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Abstract

In this paper we complete a project to demonstrates that both action poten-
tial like and EEG waveform like brain excitations can be viewed as excitations
generated by exploiting the topological connectivity properties of the brain,
thereby relating function to form. This is done by first proving that it is pos-
sible to find a two dimensional mathematical surface network that exactly
captures the topological architecture of any hypothetical brain connectome. It
is then suggested that such a surface can be taken to be a mathematical rep-
resentation of the brain if it is charged and if it has surface spin half particles
as then it can be shown that the surface can generate a variety of one dimen-
sional action potential like soliton voltage pulse signals and co-producing two
dimension surface EEG like waveforms in responds to local surface pinch defor-
mations input signals. The charged soliton pulses found are shown to carry
details of the input signals deformation parameters that create them and can
transfer this information to the pathways they traverse as a helical non tran-
sient topologically stable alignment of surface spins: a memory substrate. The
substrate has a natural, theoretically determined, excitation frequency that
can be used to retrieve memories by resonance . In an earlier work soliton
pulse generation and memory creation stability issues were discussed. Here
we show how EEG like excitations are co-produced and establish their prop-
erties. We determine the analytic expressions, of EEG waveforms, determine
their frequencies, show that frequencies are inversely relate to the waveform
amplitudes, and related to symmetric tiling of a sphere and show how they are
modulated by other signals. As an example we describe how the scheme can
be used to explain the complex sequence of EEG excitations observed in deep
sleep. We speculate on how action potentials and EEG waveforms cooperate
to retrieve memory and help to focus attention.

keywords: memory retrieval, solitons , transient excitations, surface waveforms,
K-complexes, sleep-spindles, sharp-wave ripples, attention.
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Introduction

In this paper we complete a project to show how all observed brain excitations
can be produced by exploiting the complex topological connectivity properties
of the brain. In an earlier paper (Sen,2021)it was shown that action poten-
tial like one dimensional soliton voltage pulse excitations could be created in
a surface network that has a topological architecture that exactly captures
the topology connectivity of any hypothetical brain connectome. It was shown
that exact analytic forms for these excitations could be found and that such
solutions could be generated exploiting the topology of the system only if the
network was charged and had surface spin half particles on it. Introducing
surface spins adds a new topological feature to the surface: it has a spin struc-
ture. This means that there can be different ways of arranging surface spins
in patterns that are topologically different. This means topologically distinct
patterns cannot be deformed to each other. Thus if we intuitively think of sur-
face spin as arrows on the surface an aligned linked array going round a tube of
the network in the clockwise direction is topologically different from an array
going round in the anticlockwise direction. Here we show how in the same sur-
face network, the topological process that creates soliton pulse excitations also
co- produce surface waveforms with EEG waveform like properties. A direct
link between the topological charge carried by soliton excitations and the EEG
like waveform it creates is established. There are no ad hoc features present
in the scheme. All the results obtained follow from requiring that both input
signals as well as the surface network’s response to them respect the mathemat-
ical properties of surface introduced. We will identify the soliton excitations
found as action potentials and the surface oscillations they co-produce as EEG
waveforms.

The importance of topology for exploring global features of the brain is
now beginning to be recognized in neuroscience and elsewhere. Topology is the
mathematical discipline that studies spaces and structures that do not change
under continuous deformations. For example a line and a circle are topologi-
cally different but a circle and a square or a triangle are the same. Topological
structures are robust. They are global properties of a system. For this rea-
son there is growing interest in using topological methods to identify hidden
robust structures present in the vast amount of data available that describe
the connectivity architecture of the brain’s axon network. This is an impor-
tant area of current research. Another area of exploration where topological
and algebraic geometry methods are being used is to unravel the information
contained in brain signals. A few representative references in these growing
areas of research are: (Bassett,2020; Curto,2017; Reimann,2017; K.Hess, 2018;
M.Marcolli,2019).

In the spirit of searching for global ways of understanding the functioning
of the brain, we prove that, remarkably, it is possible to construct a special
surface network that exactly captures the topological connectivity architecture
of any hypothetical brain connectome and show (Sen,2021) that this surface
network can generate action potential-like soliton excitations, by local input
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signals represented by local surface deformations. The scheme proposed differs
significantly from existing methods of signal generation, (Scott,2002; Heim-
burg,2005; Shrivastava,2020) in two important ways: signals are generated by
global means where the topology of the surface network and the presence of
surface spin half particles play an essential role and the soliton pulses gener-
ated carry with them the surface deformation information that create them.
It was shown how the soliton signals can transfer this information to the path-
ways they traverse leaving a non-transient topologically stable helical magnetic
structure: a memory substrate. The structure is produced by the alignment of
surface spin half particles by their interaction with the transient helical mag-
netic field produced when charge carrying soliton signals move through the
network. The structure is held together by spin-spin interactions and is stable
due to its topological form. It is a periodic structure with a natural excitation
frequency that was theoretically determined to be in the range (1 − 30+) Hz
(Sen,2021). This suggests that memories, stored in this way, may be retrieved
by oscillating electromagnetic signals either external or internally generated
that have frequencies that overlap with memory label frequencies. Memory
retrieval is by a resonance excitation mechanism.

We now explain three important features of the scheme Sen(Sen,2021): the
reason for choosing a special surface for the network, the reason for choos-
ing special type of input signals and how the surface network produces one
dimensional action potential-like voltage pulses are non linear soliton excita-
tions that are solutions of a special non-linear differential equation called the
non-linear Schroedinger equation.

Fig. 1 Genus g surface

We can visualize a Riemann surface as a ubersurface covering the brain’s
assembly of three dimensional neurons. This is shown in Fig 3.

We first prove that it is possible to find a special mathematical surface
network that exactly captures the topological architecture of any hypothetical
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Fig. 2 Degenerate Riemann Surface with synapses

Fig. 3 Marked Riemann.

connectome of the brain even though the details of the hypothetical connec-
tome connectivity architecture may not be known. Suppose we are given a
hypothetical connectome of a specific brain. If this connectome is covered by
a smooth surface then the theorem on the topological classification of sur-
faces, (Munkres,2014) tells us that no matter how complex and intricate are
the unknown connection details of the underlying connectome the surrounding
surface is topologically equivalent to an orderly array of donut surfaces. Thus
the theorem tells us that (Fig 1, Fig 2A, Fig 3) all represent a Riemann surface.
The unknown details of the connectome are reflected by one unknown num-
ber of the surface, namely, the number of donut surfaces required to represent
it. We will call this mathematical surface an “ubersurface” as it can viewed
as a mathematical surface that covers the brain’s assembly of three dimen-
sional individual linked neurons. If we suppose the ubersurface is smooth then
it becomes a well studied mathematical surface known as a Riemann surface.
We will explain what we mean by a smooth surface shortly. The number of
donuts g present in the ubersurface is called the genus of the Riemann sur-
face. The special g = 0 surface is a sphere and it can be related to a genus g
by pinch deformations as shown in Fig 4.Thus a Riemann surface which looks
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like a collection of thin tube like surfaces joined together in regions to form a
compact overall structure exactly capture the topology of a given connectome.

There are, however, many possible smooth non-equivalent mathematical
Riemann surfaces with spin structure that can capture the brain’s intricate
connectivity architecture. But within this class, it can be proved (Arbar-
rello,2001) that there is a special subclass that can generate the wide variety
of brain-like signals by local surface deformations provided the special surfaces
is charged and has a spin structure. A given spin structure is topologically
stable and cannot be changed by smooth deformations.

The next step is to introduce input signals. An input signal on the surface
will be taken to be a local set of surface deformations that are consistent with
the mathematical features of the ubersurface. This is physically reasonable
as our system is charged surfaces so that surface deformations will lead to
local voltage changes. The response of the surface to these deformations is the
signal. Surprisingly these are, as we will show, one dimensional multi-soliton
solutions of the non-linear Schroedinger equation. Let us explain how such a
precise result follows from the qualitative geometrical picture described.

To do this we need two mathematical results. The first result is that a
charged Riemann surface with spin structure can also be described by an
algebraic function called the Riemann theta function where all its variables
are constructed from the topological coordinate variables of the Riemann sur-
face (Sen,2021). The second is that the algebraic Riemann theta function
describes a Riemann surface only if it satisfies a nonlinear identity called the
Fay trisecant identity.(Mumford,1987)

Let us describe the topological variables used to describe a Riemann sur-
face of genus g and then show how they are used to construct the variables of
its associated Riemann theta function. In this paper no further details about
Riemann surfaces or the Riemann theta function are required. The information
about the variables is enough for us to explain the global method of signal gen-
eration described. Details of these mathematical objects are given in Mumford
(Mumford,1987).

For a genus g Riemann surface the topological coordinates are, 2g loop
coordinates (ai, bi), i = 1, 2, ..g shown in Fig 3, that capture the topologi-
cal connectivity properties of the Riemann surface and g smooth one forms
ωi(z)dz, i = 1, 2, ..g, where z is a complex variable that represents a point on
the Riemann surface. The set of one forms capture the smoothness of the Rie-
mann surface. The one forms are normalized by requiring

∫
ai
duωj(u) = δij

where δij = 0, i 6= j; = 1, i = j, and the integral is a closed circuit
along the loop coordinate ai, surface spins are represented by spin fields
si(z), i = 1, 2. The corresponding algebraic Riemann theta function has vari-
ables that are constructed from the topological coordinates of the Riemann
surface. They are g complex variables zi, i = 1, 2, ..g constructed from one
one complex variable z that represents a point on the Riemann surface by the
map zi =

∫ z
0
duωi(u), i = 1, 2, ..g and the symmetric complex valued matrix

Ωij =
∫
bjduωi(u), where the integral is round a loop bj , while the spins
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si(z), i = 1, 2 on the Riemann surface are now represented by a set of 2g vari-
ables (αi, βi, i = 1, 2, ..g) called characteristics that can only take two values,
namely (0, 12 ) (Atiyah,1971,Mumford,1971). The charged nature of the Rie-
mann surface makes the theta function a voltage function. The key requirement
for the Riemann theta function to properly describe a Riemann surface is that
it must satisfy a non-linear identity called the Fay trisecant identity.

We now have the concepts needed to explain how signals, generated by
local pinch deformations, are soliton solutions of the non-linear Schroedinger
differential equation. The idea is to use the Fay trisecant identity. Using the
identity Mumford (Mumford,1987) showed that under pinch deformations the
Fay identity becomes a non-linear differential equation so that the response
of a Riemann surface to local pinch deformations described in terms of the
Riemann theta function ,requires that the theta function must satisfy the non
linear differential equation that now represents the Fay identity.

The underlying idea is a Principle of Compatibility that required all allowed
Riemann surface local deformations to maintain the mathematical structure of
the Riemann surface. Thus it is required that the local deformations introduced
as input signals, deform the coordinate variables of the surface and can even
change the nature the Riemann surface, should do so by following a path where
at every step there is a Riemann surface structure present. At each step of the
deformation the local topological coordinate variables of the Riemann surface
change. This in turn lead to the deformation of the variables that define the
associated Riemann theta function. For a special allowed deformations, called
pinch deformations, where the circumference of tubes of the Riemann surface
are reduced to zero as shown in Fig 4, the Fay non-linear identity becomes a
one dimensional non-linear Schroedinger differential equation. Compatibility
of the Riemann theta function with this deformed Riemann surface structure
requires that it must be a solution of this non-linear differential equation. Thus
solutions of non linear Schroedinger equations represent the response of the
surface to pinch deformations. The emergence of the non-linear Schroedinger
differential equation requires that the Riemann surface chosen belongs to a
special class (Arberello, 2001). For this special class of Riemann surfaces local
pinch deformations produce one dimensional action potential-like soliton volt-
age pulses. These voltage pulses carry charge and as they move through the
network they generate a transient helical magnetic field that acts on the sur-
face magnetic spin half particles assumed to be present and align them to
form a non transient helical structure which is held in place by the spin-spin
magnetic interactions and is topologically stable. The structure captures the
nature of the transient magnetic field that created it which in turn reflects
the nature of the moving action potential like signal. The structure is thus a
memory substrate. The mathematical details are in Sen(Sen, 2021).

Here we take the next step and show that whenever a soliton excitation
or any other non linear excitation is generated there are accompanying linear
surface waveforms that are EEG waveform like and determine their expected
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properties theoretically. With this step we will have a mathematical scheme
for generating all observed brain electrical excitations.

The local surface deformations that generate one dimensional action poten-
tial like soliton pulse signals are pinch deformations of the Riemann surface,
where the circumference of, say, k handles of a subunit of a Riemann surface
of genus g > k are reduced to zero (Fig 4), turning it into a spherical surface.
Under such a deformation a train of k one dimensional solitons can be pro-
duced. These solutions were discussed in Sen(Sen,2021). The spherical surface
created during signal generation is expected to be in an excited electrical state
and have surface voltage oscillations. Our aim is to determine the properties of
these oscillating waveforms. After the mathematical properties of these surface
waveforms are established we will assume that the soliton pulses generated are
brain action potentials and that surface oscillations are EEG waveforms and
discuss the biological implications that follow from such an identification.

Results

We have briefly explain how surface waveforms are co-produced when pinch
deformation generated excitations form in the surface network. Let us first link
the surface waveform solutions on a spherical surface are directly related to
the way they are created by soliton excitations. This step will directly relate
properties of the EEG like waveforms to the soliton excitations that produce
them. After that we we will proceed to discuss the nature and properties
of these surface waveforms by solving the wave equation on the surface of a
sphere.

Creating Surface waveforms

To link surface waveforms to solitons requires three mathematical ideas. The
first is that k pinch deformations on a subunit of genus k required to produce
a train of k solitons reduces the genus of the subunit to zero (Fig 4). The
Riemann surface becomes a topological sphere. We can think of the spherical
surface as a neuron and the input signals on it as coming from dendrites that
are marked points on a sphere. This surface is charged and is expected to be
in an excited state with surface voltage oscillations. This is a general result.
The second is that surface oscillations on a spherical surface are solutions of
a wave equation that is appropriate for a spherical surface and the third is
that there are marked points on the spherical surface that correspond to pinch
point where soliton effects enter. The soliton inputs at these points determine
the nature of surface oscillations generated. We can think of these points as
the location of primary dendrites on the soma.

A general wave equation has the structure,

1

c2
∂2φ

∂t2
−∇2φ = 0
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where ∇2 is the Laplacian operator. For oscillations on the surface of a sphere
the Laplacian must have the symmetry of the sphere. This leads to the wave
equation becoming a linear second order hypergeometric differential equation
(Miller 2010) with three regular singular points (Yoshida,1987). We are inter-
ested in waveform solutions that fit together on a spherical surface without
overlapping as these special waveforms will persist and should be observable.
They tile the surface of the sphere. Thus step by step we are led to the conclu-
sion that waveforms that tile the sphere are special and should be observed,
if the global topological method of action potential like soliton generation is
valid.

Soliton excitations carry a topological charge which we will shortly define.
It is a topological phase. Remarkably these topological phases carried by
soliton solutions completely determine the solutions of the hypergeometric
equation. This is because solutions of the hypergeometric equation are uniquely
determined by certain phases associated with its three regular singular points
(Yoshida,1987). The set of phases form the monodromy group of the equation
(Appendix A). We will show how the topological phases carried by solitons can
fix the monodromy group phases. From this it follows that soliton input topo-
logical phases fix the nature of the waveforms on the sphere and furthermore
these topological phases lead to tiling waveforms.

The monodromy group (Appendix A) associate phases to solutions. Specif-
ically if a solution of the hypergeometric differential equation is transported
round a singular point it is changed by a phase factor. The collection of phases
at the three regular singular points of the hypergeometric differential equation
form a group called the monodromy group. In our scheme the three regular
singular points represent inputs from three dendrites to the cell body.

For more than three input to the cell body an appropriate generalized
hypergeometric equation with more than three singular points is required.
Solutions of this equation are also fixed by phases but the solutions are non
tiling and are not uniquely determined by the input topological phases(Yoshida
1987). In this case knowledge of the ordering of the input phases is also required
to uniquely determine a solution. Hence even though oscillations generated by
more than three input phase signals may be present they do not form persistent
patterns and hence will appear as a random background of oscillations. For this
reason we do not consider them any further but focus on the case where only
three soliton signals topological phases are involved. Since our mathematical
results are intended to represent events on the surface of neurons we note that
there is biological support for considering three input pinch deformations since
the number of primary dendrites on a soma, that represent input signals to
neurons, is between five and seven with a median value of between three and
four(Oga 2016,Dharani 2015).

Surface waveform creation by Pinch Deformation Signals

Let us now give relevant details. All pinch generated signals carry the pinch
deformation parameter information that create them but they also carry a
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topological phase. This phase is fixed by the discrete characteristic labels
(αi, βi, i = 1, 2, ..g) of the Riemann theta function (Sen,2021) that describes
the signal, where each α,βi can only take one of two values, namely 0, 12 . Thus

each signal has a topological twist phase factor W where e4iπ
∑g
i=1 αyβi = eiW .

We next explicitly relate the soliton signal phase twists Wi, i = 1, 2, 3 at
three points to monodromy group phases. It is known that solutions that have
a finite monodromy group are tile the sphere and show that this condition
holds for the monodromy group generated by soliton topological phases. The
tiling solutions belong to 5 frequency classes (Yoshida,1987) that we identify
as our oscillatory stable waveforms. These solutions will persist and should be
observable. They reflect the five Platonic solids of antiquity.

Let us proceed to fix monodromy phases from soliton phases. We assume
that a unit twist associated with a soliton excitation at a pinch deformation
point produces a twist of, eit at a regular singular point of the hypergeometric
differential equation on Σ0, the topological sphere created. Then a topologi-
cal twist W produces a twist (eit)W = eitW . This twist is, as we discuss in
Appendix A, related to the difference between the characteristic exponents of
solutions of the hypergeoemtric equation at that point.

We now recall that a soliton solution has a topological twist phase factor
given by the integer W = 4

∑g
i=1 αiβi, where (αi, βi) are the characteristics

of the Riemann theta function. A characteristic is said to be an even/odd
characteristics depending on whether eiπW = ±1. For solitons to be produced
the Riemann theta function must have odd characteristic. We can now fix the
allowed range of values t can take by using a compatibility condition which
i requires that the singular point twist eitW matches topological twist factor
eiπW of the soliton. But this factor can must be −1. Thus we have the matching
condition eitW = −1 This fixes the allowed values of t. Possible values of t are
π
2 ,

π
3 ,

π
4 ,

π
5 corresponding to W = 2, 3, 4, 5. We will see in the next section that

these values agree with those of the explicit tiling solutions on the surface of
a sphere found by Schwarz (Schwarz,1873)

Identifying Special Solutions of the Hypergeometric equation

We now describe explicit tiling soltions of the hypergeometric equation on a
sphere studied by Schwarz,(Schwarz,1873). Later we will consider a subclass
of Schwarz solutions that have simpler solutions with oscillation frequencies
given by a simple formula. This subclass is important as they form a complete
set of basis functions on a spherical surface.

Schwarz List of solutions

Schwarz (Schwarz,1873) found 15 algebraic solutions tiling solutions of the
second order linear hypergeometric differential equation on the surface of a
sphere. Let us give an intuitive reason for this remarkable result. Three facts
are helpful.
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The first is a property of spherical triangles drawn on the surface of a
sphere of radius R with sides that are great circles. Euclid’s result that the
sum of the angles α, β, γ of a triangle on a plane add up to π radians is now
replaced by the result that the sum of angles of a spherical triangle is related
to its area in the following way (Wolfram):

α+ β + γ − π =
A

R2

where A is the area of the spherical triangle. Thus the sum of the angles fixes
the area of a spherical triangle for a given radius R. Hence given that a sphere
of radius R has area 4πR2 we can find the allowed identical set of triangle
that can tile the sphere. This leads to five cases discovered by Plato: the five
Platonic solids whose surfaces suitable mapped on to the surface of a sphere
tile it using identical subunits.

The second fact is that the Laplacian operator necessary to study waves
on must have the symmetry of a sphere. This requirement leads to the second
order hypergeometric differential equation (Miller 2010).

The third fact is that the second order hypergeometric differential
equation has two linearly independent solutions with three regular singular
points and that these two independent solutions are completely determined
by the way they change as they are transported round singular points
(Yoshida,1987)(Appendix A). Such a transport produces a phase change of
the solution called its monodromy, which is a phase angle. The presence of
three regular singular points leads to three angles. These angles, if they have
the right set of values, can be represented as the angles of a spherical triangle.
If these triangles have appropriate angle values they can tile the sphere. This
means that these waveforms cover the surface of the sphere without overlap-
ping and thus persist stably. For this to happen the solutions have to have
special values for their monodromy phases.

When this happens we have stable surface waveform bands. The sides of
the triangles are the nodes of the waveforms. A mathematical description of
the way tiling of spheres and special solutions of the hypergeometric equation
are related is outlined in Appendix B.

A list of such solutions is available (Vidunas 2008,2009). Examples of tilings
are shown in fig 5: Schwarz Triangles

Surface waveform Frequency Estimates

We can give a simple geometric argument to estimate the frequencies of tiling
solutions. Later we will determine the explicit analytic form for tiling wave-
forms and find a formula for their frequencies directly by solving the wave
equation on a sphere.

The wave like nature of tiling solutions comes from from the fact that they
have a periodicity that is induced by the tiling. A solution in one tiling sec-
tor has to smoothly join onto the solution in the next sector. This periodicity
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Fig. 4 Schwarz Tiling.

generates a two dimensional waveform. The size of these two dimensional exci-
tations can be estimated by the area of a tiling segment. If we take the speed
of these waves to be approximately tiling independent then we can estimate
the frequency of the different waves as being proportional to the inverse of
their size.

Let us carry out this frequency estimate for 5 algebraic solutions of Schwarz
and then compare our frequency estimates with observed EEG frequencies.
The favorable agreement is noted but we continue to treat these results as
mathematical results of our surface network The tilings are described by three
angle labels a, b, c that fix the tiling area A, for a spherical triangle, is fixed by
by angles of the triangle by the simple formula A

r2 = a+b+c−π, where r is the
radius of the sphere. We tabulate the tiling areas, estimated wave frequencies
and state the associated Platonic solid:

Solid Area Schwarz labels
Dihedral p

n ( 1
2 ,

1
2 ,

p
n ≤

1
2 )

Tetra 1
6 ( 1

2 ,
1
3 ,

1
3 )

Tetra 1
3 ( 2

3 ,
1
3 ,

1
3 )

Cube 1
12 ( 1

2 ,
1
3 ,

1
4 )

Icosa 1
30 ( 1

2 ,
1
3 ,

1
5 )

Icosa 1
15 ( 2

3 ,
1
5 ,

1
5 )

The areas are in units of π. The Schwarz labels are the angles a, b, c written
as a = π

p , b = π
q , c = π

s . The frequencies are proportional to the inverse of the
areas listed. We set the basic frequency equal to one Hertz. We then have the
frequency estimates,
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Solid Size Frequency EEG Predicted Observed
Dihedral p

n ≥ 2 All waves 1
nA All waves

Tetra 1
3 3 delta (.5-3) 200µV 200µV

Tetra 1
6 6 theta(3-8) 100µV 50µV

Cube 1
12 12 alpha(8-12) 50µV 50µV

Dodaca 1
15 15 beta(12-30) 40µV < 50µV

Icosa 1
30 30 gamma(30–42) 20µV 10µV

We compare our mathematical results with the observed 5 types of global EEG
brain wave frequencies, namely, the delta (.5-3 Hz), theta (3-8 Hz), alpha (8-
12 Hz), beta (12-30 Hz), and gamma (30-42 Hz) are listed ( Liu 2013). The
predicted frequency values setting the base frequency to one hertz are listed.
Thus our estimates roughly agree with observations. This encouraging result
is a first step in our identifying the surface network signals as brain signals
and the surface oscillations that we are studying as EEG waveforms. For the
moment we continue to carry out our mathematical analysis and regard the
comparison result as an interesting coincidence. To get the frequencies a base
frequency of one Hertz was chosen and the sphere radius r was set to one. For
arbitrary r the frequencies scale by the factor 1

r2 , r > 0. However we have set
the basic frequency to be one hertz. This fixes the scale. Thus setting r = 1 is
justified. It is not an extra parameter of the model. The amplitudes numbers
predicted use an input value of 200µV for delta waves.

We also note that since the Schwarz solutions are solutions of a lin-
ear system a general surface waveform will be a linear superposition of the
fundamental set of eigensolutions of the system.

Surface Waveforms: Fractional Legendre functions

We next determine analytic expressions for waveforms and find an explicit
formula for their allowed frequencies of tiling solutions from the mathematical
fact that the associated Legendre functions of fractional order, Pµν (z), form a
complete set of basis functions and that they are sphere tiling solutions that
can be used to represent dihedral, tetrahedral, and cubic symmetry classes
(Maier 2018). These solutions are also solutions of a wave equation on a sphere.
Using these facts we wil determine the oscillation frequencies of the waveforms.
Finally since these special tiling solutions form a basis set of functions they
can be used to represent any arbitrary square integrable function f(z) on the
sphere. Thus, any such function f(z), can be written as,

f(z) =

i=+∞∑
n=−∞

cnP
µ
ν0+2n(z)
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where the points z represent arcs on the sphere. From this result and the
orthogonality property,∫ z=+1

z=−1
Pµν1(z)P−µν2 (−z) = α(µ, ν1)δν1,ν2

we obtain the completeness result,

δ(z − z′) =

n=+∞∑
n=−∞

Pµν+2n(z)P−µν+2n(−z′)
α(µ, ν + 2n)

The dihedral tiling class corresponds to setting µ = 1
2 , ν = − 1

2 . We also have
the completeness result,

δ(t− t′) =

∫
dωeiω(t−t

′)

A more general class of basis functions can also be used for representing func-
tions defined on the sphere rather than along arcs on the sphere. They are
the analog of the usual spherical harmonics. We display the ones related to
dihedral tiling. We have

Y
− 1

2

− 1
2+2n

(θ, φ) = N( 1
2 ,2n−

1
2 )
e−i

φ
2

√
8

π sin θ
cos(2n− 1

2
)θ)

where n = 1, 2, .. and N(− 1
2 ,2n−

1
2 )

is a normalization factor. It is evaluated
in the next section. Using this function we can plot EEG waveform-s in two
dimensions and display their tiling property.

The completeness property of these solutions and the fact that they are
related to solutions of the wave equation on a sphere will now be used to con-
struct a Greens function(Morse, 1953) appropriate for studying time dependent
modulations of our surface waveforms.

Construction of Greens function for surface wave modulations

The Greens function captures essential symmetry features of tiling waveforms
and thus can be used to study their responses to external or internal signals.
It satisfies the equation,

(
1

c2
∂2

∂t2
−∇2)G(z, t : z′, t′) = δ(t− t′)δ(z − z′)

We replace the right hand side with the delta function representations chosen,
with µ = 1

2 , ν = − 1
2 , if we use the dihedral tiling waveforms, with the ∇2 oper-

ator with the symmetry of the sphere and suppose that the Greens function
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depends only on (t− t′), and 0 ≤ t′ ≤ t. Then

G(z, z′, t− t′) =
∑
n

∫
dω
Pµν+2n(z)P−µν+2n(−z′)

(−(ω
2

c2 ) + ω2
n)

e−i(t−t
′)ω

α(µ, ν + 2n)

where ∇2Pµν+2n(z) = −ω2
nP

µ
ν+2n(z). carrying out the ω integral we get

G(z, z′, t− t′) = iπ
∑
n

(
e−iωn(t−t

′)

ωn
)
Pµν+2n(z)P−µν+2n(−z′)

α(µ, ν + 2n)

The modulation m(z, t) of an surface waveform due to an input signal s(t, z)
can now be calculated. We have

m(z, t) =

∫
dt′

∫
dz′G(z, t, z′, t′)s(z′, t′)

We now note that the set of dihedral tiling solutions, on their own, also form
a complete set of basis eigensolutions, and hence can be used to represent all
allowed tiling surface waveforms. Hence we will just use these waveforms in
our discussions. These dihedral tiling waveforms, labeled by an index n have
frequencies

ωn =

√
n2 − 1

4
, n = 2, ..

and their waveform shapes are given by the fractional spherical harmonics,

Y
− 1

2

n− 1
2

(θ, φ) = N(− 1
2 ,n−

1
2 )
e−i

φ
2

√
8

π sin θ
cos(n− 1

2
)θ

where n = 1, 2, .. . Thus we have found explicit expressions for surface
waveforms and a formula for their allowed frequencies.

The general class of algebraic Schwarz solutions have been thoroughly stud-
ied by Vidunas (Vidunas 2008, 2009). Here, for reasons given, we restrict
ourselves to the less general dihedral as they have simple mathematical prop-
erties and at the same time form a complete basis set of functions. We can now
relate the frequencies of these waveforms to their amplitude by calculating the
normalization factor N(− 1

2 ,2n−
1
2 )

. This will determine the way it scales with n
and thus establish a relationship between the amplitude and the frequency of
a waveform. Using the normalizations of Maier(Maier 2018) for Pµν (θ), P−µν (θ)

that can be related their norm P = P 2 =
∫ +π

π
dθ sin θPµν (θ)P−µν (θ) can be eval-

uated. Writing Pµν (θ) → P
Pµν (θ)
P , with (µ = 1

2 , ν = 2n− 1
2 ) the n dependence

of the amplitude is fixed by P which is,

P =

√√
2

π

Γ( 3
4 )

Γ( 5
4 )

(4n+ 2)

(2n+ 1
2 )(2n+ 3

4 )
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Thus a clear inverse relationship between the amplitudes and frequencies is
established. Since the dihedral tilings can be used to represent all other tiling
solutions, this relationship is valid for all surface waveforms.

There are corresponding set of basis functions for some other tiling wave-
forms. For, example, for a tetrahedral or octahedral tiling generated surface
waveforms, the frequencies are of the form,

ω =

√
(ν +

1

2
+ 2n)(ν +

3

2
+ 2n)

with appropriate fixed values for (ν, µ) and (n,m) integers (0, 1, 2, ..) that
reflect the symmetry of the tiling, there is a corresponding waveform
Y µ+m
ν+ 1

2+2n
(θ, φ). These expressions may be directly used also show the inverse

relationship between waveform amplitudes and their frequencies. Thus, for the
octahedral tiling case an explicit expression for waveforms is available (Maier
2018). We have,

P
1
4+m

− 1
6+n

(cos θ) = 2−2m−3n Γ(
3

4
−m)−1 (sin θ)−

1
4−mB

1
4+3m+3n
+ rmn (

B−
B+

)

B± = cos(
θ

3
)±

√
4 cos2( θ3 )− 1

3

where rmn (B−B+
), for (n,m) ≥ 0 are Heun polynomials (Ronveaux 1995) of degree

(3n+2m) with octahedral symmetry. However we will not consider these cases
any further and in all our subsequent work and discussions we will always
use the dihedral waveforms to approximate all other tiling solutions and thus
represent all surface waveforms.

At this stage we have established mathematical tools to study the response
of the surface waveforms to external signals, we have found their oscillation
frequencies and their explicit form. We now take the next step and assume
that the soliton excitations of our network represent brain signals and our
surface oscillations co-produced with any signal created by pinch deformations
as EEG waveforms. We thus identify mult–soliton solutions with spike trains,
dark soliton solutions that are oscillations on top of a high energy background,
with bursts and transient localized excitations that can be generated by pinch
deformations, with blocking signals that prevent certain certain brain circuits
from functioning, as observed during sleep. We can then apply the techniques
established to analyze observed EEG events. We carry out such an analysis to
discuss the observed sequence of brain EEG events during NREM sleep,namely,
K-complexes-Sleep-Spindles and Sharp -Wave Ripples.

Modeling K-complexes-Sleep-Spindles-Sharp Wave Ripples

In NREM sleep delta waves are observed and at intervals of 1-1.7 minutes
large sharp spikes, K-complexes, are observed that have amplitudes in excess
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of 100 mV in the background high amplitude of slow waves and delta waves
(1.6-4.0) Hz present. These excitations have duration in excess of 500 ms and
are followed by spindle shape oscillations of duration a few seconds of fre-
quency in the range 10− 15) Hz, followed by sharp wave ripples (De Gannaro
2003,Ioannides 2019). These EEG events happen in this order.

We interpret this sequence of events as a mechanism of memory consoli-
dation and the transference of memory copies from one region of the brain,
possibly the hippocampus, to another region of the brain, possibly the frontal
cortex (Buzsaki 1989, 2015). The first step in the sequence of events described
is assumed to be due to a major transient localized cortical that prevents
regions of the brain from receiving or processing information for the period of
time. It is a local blocking event. The triggering event should have high volt-
age, be transient, and localized to an appropriate brain region with a duration
in excess of 500 ms. During this period of time other signals cannot proceed
in the region where the event has occurred: the region is thus isolated from
other signals. Such a blocking transient event, we suggest is responsible for
the K-complex modulation of the delta wave that is co-produced with it. A
mathematical example of such a transient cortical events which are created by
pinch deformation input signals, exists. Examples are rational breather and
peakon solutions(Kalla 2011).

We next suggest that sleep spindles observed reflect the modulation of delta
waveforms by the frequency label of memory information encoded (Sen et al
2021, submitted) in topologically stable helical magnetic traces. It was shown
that they have a frequency label in the range (2− 30+) Hz (Sen 2021).

Finally the memory trace modulation on the high voltage delta waves.
interact with underlying neurons to produce, by a resonance process, memory
copy carrying burst excitations which in turn modulate the delta waveforms
co-produced and show up as sharp wave ripples in the EEG signals. The pro-
duced bursts are interpreted as copying and transferring memory information.
Because of the extensive nature of the blocking signal the visual and auditory
sensory pathways do not respond to these activities.

In earlier work (Sen et al. 2021) it was shown that memories may be stored

non-locally as closed helical magnetic traces ~∆B(x) in the pathways traversed
by multi-soliton excitations. The non transient trace has a natural excitation
frequency in the oscillation frequency range (1 − 30+) Hz. We now calculate
the modulation of a delta waveform potential as it moves over such a magnetic
memory trace. In an earlier section we showed that the delta waveform poten-

tial was V (θ, φ, t) = Ne−i
φ
2

√
8

π sin θ cos(2n − 1
2 )θ eiω0t,in terms of spherical

polar coordinates, with pi
2 < θ < π, where N was a normalization constant and

ω0 =
√
n2 − 1

4 , n = 2. Using this expression we can calculate its the gradient

−∇V which is an electric field that acts on charges e on the tube causing them
to move. For a qualitative understanding of this effect, which we show these
effects produces spindles, we replace the (θ, φ) dependence of V (θ, φ, t) by a
simpler expression but we retain its theoretically motivated time dependence.
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Thus we set V = V0 sin θ sinφ cos t for the delta waveform, so that ω1 ≈ n.
Then V = V0y cos t in Cartesian coordinates and we have,

Ey = −∇yV = V0 cos t

m
dvy
dt

= eEy

vy(t) =
V0e

m
sin t

This moving charge interacts with the helical magnetic trace present and

excites it to its natural frequency ω0 =
2πv20
crs

found in Sen(Sen,2021), where
v0 is the charged soliton pulse speed that led to the magnetic memory trace.
Thus we have the excited magnetic field given by,

~B(t, ~x, rs) = B(~x)(cos(
2πv20t

crs
), rs sin(

2πv20t

rs
), z = v0t),

where rs is the radius of the tube, c the velocity of light in the medium.Thus

the natural excitation frequency of the structure is ω0 =
2πv20
crss

. To calculate
the modulation of the EEG wave we use the fact that the moving charge
interacts with this magnetic field via a Lorentz force (Jackson 1999). Thus if
the charge is moving with velocity vy it interacts with the x component of the
magnetic trace, it produces a force in the z direction and hence generates a
force Fz from which modulating potential ∆V can be determined by noting
that Fzdz = −∆V . The force is given by

Fz =
e

c
Bvy(t) cosω0t

and the modulating potential is ∆V = −Fzdz. Thus we find that ∆V is,

∆V =
e2V0
mc

B(sin z) sin(ω0z)dz, 0 ≤ z ≤ L

where we have used z to parametrize time, setting Bz = z = v0t for the helical
magnetic memory trace, and we have set v0 = 1. This is a spindle. It carries
the helical magnetic memory trace excitation frequency.

Fig. 5 Sleep Spindle
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Fig. 6 K Complex

Thus ∆V , provides a copy of the memory traces. We now interpret our
results in terms of brain excitations. The modulation theoretically determined
has the shape of a sleep spindle, as ω0 >> 1. From observations we find
that ω0 ≈ 10 − 15 Hz which is consistent with our earlier theoretical result
(Sen,2021) that memories are stored non-locally as topologically stable heli-
cal magnetic traces with a theoretically determined frequency in the range
(1−30+) Hz. The result obtained will remain valid even if we had used our the-
oretically determined expression for the delta waveform potential rather than
our simple representation of it. The difference would be in, not in the qualita-
tive shape of the sleep spindle but in its detailed nature as there would now
be a spatial dependence present in ~v(t) with the combination (vyBx − vxBy)
rather than just the term vyBx that we used.

Transient Signals and K-complex

We now give the mathematical details that show how the suggestion that a
high energy blocking signal, which is a transient solutions of the non-linear
Schroedinger equation can explain a K-complex modulation. Explicit mathe-
matical examples of such transient solutions exist, such as the peakon solution
and rational breather solution and their analytic forms are available (Kalla
2011) but, we simplify our analysis by approximating the known analytic
solutions for transient excitations, using the following simple expression,

ψ(θ, φ, t) = δ(θ − θ0)δ(φ− φ0)e−(ωnt)
2

Θ(t)−Θ(t− 1

α
)δ(θ − θ1)δ(φ− φ1)

where (θ1 = θ0+∆, φ1 = φ0+∆), and Θ(t) = 1, t > 0 and is zero otherwise, the
Heaviside Theta function. The Greens function, for surface dihedral waveforms
is given by,

G(z, z′, t− t′) = iπ(
e−iωn(t−t

′)

ωn
) P

1
2

− 1
2+2n

(z)P
− 1

2

− 1
2+2n

(−z′)

P
− 1

2

2n− 1
2

(θ) =

√
8

π sin θ
cos(2n− 1

2
)θ),

For our qualitative discussion we drop normalization factors and ignore the
spatial oscillations of the waveforms. Then any surface waveform modulation
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due to a transient localized excitation, can be plotted using,

M(t) = M1 +M2

M1 = A
1√
n
e−(ωnt)

2

cosωnt, − T < t < +T

M2 = A
1√
n
− e−(ωn(t−2T ))2 cosωnt, + T < t < +3T

with ωn =
√

4n2 − 1
4 . For numerical work an appropriate gluing function M12

is required. The value of the constant A, has to be chosen.
Thus a K-complex modulation of a EEG delta waveform can be understood

as a modulation of the delta waveform by a high energy transient blocking
excitation. The transient event is required to have high energy, as the delta
waveform co-produced with it and then modulated by it, has high energy. But
such transient excitations can theoretically exist with lower energies, ranges
and duration. We sketch the possible energies, ranges and durations, that such
excitations can have, using brain EEG waveform information. We then suggest
that all of these transient excitations should be observed and that they all play
a role in the functioning of the brain.

Prediction of Range, Energy and Duration of Blocking Signals

We can predict the duration, range and energies of any one of these the-
oretically allowed transient excitation that produces K-complex like EEG
modulation by linking these parameters to the EEG waveforms that they mod-
ulate. Our estimate for duration is, thus, τn ≈ 1

ωn
, for energy ≈ V , the voltage

amplitude of the waveform, with a range given by the area fraction of a sphere
tiled by the waveform. Hence for a delta wave these estimates suggest a dura-
tion τ1 ≈ 1

2 seconds which is ≈ 500 ms (Weigenand 2014). We tabulate the
results, listing the n value of an EEG waveform, and the amplitude, in mV,
and duration,in ms, of K-complexes EEG modulations created by transient
localized excitations.

Waveform Wave Number Amplitude Duration Range
Delta 1 100 500 π

2
Theta 3 30 100 π

3
Alpha 6 16 50 π

6
Beta 10 10 30 π

10
Gamma 50 2 6 π

50
We speculated earlier that a person can perhaps initiate transient localized
blocking events by chemical means. Perhaps the local release of dopamine and
nitric oxide signals (Kali 2010) play such a role in the case of K-complexes.
This is because dopamine has been identified as a system manager for cortical
activity (Hong 2013) while nitric oxide has been identified as playing a key role
in sleep (Kalinchuk 2010). If this is true then blocking dopamine and nitric
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oxide signals would stop K-complexes and thus prevent the method of memory
consolidation and transfer suggested.

Another implication of this speculation is that those that have a greatly
reduced number of K-complexes during NREM should not be able to store
long term memories. This speculation can be tested.

Plotting EEG waveforms in the dihedral approximation

A representative plot for a Delta waveform is plotted.

Fig. 7 EEG Delta Wave

We next plot a sample of predicted two dimensional waveform shapes for
a class of EEG waveforms, tabulate their predicted frequencies and ampli-
tudes and compared them with observations. These plots clearly show the
tiling nature of the waveforms. Observed EEG waveforms are expected to be
linear combinations of these waveforms with certain waveforms dominating
depending on circumstances.

Our first step is to show that the solutions constructed are indeed tiling
solutions, which means that they must vanish on the sides of an appropriate
spherical triangle on the surface of a sphere. We select the following set,

Y
− 1

2

2n− 1
2

(θ, φ) = N(− 1
2 ,2n−

1
2 )
e−i

φ
2

√
8

π sin θ
cos(2n− 1

2
)θ

where n = 1, 2, .. . The angles (θ, φ) are spherical polar coordinate angles
with ranges (0 ≤ θ ≤ π,−π ≤ φ ≤ +π). To construct tiling solutions that
vanish on the sides of a spherical triangle the following variable changes are
requiredθ → θ′ = θ

2 , φ→ φ′ = φ
2n and we require that the solution be periodic
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in φ′. In terms of these variables, the solution becomes,

S
− 1

2

2n− 1
2

(θ′, φ′) =
1√
n

cos(nφ′)

√
1

sin 2θ′
cos(2n− 1

2
)2θ′

where the range of the angles are now (0 ≤ θ′ ≤ π
2 ,−

π
2n ≤ φ ≤ +fracπ2n). We

check that this solution vanishes when θ′ = π
2 and when φ′ = ± π

2n which define
the three sides of a spherical triangle. Thus we have constructed a tiling solu-
tion. To plot this waveform the expression obtained should be multipliede by
sin(2θ′). We have included a normalization factor 1√

n
which is an approxima-

tion of P defined by P 2 =
∫ +π

π
dθ sin θPµν (θ)P−µν (θ) with (µ = 1

2 , ν = 2n− 1
2 )

the n dependence of the amplitude is fixed by P [27] which is,

P =

√√
2

π

Γ( 3
4 )

Γ( 5
4 )

(4n+ 2)

(2n+ 1
2 )(2n+ 3

4 )
≈ 1√

n

It is now clear that the amplitudes are inversely related to frequencies and we
list, in tabular form, the frequency and amplitude predictions made for EEG
waveforms in this approximation .

Solid Size Frequency EEG Predicted Observed
Dihedral p

n ≥ 2 All waves 1√
n
A All waves

Dihed 2
2 1 delta (.5-3) 200µV 200µV

Tetra 1
6 6 theta(3-8) 80µV 50µV

Cube 1
12 12 alpha(8-12) 57µV 50µV

Dodaca 1
15 15 beta(12-30) 40µV < 50µV

Icosa 1
30 30 gamma(30–42) 28µV 10µV

Fig. 8 Frequency-Amplitude Plots
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Discussion

The central idea of this paper is that it is possible to generate all observed brain
excitations by exploiting the topological features of the brain’s connectivity
architecture in a surface network that we prove exactly captures the topolog-
ical connectivity of a hypothetical unknown brain connectome. if this surface
network is charged and has surface spin half particles then we showed in an
earlier paper, that by exploiting the global topological features of the network,
a wide variety of one dimensional soliton pulse signals, with action poten-
tial like features can be generated, by local pinch deformations (Sen,2021).
Furthermore these pulse signals were shown to carry input information that
created them and can transfer and store this information as a memory sub-
strate in the form of a surface helical spin structures. The memory structure
is an alignment of surface spins, it is topologically stable and has a natural
excitation frequency that is theoretically estimated. Memory storage is mag-
netic and is in the pathways between engram cells. The presence of spin half
surface particles is essential.

Here we have shown that the same surface network can also produces EEG
waveform like surface oscillations whenever non linear action potential like
solitons are generated by local pinch deformations. The explicit form and fre-
quency bands, of EEG waveforms, of these surface oscillations are theoretically
determined and a precise relationship between a soliton excitation and the
EEG waveform it co-produces is found. The analytic form of the surface oscilla-
tion and their frequencies is determined. It is found that these frequency must
belong to five discrete classes that correspond to the Platonic tiling of a spher-
ical surface, and that there is an inverse correlation between the frequency of a
waveform and its amplitude. These theoretical predictions are consistent with
observations. A further general prediction of the scheme is that EEG wave-
forms have a universal nature, that is, they should have the same structural
properties for all creatures that have neurons and synapses(Bullough,2002,
Fingelkurts 2014).

The non linear excitations were shown (Sen,2021) to be one dimensional
soliton pulse solutions of the non linear Schroedinger equation, while the co-
produced surface oscillations are linear waveforms, that are solutions of the
linear hypergeometric differential equation on the surface of a sphere.

We will assume that the soliton pulses represent brain sig-
nals(Shrivastava,2012, Mussell,2020) and the surface oscillations, co-produced,
are EEG waveforms, then all the mathematical properties of the surface
oscillations and soliton signals derived theoretically became predictions. The
method of EEG waveform generation proposed is unconventional. (Nunez
2006a,2006b, DaSilva, 1991, 2010,Jones,2016,Klimeschi,2018) but, as we sug-
gest, it places EEG waveforms as an essential excitation for the cognitive
functioning of the brain.

The suggestion that EEG waveforms play an essential role in the function-
ing of the brain is based on the mathematical results obtained. Thus in our
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discussion of the K-complex initiated sequence of EEG events, observed dur-
ing non rapid eye movement (NREM) sleep, it is suggested that the sequence
of EEG events observed can be explained by a sequence of brain excitations
where each step of the sequence has a mathematical correlative. The start
of the sequence is by a high energy transient pinch generated excitation that
blocks other signals from accessing certain brain circuits. Such transient exci-
tations can be represented in the scheme as a rational breather or peakon
solutions of the non linear Schroedinger equation and can be produced by suit-
able pinch deformations(Kalla,2012). A high energy transient blocking signal
will co-produces a high energy EEG delta waveforms as we saw. The delta
waveform is then modulated by the transient signal to produce the K-complex
shape. The hypothesis that blocking signals can co-produce EEG waveforms
is supported by observations(Becker 1985). The subsequent sequence of events
that follow a K-complex excitations were interpreted as the modulation of a
delta waveform by the helical frequency of a memory trace labeled (Sen, 2021)
to produce a sleep spindle which, in view of its high energy, in turn excites
signal generation from neurons by a resonance mechanism to produce a burst
(a dark soliton excitation) that shows up as a sharp wave ripple on the delta
waveform, representing the transference of a memory copy.

Transient blocking signals may also play a role in REM sleep. There the
signals are less energetic and have smaller range and consequently do not
block visual and possibly auditory sensory pathways. If this is the case then
the blocking signals co-produce the less energetic theta waveforms then their
modulation by brain memory label frequencies in the frequency range (10 −
16)Hz, the analogue of sleep spindles, will make them look more like beta
waves and the interaction between the theta waveforms and stored memory will
stimulate and consolidate memories which are experienced as dreams. Thus
dreaming should be a universal experience for all mammals. Just as a high
energy blocking excitation shows up as a K-complex followed by sleep spindles
on delta waveform modulation in NREM sleep, a less energetic blocking event
should be present before the onset of REM. Perhaps they are the sawtooth
wave modulation on theta waveforms observed (Suvadi 2015) before the onset
of REM.

We were able to estimate the possible energy, range and durations of the
wide variety of transient blocking signals that are theoretically possible. These
theoretically allowed excitations have biological implications. They could be
important, for example, for providing a mechanism for focused attention. Let
us explain how. A low energy transient excitation would stop local access
of certain signals thus permitting only signals of interest to be processed.
At the same time the blocking excitation would generate its associated EEG
waveforms that would be able to access locally stored memories labeled with
frequencies that were shown to overlap with those of the EEG waveform gen-
erated. In this way relevant information from memory could be accessed by a
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resonance process while information not of interest was blocked. Such a coop-
erative process would help explain aspects of attention. Thus two important
related brain excitations happen together and cooperate.

There are further implications. Not only may the EEG waveforms help
recall memory but they also may help to identify the nature of incoming signals
as an incoming signal would, again generate an EEG waveform of a certain
frequency which could, by the mechanism described, help to identify the nature
of the incoming signal from stored memory. Furthermore, from the nature of
the processes described, it also follows that EEG waveforms would also show
up whenever focused attention is required, as it is natural to assume that a
person can produces the low energy transient blocking signals required for
attention, possibly by chemical means, to block signals that are not of interest
and allow only certain signals to be processed.

Summarizing: soliton excitations carry information and store it as mem-
ory non locally, while transient blocking signals initiated by chemical means,
of different energies, together with their co-produced EEG waveforms work
together to carry out the cognitive functions of the brain. We suggest that
EEG waveforms are the workhorse of cognitive activities and are the muscles
of thinking. All our results follow from the topological and smoothness prop-
erties of a mathematical surface network that exactly captures the topological
connectivity properties of a brain connectome.
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Appendix A: Monodromy Groups and Tiling angles

The stable surface waves were shown to be special algebraic solutions of the
linear hypergeoemetric equation and a way to co-produce them by pinch
deformation excitations was described. Here we explain the link between
monodromy groups, and tiling angles required to get the Schwarz solutions.

The hypergeometric equation solutions has two linearly independent solu-
tions and its regular singular points, are chosen to be at 0, 1,∞. Each solution
has characteristic exponents. Suppose b0, b1, b∞ are the inverses of character-
istic exponent differences of the hypergeometric differential equation near the
singular points 0, 1,∞. We now recall that the hypergeometric equation can
be written as,

x(1− x)
d2u

dx2
+ (c− (a+ b+ 1)

du

dx
− abu = 0
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In terms of these parameters we have 1
b0

= 1-c, 1
b1

= c-a–b, 1
b∞

= a-b, where
the terms 1-c, c-a-b, a-b are the characteristic exponent differences of the given
hypergeometric equation at its three singular points x = 0, x = 1, x = ∞
respectively.

The hypergeometric equation has an underlying group structure. It can be
obtained as an eigenvalue equation of the Casimir operator of the Lie algebra
SL(2, C) (Miller 2010,Kitaev 2018). The group SL(2, C) represents the sym-
metry of the sphere. Explicitly the group acts on a a point z of the upper half
plane mapping it to a point w by w = Mz, where M is a 2 × 2 SL(2, C)
matrix with complex coefficients a, b, c, d as,

w =
az + b

cz + d
ad− bc = 1

The hypergeometric functions also appear as the representaion of the Lie alge-
bra of the group SL(2, C) (Miller 2010) that is the symmetry of the Riemann
sphere. The three regular singular points of the hypergeometric equation can
be taken to be three points on a sphere. A curved triangle can be drawn on this
sphere with these three points as its vertices. The spherical angles between the
lines of this curved triangle are chosen to be associated to difference between
characteristic exponents of the two linearly independent solutions of the hyper-
geometric equation at that regular singular point. Thus a solution, described
by its characteristics has a geometric representation as a curved triangle on
the surface of a sphere.

Fixing the tiling angles

The reason why differences of exponents appear in the analysis can be under-
stood as follows: by analytic continuation (Yoshida 1987) a pair of linearly
independent solutions can be extended to all points inside the triangle, the
upper half plane and then, by using a reflection principle, (Yoshida 1987) to the
lower half plane and thus extended to the entire sphere provided the charac-
teristic exponents of the solutions are special. Such an extension can represent
a tiling of the sphere.

Now consider the set S = (0, 1,∞) of the regular singular points of the
hypergeometric differential equation and define X = C2 − S, where C2 is
the two dimensional complex plane and x0 a point in X. The hypergeomet-
ric differential equation has two linearly independent solutions, say u1, u2 in
the neighborhood of a singular point. If we continue these solutions u1, u2
analytically along a curve C in X then we get

Ct∗(u1, u2) = M(C)t(u1, u2)



Springer Nature 2021 LATEX template

REFERENCES 27

where M(C) is a non singular two-by-two matrix and C∗ represents the
analytic continuation of u1, u2 along the curve C. The matrices M(C) for dif-
ferent curves forms a representation of the fundamental group of Π(X,x0)
and is called the monodromy representation of the differential equation. The
monodromy group representation for Π(X,x0) can be constructed from the
characteristic exponents of the equations at its singular points. Explicitly if
v1, v2 are the analytic continuations of u1, u2 we can write,

v1 = au1 + bu2

v2 = cu1 + du2
v1
v2

=
au1 + bu2
cu1 + du2

=
au1

u2
+ b

cu1

u2
+ d

ad− bc = 1

Thus if u1 ≈ zα, u2 ≈ zβ near a regular singular point, where α, β are char-
acteristic exponents then the difference of the exponents appear naturally as
parameters when we consider ratios of solutions. This is a projective way of
studying the solutions. The mondodromy group has the as a linear fractional
PGL(2, c) transformation. It is a projective group.The group maps the ratio
of appropriate solutions of the hyperheogeometric are real interval in the inter-
vals (0, 1), (0,∞), (1,∞). If we consider the strip of the upper half plane with
(0, 1) as the real axis then this strip is mapped to the curved triangle joining
the point 0,∞ and 1,∞. The point ∞ is the north pole of the sphere. If such
triangle has angles, given by the π(difference between critical exponents) in
Schwarz list then by the action of the finite triangle subgroup of PGL(2, C)
these triangles tiles the upper half plane. Then by using a reflection principle
of Schwarz (Yoshida 1987) this tiling can made to cover the entire sphere pro-
vided the spherical triangles have special angle values. Thus special solutions
of the hypergeometric equation give a tiling of the sphere. The fact that the
group of projective fractional linear transformations PGL(2, C) maps circles
and lines to circles and lines and preserves angles is used in the construction
described.

The monodromy group PGL(2, C) describes the way twists present at three
specified singular points, given by the characteristic exponent differences, fit
together. For the hypergeometric differential equation on the sphere this infor-
mation completely fixes the solutions of the hypergeometric equation(Yoshida
1987).
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