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 Abstract  

Humans are able to adapt to the fast-changing world by estimating statistical regularities 

of the environment. Although fear can profoundly impact adaptive behaviors, the neural 

mechanisms underlying this phenomenon remain elusive. Here, we conducted a 

behavioral experiment (n = 21) and a functional magnetic resonance imaging experiment 

(n = 37) with a novel cue-biased adaptation learning task, during which we 

simultaneously manipulated emotional valence (fearful/neutral expressions of the cue) 

and environmental volatility (frequent/infrequent reversals of reward probabilities). 

Across two experiments, computational modelling consistently revealed a higher learning 

rate for the environment with frequent versus infrequent reversals following neutral cues. 

In contrast, this flexible adjustment was absent in the environment with fearful cues, 

suggesting a suppressive role of fear in adaptation to environmental volatility. This 

suppressive effect was underpinned by activity of the posterior parietal cortex, ventral 

striatum, hippocampus and dorsal anterior cingulate cortex (dACC) as well as increased 

functional connectivity between the dACC and temporal-parietal junction (TPJ) for fear 

with environmental volatility. Dynamic causal modelling identified that the driving effect 

was located in the TPJ and was associated with dACC activation, suggesting that the 

suppression of fear on adaptive behaviors occurs at the early stage of bottom-up 

processing. These findings provide a neuro-computational account of how fear interferes 

with adaptation to volatility during dynamic environments.  
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Introduction 

Humans and animals are able to adapt to the fast-changing world. Fear, the most studied 

emotion despite differences regarding its definition and measurement1–4 profoundly 

influences adaptive behavior5,6. Although adaptation to dynamic environments is a key 

form of behavioral flexibility, how fear affects adaptation to dynamic environments 

remains unclear. Evolutionarily, fear acts as an alerting signal for self-protection7. A rich 

literature illustrates beneficial effects of fear on flexibility2,6,8,9.  Thus, elicitation of 

fearful signals may facilitate adaptation to dynamic environments. In contrast, when 

dominating consciousness, fear can disrupt systems supporting flexible behavior5,10, and 

lesions of fear circuits may even facilitate flexible performance11. Consequently, the 

conscious experience of fear may suppress adaptation to changing environments. 

 

Adaptation to dynamic environments depends on the internal representation of 

uncertainties12, which can be classified into two types: expected uncertainty and 

unexpected uncertainty12–14. The former refers to noise in the action-outcome association, 

for example when choosing the correct option occasionally results in an undesirable 

outcome. The latter is characterized as volatility, or the frequency at which action-

outcome contingencies change. For instance, after the switch of the action-outcome 

association, an action that was primarily associated with a given outcome becomes 

predominantly associated with another. Optimal adaptive behavior depends on accurate 

identification of the source of uncertainty14–17. More specifically, if unexpected outcomes 

are caused by noise, the current action is optimally guided by averaging previous 

observations. Instead, if unexpected outcomes result from environmental volatility, only 
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recent outcomes are necessary to determine the present action. According to 

reinforcement learning theory18, human learners can adapt to changing environments, 

exhibiting a higher learning rate in the volatile relative to stable environment14,16. The 

Bayesian learner has also been demonstrated to dynamically track environmental 

volatility with optimal performance14,17. Significant steps forward in uncertainty-related 

studies point toward the relevance of affective representations19–21. Emotional responses 

contribute to adaptation to volatility14, and failure to adapt to environmental volatility  

has been identified as a major contributor to affective disorders17,22–24. Animal studies 

demonstrated a facilitating role of serotonin neurons in flexible adaptation to volatility19 

and observed that levels of the neurotransmitter serotonin modulated fear processing25, 

suggesting an important link between fear and adaptation to volatility.  

 

Neuroimaging studies have identified a set of brain areas linking emotion to adaptation to 

environmental volatility. The dorsal anterior cingulate cortex (dACC) represents 

subjective estimation of environmental volatility14,26. In addition to a critical role in 

uncertainty computation13,27–29, signals from the dACC have also been linked to affective 

responses and in particular to integrative processing from multiple sources (i.e., emotion-

cognition integration)30–32. The amygdala has been shown to encode associations under 

uncertain environments, especially for Pavlovian conditioning33. As a fear circuitry hub, 

the amygdala has been shown to mediate interactions between fearful reactions and 

executive functions30. The hippocampus (HI) has long been considered crucial for fear 

memory6,34. Learning signals during uncertainty are evidenced to be sorted in the HI, 

highlighting an important role of the HI in adaptation to changing environments13,35. The 
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ventral striatum (VS), a key region for reward processing, is broadly implicated in 

affective learning and value representation6,36,37. The VS has also been identified to adjust 

human flexible responses when the aversive environment changed33. The orbitofrontal 

cortex (OFC) shows high sensitivity to the processing of uncertainty and plays an 

important role in emotion-related subjective value representation and updating in both 

human and animals 38–40.  

 

This study aimed to examine the effect of fear on adaptation to volatility and its 

underlying neuro-computational mechanisms. From an evolutionary perspective, it can be 

hypothesized that fear would facilitate adaptation to volatility learning. Alternatively, fear 

could prevent adaptation to volatility learning due to the cognitive cost of fear processing 

and a flight response induced by fearful stimuli with which the individual wants to exit 

the volatile environment. To test these hypotheses, we used computational modelling and 

functional magnetic resonance imaging (fMRI) in a novel cue-biased adaptation learning 

task. Based on the framework of the probabilistic reward reversal learning task14,24, the 

current task simultaneously manipulated emotional valence of the cue (fearful/neutral 

facial expressions) and environmental volatility (frequent/infrequent reversals of reward 

probability)16. Please note that the presentation of facial expressions in a brief period of 

time to participants is the classic emotional induction method41,42. We observed a higher 

learning rate for the environment with frequent compared to infrequent reversals with the 

cue of neutral face, which was consistent with previous studies14,17,24. However, this 

pattern was absent in the fearful cues, suggesting a suppressive role of fear in adaptation 

to volatility and thus supporting the second hypothesis. We also revealed the distributed 
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neural substrates underlying computations of fear-biased adaptation to volatility learning, 

including integration systems, learning systems, and memory systems. In particular, the 

TPJ-dACC pathway was found to mediate the interplay between fear and adaptation to 

volatility learning. This may imply that the suppression of fear may affect adaptive 

behaviors at a relatively early stage of processing bottom-up inputs. 

 
Results 

Participants completed the cue-biased adaptation learning task (Figure 1) in Experiment 1 

(exp1; n=21, behavioral study) and Experiment 2 (exp2; n=40, fMRI study; see Table 1 

for demographic information). Using the framework of the probabilistic reward reversal 

learning task14,24, we developed a two [emotional valence of cue: fearful/neutral 

expressions (fear/neut)] by two [environmental volatility: frequent/infrequent reversals 

(freq/infreq); Figure 1] within-subject design to test how fear influences adaptation to 

volatility. 

 

Manipulation checks. We first tested the recognition rate of fearful/neutral expressions 

of the cue. We collected post-ratings of “To which extent do you think the presented face 

showed a fearful/neutral expression?” using a Likert scale from 0 (totally not) to 8 

(totally agree). One-sample t-tests confirmed that post-ratings were significantly higher 

than the random level (i.e., 4: midpoint between 0 and 8) both for fearful and neutral 

expressions (exp1: ts > 9.608, ps < 0.001; exp2: ts > 8.308, ps < 0.001; Figure S1; Table 

S2), suggesting the participants correctly identified the emotional expressions of the cue. 

To examine whether participants were able to learn the reward structure of our task, in 

line with Piray et al. (2019)43, we plotted participants’ performance after reversal. Results 
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showed that participants indeed learned the reward schedule successfully (Figure 2 A and 

B). In addition, a small number of missing trials (less than 14) and a low ratio of short 

response time (< 200 ms; < 1.67%; see Table S2) suggested sufficient engagement during 

the task. 

 

Computational mechanisms underlying fear-biased adaptation to volatility learning. 

To formally quantify cognitive mechanisms underlying fear-biased adaptation to 

volatility learning, we constructed 11 models, with considerations of learning by trial and 

error (Rescorla-Wagner model), attentional lapses, forgetting, and learning by attention 

(Pearce-Hall model; see Methods and Materials). Using indices of leave-one-out 

information criterion (LOOIC) and widely applicable information criterion (WAIC), 

model comparison showed that the winning model was Model 1 (M1) in both exp1 and 

exp2 [except slightly better for model 5 (M5) at the index of LOOIC in exp2, ΔLOOIC = 

-0.4; Table 2]. Specifically, M1 assumed that each condition was learned differently with 

the trial and error strategy (one learning rate per condition). Model simulation from M1 

showed high correlation coefficients between real accuracy and simulated accuracy for 

every condition in both exp1 and exp2 (exp1: rs > 0.82, ps < 0.001; exp2: rs > 0.85, ps < 

0.001; Figure S2).  Simulated data closely resembled the real performance (Figure 2A 

and B), confirming the validity of parameter estimation.  

 

To examine how learning rates from the winning model M1 were modulated by 

emotional cue and environmental volatility, we implemented linear mixed-effect models 

(LMM) with subject as a random factor and with cue (fear/neut) and volatility 
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(freq/infreq) as within-subject factors for exp1 and exp2, respectively. Results 

consistently showed increased learning rates in freq as compared to infreq in neutral cues 

(exp1: F1,20 = 15.433, p = 0.001, partial �� = 0.436, Figure 2C; exp2: F1,39 = 21.711, p < 

0.001, partial �� = 0.358; Figure 2D), replicating previous results regarding adaptation to 

volatility learning14,17,24. However, this pattern disappeared in the face of fearful cues 

(exp1: F1,20 = 5.460, p = 0.030, partial �� = 0.214; freq < infreq; Figure 2C; exp2: F1,39 = 

3.501, p = 0.069, partial �� = 0.082; Figure 2D; Table S3). These findings suggest that 

fear interferes with adaptation to volatility learning. In addition, M5, adding a component 

of attentional lapse, performed slightly better than M1 at the index of LOOIC in exp2 

(ΔLOOIC = -0.4; Table 2). The implementation of  LMM for M5 showed the same 

pattern as M1 (Figure S4), suggesting that the current results were highly robust. Note 

that statistic values for main effects and interaction effects are reported in the 

Supplementary Materials. 

 

Neural correlates of fear-biased adaptation to volatility learning: Learning rate. To 

examine how fear-biased adaptation to volatility learning was represented in the human 

brain from the perspective of learning rate, we performed the first generalized linear 

model (GLM1). The behavioral bias was defined as [(fear & freq – fear & infreq) – (neut 

& freq – neut & infreq)] in learning rates, whereas the neural bias was defined as [(fear & 

freq – fear & infreq) – (neut & freq – neut & infreq)] in BOLD signals at the outcome 

stage. This study focused on the ventral striatum (VS), dorsal anterior cingulate cortex 

(dACC), amygdala, orbitofrontal cortex (OFC), and hippocampus (HI) that have been 

identified to link emotion to adaptation to environmental volatility (see Introduction for 
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details). These brain regions were thus hypothesized to contribute to fear-biased 

adaptation learning. ROI analysis showed positive correlations between the behavioral 

bias and the neural bias in the VS (ROI analysis, peak at [4 8 -4], r = 0.578, p < 0.001, k 

= 7; Figure 3B), and HI (ROI analysis; peak at [28 -16 -22]; r = 0.606, p < 0.001, k = 10; 

Figure 3C). No significant activation in the amygdala, dACC and OFC was found. We 

also conducted exploratory whole-brain analysis, revealing a positive correlation between 

the behavioral bias and the neural bias in the posterior parietal cortex (PPC; whole-brain 

analysis; peak at [-50 -60 50] in MNI coordinates; r = 0.583, p < 0.001, k = 103; Figure 

3A). These results suggest that the PPC, VS, and HI encode fear-biased adaptation to 

volatility learning. 

 

Neural substrates of fear-biased adaptation to volatility learning: Subjective 

volatility. To examine representations of the human brain for fear-biased adaptation to 

volatility learning, we implemented model-based fMRI analysis (GLM2) with parametric 

modulation of subjective volatility at the stage of outcome. Again, the neural bias was 

defined as [(fear & freq – fear & infreq) – (neut & freq – neut & infreq)] in the 

parametric activation of subjective volatility. Note that trial-by-trial subjective volatility 

was derived from Bayesian Learner model (see Methods and Materials for details; see 

Figure S3 for an example participant). We observed significant activations in the dACC 

(ROI analysis; peak at [-2 32 32]; k = 8, Figure 3D) and VS (ROI analysis; peak at [10 16 

-8]; k = 9; Figure 3E). No significant activation in the amygdala, HI and OFC was found. 

The implementation of ANOVAs in these significant activations checked the direction of 

interaction effects. For both dACC and VS, we observed significant increases in infreq 
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versus freq in neutral cues (dACC: F1,36 = 13.272, p = 0.001, partial �� = 0.269; Figure 

3D; VS: F1,36 = 8.191, p = 0.007, partial �� = 0.185; Figure 3E). However, such patterns 

disappeared for fearful cues (dACC: F1,36 = 1.833, p = 0.184, partial �� = 0.048; Figure 

3D; VS: F1,36 = 3.966, p = 0.054, partial �� = 0.099; Figure 3E). These findings indicate 

that the dACC and VS are engaged to encode subjective volatility in fear-biased 

adaptation. 

 

We next sought to explore the underlying brain networks modulating fear-biased 

adaptation to volatility learning. Based on model-based fMRI results, generalized 

psychophysiological interaction (gPPI)44 analysis was performed with the dACC and VS 

as seed regions, separately. We found significant connectivity of the dACC with the 

temporal parietal junction (TPJ; whole-brain analysis; peak at [-64 -52 36]; k = 263; 

Figure 3F).  The interaction effect further showed that functional connectivity between 

dACC and TPJ increased in infreq as compared to freq following neutral cues (F1,36 = 

11.306, p = 0.002, partial �� = 0.239; Figure 3F), but decreased following fearful cues 

(F1,36 = 4.748, p = 0.036, partial �� = 0.117; Figure 3F). The gPPI results suggest that the 

dACC-TPJ circuit encodes subjective volatility calculations in fear-biased adaptation.  

 

To further test directions of information flow between the dACC and TPJ underlying 

fear-biased adaptation to subjective volatility, we conducted dynamic causal modelling 

(DCM) analysis45. We constructed six models with different assumptions of modulatory 

effects and driving effects while we fixed the full intrinsic connectivity (Figure 4A; for 

Methods for details). The random-effect (RFX) Bayesian Model Selection (BMS) using 
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indices of exceedance probability and expected posterior probability recommended 

model 3 as the winning model (Figure 4B&C). The model 3 assumed a driving effect 

from the TPJ, a modulatory effect from the TPJ to dACC, and another modulatory effect 

from the dACC to TPJ. We found a significant interaction effect between cue and 

environmental volatility in the driving effect on the TPJ (F1,36 = 8.321, p = 0.007, partial 

�� = 0.188; Figure 4D). Simple effect analysis showed a significant increase in infreq 

than freq in neutral cues (F1,36 = 9.827, p = 0.003, partial �� = 0.214; Figure 4D), but not 

fearful cues (F1,36 = 0.064, partial �� = 0.002; Figure 4D), suggesting the modulation of 

the driving effect from the TPJ on fear-biased adaptation to subjective volatility. 

Furthermore, the driving bias from the TPJ was positively correlated to parametric bias 

for BOLD signals in subjective volatility in the dACC (r = 0.371, p = 0.024; Figure 4E). 

Taken together, consistent with our behavioral modelling results, these neural results 

relating to subjective volatility support the notion that fear interferes with adaptation to 

volatility learning and further uncover the driven computation from the TPJ in the dACC-

TPJ pathway underlying fear-biased adaptation to volatility learning. 

 

Both cognitive and affective alexithymia were related to fear-biased adaptation to 

volatility learning. We also took into account individual differences in propensity for 

emotion processing and regulation, as this may be a factor of interest. More specifically, 

this regards alexithymia, which refers to a reduced ability to identify, describe and 

regulate one’s feelings46. Given cognitive and emotional deficits in alexithymia47, we 

explored associations between alexithymia levels and fear-biased adaptation to volatility 

learning. We found a significant correlation between the total score of the Bermond-Vorst 
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Alexithymia Questionnaire (BVAQ)48 and the behavioral bias (in learning rate; r = 0.351, 

p = 0.006; Figure 5A). Please note that higher scores on the BVAQ represented lower 

levels of alexithymia. The higher score for behavioral bias [(fear & freq – fear & infreq) – 

(neut & freq – neut & infreq)] reflected weaker influence of fear on adaptation to 

volatility learning. Therefore, the positive correlation suggests that the interference of 

fear with adaptation to volatility learning was stronger the more alexithymic individuals 

were. To examine contributions of cognitive (BVAQ-cog) and affective dimensions 

(BVAQ-aff) of alexithymia for learning rate bias, we performed correlations of learning 

rate bias with BVAQ-cog and BVAQ-aff, respectively. We observed (marginally) 

significant correlations for BVAQ-cog (r = 0.291, p = 0.023; Figure 5B) and BVAQ-aff (r 

= 0.227, p = 0.078; Figure 5C), indicating that both cognitive and affective dimensions of 

alexithymia explained fear-biased adaptation to volatility learning. In addition, anxiety 

and depression has been demonstrated to co-occur with alexithymia. We, therefore, 

performed partial correlations to control for the potential influences of anxiety and 

depression. Correlation coefficients remained significant for total BVAQ scores, affective 

dimension scores and cognitive scores (rs > 0.269, ps < 0.043). In sum, individuals prone 

to either cognitive or affective alexithymia were more influenced by fear in adaptation to 

volatility. 

 

Discussion 

This study examined neuro-computational mechanisms of how fear influences adaptation 

to volatility. In two independent experiments, we consistently found that the environment 

with frequent reversals elicited a higher learning rate than the environment with 
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infrequent reversals in neutral cues, replicating previous studies14,17,24. However, this 

difference was absent in the face of fearful cues, supporting the hypothesis that fear 

prevented adaptation to volatility. This suppressive effect was underpinned by activity of 

the posterior parietal cortex, ventral striatum, hippocampus and dorsal anterior cingulate 

cortex (dACC), as well as functional connectivity between the dACC and temporal-

parietal junction (TPJ), suggesting distributed brain systems for computations of fear-

biased adaptation. Effective connectivity results further showed that this bias mainly 

resulted from the driving effect of the TPJ, indicating that computations underlying fear-

biased adaptation to volatility may occur at a relatively early stage of processing bottom-

up inputs. Lastly, this bias was stronger with higher levels of alexithymia. 

 

Using computational modelling, this study revealed that fear inhibits adaptation to 

volatility. In our control conditions of neutral cues, participants showed a higher learning 

rate to the environment with frequent (as compared to infrequent) reversals, consistent 

with previous findings of a higher learning rate for volatile than stable conditions14,17,24. 

This finding supports the notion that humans are able to adjust learning rates in 

adaptation to volatility14,16,17,24. Critically, this adjustment was disrupted by fearful signals. 

It has been shown that fear disrupts systems supporting flexible behavior through 

dominating consciousness6,10,11. Therefore, the conscious experience of fear potentially 

inhibits adaptive function, in particular adaption to volatility. This supports the notion of 

mutual inhibition between emotion and cognition and the dual competition model of 

emotion-cognition integration30,49,50. However, some studies showed that emotion, 

especially fear, promoted cognitive flexibility6,8,9. The contextual factor likely contributes 
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to this discrepancy. Specifically, our findings of the suppressive effect of fear on 

adaptation to volatility were in the rewarding situation. It is widely believed that fear 

facilitates performance during the threatening environment2,6,7. There is evidence that fear 

is preferentially activated in aversive contexts2,7. Considering the design of our study, the 

current findings may be limited to the rewarding context. Future studies would benefit 

from investigating the interplay between fear and adaptation to volatility in threatening 

contexts.  

 

Neuroimaging results showed that the dACC encodes fear-biased adaptation to volatility 

learning. In our control conditions, decreased activation in the dACC was observed in 

environments with frequent versus infrequent reversals. This finding was contrary to 

previous findings of a positive correlation of dACC signals with subjective volatility14,26.  

It has been proposed that task difficulty mediates the relationship between activation in 

the dACC and cognitive demand in an inverted U-shape pattern42,51. One explanation for 

the discrepancy in the activation of the dACC might be that the current task was more 

difficult than the previous probabilistic reward learning task due to the design of 

interleaved trials from four conditions. More importantly, the signal of volatility in the 

dACC was absent in fearful conditions, suggesting a suppressive role of fear in the 

adaptive function of the dACC. The dACC is considered to be a higher-order integrative 

hub for multiple information30–32. For example, integration between fearful signals and 

executive functions has been found in the dACC30. Therefore, these results indicate that 

fear modulates the dACC’s signals to track environmental volatility and support the 

integrative processing of emotion and cognition in the dACC.  
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The TPJ was also found to work in concert with the dACC to mediate fear-biased 

adaptation to volatility in our study. A nexus model of the TPJ has contended a basic 

integrative hub for the TPJ function, including attentional processing, memory storage, 

and social processing52. For instance, the TPJ was identified to be involved in global 

Gestalt integration at the perceptive level53. Moderation of dACC-TPJ functional 

connectivity on fear-biased adaptation to volatility in our study suggests a circuit of 

information interchange between low- and high-level integrative processing of fear and 

adaptation learning.  DCM analysis further showed bidirectional information flow 

between the dACC and TPJ during fear-biased adaptation learning. Importantly, fear-

biased adaptation to volatility was modulated by the driving effect from the TPJ. This 

may suggest that fear mainly impedes bottom-up information input and low-level 

integrative processing between fear and adaptation to volatility.  In sum, in combination 

with the significant correlation between the activated bias in the dACC and the driving 

bias in the TPJ (Figure 5E), these results reveal a crucial role of the TPJ-dACC neural 

pathway in volatility learning of fear-biased adaptation. 

 

We also observed activation in the VS, but not the amygdala, in fear-biased adaptation to 

volatility, which may suggest differential roles of the VS and amygdala. Both the VS and 

amygdala have been demonstrated to represent uncertainties during dynamic 

environments and emotion processing33,36,37,54. Within learning contexts, the amygdala is 

linked to Pavlovian conditioning, while the VS has been implicated in instrumental 

learning6. The current results may thus reflect the interference of instrumental adaptation 
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by fear in the VS. Another explanation regards a possible role of Pavlovian-Instrumental 

Transfer. This transfer effect underlying the amygdala and VS has been demonstrated in 

animal models6,55. In this study, Pavlovian tendencies were gradually dominated by 

instrumental learning. This transfer effect thus explains activation in the VS, but not the 

amygdala, in fear-biased adaptation learning. However, interpretations about the negative 

result of activation in the amygdala should be cautious. In addition, the HI and PPC were 

found to moderate fear-biased adaptation to volatility in our study. The HI has been 

thought to encode and store memory56,57, while the PPC was implicated in memory 

retrieval58. These two brain regions were also involved in learning and value 

representation in the uncertain environment13,35,59,60. Therefore, these results may indicate 

that fear interferes with memory signals in the HI and PPC for adaptation to dynamic 

environments. Our study did not find any significant OFC activation. This is surprising 

given its crucial involvements in emotion-related valuation and flexible learning38–40. One 

potential explanation is low signal-noise ratio for the OFC BOLD signals61. In brief, 

distributed brain areas involved in memory and learning systems seem to contribute to 

fear-biased adaptation to volatility learning. 

 

Unexpectedly, no direct correlation between learning rate and subjective volatility was 

observed in this study. The Bayesian Learner model has been proposed in a hierarchical 

structure14 with i) subjective estimation of environmental volatility at the 1st level, ii) 

subjective estimation of the winning probability at the 2nd level, and iii) the observed 

outcome at the 3rd level. Based on the reinforcement learning model without hierarchical 

processing, learning rates were fit from the subjective probability across trials at the 2nd 
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level. Previous studies indeed showed a positive correlation between volatility signals 

and learning rate14,17. However, a recent simulation study demonstrated that learning rates 

were jointly estimated from both stochasticity and volatility16. Although separate 

correlations of activation in the HI were observed with the volatility index and the 

learning rate, the absence of a direct correlation between volatility and learning rate may 

be due to the ignorance of stochasticity in our model space, which was in line with 

previous studies14,17,24. Future studies may benefit from taking stochasticity into account 

when constructing computational models to examine the relationship between learning 

rate and volatility. 

 

We observed that maladaptation to volatility following fear cues correlated with 

alexithymia, suggesting a stronger influence of fear on adaptation to volatility learning in 

individuals with higher levels of alexithymia. Alexithymia refers to difficulties in 

emotion processing46. Alexithymia has been considered as a transdiagnostic risk factor 

for various affective disorders, such as anxiety and depression62,63. While a rich literature 

showed both cognitive and emotional deficits in alexithymia47,42,64,65, the current results 

further suggest an integrative difficulty between fear and adaptation to volatility with 

higher alexithymia levels in healthy individuals. Given that abnormalities in regulating 

fearful signals are at the core of affective disorders6 and failure to appropriately adjust 

learning to dynamic environments contributes to affective disorders17,22–24, our findings 

provide additional insights into pathological mechanisms of alexithymia-related affective 

disorders. However, in our recent study, we did not find impaired emotion-cognition 

integration in alexithymia66. One possible explanation may be that the stimuli used in our 
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previous study merely displayed isolated parts of the human body and thus lacked social-

emotional features67, whose processing seems to be particularly impaired in relation to 

alexithymia65. Therefore, impaired fear-biased adaptation to volatility in alexithymia may 

be social-specific.  

 

Several limitations of the present study should be mentioned. First, we elicited different 

emotions only using social stimuli, e.g., facial expressions. This study complied with 

Marr’s 3-level theory at the computation, algorithm, and implementation levels68, 

addressing the question of how fear influences adaptation to volatility. However, given 

that social specificity is at the core of Marr’s framework, whether our findings of the 

neuro-computational mechanisms underlying fear-biased adaptation to volatility were 

social-specific remains unclear. In addition, three types of fear may be distinguished2: 1) 

fear of physical objects, e.g., thunder; 2) fear of other humans; 3) fear of animals, e.g., 

spider. These types of fear are corresponding to nature phobias, social phobias, and 

animal phobias, respectively2. Our findings only provide insights into social fear. Next, 

activity of the locus coeruleus norepinephrine system cannot be detected with the current 

device and parameters. This system has been implicated in tracking environmental 

volatility and generating emotional reactions17,69. Future studies would benefit from 

exploring the function of this system in fear-biased adaptation to volatility learning using 

eye-tracking techniques. 

 

To conclude, this study provides a neuro-cognitive account of how fear interferes with 

adaptation to volatility during dynamic environments at the computational level. We also 
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show that this bias is related to individual differences in propensity for emotion 

processing and regulation. Our findings reveal distributed brain substrates underlying 

fear-biased adaptation to volatility, including integration systems, learning systems, and 

memory systems. The TPJ-dACC pathway, in particular, mediates the interplay between 

fear and adaptation to volatility learning, suggesting that the suppression of fear on 

adaptive behaviors may occur at a relatively early stage of processing bottom-up inputs. 

Our work thus sheds light on the neuro-computational mechanisms underlying fear-

biased adaptation to volatility learning.  
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Materials and Methods 

Participants 

A total of 64 right-handed healthy adults at Shenzhen University participated in two 

experiments. Experiment 1 (exp1) was a behavioral study, including 21 participants (11 

females, age = 20.81±1.94). Experiment 2 (exp2) was an fMRI study, including 43 

participants. Due to impatience (one participant), and many missing trials (two 

participants failed to respond in more than 10% of the trials; 62 and 46 in the 240 trials, 

respectively), and excessive head motion (three participants with more than 10% scans 

with frame-wise displacement (FD) > 0.5)70, the final sample for exp2 included 40 

participants (18 females, age = 21.75±2.13) for behavioral analysis and 37 participants 

(16 females, age = 21.57±2.06) for fMRI analysis. See Table 1 for demographic 

information. All the participants had no history of neurological and psychiatric disorders 

or head injury. The study was approved by the local Ethics Committee at Shenzhen 

University and written informed consent was obtained from all participants. 

 

General Procedure 

After signing the informed consent, participants were asked to complete a three-stage 

training task to understand the probability and reversal components underlying the task71. 

The cue-biased adaptation learning task was then implemented (while participants in 

exp2 simultaneously experienced fMRI scanning). After the task, participants were asked 

to rate each fearful and neutral expression by answering the question “To which extent do 

you think the presented face showed a fearful/neutral expression?”. These post-ratings 

with a Likert scale from 0 (totally not) to 8 (totally agree) were used to check whether 
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participants correctly recognized these stimuli as fearful/neutral expressions. Next, 

participants completed several questionnaires, including the Chinese version of the 

Bermond-Vorst Alexithymia Questionnaire (BVAQ)48 and the Mood and Anxiety 

Symptoms Questionnaire (MASQ)72. Finally, participants were paid based on their 

learning performance, which was instructed before the experiment. 

 

Cue-biased adaptation learning task 

Inspired by Behrens et al. (2007)14 and Piray et al. (2019)43, we developed a cue-biased 

adaptation learning task (Figure 1). Using the framework of the probabilistic reward 

reversal learning task14,24, we manipulated the type of cue (fearful/neutral expressions) 

and environmental volatility (frequent/infrequent reversals)16. Specifically, frequent 

reversals (freq) were defined as a situation in which the contingency reversed every 9~11 

trials randomly, while infrequent reversals (infreq) referred to a situation in which the 

contingency reversed every 18~22 trials randomly. In brief, the current study with a two 

by two within-subject design consisted of 240 trials, with 60 trials per condition. Please 

note that trials for each condition were intermixed within a block. Participants were asked 

to learn by trial and error to maximize their payoff. Although participants were explicitly 

informed that reward structure would change throughout the task, they needed to infer the 

moment on which reversal occurred and the speed at which reversal changed73. At the 

beginning of each trial, a cue (a fearful or neutral face) was first shown on the screen 

center with duration of 1 s (Figure 1A). To eliminate potential gender effects, facial 

expressions with the same gender with participants were used as cues. For example, the 

female face with the fearful or neutral expression was shown on the cue for the female 
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participants. We selected four female faces and four male faces from the Taiwanese 

Facial Expression Image Database (TFEID)74, with two fearful and neutral expressions 

for each gender. The normative rating (category and intensity) from the TFEID can be 

seen in Table S1. Please note that the cue type and the environmental volatility were 

randomly matched across participants. After a fixation cross with a random duration 

(0.2~1.5 s for exp1 and 1~3 s for exp2), two options (horizon and vertical Gabor patches) 

were presented randomly on each side. Participants were required to make a decision 

within 2 s. Upon response, the selected option would be highlighted for 0.2 s, followed 

by a question mark at the screen center with a jitter interval at 1~3 s. Then the outcome 

was shown for 1 s, with “+1” in green indicating reward and “+0” in red reflecting no 

reward. Outcome was delivered with a probability of reward at either 85% or 15%, based 

on the outcome schedule (Figure 1B). If participants did not respond within 2 s, which 

was defined as a missing trial, the option would not be highlighted and outcome was 

“+0”. At the end of a trial, a fixation cross was presented for 0.3 ~ 5.6 s to ensure that 

each trial lasted for 9 s for exp1 and 0.8 ~ 6.8 s to ensure that each trial lasted for 11 s for 

exp2. Exp1 and exp2 lasted for 36 and 44 minutes, respectively. All experimental 

procedures were presented using E-prime 2.0 (Psychology Software Tools Inc. Pittsburgh, 

PA, USA). 

 

Self-report Questionnaires 

To assess alexithymia, we used the Chinese version of the BVAQ48. This questionnaire 

consists of 35 items, each answer being scored on a five-point Likert scale of 1 (this in no 

way applies to me) to 5 (this definitely applies to me). BVAQ includes both cognitive and 
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affective components with acceptable reliability and validity. Higher scores for BVAQ 

represented lower levels of alexithymia. To control potential confounding effects of 

anxiety and depression, participants also completed the Chinese version of the Mood and 

Anxiety Symptoms Questionnaire (MASQ)72. The MASQ consists of 62 items that are 

assessed with a four-point Likert scale of 1 (not at all) to 4 (extremely). It measures 

symptoms of anxiety and depression based on a tripartite model, including general 

distress, which can be further divided into general distress: anxiety (GDA) and general 

distress: depression (GDD), anxious arousal (AA), and anhedonia depression (AD) 

subscales. 

 

Behavioral data analysis 

For validation, one-sample t tests were performed in post-ratings for fearful and neutral 

expression, separately. We also plotted performance after reversal to check whether 

participants learned the reward structure of our task, in line with Piray et al. (2019)43. 

 

Computational modeling of task performance 

To best describe participants’ learning performance in our fear-biased volatility learning 

task, we conducted a stage-wise model construction procedure24,75. That is, we added 

each component to the model or modified an existing component progressively, based on 

the best model from the previous stage. Model comparison used the leave-one-out 

information criterion (LOOIC) and the widely applicable information criterion (WAIC) to 

avoid overfitting. Lower scores of LOOIC or WAIC indicated better out-of-sample 

prediction accuracy of the candidate model. Parameter estimation was performed using 
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hierarchical Bayesian analysis. Posterior inference was performed with Markov chain 

Monte Carlo (MCMC) sampling with 4000 iterations across 4 chains from the posterior 

distribution. The entire modelling-related procedures were performed using the 

hBayesDM package76. In total, we tested 11 candidate models using the stage-by-stage 

model construction procedure in exp1. For exp2, we compared these models directly. 

 

We used the simple Rescorla-Wagner (RW) model (Equation 1-3) as the baseline model18, 

which was widely used in learning-related studies14,17,24. The simple RW model assumed 

that participants learned reward structure by trial and error (Equation 1-3)18.  

  ��,� �  ��,��� �  � ����� � ��,���	                       (1) 

���,� �  1 � ��,�                               (2) 

  ���	 �
�

��	���������
                               (3) 

Here, the value V of the chosen option is updated trial-by-trial, which are determined by 

both the prediction error and learning rate � (0 < � < 1). The prediction error is derived 

from the difference between received outcome (O) and expected value (V) from the 

previous trial. For simplicity, the value of the unchosen option is regarded as the 

opponent value for the chosen option14,17. Finally, we used a softmax function with a 

decision parameter � (or inverse temperature parameter; 0 < � < 10) to calculate the 

chosen probability for each option. 

 

In Stage 1, we compared a model (M1) that assumed each condition was learned 

differently to a model (M2) that assumed that participants learned differently due to 

volatility14, but not the type of cue. That is, M2 assumed that there was no cue (emotional) 
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effect for all parameters. Thus, M1 included a learning parameter (learning rate) and a 

decision parameter (inverse temperature) for each condition, whereas M2 consisted of 2 

learning parameters and decision parameters for conditions of frequent and infrequent 

reversals. Given that it was well established that the environment with frequent reversals 

elicited higher learning rate than that with infrequent reversals14,17,24, we thus did not 

include the model assuming that there was no effect of volatility. M1 with eight 

parameters showed better performance than M2 with four parameters (see Table 2). 

 

In Stage 2, we removed/added some components to the M1 to validate the winning model 

from Stage 1. M3 assumed that participants learned differently for each condition but 

shared a decision parameter across conditions (five parameters). M4 assumed that 

participants regarded our task as the two-arm bandit and only updated the value of the 

chosen option (eight parameters), rather than the one-arm bandit (Equation 2). M5 added 

a parameter of the lapse in attention (�; 0 < � < 1; Equation 4), assuming that participants 

occasionally made random choices due to a lapse in attention (nine parameters).  

  ���	 � �1 � 	
�

��	��������	
�




�
                          (4) 

Model comparisons among M1, M3, M4, and M5 indicated that M1 performed better (see 

Table 2). 

 

Participants needed to learn four types of cue-option-outcome contingencies in our task 

(as compared to one type in the previous probabilistic reward reversal learning task), 

including the option of forgetting77. Therefore, in Stage 3, we added forgetting 

parameters � to the M1 (0 < � < 1; Equation 5). This parameter pulled the estimated 
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value toward the random level (0.5). 

  �� �  ���� �  � �0.5 � ����	                          (5) 

M6 assumed a sharing forgetting parameter across conditions (nine parameters). M7 

assumed � were modulated by volatility, with 2 forgetting parameters for environments 

with frequent and infrequent reversals (ten parameters). Rather, we assumed � were 

modulated by emotional cues in M8 (ten parameters). Model comparisons among M1, 

M6, M7, and M8 showed that M1 performed better (see Table 2). 

 

In Stage 4, we considered hybrid models of the Pearce-Hall model with the RW model 

given that this type of hybrid model performed best among the candidate models during 

the emotion- and volatility-related task43. M9 assumed a shared weighting parameter � 

across conditions (0 < � < 1; seven parameters). M10 assumed distinct weighting 

parameters � for fearful and neutral cues (eight parameters). M11 assumed different scale 

parameters � of learning rate for fearful and neutral conditions (0 < � < 1; 8 parameters). 

M9-11 were the same as M2, M4, and M5 in Piray et al. (2019), respectively. Again, M1 

won among these candidate models (see Table 2). 

 

We further performed model validation for the winning model (M1) in exp1 using the 

generated data from MCMC sampling (4000 iterations). First, we computed correlations 

between real accuracy and simulated accuracy for each condition. Please note that mean 

simulated accuracy across 4000 iterations per condition and participant was used. Second, 

we analyzed the generated data using the index of performance after reversal and 

computed 95% high density posterior interval (HDI) to compare the difference between 
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simulated data and real data. 

 

Next, we compared these 11 candidate models directly in exp2. The same procedures of 

model validation were performed for exp2 behavioral data.  

 

Statistical analysis for learning rate 

Each parameter was represented by the mean of the posterior distribution of the 

parameters. We conducted LMMs on learning rate with subject as a random factor and 

with cue (fear/neut) and volatility (infreq/freq) as within-subject factors for exp1 and 

exp2, respectively. Pearson correlations of fear-biased adaptation to volatility learning in 

terms of learning rate were implemented with total BVAQ scores, the cognitive 

dimension, and the affective dimension of BVAQ scores across 61 participants. Statistical 

analyses were conducted using SPSS 17.0 (IBM Inc). We set the significance level at p = 

0.05. 

 

Bayesian Learner model 

Bayesian Learner model has been shown to dynamically track environmental volatility14. 

Specifically, the estimated probability for the option can be inferred from the observed 

outcome (reward or not; Equation 6).  

  ����	                                    (6) 

Please note that �� can also be represented as probability given that the magnitude in our 

study was fixed at 1. The probability for the current trial could be inferred from the 

probability of the previous trial and perceived volatility of the current trial (Equation 7).   
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    ������, ���	                                 (7) 

where ��� is the subjective volatility at the ��� trial. 

Subjective volatility of the current trial can be inferred from those of the previous trial 

and a distrust variable �� in the current trial (Equation 8). 

    �������, ��	                                 (8) 

Consistent with previous studies14,17 and for theoretic considerations, we also derived 

trial-by-trial subjective volatility from the Bayesian Learner model using analytic 

inference 14.  

 

Image acquisition and Preprocessing 

MRI data were acquired with a Siemens Trio 3T scanner at Shenzhen. Both the fMRI and 

high-resolution 3D structural brain data were obtained using a 64-channel phased-array 

head. The fMRI data were acquired by means of a gradient-echo echo-planar imaging 

sequence containing the following parameters: repetition time (TR) = 1000 ms, echo time 

(TE) = 30 ms, 78 multiband slices, slice thickness 2 mm with gap 2 mm, flip angle = 35°, 

field of view (FOV) = 192 mm × 192 mm, data matrix = 96 × 96, and 240 volumes 

scanned in 2640 seconds. Additionally, the 3D structural brain images (1mm3 isotropic) 

were acquired for each participant using a T1-weighted 3D magnetization-prepared rapid 

gradient echo sequence with the following parameters: TR / TE = 2300 ms / 2.26 ms, flip 

angle = 8°, data matrix = 232 × 256, FOV = 232 mm × 256 mm, BandWidth = 200 Hz / 

pixel, 192 image slices along the sagittal orientation, obtained in about 9 min.  

Functional MRI data were preprocessed with DPABI78 (http://rfmri.org/dpabi), a software 

package based on SPM12 (version no.7219; 
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https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). It comprised the following steps: 1) 

realignment; 2) co-registering the T1-weighted image to the corresponding mean 

functional image; 3) segmenting into grey matter, white matter and cerebrospinal fluid by 

DARTEL; 4) normalizing to the standard Montreal Neurological Institute space (MNI 

template, resampling voxel size 2×2×2 mm3); 5) smoothing with a Gaussian kernel of 6 

mm full width at half maximum (FWHM).  

 

Generalized Linear Models (GLM) 

SPM12 was used for general linear model (GLM) analysis. The current study focused on 

the interaction effect between cue (fear/neut) and volatility (infreq/freq), or fear-biased 

adaptation to volatility learning, which was defined as [(fear & freq – fear & infreq) – 

(neut & freq – neut & infreq)].  

 

Neural responses to learning rates. Based on the winning model and its parameter 

estimation, the learning rate for each condition (mean value across 4000 iterations) was 

obtained. The first model (GLM1) aimed to examine fear-biased adaptation to volatility 

learning at the neural level in terms of learning rates. The first-level design matrix in 

GLM1 included the cue for fearful and neutral expressions, option presentation, highlight 

of the selected options, jitter, and outcome for each condition. If any, we modeled missing 

trials with option presentation, highlight of the selected options, jitter, and outcome. In 

addition, the six head motion parameters and a FD regressor were included as covariates 

of no interest. The regressors were then convolved with the canonical hemodynamic 

response function (HRF). To obtain the fear-biased adaptation to volatility learning effect, 
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we performed one-sample t-tests for contrasted images [(fear & freq – fear & infreq) – 

(neut & freq – neut & infreq)] at outcome onsets. These contrasted betas further regressed 

against fear-biased adaptation to volatility learning in terms of learning rate [(fear & freq 

– fear & infreq) – (neut & freq – neut & infreq)] at the second level.  

 

Neural responses to subjective volatility. Trial-by-trial subjective volatility from 

Bayesian Learner model was used to examine neural correlates of fear-biased adaptation 

to volatility learning in terms of subjective volatility (GLM2). The first-level design 

matrix in GLM2 included the cue for fearful and neutral expressions, option presentation 

with the parametric modulation by subjective volatility, highlight of the selected options, 

jitter with the parametric modulation by subjective volatility, and outcome with the 

parametric modulation of subjective volatility for each condition. If any, we modeled 

missing trials with option presentation, highlight, jitter, and outcome. In addition, the six 

head motion parameters and a FD regressor were included as covariates of no interest. 

The regressors were then convolved with the canonical HRF. Finally, contrasted images 

[(fear & freq – fear & infreq) – (neut & freq – neut & infreq)] at outcome onsets for the 

modulator effect of subjective volatility from the first-level analysis were entered into 

one-sample t-tests for the second-level analysis. 

 

Generalized Psychophysiological Interaction (gPPI) 

To assess how the functional connectivity between BOLD signals in the seed region and 

BOLD signals in the target region was modulated by fear-biased adaptation to volatility 

learning, we performed generalized psychophysiological interaction (gPPI) using the 
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gPPI toolbox44. The seed region(s) were determined by activation results from GLM2. 

Specifically, we extracted the deconvolved (with HRF) time course from the first 

eigenvariate of the seed region (the physiological term) for each participant. The 

subjective volatility at outcome onset for each condition was used as the psychological 

term. The interaction term was then generated by multiplying the physiological term with 

the psychological term. The convolved interaction term was entered into the GLM 

analysis. All imaging results were corrected with the threshold of p < 0.001 at the voxel 

level and with the threshold of p < 0.05 at the cluster level using AlphaSim procedure. 

The dACC was selected from Behrens et al. (2007)14 (MNI: x = -6, y = 26,z = 34 mm, a 

sphere with 10mm radium), whereas other ROIs were obtained from AAL atlas. Small 

volume correction (SVC) was used for regions of interest (ROIs). 

 

Dynamic Causal Modelling (DCM) 

To further assess effective connectivity between the brain regions underlying the 

modulation of fear-biased adaptation, we performed dynamic causal modelling (DCM) 

using the DCM12 toolbox45. We used the same parametric signals (subjective volatility) 

from each condition to test fear-biased adaptation effects. Six models were constructed 

with different assumptions of modulatory effects (B matrix) and driving effects (C matrix) 

while we fixed the full intrinsic connectivity (A matrix; Figure 4A). For the winning 

model, ANOVAs were performed with cue (fear/neut) and volatility (freq/infreq) as 

within-subject factors in A, B and C matrices, respectively. Bonferroni correction was 

used to correct for multiple comparisons. 
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Figure Captions 

Figure1. Experimental design. Trial design of the fear-biased volatility learning task (A) 

and an example of contingency between cue and environmental volatility (B). 
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Figure2. Behavioral results. (AB) Performance after reversals. Solid lines represent real 

data (mean ± standard error). Shaded panels represent 95% highest density interval (HDI) 

from the winning model. (CD) Learning rate from the winning model. Note: *p < 0.05; ~p 

< 0.1. 
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Figure3. Activity and connectivity results. (ABC) Neural correlates of fear-biased 

adaptation to volatility learning in terms of learning rate in PPC (peak at [-50 -60 50], k = 

103, A), VS (peak at [-4 8 -4], k = 7, B), and HI (peak at [28 -16 -22], k = 10, C). (DE) 

activation results from fear-biased adaptation to volatility learning in terms of subjective 

volatility in dACC (peak at [-2 32 32], k = 8, D) and VS (peak at [10 16 -8], k = 9, E). (F) 

functional connectivity between dACC (seed region) and TPJ (target region, peak at [-64 

-52 36], k = 263) for each condition. Circles in red represent region-of-interest (ROI) 

analysis. Note: PPC, posterior parietal cortex; VS, ventral striatum; HI, hippocampus; 

dACC, dorsal anterior cingulate cortex; n.s., not significant; *p < 0.05; ~p < 0.1. 
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Figure4. DCM results. (A) Model space for DCM analysis. Black arrows represent 

intrinsic connectivity. Blue arrows represent the driving effect. Orange arrows represent 

modulatory effects. The winning model was highlighted in red. Model comparison using 

indices of expected posterior probability (B) and exceedance probability (C). (D) Driving 

effect on TPJ for each condition. (F) Correlation between driving effect on TPJ and 

parametric activation of subjectivity volatility in dACC in terms of fear-biased adaptation 

to volatility learning. Note: TPJ, temporal parietal junction; dACC, dorsal anterior 

cingulate cortex; RFX, random-effect; n.s., not significant; *p < 0.05. 
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Figure5. Correlations of learning rate in terms of fear-biased adaptation to volatility 

learning with BVAQ (A), BVAQ-cog (B), and BVAQ-aff (C). Note: BVAQ, the 

Bermond-Vorst Alexithymia Questionnaire; BVAQ-cog, cognitive dimension of BVAQ; 

BVAQ-aff, affective dimension of BVAQ. 
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Table 1. Demographics and questionnaire scores 

 exp 1 (n = 21) exp 2 (n = 40) 

Age 20.81 (1.94) 21.75 (2.13) 
Gender 
(female) 

11 18 

BVAQ 122.71 (8.76) 124.70 (10.71) 

BVAQ-cog 74.90 (7.87) 74.10 (7.28) 

BVAQ-aff 47.81 (6.31) 50.60 (5.69) 

MASQ-AA 21.95 (6.90) 23.03 (5.91) 

MASQ-AD 63.10 (14.05) 59.90 (12.33) 

MASQ-GDA 15.14 (5.63) 16.68 (5.04) 

MASQ-GDD 18.14 (6.22) 18.73 (7.34) 

Descriptive data are presented as mean (SD). Abbreviations: BVAQ, the Bermond-Vorst 
Alexithymia Questionnaire; BVAQ-cog, the cognitive dimension of BVAQ; BVAQ-aff, 
the affective dimension of BVAQ; MASQ-AA, anxious arousal of the Mood and Anxiety 
Symptoms Questionnaire; MASQ-AD, anhedonia depression; GDA, general distress: 
anxiety; GDD, general distress: depression. 
 

 
Table 2. Model comparison. The winning model in both exp1 and exp2 is M1. 

Models 
Number of 
parameters 

exp 1 (n = 21) exp 2 (n = 40) 

ΔLOOIC ΔWAIC ΔLOOIC ΔWAIC 

M1 8 0 0 0 0 

M2 4 11.3 20.7 103.4 118.5 

M3 5 7.6 23.0 35.9 53.2 

M4 8 64.9 68.2 112.2 126.8 

M5 9 24.6 57.8 -0.4 11.5 

M6 9 118.7 89.7 107.6 112.5 

M7 10 74.5 85.1 136.4 135.2 

M8 10 62.0 70.4 123.7 128.1 

M9 7 53.6 63.0 124.9 131.6 

M10 8 53.9 59.0 123.9 131.0 

M11 8 51.7 58.1 112.8 124.4 

Abbreviations: ΔLOOIC, leave-one-out information criterion relative to the winning 
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model; ΔWAIC, widely applicable information criterion relative to the winning model. 
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