, ResT-PISA approach will be useful in drug development and 

precision medicine. 
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Introduction 

The major disconnect existing between in vitro data on drug-target interactions and 

drug efficacy in humans is one of the primary sources of attrition during drug discovery1,2.  

Traditionally, equilibrium thermodynamic constants measured in vitro, such as Kd and Ki, 

have been used to assess the chances of a drug candidate for efficient target engagement in 

vivo. However, due to the biological complexity of human organism it is unlikely that a 

single in vitro parameter can reliably predict in vivo drug efficacy; a model taking into 

account a number of orthogonal parameters will have an a priori higher predictive power.  

One of the critical contributors to the drug action mechanism in vivo is the lifetime of 

the drug-target complex, during which the drug molecule affects the biological system. Thus, 

residence time of the drug on target, which is the reciprocal of the rate constant for 

dissociation of the drug-target complex, is emerging as a strong contributor to the desired 

predicting model of in vivo efficacy3–9. The importance of such a kinetic parameter is due to 

the fact that cells, organs and organisms are open systems operating far from equilibrium. In 

open systems the concentrations of the drug, the endogenous ligands for the target and the 

target itself fluctuate with time10. Thus, residence time may correlate with in vivo drug 

efficacy better than equilibrium in vitro constants. Indeed, empirical observations support the 

notion that compounds with longer residence time have higher in vivo efficacy11. 

Another common complicating factor in drug development is that the drug usually 

interacts in vivo with several proteins, the main target as well as off-targets, with all these 

molecules competing with each other for the ligand in an open system. As a drug only exerts 

its effect through a given target when it is bound to that target, in order to predict the drug 

efficacy in such a complex environment one has to be able to compare the lifetimes of all 

individual drug-target complexes. For example, the difference in residence time of a drug on 

its target and on the off-target proteins responsible for toxic side-effects defines to large 

extent the therapeutic window of the drug10,12,13.  

It has thus been suggested that measurements of drug-target residence time should be 

incorporated into the standard drug discovery procedure during the lead optimization phase14.  

Such measurements are usually performed either with surface plasmon resonance, where a 

model fitted to sensogram data provides the residence time value15, or with competitive 

binding assay using designed competitive probes16.  In the first case the model assumes that 
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drug binding to the pocket is either a simple one-step process (Fig. 1a) or a more complicated 

two-step process. In the latter case, the initial, weaker binding at or near the pocket is 

followed by binding-induced structural changes in the enzyme to better accommodate the 

drug. This accommodation results in stronger binding and consequently longer lifetime of the 

drug-target complex17. The corresponding “off” curves are thus either exponential or exhibit 

both fast and slow components (Fig. 1b).  

The above approaches are developed for studying simple systems with highly purified 

recombinant targets and drug molecules often modified for targeted purification or better 

detection. There exist proteome-wide methods of probing protein-target interactions not 

requiring drug modification, such as CETSA18, TPP19, as well as DARTS20 and LiP-MS21,22. 

These methods have been extensively used to deconvolute drug targets in cell lysate, intact 

cells, bodily fluids and even tissue. However, all these methods suffer from high analysis cost 

and low throughput. Some time ago we have introduced Proteome Integral Solubility 

Alteration (PISA) assay as a high-throughput analogue of TPP23. PISA analysis was used for 

deconvoluting the action mechanism of redox modulating anti-cancer compounds24 and  

profiling stem cell transitions25. Here we hypothesize that the ∆Sm solubility shift in PISA 

will reflect the degree of target engagement by a drug in a cell lysate or intact cell at certain 

time past drug removal by filtration (for lysate) or washing (for cells). If so, the high 

throughput nature of PISA analysis should allow us to probe the residence time of a drug 

through the temporary profiles of ∆Sm for different targets and off-targets within the same 

proteome. We also hypothesize that thus obtained residence times will be independent of the 

maximum ∆Sm values that reflect the effect of drug binding on target solubility (sometimes 

interpreted, as thermal stability19). The mutual independence of these parameters would mean 

that addition of the residence time information to ∆Sm data would augment the model 

predicting in vivo drug efficacy.    

Here we test the above hypotheses by developing a novel technique called Residence 

Time Proteome Integral Solubility Alteration (ResT-PISA) assay. We show that most, but not 

all, proteins targets of staurosporine recover their solubility after a short period of time 

following drug removal, providing a proof of principle for ResT-PISA. Thereafter we verify 

that even covalent binding of a simple chemical group results in a complex residence time 

behavior reflecting both short-term binding as well as long-lasting interaction. To increase 

the throughput of our method, we compress ResT-PISA to cResT-PISA analysis and include 
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dose response measurements (conc-PISA) in one multiplexed sample. This allowed us to 

create a scoring system based on three parameters - ∆Sm, ResT and dose response, - to 

improve characterization and prioritization of efficacy targets. Lastly, we show that ResT-

PISA is amenable to intact cells. Our new approach for evaluating drug target residence time 

in cell lysates and intact cells using an unbiased, label-free and system-wide method can find 

applications in drug discovery and development as well as in personalized medicine. 

 

Results 

ResT-PISA assay estimates drug-target residence times in a complex protein mixture 

As a way of obtaining a proof of principle for ResT-PISA, we asked a question 

whether the multiple targets of a promiscuous drug will show different residence times in 

ResT-PISA analysis. To this end we treated a K562 cell lysate with 10 µM staurosporine 

chosen as the model drug known to inhibit many protein kinases19. We removed the drug 

after 45 min of treatment using 5 successive filtrations through 3 kDa membrane filters 

(approximately 1.106 x dilution) (Fig. 1c). We opted for 3 kDa filters to minimize protein 

losses (Supplementary Fig. 1). Then we performed PISA analysis right after filtration (which 

corresponds to 1.5 h time interval from the start of the filtration process), as well as after 3 h, 

7 h and 24 h. To obtain a measure of the effect of the maximal drug concentration on the 

solubility of protein targets, we analyzed by PISA a lysate treated with staurosporine and 

filtered with addition of PBS containing the same initial concentration of staurosporine (10 

µM), in comparison with a control treated with vehicle (DMSO) instead of the drug (Fig. 1c). 

PISA measurements were also used to normalize the ResT-PISA results after removal of the 

drug. We recorded the off-curves for 5556 proteins quantified across all samples without 

missing values, among which 47 kinases showed significant solubility alteration after 

treatment with staurosporine at T0 (Fig. 1d). Most of these proteins recovered their solubility 

to the levels of an untreated sample after a short period of time past drug removal (Fig. 1e). 

These recovered proteins include multiple kinases, such as CDK2 and CDK5, and a common 

non-kinase off-target of kinase inhibitors, Ferrochelatase (FECH)19,26.  However, some 

proteins like STK4 recovered less than half of their solubility change in 24 h after drug 

removal, suggesting a strong or covalent interaction (Fig. 1e). 
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Fig. 1. Drug-target residence time assessment using PISA assay. (a) The different modes 

of ligand-protein binding. (b) Residence time of drugs can vary significantly even when dose 

responses are similar for two different drugs (drug 1 and drug 2). (c) Workflow of ResT-

PISA analysis using staurosporine treatment of K562 cell lysate. (d) Volcano plot of proteins 

solubility shift (ΔSm) in PISA between staurosporine and DMSO control at the start of the 

experiment (T0) corresponding to the maximum drug concentration. (e) Off-curves for 

selected targets show significant solubility changes with time past staurosporine removal. 

Horizonal line in the boxplots represent the median, 25th and 75th percentiles and whiskers 

represent measurements to the 5th and 95th percentiles. (n=3). P-values were calculated using 

a two-tailed Student’s t-test.  
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ResT-PISA analysis can detect binding events with prolonged lifetime 

Being intrigued by the remarkably slow recovery of the staurosporine target STK4, 

we decided to investigate the off-curves of covalently attaching molecules. To this end we 

performed a ResT-PISA experiment in K562 cell lysate with 2 µM iodoacetamide (IAA) 

instead of staurosporine. IAA is widely used in proteomics to stabilize reduced cysteines by 

covalently adding to them a carbamidomethyl group. Since such alkylation reaction targets 

all accessible free cysteines, we expected to observe significant solubility shifts ΔSm for 

many proteins. We also expected that most of these proteins will show no or minimal 

recovery of solubility hours after removal of the chemical due to the covalent nature of the 

modification. 

The results showed that the solubility was significantly affected by IAA in 165 

proteins, of which 67 proteins lowered their solubility and 98 proteins (59%) increased it. 

While some of these proteins demonstrated, as expected, no solubility recovery 7 h after drug 

removal (Figs. 2a and b), some of the proteins did recover their initial solubility, suggesting 

that they either lost their cysteine modification or IAA was binding to them non-covalently 

(such binding is often the first step before covalent attachment). This observation highlights 

the complexity of protein-small molecule interactions that can happen through different 

modalities, as depicted in Fig. 1a. Interestingly, some of the targets of IAA with high ΔSm 

values and long residence times include two acetyl-COA acetyltransferases ACAT1 and 

ACAA2 (Figs. 2a and b). Since IAA has been used in molecular biology to inhibit 

glycolysis27, and as ACAT1 activity is linked to Warburg effect in cancer cells28, inhibition of 

acetyl-COA acetyltransferases may at least in part be responsible for IAA-induced reduction 

in glycolytic activity.  

To get further insight into the ResT-PISA specifics of the covalently attaching IAA 

and non-covalently interacting staurosporine, we compared for both drugs the distributions of 

the normalized areas under the curve (AUCs) that scale for a given drug with its residence 

time on a target protein. While AUCs of the majority (53%) of the detected targets of IAA 

scaled above 0.5, indicating slow-unbinding targets, for staurosporine the corresponding 

figure was significantly lower, 30% (Fig. 2c).  
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Fig. 2. ResT-PISA of IAA as a covalent modifier. (a) Volcano plot of proteins’ solubility 

shift between IAA and water control at the start of the experiment (T0) corresponding to the 

maximum compound concentration. (b) Off-curves for selected targets show a significant 

solubility change with time past IAA removal. Horizonal line in the boxplots represent the 

median, 25th and 75th percentiles and whiskers represent measurements to the 5th and 95th 

percentiles. (c) Histograms of areas under the curves (AUCs) in (b) normalized by the 

maximum AUC value (n=3). P-values were calculated using a two-sided Student’s t-test.  

 

Residence time is independent of the solubility shift ΔSm  

Next, we tested ponatinib, a multi-target kinase inhibitor used in the clinic for 

treatment of chronic myeloid leukemia and Philadelphia chromosome-positive acute 

lymphoblastic leukemia29. PISA results revealed solubility shifts in multiple kinases 

previously reported as targets of ponatinib, such as LYN, MAPK14, CSK, IRAK4 and 

RIPK230, as well as in kinases that have not yet been reported as ponatinib targets (Fig. 3a). 

Additionally, we detected a significant solubility shift for FECH. The residence time was 

assessed for all significantly shifting proteins as AUC of their off-curves (Fig. 3b). For all 

three molecules tested until this point, ΔSm did not correlate with the residence times of the 

proteins with shifting solubilities (Fig. 3c): the Pearson correlations of 0.02, -0.01 and 0.14 

proved that these two parameters are largely independent. This result supported our 
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hypothesis that residence time can be used as an independent kinetic parameter for target 

prioritization. 

 

Fig. 3. ResT-PISA of a kinase inhibitor ponatinib and comparison of AUCs with ΔSm. 

(a) Volcano plot of proteins solubility shift between ponatinib and DMSO control at the start 

of the experiment (T0) corresponding to the maximum drug concentration. (b) Off-curves for 

selected targets show a significant solubility change with time past ponatinib removal. 

Horizonal line in the boxplots represent the median, 25th and 75th percentiles and whiskers 

represent measurements to the 5th and 95th percentiles. (c) Scaled solubility shift ∆Sm (x-

axis) versus the residence time (y-axis) for proteins with shifting solubility in IAA, 

staurosporine and ponatinib treatments. Pearson correlation between the two measures were 

calculated for each treatment, n=3. P-values were calculated using a two-sided Student’s t-

test.  
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Off-curve measurements in ResT-PISA can be compressed  

We investigated whether the ResT-PISA analysis could be further compressed by 

pooling all the time points together during sample preparation. This approach is similar to the 

one used in PISA in that it provides an AUC directly from one measurement. We called this 

approached compressed ResT-PISA or cResT-PISA. Since cResT-PISA can produce a 

triplicate analysis using only 9 samples (3 x PISA at T0, 3 x Control, 3 x cResT-PISA), we 

could multiplex two cResT-PISA analyses in a single TMT18-plexed set. The AUC from 

cResT-PISA correlated well (r =0.79) with the ResT-PISA AUCs for protein kinases 

(Supplementary Fig. 2), confirming that pooling the samples preserves residence time 

information. 

 Alternatively, we could multiplex with cResT-PISA altogether different 

measurements, such as the dependence of ∆Sm upon drug concentration (Fig. 4a). Earlier we 

showed that this dose response curve can also be compressed in a PISA-like fashion23; here 

we compressed in “conc-PISA” 10 concentration points starting from 2 µM and proceeding 

with a 10-fold dilution at every successive concentration point. The results of the conc-PISA 

measurements provide a proxy for the association rate constant kon. 

 We could multiplex in a TMT18 set three replicates of the following ponatinib 

analysis in K562 cell lysate:  

1) Control PISA (incubation of lysate with DMSO for 45 min); no drug removal by 

filtering; 

2) PISA of the merged samples incubated with ponatinib for 45 min in a range of 

concentrations; no drug removal by filtering; 

3) PISA of the lysate incubated with ponatinib for 45 min at a maximum concentration 

of 2 µM; no drug removal by filtering; 

4) Same but ponatinib is removed by spinning through a 3 kDa filter immediately upon 

incubation; 

5) ResT-PISA control: same, incubated with DMSO instead of ponatinib; 

6) PISA of the merged samples incubated with 2 µM ponatinib for 15 min, followed by 

drug removal by spinning through a 3 kDa filter with a varying time delay upon 

incubation. 
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Combining PISA, cResT-PISA and conc-PISA results in a single score for target 

prioritizing  

We compared the relative solubility shifts in PISA, cResT-PISA and conc-PISA and 

found no apparent correlation between them, confirming that these parameters are largely 

independent (Fig. 4b). Rankings of each target by the corresponding parameter are shown in 

(Fig. 4c). In order to combine the relative contribution of each parameter, we scaled each of 

them to a minimum of 0 and a maximum of 1 and summed the results to obtain a final score 

and overall target ranking. The known target of ponatinib ABL1 was not among the top 

ranked proteins, as we did not detect significant solubility shift in that protein. This could be 

due to the fact that K562 cells express a BCR-ABL fusion protein which earlier showed no 

∆Tm shift in TPP19. Instead, LYN kinase, a well-known target of ponatinib, ranked first. 

LYN is engaged by ponatinib at one of the lowest concentrations among known ponatinib 

targets30; in addition, it is known to produce a substantial thermal stability shift in TPP30. 

LYN was found by ResT-PISA to associate with ponatinib for a prolonged time, which 

explains why this protein came up as the top target in our analysis. Two other top proteins in 

overall ranking are also known targets MAPK14 and CSK that engage ponatinib at low 

concentrations and exhibit large thermal stability shifts in TPP30. 

 

    Visualization tool for X-PISA analyses 

In order to facilitate analysis of a combined set of PISA data (PISA, cResT-PISA and 

conc-PISA) we designed a data processing and visualization tool that is available on Github 

(https://github.com/RZlab/PISA-Analyser ). The user guide to the interface is provided in 

Supplementary Fig. 3. 
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Fig. 4. Combining PISA, cResT-PISA and conc-PISA results in a single score for 

prioritization of drug targets. (a) An example of comparing the dose responses and 

residence times and subsequent prioritization of two protein targets. (b) Plots of ΔSm against 

cResT-PISA, ΔSm against conc-PISA and cResT-PISA against conc-PISA for selected 

targets of ponatinib in K562 cell lysate. Pearson’s correlations were calculated for each plot. 

(c) Ranking of selected targets of ponatinib for ΔSm, cResT-PISA and conc-PISA scaled to 

the interval between 0 and 1. (d) Ranking of each target of ponatinib according to their 

combined scores. 
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ResT-PISA is amenable to intact cells 

Unlike cell lysate, a living cell actively imports, metabolizes and exports drugs and 

their metabolites, and thus being able to monitor drug-target residence time in a cellular 

environment would be very valuable for predicting in vivo drug efficacy. Thus, we performed 

ResT-PISA in intact K562 cells treated with staurosporine and compared the outcome with 

the lysate results. Since removal of the drug from the growth media is a simple washing 

procedure, we could start recording residence time as early as 20 min past drug removal, i.e. 

much faster than with a lysate (Fig. 5a). In addition, the cell experiment did not require 

extensive filtering that may result in protein loss. On the other hand, the cell experiment 

required normalization of each PISA dataset by separately measured protein abundance, as in 

PISA-Express25, and thus demands multiplexing of a larger number of samples. In order to 

meet this increased demand, we metabolically labeled proteins in cells with light and heavy 

Stable Isotope Labeling by Amino acids in Cell culture (SILAC)31 reagents and additionally 

used TMT16-plex labeling of tryptic peptides. We performed PISA-Express analysis at each 

time point using an expression control at T0 as well as after 1.5 h, 3 h, 7 h and 24 h past drug 

removal. The obtained thermal shifts as well as residence times provided a detailed picture of 

drug effects in intact cells (Fig. 5a).  

Surprisingly, some of the solubility shifts observed in lysate reversed their sign in 

cells (Fig. 5b); this was the case for MAP2K1, MAP2K2, MAP2K4, PRKCA, and PRKCD. 

MAP2Ks both phosphorylate kinases and are phosphorylated by kinases in signaling 

cascades involved in stress response32. PRKCA is a calcium activated and diacylglycerol-

dependent protein, while PRKCD is phospholipid- and diacylglycerol-dependent; both 

proteins are involved in several regulatory processes including regulation of apoptosis33. 

These features may explain the difference in the direction of the solubility alteration in cells 

and lysate. When considering the absolute values of the solubility shifts, a positive 

correlation between the ResT-PISA AUCs in lysate and intact cells for common kinases was 

observed (r=0.59), while for all common proteins there was an anti-correlation (r=-0.39) 

(Supplementary Fig. 4). This result once again highlights the function of staurosporine as 

kinase inhibitor. 

Many proteins showed similar residence times in cell lysate and intact cells (Fig. 5c). 

While for fast unbinding in lysate targets, such as FECH and CDK2, this result could be 

expected, it came as a surprise for slow unbinding targets, as the intact cell could detoxify the 
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drug metabolically and/or degrade and replace the inhibited protein within hours past drug 

removal. However, STK4 which showed little recovery of solubility in lysate 24 h after 

removal of the drug had a similar behavior in intact cells, suggesting that STK4 stayed all this 

time bound with staurosporine and avoided being replaced in the cellular environment. 

 

Fig. 5. ResT-PISA in intact cells. (a) In-cell ResT-PISA workflow. (b) A comparison of 

ΔSm at T0 in K562 cell lysate (x-axis) and intact cells (y-axis) for staurosporine treatment 

against DMSO control. (c) Off-curves for three selected targets showing a significant 

solubility shift upon staurosporine removal in both cell lysate and intact cells. Horizonal line 

in the boxplots represent the median, 25th and 75th percentiles and whiskers represent 

measurements to the 5th and 95th percentiles. n=3. P-values were calculated using a two-

sided Student’s t-test.  
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Discussion 

Here we developed ResT-PISA and its compressed version cResT-PISA, a compact 

approach to measuring drug target residence times at the proteome level in both cell lysate 

and intact cells. As well as other PISA-based techniques, ResT-PISA doesn’t require drug 

modification or the use of recombinant proteins. Importantly, the ResT-PISA approach is not 

limited to a selected class of compounds, as e.g. the competitive probes method that targets 

proteins with defined activity, such as kinases. Being multiplexed with PISA and 

concentration-dependent PISA analyses, this approach provides a comprehensive assessment 

of target engagement, binding affinity and residence time simultaneously. This enables 

extensive characterization of drug properties in a single analysis and provides a combined 

score for target prioritization. As a limitation, very short time frames (seconds or 

milliseconds) are not currently available due to the longer time required to remove the drug 

through cell washing or lysate filtration.  
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Methods 

Cell culture 

Chronic Myelogenous Leukemia K-562 cell line passage 3-8 (CCL-243™, ATCC) 

was maintained in non-adherent culture flasks (Sarstedt) in IMDM (Cat. No. L0190, Biowest) 

supplemented with 10% fetal bovine serum (Cat. No. 10500064, Gibco™).  

 

Sample preparation for ResT-PISA in cell lysate 

K-562 cells were grown until they reached a concentration of around 1.106 cells/ml. 

Then 40 ml of cell culture were pelleted at 400 x g for 3 min and washed with PBS; the 

operation was repeated twice. Cells were pelleted one last time at 400 x g for 5 min and 

resuspended into 5 ml of PBS (GIBCO) supplemented with protease inhibitors 

(ThermoFischer Scientific). The cell lysate was clarified by centrifugation at 20 000 x g for 5 

min and the supernatant was collected. 100 µl of supernatant were aliquoted in 30 PCR tubes, 

half were treated at a concentration of 10 µM of staurosporine (Selleckchem), 2 µM 

ponatinib (Selleckchem) or 2 µM iodoacetamide (IAA) (Sigma-Aldrich), the other half was 

treated with vehicle (DMSO or water) and kept at 37 °C for 45 min. 50 µl of each aliquot 

were transferred into a 500 µl 3 kDa filtration unit (Merck) and immediately 450 µl of PBS 

supplemented with protease inhibitors were added to each aliquot, with 3 aliquots receiving 

additionally the same initial concentration  of a drug and 3 aliquots receiving the same 

concentration of vehicle instead. Then the filtering units were centrifuged at 17 000 x g for 15 

min and 450 µl of the same solutions were added on top of each sample (10 x dilution). The 

operation was repeated 6 times. PISA assay was then performed on each sample at different 

time points, with T0 corresponding to the samples that were filtered with addition of a drug. 

Given the time required for centrifugation and aliquoting for PISA assay (see below), the first 

time point was 1.5 h after the start of drug removal. These samples were processed in parallel 

with the samples that received drug and DMSO during filtration (T0) for PISA analysis. The 

rest of the samples were left at RT for 3 h, 7 h and 24 h from the start of drug removal, and 

then were subjected to PISA analysis.  
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Sample preparation for ResT-PISA in cell 

K-562 cells were grown in IMDM for SILAC (ThermoFischer Scientific) 

supplemented with either heavy (Cambridge Isotope Laboratories) or light (Sigma Aldrich) 

lysine and arginine and 10 % dialyzed FBS (ThermoFischer Scientific). Cells were grown 

until they reached a concentration of around 1.106 cells/ml. Cells were split into two groups 

in 75 cm2 culture flasks (Sarstedt), the first group corresponding to heavy SILAC was treated 

for 1.5 h using 2 µM staurosporine and the other group corresponding to light SILAC was 

treated with the equivalent concentration of vehicle (DMSO) (Fig. 5a). For T0, triplicates of 

staurosporine or DMSO treatment were deposited in individual tubes and rinsed three times 

with PBS containing protease inhibitors as well as the corresponding concentration of 

staurosporine or DMSO, to control for potential changes happening in the samples during the 

centrifugation steps. For the samples corresponding to the 20 min time point, the cells were 

deposited in tubes in triplicates and rinsed three times with PBS containing protease 

inhibitors. Both cells from T0 and 20 min time point were then distributed into PCR tubes for 

PISA assay (see below). For longer time points, cells treated with staurosporine or DMSO 

were rinsed three times with fresh medium. Then the cells were seeded into 25 cm2 culture 

flasks (Sarstedt) in triplicates for each treatment and time point and placed again in the cell 

incubator for the intended duration. Then the cells previously treated with staurosporine or 

DMSO were rinsed three times with PBS, aliquoted into PCR tubes and processed for PISA 

assay (see below).  

 

Compressed ResT-PISA combined with dose-response PISA (conc-PISA) 

For cResT-PISA, ResT-PISA analysis in K562 cell lysate was performed as described 

above with the only difference being that after heating the aliquots and snap-freezing, the 

temperature and time points corresponding to one replicate of ResT-PISA were all pooled 

together, which resulted in 9 samples: 3 x 2 µM ponatinib treatment, 3 x DMSO treatment, 3 

x of the pooled ResT-PISA range (cResT-PISA). In parallel, we performed conc-PISA 

analysis as previously described23. Briefly, the same K562 cell lysate was aliquoted into 12 

samples per replicate and treated with the following concentrations for 45 min: 2 samples 

with 2 µM, 2 samples with DMSO only, one sample each with 2 pM, 20 pM, 200 pM, 2 nM, 

20 nM, and 200 nM. Then each sample was aliquoted into of 9 tubes in triplicate and each 
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replicate was heated for 3 min to the same 9 temperature points as in ResT-PISA in then left 

at RT for 3 min and snap-frozen. After this all 9 samples in each replicate were pooled 

together into a conc-PISA replicate. For the maximal and minimal drug concentration, only 

the samples corresponding to the treatment with 2 µM of ponatinib and DMSO were pooled 

together. This resulted in 9 samples in total: 3 x 2 µM ponatinib treatment, 3 x DMSO 

treatment, 3 x of the pooled concentration range (conc-PISA). After pooling the samples were 

processed as in PISA analysis (centrifugated and digested for LC-MS/MS analysis).  

 

PISA assay 

Each condition was analysed in triplicate. For each replicate, 20 µl of cell suspension 

were aliquoted into 9 PCR tubes and each was heated for 3 min at a different temperature 

ranging from 48 °C to 59 °C. The samples were then kept for 3 min at RT before snap 

freezing in liquid nitrogen. After that, aliquots corresponding to each temperature point were 

combined. For ResT-PISA in cell, one sample designated for protein expression measurement 

was incubated at 37 °C (n=3 for each condition) and processed alongside the pooled samples. 

Cells were lysed using repeated freeze/thaw cycles and aliquots were combined as for the 

lysate experiment. Finally, all samples were transferred to ultracentrifuge tubes, placed into a 

Ti 42.2 rotor (Beckman-Coulter), and centrifuged at 100 000 x g for 20 min using an Optima 

XPN-80 Ultracentrifuge (Beckman-Coulter). 70 µl of the supernatant were collected and the 

same volume of lysis buffer (8 M urea, 20 mM EPPS pH 8.5) was added. The protein 

concentration was measured using Pierce bicinchoninic acid assay (BCA) protein assay kit 

(Thermo Fischer Scientific) according to the manufacturer’s protocol. The volume of sample 

was adjusted to the one corresponding to 25 µg of protein and the samples were processed for 

MS analysis (see below). 

 

Protein sample preparation for expression proteomics and TMT labeling 

For all proteomics experiments, 20 µg of proteins were used in sample preparation. S-

S bond reduction was performed using 5 mM DTT at RT for 1 h followed by alkylation using 

15 mM IAA at RT in the dark. The reaction was quenched by adding 10 mM of DTT. Then 

methanol/chloroform precipitation was performed as follows: 3 sample volume of methanol 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.27.497697doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497697
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

were added, then 1 sample volume of chloroform and 3 volumes of water. Samples were 

vortexed between each step and then centrifuged at 20 000 x g for 10 min at 4 °C. The 

aqueous layer was removed, and the protein pellet was rinsed with one sample volume of 

methanol, vortexed and centrifuged using the same speed as in the previous step. Finally, all 

the liquid was removed, and the protein pellet was air-dried. 

Air-dried protein pellets were resuspended in 8 M urea, 20 mM EPPS pH 8.5. The 

samples were diluted once by adding 20 mM EPPS pH 8.5 (4 M urea), and lysyl 

endopeptidase digestion was carried out at a 1:100 ratio (LysC/protein, w/w) overnight at RT. 

The following day, samples were diluted 4 times (1 M urea) with 20 mM EPPS pH 8.5, then 

tryptic digestion was performed for 6 h at RT using a 1:100 ratio (Trypsin/protein, w/w). For 

PISA analysis, a “linker” corresponding to a sample composed of one tenth of each sample 

pooled together was prepared for normalization purpose. After that, TMT11, TMT16 or 

TMT18 labeling was performed for 2 h at RT by adding 0.2 mg of reagent dissolved in dry 

ACN according to manufacturer’s instructions. The ACN content in the samples was adjusted 

to a final concentration of 20%. The reaction was then quenched by adding triethylamine to a 

final 0.5% concentration. The samples were incubated for 15 min at RT and all temperature 

points were combined into one pooled sample per replicate. The pooled samples were 

acidified to pH < 3 using TFA, desalted using Sep Pack (Waters) and vacuum dried overnight 

using miVac DNA (Genevac). 

 

High pH reversed-phase peptide fractionation 

150 µg of peptides were resuspended in 20 mM NH4OH. Then, samples were off-line 

high-pH reversed-phase fractionated as described previously34,35 using an UltimateTM 3000 

RSLCnano System (Dionex) equipped with a XBridge Peptide BEH 25 cm column of 2.1 

mm internal diameter, packed with 3.5 µm C18 beads having 300 Å pores (Waters). The 

mobile phase consisted of buffer A (20 mM NH4OH) and buffer B (100% ACN). The 

gradient started from 1% B to 23.5% in 42 min, then moved to 54% B in 9 min, 63% B in 2 

min and stayed at 63% B for 5 min, and finally moved back to 1% B and stayed at 1% B for 7 

min. The fractions were collected for 0.7 min each resulting in 96 fractions that were 

concatenated into 24 fractions (fraction 1 was pooled with fractions 25, 49 and 73, fraction 2 

- with fractions 26, 50 and 74 and so on) and dried using miVac DNA (GeneVac, England). 
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Mass spectrometry analysis 

Each sample was resuspended in 2% ACN and 0.1% FA at a concentration of 

0.2 µg/µl and 1 µg was injected into the respective LC system (summarized in Supplementary 

Table 1). Mass spectra were acquired using the parameters listed in Supplementary Table 1. 

 

Quantification and Statistical Analysis 

Mass spectrometry data analysis 

Raw files were converted to mzML format by MSConvert (version 3.0.21258)36. Peak 

picking of profile spectra was performed with the vendor-provided algorithm (Thermo Fisher 

Scientific). Then individual datasets were searched using FragPipe GUI v17.1 with 

MSFragger (version 3.4)37 as the search algorithm. Protein identification was performed with 

the human Swisspot database (20`409 entries, downloaded on 2022.02.22), with acetylation 

(N-terminus) and oxidation on methionine as variable modification and 

carbamidomethylation of cysteine residues, TMT or TMTpro on the N-terminus or lysine as 

fixed isobaric labels. Trypsin was set as the enzyme with up to two missed cleavages. The 

peptide length was set to 7 – 50, and peptide mass range to 200 – 5000 Da. For MS2-based 

experiments, the precursor tolerance was set to 20 ppm and fragment tolerance to 20 ppm. 

Peptide-spectrum matches (PSMs) were adjusted to a 1% false discovery rate with 

Percolator38 as part of the Philosopher toolkit (v4.1.0+)39. For TMT labeled samples, reporter 

intensities were extracted by TMT-Integrator with default settings. As TMTpro18-plex 

labeling was not supported, reporter intensities were extracted by a home-written algorithm in 

R (version 4.1.1) as follows: 20 ppm windows around the theoretical m/z of each reporter ion 

were investigated, and the abundance of the most intense peak was extracted. For the SILAC-

TMT all settings were the same, expect for the fragment tolerance that was set to 0.6 Th; also, 

heavy Lysine (+8.014199 Da) and Arginine (+10.008269 Da) were added as variable 

modifications. 

 

Bioinformatics analysis 
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All further data processing was performed by a home-written algorithm in R (version 

4.1.1). For MS2-based experiments, protein quantification was performed as follows: 1) 

PSMs mapping to a reverse sequence, known contaminants, with a precursor purity below 0.5 

or a PeptideProphet probability below 0.9 were removed. 2) Reporter ion intensities were 

adjusted to correct for the isotopic impurities of the different TMTpro reagents by solving a 

system of linear equations according to manufacturer’s instructions. PSMs with corrected 

TMT intensities below 1000 were removed. 3) If multiple PSMs were detected in the same 

fraction with the same charge state, the one with the highest purity was retained, while for 

PSMs with the same purity the one with the highest Hyperscore was selected. 4) Individual 

protein TMT reporter intensities were calculated as the sum of the individual PSMs. 5) 

Proteins with less than two unique peptides were removed. 6) To correct for pipetting error, 

protein TMT reporter intensities were normalized by median centering to the total intensity. 

7) Batch effects between different TMT sets were corrected by dividing each protein's TMT 

intensity by their corresponding linker value. For the MS3-based SILAC-TMT experiments, 

protein intensities were calculated the same way as for the MS2 experiments; only PSMs 

having both the heavy and light version were quantified.  

 

Time course ResT-PISA 

Protein abundance at each time point was normalized by the corresponding vehicle 

value and statistical analysis was performed with a two-tailed t-test with equal variance. For 

visualization purposes, only proteins with a log2-scaled abundance fold change of at least 0.3 

and a p-value below 0.05 were considered to be altered and used for further analysis of the 

residence time.  

For curve fitting of residence time data, protein fold-changes were first scaled to the 

mean fold change of the drug-treated sample at time 0. Then, if the mean of the drug-treated 

sample at the last time point was below 0.6, an exponential off-curve with an asymptotic 

term:  

f(t) = (1 - b)*exp[-kd * t) + b] 

was fitted. If not, then a linear function  
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 f(t) = (kd*t + b) 

was fitted, where b – the asymptotic term, and kd is the rate constant for protein-drug binding.  

Area under the curve (AUC) calculations were made by summing for each replicate 

the mean of all data points over the entire time course.  

Full curve ResT-PISA data in intact cells were treated the same way with the 

exception that changes in the protein expression were accounted for by normalizing each time 

point by their corresponding expression value.  

All correlations were calculated as Pearson’s linear correlations. 

 

Compressed concentration and residence time PISA 

In both experiments, the protein abundance changes were normalized by those of the 

corresponding vehicle-treated samples. The significance of abundance changes was 

calculated as above. For further analysis the significant proteins from the maximal drug 

concentration or T0, for conc-PISA and cResT-PISA, respectively, were selected for analysis 

and protein solubility alterations were first scaled to the mean of their respective PISA 

samples treated with either ponatinib or DMSO. Then, proteins with a standard deviation 

between the replicates at the maximal concentration or first-time point bigger than three times 

the maximal mean value were removed. Lastly, proteins that had a scaled conc-PISA or 

ResT-PISA value above 1 or below 0 were removed.  

The combined score for the filtered proteins was calculated as follows: 1) the scaled 

protein solubility alteration was determined by scaling each protein mean solubility alteration 

at the maximal drug concentration by the biggest absolute value among these proteins 

(alteration.score), 2) the scaled concentration value was calculated as described in 1) 

(concentration.score) and 3) the scaled residence time value was calculated as described in 1) 

(residencetime.score). 

The final score was calculated as the sum of the scores in 1), 2) and 3). 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.27.497697doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497697
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

Data availability 

The mass spectrometry proteomics data have been deposited to ProteomeXchange 

Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository 

with data set identifier PXD034351. 

 

Code availability 

The code for the web-interface is available on GitHub/RZlab 

(https://github.com/RZlab/PISA-Analyser ). 
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Supplementary figures 

Supplementary Fig. 1. Protein mass distribution. Distribution of the molecular mass of 

protein kinases and other proteins (solid lines) and their proportion (dashed lines). The 3 kDa 

cutoff used for filtration for drug removal in this study is highlighted as well as another 

popular 10 kDa cutoff. 
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Supplementary Fig. 2. Correlation between the theoretical compressed ResT-PISA of 

ponatinib targets versus the observed experimental values. Protein kinases are shown in 

cyan and non-kinase proteins are shown in red. Pearson’s correlations between the two 

measures were calculated for the two protein groups. 
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Supplementary Fig. 3. Overview of the PISA-analyzer interface. (a) Layout of a typical 

.tsv file containing a proteomics dataset that can be submitted to the interface for analysis. 

Data columns names should be presented as described here. Any number of conditions and 

replicates can be included in the .tsv file. Any condition name and replicate name can be 

included. 
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(b) Step by step description of the web interface.  

1) The user can upload own data here. 

2) The user needs to specify the reference condition, in most cases the vehicle (DMSO here). 

3) The user can specify the p-value cutoff for significance in the analysis.  

4) The user can specify the ΔSm cutoff for significance in the analysis. 

5) The user needs to specify which sample is to be compared to the reference sample in the 

analysis. 

6) Start button of the analysis.  

7) Link to the article.  

8) Hide or show the checkbox group.  

9) PISA analysis window where the user can see the result of his analysis.  

10) Instruction window which displays the figure and caption.  

11) Volcano plot of the sample chosen for comparison against the reference condition (from 

steps 2 and 5) presented as the mean log2 fold change (FC) (x-axis) and -log10 p-value (y-

axis). The significant proteins according to the chosen p-value and ΔSm cutoffs are 

highlighted in red. 

12) The plots can be exported as .pdf and .svg, the source data of the plots can also be 

downloaded as .tsv. 

13) Optional plot that will appear only in 2-dimensional experiments (ResT-PISA or conc-

PISA). Here two-dimensional plots of target engagement (in this case from maximum 

concentration of the drug ΔSm) and residence time (in this case from cResT-PISA analysis) 

presented as the mean log2 FC based on the chosen reference and sample in steps 2 and 5.  

14) Optional plot that will appear only in 2-dimensional experiments. Here scoring based on 

the three dimensions of target engagement (maximum drug concentration), residence time (c-
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ResT-PISA) and binding affinity (conc-PISA). The score is calculated and is scaled to 1 for 

each individual parameter as described in the M 
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Supplementary Fig. 4. Correlation of ResT-PISA of staurosporine in lysate and in 

cell.Correlation between the AUC obtained from ResT-PISA of staurosporine in lysate and in 

cell. Kinase proteins are shown in cyan and non-kinase proteins in red. Pearson’s correlations 

between the two measures were calculated for the two protein groups. 
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Supplementary Table 1. LC-MS/MS systems and parameters. 

Parameter Staurosporine 

Lysate 

IAA Lysate Ponatinib 

Lysate 

Ponatinib 

PotPot 

Staurosporine 

Cell 

LC system Ultimate 3000 Ultimate 3000 Ultimate 3000 Ultimate 3000 Ultimate 3000 

Gradient (min) 110 210 180 180 135 

Sample 

multiplexing 

strategy 

TMT11-plex TMT10-plex TMTpro16-

plex 

TMTpro18-

plex 

TMTpro16-plex 

+SILAC 

Mass 

Spectrometer 

Fusion Lumos Fusion Lumos Fusion Lumos Fusion Lumos Fusion Lumos 

Scan cycle (s) 3 3 3 3 2.5 

MS1 resolution 120`000 120`000 120`000 120`000 120`000 

MS1 scan range 

(Th) 

400-1600  400-1600 375-1400 375-1400 375-1400 

Injection time 

(ms) 

50 50 50 50 50 

MS1 AGC 4*106 4*106 1*106 1*106 1*106 

Included charge 

states 

2-6 2-6 2-5 2-5 2-5 

Mass Difference NA NA NA NA 8.0142, 10.0083, 

16.0284, 20.0165, 

18.0225, 24.0426, 

30.0248, 26.0367, 

28.0307, 

Tolerance 10 ppm 

Exclusion 

duration (s) 

60 60 60 60 45 

MS2 Isolation 

windows (Th) 

1.6 1.6 0.7 0.7 0.5 

MS2 NCE  35 (HCD) 35 (HCD) 35 (HCD) 35 (HCD) 35 (CID) 

MS2 resolution 60`000 50`000 50`000 50`000 Turbo (Ion Trap) 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.27.497697doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497697
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

(Orbitrap) (Orbitrap) (Orbitrap) (Orbitrap) 

Injection time 

(ms) 

118 86 86 86 35 

MS2 AGC 125`000 125`000 250`000 250`000 25`000 

MS3 Isolation 

windows (Th) 

NA NA NA NA 1.3 

MS3 NCE NA NA NA NA 45 (HCD) 

MS3 resolution NA NA NA NA 50`000 (Orbitrap) 

MS3 Injection 

time (ms) 

NA NA NA NA 86 

MS3 AGC NA NA NA NA 250000 
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