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Summary
Today’s genomics workflows typically require alignment to a reference sequence,

which limits discovery. We introduce a new unifying paradigm, SPLASH (Statistically
Primary aLignment Agnostic Sequence Homing), an approach that directly analyzes raw
sequencing data to detect a signature of regulation: sample-specific sequence variation.
The approach, which includes a new statistical test, is computationally efficient and can
be run at scale. SPLASH unifies detection of myriad forms of sequence variation. We
demonstrate that SPLASH identifies complex mutation patterns in SARS-CoV-2 strains,
discovers regulated RNA isoforms at the single cell level, documents the vast sequence
diversity of adaptive immune receptors, and uncovers biology in non-model organisms
undocumented in their reference genomes: geographic and seasonal variation and
diatom association in eelgrass, an oceanic plant impacted by climate change, and
tissue-specific transcripts in octopus. SPLASH is a new unifying approach to genomic
analysis that enables an expansive scope of discovery without metadata or references.

One-sentence summary: SPLASH is a unifying, statistically driven approach to
biological discovery from raw sequencing data, bypassing alignment.

Introduction
Genomics is now foundational to biology, ecology and medicine, and as

sequencing databases grow, so too does the opportunity to leverage them for discovery.
How can this data best be analyzed to reveal regulation and function?
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Traditionally, bioinformatic pipelines start by assigning genomic positions to reads
via alignment to a reference genome. While alignment has served reasonably well for
decades, it has many limitations. For less studied organisms, references are often
incomplete and or partially misassembled; and for many organisms, there is no
reference. Reliance on references risks missing sequences that are not present in the
reference, a major problem even in the intensely studied human genome: for example,
genetic variants associated with under-studied populations are poorly represented in
current references1, undermining the impact of genomic studies and exasperating health
disparities. Some diseases such as cancer are almost defined by their changes from the
reference, and vary even within a single tumor, so reference-based approaches are
inaccurate approximations of the underlying biology. Finally, the enormous diversity of
viral and microbial genomes, and their constant adaptation2,3 makes it infeasible to
define a complete set of references. Practically, alignment to references is
computationally slow, limiting the scale of genomic inference.

Another challenge for reference-based methods is dealing with repetitive
elements: aligners are forced to assign mapping positions to reads that simply do not
have a unique alignment. Repetitive regions comprise ~54% of the human genome4 and
may be important to analyze, but are often just ignored because alignment is difficult or
impossible. Further, many genes have sequence-similar paralogs, which pose similar
alignment issues.

Testing statistical hypotheses after alignment is also problematic. For reads that
do map, the complex algorithms underlying sequence alignment, which may have ad
hoc and hidden assumptions, are difficult to model; thus statistical statements about
differences (from SNPs to splicing) are difficult if not impossible to obtain in closed form.
Permutation-based methods do not solve this problem: they are capable of giving
10-fold underestimates of the false discovery rate (FDR)5,6. Even simple tasks such as
calling allele-specific expression in well-studied genomes are fraught with statistical
imprecision introduced during the alignment step7.

As an alternative paradigm, we considered if there could be a shared formulation
that would allow signals of biological interest to be detected with statistical methods,
directly from sequencing data (without a reference genome), unifying seemingly
disparate sets of biological questions (currently addressed with custom and distinct
bioinformatic approaches). For example: does a set of patients harbor distinct viral
strains? Are alternative mRNA transcripts specific to distinct cell types or conditions?
Does RNA expression and processing differ with geography or season? Notice that the
answer to each involves studying how sequences vary within a set of samples. As we
show, this idea can be made formal, and answers can be obtained with an approach
that uses references as an interpretive guide rather than a critical step in statistical
inference.
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Here, we introduce a simple unifying paradigm for genomic analysis: SPLASH
(Statistically Primary aLignment Agnostic Sequence Homing). SPLASH is applied
directly to sequencing reads without the use of a reference genome. It relies on a simple
formalization of sequence variation (short stretches of varying sequences, "targets",
adjacent to short stretches of a constant sequence, "anchors") that captures many
biologically important events. The distribution of anchor-target pairs are cataloged and
the differences in their distribution between the samples is tested statistically at a very
early stage in the pipeline. This simultaneously detects variation of myriad forms:
single-nucleotide polymorphisms, alternative exon splicing, DNA rearrangement or
transposition, and more. With today’s paradigm, a separate algorithm would be required
to detect each type of variation. Instead, with SPLASH, if the user is interested in
specific types of variation they can focus on that with post-hoc processing and analysis;
alternatively, SPLASH may – and in many cases does – expand horizons to unexpected
types of variation. In the results below, we demonstrate a snapshot of SPLASH’s wide
possibilities for discovery, first in human samples: encompassing viral strain variation,
alternative isoforms in single cells, B and T cell antigen receptor diversity. We also show
that SPLASH is easily applied to less studied organisms: in lemur, to find antigen
receptor diversity; in octopus, to detect tissue-specific splicing, processing and
expression; and in eelgrass, to uncover allelic variation, splicing, and diatom
association. We believe this demonstrates SPLASH’s potential to discover meaningful
sequence variation, with or without the aid of reference genomes, across many
biological questions and organisms.

Results
SPLASH is a k-mer based, statistics-first approach to identify sample-dependent
sequence variation

The fundamental concept of SPLASH is anchors and targets (Figure 1A). An
“anchor” is simply any particular k-mer of sequence in a read (k = 27 by default, but
adjustable). Every k-mer a fixed offset downstream (R, which may be zero) is called a
“target”. Note that targets are always defined relative to an anchor, and a given anchor
may have multiple associated targets. Anchors with more than one target can report on
nearly all sequence variation of interest: the simplest case is where two targets differ at
a single position, as in mutations, allelic differences or RNA editing. It also can capture
insertions and deletions, alternative splicing and isoform usage, mobility of transposons,
gene rearrangements and fusions, antibody/T cell receptor somatic variation, and more.

The fundamental goal of SPLASH is to detect variation among a set of
sequencing samples, and it requires only a FASTQ file for each sample. The definition
of a “sample” is dictated by the biological question: each sample could be from different
cells, different tissues, different individuals, or different mixed populations (e.g.
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metagenomics). Samples might differ by conditions as well – different times or
treatments, and also in other features (cell-type, geographic location, etc.); we refer to
these generically as “metadata”.

The principle of SPLASH is depicted in Figure 1B (and discussed in detail in Note
S2 and Figure S1). Conceptually, SPLASH steps through all positions in all reads of all
samples, recording all anchor-target pairs. To save compute time, SPLASH can run in a
mode that only analyzes anchors at a subset of read positions, e.g., every fifth position
(as used in this work). SPLASH compiles a separate counts table for each anchor, with
a column for each sample and row for each target; each entry is the counts of a given
target in a given sample; classically, this is a contingency table. Compiling these tables
requires only a single pass through the raw sequences and doesn’t involve alignment to
a reference, so it is computationally efficient. Importantly, we have developed a highly
flexible test statistic that captures the desire to find relatively discrete groups of samples
with differing variation, and that controls false positives even for low numbers of
observations. This statistic admits a rigorous closed form p-value bound, which is thus
fast to compute (unlike resampling methods). For each anchor, SPLASH calculates a
p-value bound for the null hypothesis that the observed target frequencies in the
samples all come from the same distribution, i.e., that there is no underlying variation of
targets between the samples. A low p-value for an anchor implies that the samples
differ significantly in which targets they contain.

We emphasize that SPLASH does not need predefined sample groups (though it
can also operate in such a "supervised" mode). Indeed, for all the results presented
here, we used SPLASH in its default unsupervised mode. For each anchor, SPLASH
tries many random splits of the samples and the targets, retains the one which
minimizes the p-value, and reports the corresponding effect size for this grouping (next
paragraph). Although perhaps surprising, this random process is designed to and does
detect the presence of strongly patterned target variation among the samples, if it exists
(Figure S3, Note S3).

SPLASH also calculates for each anchor an "effect size" that ranges from 0 to 1,
with 0 meaning that the target distribution is the same between the two groups, and 1
meaning that the targets found between the two groups are disjoint. Effect size does not
require that target distributions of all samples within a group are similar, just that they
are different from the other group; thus, effect size can be high even when there are
more than two natural groups. Anchors with effect sizes closer to 1 have target variation
that is more discrete across the samples, and thus are more amenable to biological
investigation.

To aid in biological interpretation it can be useful to have longer sequence
context than just the anchor and target. Thus, SPLASH also can generate a
"consensus" for each anchor, in each sample. Consensuses are longer sequences (up
to the length of a read) assembled from the raw reads of a given sample, looking at
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every occurrence of an anchor and extending its sequence base by base as long as the
reads show a consensus (see Methods). Mapping consensuses to protein sequences
can identify protein domains – protein domain profiling – a powerful, reference-free
attribution of biological function. Consensuses can also be aligned to sequence
databases or reference genomes; aligning only the consensus sequences for significant
anchors reduces the typical computational load by 1000-fold compared to usual
approaches that align all reads.

Figure 1C diagrams some of the differences between traditional alignment-first
approaches and SPLASH; Figure 1D outlines interesting use cases for SPLASH. These
guided us in our initial explorations with SPLASH, which are described below. The
datasets analyzed were simply the first ones we chose, and may not be the best or
most informative. While SPLASH has some adjustable parameters, we did not attempt
to “tune” these (indeed, SPLASH seems robust to a range of parameters, Note S3); all
analyses were run with the same settings, in unsupervised mode (blind to metadata).
Despite this, we found that SPLASH performed well across a variety of datasets, and in
all cases found significant patterns of sequence variation (q-values for anchors, and
binomial p-values quantitating the visually evident spreads in plots, are given in the
Note S7).

SPLASH identifies strain-defining and other mutations in SARS-CoV-2 de novo
Viral genomes have high mutation rates, including quasispecies2. For example,

the emergence of SARS-CoV-2 was followed by multiple surges caused by variant
strains, over the course of just two years. This is an ideal setting for the application of
SPLASH: viruses are always mutating, but out of a sea of mutations, scientists,
clinicians and public health officials want to identify those showing consistent variation
between patient groups.

We applied SPLASH in unsupervised mode to two SARS-CoV-2 datasets, both
viral amplicon Illumina sequencing of nasopharyngeal swabs from infection-positive
patients, taken from times when the dominant viral strains were Delta or Omicron. The
samples from South Africa8 (Nov to Dec-2021, 70 samples) represent the rapid rise of
Omicron during its first outbreak. The samples from France9 (Dec-2021 to Feb-2022,
106 samples) represent cases of co-infection by more than one strain; the authors of
the original study provided as metadata the assignment of the primary and secondary
viral strains for each case (though not used by SPLASH).

SPLASH finds many significant anchors with low corrected p-values (<0.05) and
high effect-sizes (>0.5), directly from sequencing reads (250 for South Africa dataset,
252 for France). High effect sizes are expected for anchors that partition samples by
strain. To test if SPLASH recovers strain-defining and other variation, we examined the
subset of significant anchors that perfectly map to a reference strain (Original, Delta,
Omicron BA.1 or BA.2; defining mutations taken from CoVariants.org10), and call an
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anchor "strain-defining" if it has at least two targets with >5% abundance, at least one of
which perfectly matches to a reference strain; by definition the other target is distinct.
We compare to a control set of anchors, those that are most abundant across all the
reads; this tests that SPLASH's findings are not solely due to sequence abundance. In
the South Africa dataset, 98% (126/128) of SPLASH anchors that mapped perfectly
were strain-defining, compared to 7/201(3.5%) in the control set (hypergeometric
p-value <1.7E-79). In the France dataset, 100% (39/39) of SPLASH anchors were
strain-defining, compared to 8.4% (21/250) of the control anchors (hypergeometric
p-value <2.6E-33). Nearly all the control anchors have only a single abundant target
(with the remaining low abundance targets representing either private mutations or
sequencing errors). Thus SPLASH, though blind to strain reference sequences and
sample metadata, detects strain differences with high precision.

Figure 2A-C shows exemplary strain-defining mutations identified by SPLASH;
we focus on the Spike protein (S gene), where the majority of the mutations were
located. Figure 2A shows an anchor that distinguishes at the major lineage level: one
target has no mutations (relative to the Original SARS-CoV-2 reference) and is
consistent with Delta; the other target has the mutation K417N, found in all Omicron
strains (but not in Delta or Original). Target abundances across samples are consistent
with the strain assignment metadata. Figure 2B shows an anchor that discriminates
sub-lineages: one target has no mutation, consistent with Delta; the second target has
the 3-nt deletion NL211I and the 9-nt insertion R214REPE which are Omicron BA.1
specific; the third target has the mutation V213G which is Omicron BA.2 specific. Figure
2C shows an anchor that detects mutations not in our references. One target has a pair
of mutations, N679K and P681H, found in all Omicron strains. The other targets all have
S:P681R, a Delta-specific mutation, but two targets additionally encode Q677H (by
different mutations). Mutations at Q677 may provide a selective advantage: they have
arisen independently multiple times on different lineages11,12, and Q677H in several
strain backgrounds enhanced infectivity, syncytia formation, and resistance to
neutralizing antibodies in pseudotype assay 13.

SPLASH results can also be analyzed completely without a reference genome by
examining the coding potential of its nominated sequences.The anchor sequence is
extended by a consensus approach, translated in silico to amino acid sequences (in all
six reading frames) and matched against a database of protein domain models such as
Pfam14; the best Pfam hit is assigned to that anchor. Protein profiles that are more
frequently associated with significant SPLASH anchors, compared to control anchors,
are candidates for proteins with important patterns of variation. SPLASH protein profiles
for SARS-CoV-2 were overall extremely different from controls (chi-squared test
p-values: France <3.7E-7, South Africa <2.5E-39) (Figure 2D). The top four SPLASH
protein domains in both datasets were beta-coronavirus receptor-binding domain (RBD;
within S1 region of spike protein), coronavirus S2 domain (within spike protein),
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coronavirus M (matrix/membrane) protein, and coronavirus ORF7a protein. By contrast,
the top four control domains for each dataset were completely different from these, and
also different between datasets. The SPLASH protein domains are significantly
enriched when considered individually as well; for example, in the South Africa dataset
for spike S2 domain: 23 SPLASH vs 3 control hits, p = 2.9E-6 (corrected
hypergeometric p-value). The spike protein is the major site of antigenic variation in
coronaviruses, as it is a principal focus of the immune response; the RBD is well known
as a target for natural and therapeutic neutralizing antibodies15, but in addition about
50% of natural anti-spike antibodies are directed against the S2 domain16.

We also carried out SPLASH protein domain profiling on an unrelated virus,
rotavirus17 (102 samples). The domains enriched over controls were rotavirus VP3 and
NSP3 proteins (Figure S2A). These two proteins have roles in blocking host innate
immunity18. Thus, variation in viral protein domains interacting with the immune system
may be a recurring theme in SPLASH protein profiling of viral strains.

In summary, SPLASH finds patterns of variation in SARS-CoV-2, including those
characteristic for strains, without requiring reference sequences or metadata (though
these obviously help with interpretation); the methodology should be generally
applicable to other viruses. More broadly, since SPLASH analyzes variation without any
predetermined reference or template, it may be useful in surveillance for new strains or
even completely new pathogens, and to cluster patients directly from raw sequencing
samples.

SPLASH identifies regulated expression of paralogs and HLA in single cell
RNA-seq

Today’s approaches to single cell bioinformatics require references and custom
bioinformatic pipelines that struggle to quantify the extent of (post-)transcriptional
regulation of gene expression which includes splicing and highly similar sequence
variants, such as paralogs. We tested if SPLASH can unify discovery in the realm of
single cell sequencing generated with the Smart-Seq2 (SS2) protocol19, which provides
broad transcript coverage.

Our first testbed was human macrophage and capillary cells from the Human
Lung Cell Atlas20. We previously established that these cell types have regulated
alternative splicing in MYL6, a light chain subunit of myosin motor protein, so that
serves as a positive control21. As expected, among SPLASH's most significant anchors
are ones reporting this MYL6 alternative splicing, splicing in or out of a cassette exon
(Figure S4A). Surprisingly, other SPLASH top anchors also involved different myosin
light chain subunits, MYL12A and MYL12B. These two genes are paralogs with highly
similar coding regions (95% nucleotide, 98% amino acid identity for human).
Nevertheless, SPLASH finds targets that specifically distinguish them. They show that
macrophages express more MYL12A, while capillary cells express more MYL12B
(Figure 3A). This same pattern is observed in two different individuals. Not much is
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known about these two genes, but they are known to show differential expression in rat
tissues22, and there is evolutionary conservation in mammals, birds, and reptiles of two
adjacent MYL12 paralogs within a syntenic region (e.g. human; rat22; Gallus gallus,
NCBI Gene IDs 396284 and 770011; Chelonia mydas, Gene IDs 102938771 and
102937279). Besides the small number of amino acid differences between the paralogs,
there may also be an important functional role for nucleotide sequence differences, as
has been demonstrated for another pair of highly similar cytoskeletal paralogs, beta-
and gamma-actin23.

In the same data, SPLASH finds cell type-specific expression of genes in the
major histocompatibility complex (MHC), known as HLA in humans. HLA is the most
polymorphic region in the human genome, with the most known disease associations;
the polymorphism of HLA class I and class II proteins is intimately tied to their function
in antigen presentation for adaptive immunity24. Due to the high levels of polymorphism,
the region is challenging for representation in a reference genome and for
read-mapping pipelines. SPLASH identifies an anchor and targets that distinguish
between the highly similar 3' untranslated regions (UTRs) of HLA-DRB1 and HLA-DRB4
(class II beta-chains) (Figure 3B). Macrophages express mainly DRB1, while capillary
cells mainly express DRB4. The same pattern is found in two different individuals, who
carry different alleles at DRB1 and DRB4 (as seen in the alignment). Macrophages are
"professional" antigen-presenting cells and constitutively express HLA class II. Not all
endothelial cells express class II in vivo, however most human capillary cells do25;
endothelial MHC expression may be strongly cytokine-dependent26. Thus, class II
expression in macrophages and capillary cells is likely to be regulated differently. Five
major haplotypes have been identified at the HLA-DRB locus: all contain a DRB1 gene,
but some contain an additional functional paralog, either DRB3, DRB4, or DRB527.
DRB1 is extremely polymorphic (3516 alleles, in March 2023); the paralogs somewhat
less so, e.g. DRB4 (236 alleles)28.

In one individual (P3), SPLASH also finds a remarkable anchor and two targets
that report on a pair of class II genes, HLA-DPA1 and HLA-DPB1 (class II alpha and
beta chains, respectively), which are unique among HLA genes in being organized
head-to-head and transcribed in opposite directions. The anchor lies in sequence
shared by DPB1 and a specific isoform of DPA1, while the targets lie in exons exclusive
to each; the extended sequences provided by SPLASH consensuses confirm
directionality as they bridge splice junctions. Macrophages in this individual express
exclusively DPB1, while capillary cells express mainly DPA1 (Figure 3C). This pattern
may be haplotype-specific, as we did not find a similar anchor for another individual
(P2).

A final example is SPLASH's detection of allele-specific expression of HLA-B in
human T cells (from a different dataset, see next section). The class I gene HLA-B is the
most polymorphic of all HLA genes (9274 alleles)28, and HLA-B is the gene with the
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most anchors found by SPLASH in human T cells (Figure 3D). Since these T cells all
come from one individual, this indicates substantial variation in expression of this
individual's two HLA-B alleles at the single-cell level, as can be seen in the scatterplot
(Figure 3D). Different T cells express a wide range of ratios of the two alleles, some
cells expressing both alleles, but others expressing almost entirely one allele or the
other (well outside the 98% confidence interval of what is expected by the average
ratio). This is in keeping with a preprint that found allele-specific expression of HLA
class I genes in normal breast epithelial cells, as well as in multiple myeloma cells29;
other single-cell studies have found changes in allele-specific expression during T cell
activation30, and identified HLA expression quantitative trait loci31.

Overall, SPLASH finds disparate biological features producing regulated variation
at the single cell level: paralogs, splicing, and alleles, especially within the medically
important and polymorphic HLA locus. This is just a small glimpse into the complexity of
HLA haplotype- and cell type-specific expression patterns; it raises the possibility that
disease-related HLA alleles might be expressed differently in key cell types compared to
other alleles.

SPLASH identifies B and T cell receptor diversity in human and lemur single cell
RNA-seq

Adaptive immune receptors for B cells (immunoglobulin or Ig), and T cells (T cell
receptor or TCR) are generated combinatorially through V(D)J recombination, and Ig is
further diversified through somatic hypermutation. Rearranged sequences are absent
from germline reference genomes and cannot be cataloged comprehensively due to
their huge potential diversity, empirically estimated at 1010-1011 for Ig heavy chains32.
These genomic loci currently require manual curation due to their complexity and
repetitive structure, so only a few species have high quality annotations. Existing
methods to assign V(D)J rearrangements in single cells33 depend on annotations and so
may have blindspots. Since SPLASH is designed to identify sequence diversity without
need for references, we predicted that it would identify adaptive immune receptors de
novo.

We ran SPLASH on 50 naive human B cells from peripheral blood of one
individual, and separately on 128 CD4+ human T cells of another individual, taken from
Tabula Sapiens, a large multi-organ dataset34. As a first pass, requiring no reference or
alignment at all, protein profiling found that the most frequent domains matching to
SPLASH anchors in B cells were Ig V-set and C1-set (variable-like and constant-like
domains); these two domains were also matches in T cells (attributable to TCR) (Figure
4A). Mapping transcript gene-names to SPLASH anchors gives a similar picture: Ig light
chain genes (both kappa and lambda) were strongly predominant for B cells; HLA-B
(discussed above) and TCR genes (both alpha and beta) were most prominent for T
cells; and these are not found among the control anchors which are up to 10-fold more
abundant (Figure 4A). Significant anchors were also found in Ig heavy chains (shown in

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2023. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=14975317&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8352280&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14551369&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6303589&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10253925&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12992545&pre=&suf=&sa=0
https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


lemur, below), though fewer anchors than in Ig light chains. Ig/TCR anchors
characteristically have a high diversity of targets (“entropy”, a measure reported by
SPLASH), and could be identified on that basis rather than requiring reference mapping.
This is expected for clonally diverse receptors, and is very evident in the clonotypic
pattern (each cell expressing only its specific target) seen in the heatmaps (Figure 4B).

To showcase application to non-model organisms, we also ran SPLASH on
mouse lemur (Microcebus murinus). Mouse lemurs are primates that diverged from
humans 60-75 million years ago, and have potential as a model organism35. The lemur
reference genome is incompletely annotated, especially at loci such as Ig and TCR.
While the human reference does not suffice to perform alignment-first analysis of mouse
lemur transcriptomes, we find here that it is a reasonable approximation for interpreting
SPLASH outputs; this may generalize, allowing SPLASH interpretation for organisms
wherever a related, better-curated reference exists. From Tabula Microcebus, a
multi-organ mouse lemur dataset36, we analyzed 111 natural killer T (NKT) cells from
spleen and, separately, 289 B cells also from spleen. In both analyses, the cells came
from two different individuals; for this reason, SPLASH also discovered numerous allelic
differences between individuals, such as in COX2 (Figure S5A).

Our main focus was on adaptive immune receptors; similar to the human
analyses, we found that SPLASH's lemur anchors in B and NKT cells included Ig C1-set
and V-set domains by protein profiling and Ig/TCR gene-names by transcript mapping
(data not shown). As expected, SPLASH targets for lemur Ig heavy chain are
predominantly clonotypically expressed (Figure 4B). Lemur NKT cells provide an
interesting counterpoint. While there is some clonotypic diversity, it is striking that a
number of cells share TCR-alpha sequences; notably, the shared target is different
between the two individuals (bottom-right heatmap, top row vs. second row). We had
selected NKT cells for analysis without foreknowledge of their properties. However,
SPLASH has correctly characterized diversity in this case: it is known that an NKT
subset expresses an "invariant" TCR-alpha chain with limited TCR-beta diversity, in
humans and mice; NKT cells bridge between adaptive and innate immunity37. For
Tabula Microcebus, NKT cells were operationally defined as co-expressing CD3E and
KLRB1 (CD161)36; in this cell-type, SPLASH also finds shared usage in TCR-beta and
TCR-gamma (Figure S5C and D).

To test if SPLASH finds diversity that may be missed by alignment-based
methods, we analyzed a subset of 35 lemur B cells for which Ig light chain variable
regions could not be assigned by the program BASIC38. BASIC uses curated human Ig
sequences to assign V-D-J regions to Ig mRNAs; although it was able to assign the
large majority of lemur B cells, there was a small subset for which it failed. Using a quite
naive approach, we used SPLASH to find evidence of a light variable region in one of
the 35 cells; we were able to reconstruct the full variable region from reads (Note S4). In
two cells, there were hits to the surrogate light chain (IGLL1/IGLL5 or λ5), which
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associates with Ig heavy chain when there is not yet a rearranged light chain39. The
additional yield from SPLASH was modest, but is proof-of-principle that SPLASH
provides views on data distinct from traditional methods. In more recent work we have
built on this capability (J. Salzman et al., unpublished work).

SPLASH applied to non-model organisms: octopus and eelgrass
To explore SPLASH's generality, we applied it to two understudied organisms:

octopus and eelgrass. Octopuses have the most complex sensory and nervous systems
among invertebrates, and are unusual in having high levels of RNA editing40. The
marine angiosperm Zostera marina, or eelgrass, is the most widely distributed
seagrass, and its adaptation to varying conditions, especially in the face of climate
change, is of great interest and only beginning to be explored at the genomic level41,42.

We focused narrowly on anchors where no more than one of its targets mapped
to the respective reference (Methods), that is, where reference mapping could not have
detected variation, to showcase what SPLASH can uncover that would be missed by
conventional approaches. However, that means that in these analyses we ignored any
interesting findings of SPLASH that are consistent with the reference.

For octopus, we analyzed an RNA-Seq dataset of Octopus bimaculoides43,
encompassing a variety of tissues from a single individual (N. Bellono, personal
communication). We examined several anchors with high effect sizes and BLAST hits to
the closely related species Octopus sinensis (Methods; Data S6). An interesting
SPLASH anchor was found in O. sinensis myosin-VIIa, known as MYO7A in humans;
mutations in MYO7A cause Usher syndrome, leading to deafness and blindness44.
Target 1 corresponds to the annotated first exon of O. sinensis myosin-VIIa, while target
2 represents a novel alternative first exon (not annotated in O. sinensis) that is
expressed only in statocyst tissue (Figure 5A). Although neither target is part of the
annotated O. bimaculoides myosin-VIIa gene, both target sequences are present shortly
upstream of it in the genome; but the region containing the anchor is missing (Note S5).
Incidentally, the O. sinensis myosin-VIIa gene also shows likely misassembly (Note S5).
The statocyst-specific expression of an alternative first exon is intriguing given MYO7A's
association with Usher syndrome and deafness, as the octopus statocyst is a sensory
organ for sound and balance45,46, suggesting homologous gene function.

Other SPLASH anchor-targets did not map to the O. bimaculoides genome or
transcriptome yet did BLAST to 3' UTRs of annotated transcripts in O. sinensis,
including carboxypeptidase D, Upf2, and netrin receptor/DCC (Figure S6, Data S6). For
all three, each target is expressed exclusively in some tissues and not others. Although
O. bimaculoides has annotated transcripts for these genes, in all three cases the 3' UTR
region is missing or likely incorrect in the O. bimaculoides genome assembly. For two of
the genes, the target variation may be due to differential expression of alleles: a 13 nt
deletion in carboxypeptidase D, and a short CAG repeat polymorphism in
nonsense-mediated decay gene Upf2 ("regulator of nonsense transcripts 2") (Figure
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S6A and B). For netrin receptor, involved in axon guidance and apoptosis, the variation
SPLASH detects could be allelic but is also consistent with A-to-I RNA editing (Figure
S6C). Our focus here on non-mapping anchor-targets excluded many more readily
interpretable examples of regulated variation; for example, other evidence for RNA
editing in numerous octopus genes (data not shown).

We also applied SPLASH to RNA-Seq data from eelgrass (Zostera marina),
collected in two locations, Montpellier, France (Mediterranean climate) and Rovika,
Norway (near-arctic climate), in two seasons (winter and summer), and during day and
night42. Considering each anchor with its most abundant target, a large number (14,680,
5.7%) did not align to eelgrass references (Data S7). A high-level view of these is
provided by protein profiling of SPLASH anchor-targets: the top hits were chlorophyll
A-B binding protein domain, Actin, Ubiquitin, and Silicon transporter (Figure 5B). protein
BLAST of some of the translated sequences finds that these have their best hits to a
variety of organisms other than eelgrass, notably diatoms. This was a surprise to us, but
in fact it has long been known that eelgrass is extensively colonized by epiphytes47, of
which diatoms predominate48 and may provide as much as 71-83% of the primary
production by the community49. For the most enriched protein domain, we investigated
an anchor with high effect size (0.66); its consensus matches to "fucoxanthin chlorophyll
a/c protein" (FCP) in several diatoms, for example, Phaeodactylum tricornutum (95%
amino acid identity, 81% nucleotide identity; Figure S7C); given that the matches are
imperfect, the true species of origin may not be in the NCBI database. FCPs function as
light-harvesting antennae for photosynthesis50. This anchor has several targets (differing
in their amino acid sequence), whose abundance varies by the sampling location and
time of year: target 1 is strongly predominant in France in June; targets 3, 4, 5, which
share the same amino acid sequence, together dominate in France in December; and
target 6 is predominant in Norway in December (Figure 5C). These targets could
represent different diatom species or intra-species allelic variants. The abundance of
this anchor (irrespective of target) is lower in Night samples (Figure S7C), indicating
circadian regulation of this diatom photosynthetic gene. Other anchors mapping to
diatoms, such as ferredoxin and high mobility group box-containing protein, also show
targets that segregate by location, France vs. Norway (Figure S7A and B).

One of the top anchors, although mapping to eelgrass reference, does report on
novel variation. It is in the NdhL subunit of chloroplast NADPH dehydrogenase complex
(NDH). Of its four most abundant target sequences, three are within exon 3 and are
SNP coding variants; the fourth represents retention of the intron following exon 3
(Figure 5D). Intron retention alters the second transmembrane segment and terminates
translation soon after (Note S5). The intron retention variant (target 4) is highest in
winter (Figure 5D): for Norway, December (green) vs June (red) samples completely
segregate by target 4 expression; the France samples show overlap, but on average
December (blue) is higher than June (yellow). The scatterplot of Figure 5D also
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illustrates some other patterns: Norway samples do not express target 2 (instead they
express target 1 and 3; data not shown); France samples have either a high fraction of
target 2, or moderate (the latter also express target 1; data not shown). NDH is involved
in cyclic electron transport51 and modulation of NDH function may affect photosynthetic
efficiency and oxidative stress under varying light conditions52.

The above work with octopus and eelgrass are just early forays, but show that
the SPLASH approach can discover novel regulated RNA splicing and isoforms, and
bring to light allelic variation and communities of associated organisms. SPLASH's
statistics-first and reference-free methodology is an essential basis, which can be
augmented by protein profiling and wide use of the sequence database beyond solely
genomic references.

Discussion
Genomic analysis today is performed with complex computer scientific workflows

that are highly problem-specific. Here, we have shown that a single, simple
statistics-first analytic framework unifies the approaches taken in disparate subfields of
genomics and enables novel discovery missed by current workflows. We have achieved
this by formalizing sample-dependent sequence variation in a single probabilistic model,
and using this model to develop SPLASH. SPLASH frames prioritizes interpretable
sequence variation as relations between sequence k-mers: anchors and targets; doing
this required developing a new statistical test. While there is a history of using k-mers to
detect biological variation, some statistical53, it was restricted to coarse-grained studies
of genome composition.

Here, we provide a snapshot of SPLASH’s discoveries in very disparate subfields
of genome science. When run on SARS-CoV-2 patient samples during the emergence
of the Omicron variant, without strain metadata or reference genomes, SPLASH finds
many anchors capturing strain defining mutations and emerging mutations, with good
post-facto agreement with metadata. Using protein domain analysis, SPLASH finds that
the spike protein is highly enriched for sequence variation, without using any reference
sequences. This points to a broader potential for SPLASH in viral and other genomic
surveillance, since emerging pathogens will likely have sequence variation missing from
any reference.

In single-cell sequencing data, SPLASH is able to define differential expression
between highly similar genes, including several different HLA genes and myosin light
chains MYL12A and B. Like all the work presented here, SPLASH analysis is conducted
in unsupervised mode; yet many of its significant anchors show cell-type regulation
between macrophages and capillary endothelial cells. This testifies to the power of
SPLASH's unique statistical approach. In particular, HLA genes are highly polymorphic
and traditionally difficult to analyze in genomics, yet have important associations to
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disease susceptibility. When applied to B and T cells of both human and mouse lemur,
SPLASH automatically identifies antigen receptor genes, which are somatically
assembled by V(D)J recombination, as exhibiting the most diverse variation. Lemur
analysis was performed using only an approximate genomic reference (human) that
diverged from lemur ~60 million years ago. SPLASH might also be used to shed new
light on other polymorphic loci including non-coding RNAs, e.g. spliceosomal variants.

To showcase SPLASH's wide applicability, we used it on datasets from very
different organisms: octopus and eelgrass. We narrowly restricted our analysis to
anchor-targets that did not map to the respective genome assemblies. In octopus, we
identified several tissue-regulated transcripts, in particular one in Myo-VIIa that is only
expressed in statocyst. In the eelgrass dataset, SPLASH uncovered that many of the
sequences come from epiphytic diatoms, and have variation that correlates with
geography and season. A broader analysis, allowing mapping to the genome (as done
in the human examples), would almost certainly find many more examples of regulated
expression in these understudied organisms. This highlights the enormous potential in
already existing datasets, and the need for tools like SPLASH to better explore them.

SPLASH should be of general interest to most genomic analyses. Users should
be able to easily run SPLASH on their own samples (FASTQ files): we provide it as a
containerized Nextflow pipeline to minimize installation issues, and the default
parameters should work well (SPLASH is robust to a range of parameters, Note S3); it
can even run on a laptop (Note S6). SPLASH will provide a large output file of
significant anchors and targets. What next? First is to realize that these results are a
large data reduction and distillation of the variation present in the samples. There are
many ways that they can be used. The typical steps are to attach as much biological
meaning to them as possible. If metadata is available, it can be correlated with
anchor-targets generated in unsupervised mode; alternatively, one can use metadata to
supervise SPLASH analysis. If a reference genome is available, SPLASH can use it to
align anchors and targets and provide gene names. SPLASH provides a number of
metrics, such as p-value, effect size, target entropy, average target similarity (Hamming
or Levenshtein distance) which can be used to tailor the anchor list. Another useful
avenue is BLAST of anchor-targets or consensus sequences against the NCBI
databases (both as nucleotide, and protein after in silico translation); this can be very
helpful especially when there is no reference genome or it is incomplete. Also useful is
protein domain profiling with databases like Pfam. Ultimately, users will bring their own
area expertise to bear in deciding how to best utilize SPLASH results.

Even in areas where there are existing pipelines, for example in differential
alternative splicing, or antigen receptor identification, SPLASH provides a very different
paradigm and may well give additional insights. And where there are no good
references, it may be the only feasible option. SPLASH scales to allow discovery to
keep pace with the ever-increasing sequence data from the world at large, in particular
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microbes and metagenomic communities; recent collaborative work has further
increased the computational efficiency of SPLASH54. The SPLASH paradigm is
expansive. It could be applied to a wide range of "omics" modalities, from DNA and
protein sequencing to Hi-C and spatial transcriptomics, and more (see Note S1
"Generality of SPLASH"). The statistical ideas underlying SPLASH are also expansive:
anchor-target pairs can be generalized to tensors, and higher-dimensional relations
between anchors, targets, and samples can be studied; other functions for splitting and
hashing targets and samples can be considered, to optimize statistical power55.

In summary, SPLASH illustrates the power of statistics-first genomic analysis,
where references and annotations are only optionally used for post-facto interpretation.
References are valuable for interpretation of sequence data; however, the filtering of
data by alignment to references introduces statistical bias in quantification, blindspots
and errors. SPLASH re-directs from the “reference-first” approach to “statistics-first”,
performing statistical hypothesis tests on raw sequencing data. By this design, SPLASH
is also highly efficient. SPLASH promises data-driven biological study with scope and
power previously impossible.

Limitations of the study
SPLASH can be applied to problems across diverse fields which are of great

current importance (Note S1), including those previously discussed. Naturally, some
problems are not directly amenable to SPLASH analysis as formulated here. The most
clear are cases where quantification of sample-specific RNA or DNA abundance alone
is desired (e.g., differential gene expression analysis). Additionally, SPLASH is
currently unable to distinguish which biological mechanism underlies the called
variation, and work in progress seeks to address this.
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Figure Legends

Figure 1. Overview of SPLASH
A. An anchor is a sequence of length k (k-mer) in a read; its target is defined as the

k-mer that follows it after a fixed offset of length R. An anchor may occur with
different targets, and this can capture many types of variation, ranging from
single-nucleotide changes to alternative exon splicing; other examples are
depicted schematically, with anchor as a blue box and targets as orange or violet
boxes.

B. SPLASH compiles a table for each anchor, where the columns are samples and
the rows are targets, and entries are the respective occurrence counts. In its
default unsupervised mode, SPLASH iterates over multiple random splits of the
samples, calculating a test statistic that measures the deviations between each
sample’s target distribution and the average target distribution over all samples,
searching for the most discriminating split. For the best split identified, SPLASH
reports a p-value bound (which is non-asymptotic, controlling Type I error for any
number of observations). Anchors with low p-values have target distributions that
vary significantly between samples.

C. Standard alignment-based pipelines are limited by the need for a reference
genome, are compute-intensive, and difficult to model statistically due their
complexity. SPLASH was designed to detect variation directly from raw reads
with rigorous statistics, is very compute-efficient, and can detect many kinds of
variation at once.

D. Some considerations of when SPLASH may be most useful, which reflect its
design characteristics.

Figure 2. SPLASH identifies strain-defining and other variation in
SARS-Cov2
In A-C, sets of targets that distinguish between SARS-CoV-2 strains are shown; all are
in the spike protein (S) gene. Each heatmap has columns for different patients and rows
for different targets; the coloring indicates the fraction of the given target observed in the
given patient. Summary anchor counts are given for rows and columns, simply to give
context of how many observations are summarized. Also shown is a map of the
categorical metadata of what strains (primary and secondary) were identified in each
patient in the original study; this data was not used by SPLASH, but there is evident
agreement between the expression in the heatmap and the strain assignment in the
metadata. We give binomial p-values to quantify the distinctions in the plots (per Note
S7).

A. Mutation K417N, identified by SPLASH in target 2, distinguishes at the major
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strain level: it is not found in Delta but is in all Omicron (both BA.1 and BA.2
sub-strains). Patients classified as Delta all express target 1; two patients
co-infected with Delta and Omicron show both targets. (p = 6.4E-07)

B. An anchor with three targets identified by SPLASH distinguish at the sub-strain
level: target 1 with no mutations matches Delta, target 2 with V213G is specific
for BA.2, and target 3 has both a deletion mutation (NL211I) and insertion
mutation (R214REPE) characteristic of BA.1. Target 1 and 2 associate inversely
with Delta and BA.2; target 3 is more mixed, due to all samples with this anchor
expressing some level of BA.1. (p = 1.0E-13)

C. An anchor with four main targets identifies mutations that are not associated to a
specific strain: targets 2 and 3 encode Q677H (with different mutations) together
with the Delta-specific mutation P681R, and each target is predominant in a
different patient. Target 1 has only P681R and lacks Q677H. Target 4 has the
Omicron-specific mutations N679K and P681H. SPLASH can identify
complicated mutation patterns. (p = 4.9E-12)

D. Protein domain profiling in SARS-CoV-2. The top four protein domain types found
by Pfam for translated extended sequences for SPLASH significant anchors
(green bars) and Control anchors (highest abundance but generally without
significant p-values; gray bars) are shown. S1 Receptor binding domain (RBD)
and S2 domain, known to be under strong selective pressure, show high
variation by SPLASH in both datasets. Other abbreviations used in the Pfam
short-names are: bCoV = beta-coronavirus; CoV = coronavirus, nucleocap =
nucleocapsid N = N-terminal domain, SARS = Severe acute respiratory
syndrome coronavirus; M, NS7A, NSP1, NSP8, 3b, NSP10 are viral protein
names.

Figure 3. Cell-type specific expression of paralogs and HLA from
single-cell data
Figures A-C show spread plots, with each dot representing the relative isoform
expression in a single cell; a bar marks the average relative expression across all the
cells.

A. Human MYL12A and MYL12B lie adjacent on chromosome 18; this region is
syntenic in mammals, chickens, and reptiles. The two genes are very similar in
the coding region, as seen in the sequence alignment that also shows the
locations of the anchor and two targets for individual P2 (anchor is distinct for
P3). Macrophages express relatively more MYL12A and capillary cells more
MYL12B, based on target fractions; this result is consistent in two different
individuals.

B. The HLA-DRB locus occurs as several different haplotypes, all of which contain a
DRB1 gene but differ in presence of a paralog (DRB3, DRB4, DRB5, or none;
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hg38 reference has DRB5). The anchor and targets lie in the somewhat similar 3’
untranslated regions of DRB1 and DRB4; however the two individuals have
distinct alleles at both DRB1 and DRB4. Macrophages express mainly DRB1 and
capillary cells mainly DRB4, based on target fractions.

C. The HLA-DPA1 and HLA-DPB1 genes overlap in a head-to-head arrangement as
shown in the UCSC Genome Browser plot, which also shows the BLAT alignment
of the consensus sequences for the DPA1 and DPB1 anchors. These lie on
opposite strands of the genome. This is also depicted in the alignment of the two
consensuses (which represent mRNA); the targets are best assigned to opposite
strands, and the location of splice junctions corroborates the strandedness. An
anchor reporting simultaneously on DPA1 and DPB1 was only found for
individual P3; its targets show that macrophages exclusively express DPB1,
while capillary cells express DPA1.

D. T cells from one individual showed a large number of anchors across the
polymorphic HLA-B gene, as depicted in the UCSC Browser plot. We
investigated one HLA-B anchor, which lies in exon 2. The hg38 reference is the
B*07:02 allele, whereas alleles of this individual match best by BLAST to B*08
and B*51 (consensus 1 and 2). In the alignment, differences from hg38 in the
anchor and lookahead region are shown in lowercase. Individual T cells show a
wide range of expression ratios between the two HLA-B alleles (different target 1
fractions), as shown in the scatterplot. The yellow lines mark a 98% confidence
interval for a distribution based on the population average (confidence depends
on observation depth = anchor counts); the observed pattern differs (binomial p =
1.73E-25), and some cells express almost exclusively one allele over the other.

Figure 4. B and T cell receptor diversity from human and lemur single
cell data

A. The “transcript mapping” plots show the number of anchors that align to a given
gene name, for SPLASH on y-axis and Controls on x-axis, with immune receptor
genes highlighted in red. For B cells, Ig genes (kappa = IGK and lambda = IGL)
are by far the most predominant mapping among SPLASH anchors, but are not
found at all in Control anchors (those with the highest counts). For T cells, TCR
genes (alpha = TRA, beta = TRB) predominate, and are also not found in
Controls. The inset histograms show that, in B cells and T cells,
immunoglobulin-type “V-set” and “C1-set” are among the top protein domain
annotations identified by Pfam on anchor consensuses, without using a reference
genome. Mobile element activity is suggested by Pfam domains Tnp_22_dsRBD
(“L1 transposable element dsRBD-like domain”) in B cells and RVT_1 (“Reverse
transcriptase”) in T cells.
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B. Targets associated with Ig/TCR anchors are clonotypically expressed, in both
human and lemur: heatmaps show that most targets (rows) are expressed only in
a single cell (columns). The anchors shown have among the highest target
entropy scores for their gene type (Figure S5B illustrates an extreme example
with 97 targets, for lemur Ig-lambda.) Target sequences are shown as bp
color-maps (rows are targets, matching those in the heatmap; columns are bp
positions, colored by base), giving a quick visualization of the sequence diversity.
For lemur, NKT cells were studied, and show significant shared TCR usage – see
top two rows; interestingly, the shared target sequence is different in the two
individuals. There is similar sharing for lemur TCR-gamma and -beta chains
(Figure S5C and D).

Figure 5. Discovery of regulated variation in non-model organisms:
octopus and eelgrass

A. SPLASH identified alternative transcripts in the O. bimaculoides Myo-VIIa motor
protein that are expressed mutually exclusively; the target 2 isoform is only found
in statocyst, a sound-responsive tissue. The transcripts have different first exons,
presumably due to alternative transcription start sites; the start codon lies in the
shared second exon. The sequence of the anchor and exon 2 are missing from
the current O. bimaculoides genome assembly, but are in the closely related O.
sinensis genome. Sequences for targets 1 and 2 are in both genomes, but the
statocyst-specific transcript is not annotated. The O. sinensis assembly has the
Myo-VIIa gene in two inverted pieces (at the point marked by ‘??’ in protein
domain schematic; Note S5).

B. Two of the top domains identified from SPLASH anchors by protein domain
profiling in eelgrass (Z. marina) samples are chlorophyll A-B binding protein
(Chloroa_b-bind) and silicon transporter (Silic_transp); these derive from
diatoms, based on BLAST protein alignment (Figure S7; Data S7). The other two
top SPLASH domains, actin and ubiquitin, do not appear to derive from diatoms
nor eelgrass, so may be from other epiphytic species.

C. A Chloroa_b-bind anchor, more specifically identified by protein BLAST as a
fucoxanthin chlorophyll a/c protein from diatoms (Figure S7C), has several
targets that are differentially abundant: the most common target (top row) is
mainly found in France/June samples; three targets that encode the same protein
sequence (middle) are found in France/December samples; and one target
(bottom row) is only found in Norway/December samples.

D. An anchor from eelgrass, in the photosynthetic gene NdhL, has four major
targets. Targets 1-3 are allelic coding variants (within a transmembrane region).
Target 4 represents intron retention and would result in a shortened protein. The
scatterplot shows that Norway samples of June vs. December (red vs. green) are
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perfectly segregated by the fraction of target 4 (intron retention). A similar but
less marked trend is seen for France samples of June vs. December (yellow vs.
blue) – at the right edge, fraction target 4 values are collapsed to one dimension,
with averages marked by bars. The scatterplot also shows that Norway samples
do not express target 2 at all (they express target 1 and 3, data not shown).
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Materials and Methods
SPLASH overview
Full details of running SPLASH and its outputs can be found at
https://github.com/salzman-lab/nomad . Briefly, it takes as inputs a set of FASTQ
sequencing data files (one per sample). There are various parameter choices, but it
should work well with the default settings. The standard output includes a table of
anchors, targets, p-values, etc., a table of “consensus” sequences (see below), and a
table of “element annotations” (see below). SPLASH can optionally also perform
alignments with bowtie2 and STAR, to generate “genome annotations” and splice
junction annotations (see below).

SPLASH anchor preprocessing and parameter choices
Anchors and targets are defined as contiguous subsequences of length k

positioned at a distance R = max(0, (L - 2 * k) / 2) apart, where L is the length of the first
read processed in the dataset, and R is rounded to the nearest integer. If L = 100 and
k = 27, then R = 23. We note that for a fixed number of anchor-target pairs, under
alternatives such as differential exon skipping, larger choices of R have provably higher
power than smaller choices, following the style of analysis in57. k = 27 is typically long
enough to be assigned a unique position in a genome while having a low probability of
containing a sequencing error. Anchor sequences can be extracted as adjacent, disjoint
sequences or as tiled sequences that begin at a fixed step size, to reduce
computational burden. For this manuscript, SPLASH was run with default parameters:
with 1M reads per FASTQ file, anchor sequences tiled by 5 bp, and k = 27. For HLCA
datasets, both read 1 and read 2 were used; for other datasets, only read 1. Extracted
anchor and target sequences are then counted for each sample with the UNIX
command, `sort | uniq -c`, and anchor-target counts are then collected across all
samples for restratification by the anchor sequence. This stratification step allows for
user control over parallelization. To reduce the number of hypotheses tested and
required to correct for, we discard anchors that have only one unique target, anchors
that appear in only 1 sample, and (anchor, sample) pairs that have fewer than 6 counts.
Then, we retain only anchors having more than 30 total counts after the above
thresholds were applied. This approach efficiently constructs sample by target counts
tables for each anchor.

SPLASH p-values
SPLASH’s analysis is based on a new statistical method for analyzing

contingency tables that provides p-values to reject the null hypothesis that row (target)
counts are drawn from the same distribution for all samples. These p-values are closed
form, meaning that no permutation, resampling or numerical solutions to complex
likelihoods are required for significance tests.
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We develop a test statistic S that has power to detect sample-dependent
sequence variation and is designed to have low power when there are a few outlying
samples with low counts as follows. First, we randomly construct a function f, which
maps each target independently to {0,1}. We then compute the mean value of targets
with respect to this function. Next, we compute the mean within each sample of this
function. Then, an anchor-sample score is constructed for sample j, Sj, as a scaled
version of the difference between these two. Finally, the test statistic S is computed as
the weighted sum of these Sj, with weights cj (which denote class-identity in the
two-group case with metadata and are chosen randomly without metadata, see below).
In the below equations, Dj,k denotes the sequence of the k-th target observed for the j-th
sample, and M denotes the total number of observations of this anchor.

Statistically valid p-value bounds (non-asymptotic, providing control of Type I error for
finite number of observations) are computed as:

by applying Hoeffding’s inequality on these sums of independent random variables
(under the null). The derivation is detailed in the Note S2.

This statistic is computed for K different random choices of f, and in the case
where sample group metadata is not used or available, jointly for each of the L random
choices of c, here with K = 10 and L = 50. We call the random choice of cj’s “random c’s”
below. The choice of f and c that minimize the p-value are reported, and are used for
computing the p-value of this anchor. To yield valid p-values we apply Bonferroni
correction over the L×K multiple hypotheses tested (just K when sample metadata is
used and randomization on c is not performed). Then, to determine the significant
anchors, we apply Benjamini-Yekutieli (BY) correction58 to the list of p-values (for each
anchor), yielding valid FDR controlled q-values reported throughout the manuscript
implemented with the statsmodels.api.stats.multipletests functionality in python.
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SPLASH effect size
SPLASH provides a measure of effect size when the cj’s used are ±1, to allow for

prioritization of anchors with large inter-sample differences in target distributions. Effect
size is calculated based on the split c and function f that yield the most significant
SPLASH p-value. Fixing these, the effect size is the absolute value of the difference
between the mean function value over targets (with respect to f) across those samples
with cj = +1 denoted A+, and the mean over targets (with respect to f) across those
samples with cj = -1 denoted A-.

This effect size has natural relations to a simple two group alternative hypothesis.
It can also be shown to relate to the total variation distance between the empirical target
distributions of the two groups. These connections are discussed further in Note S2.

Consensus sequences
A consensus sequence is built for each significant anchor for the sequence

downstream of the anchor sample. A separate consensus is built for each sample by
aggregating all reads from this sample that contain the given anchor. Then, SPLASH
constructs the consensus as the plurality vote of all these reads; concretely, the
consensus at base pair i is the plurality vote of all reads that contain the anchor, i base
pairs after the anchor appears in the read (a read does not vote for consensus base i if
it has terminated within i base pairs after the anchor appeared). The consensus base as
well as the fraction agreement with this base among the reads is recorded. Some
empirical behavior of consensuses is shown in Figure S4.

The consensus sequences can be used for both splice site discovery and other
applications, such as identifying point mutations and highly diversifying sequences, e.g.
V(D)J rearrangements. The statistical properties of consensus building make it an
appealing candidate for use in short read sequencing59, and may have information
theoretic justification in de novo assembly60 (Note S1).

To provide intuition regarding the error correcting capabilities of the consensus,
consider a simple probabilistic model where our reads from a sample all come from the
same underlying sequence. In this case, under the substitution only error model, we
have that the probability that our consensus for n reads makes a mistake at a given
location i under independent sequencing error rate 𝜖 (substitution only) is at most

We can see that even for n = 10, this probability is less than 1.3E-7 for a given
base pair, which we can union-bound over the length of the consensus to yield a
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vanishingly small probability of error. Thus, for a properly aligned read, if a base pair
differs between the consensus and reference it is almost certainly a SNP.

Element annotations
To identify false positive sequences or contextualize mobile genetic elements,

anchors and targets are aligned with bowtie2 to a set of indices, corresponding to
databases of sequencing artifacts, transposable elements, and mobile genetic
elements61. In these alignments, using bowtie2, the best hit is reported, relative to an
order of priority. The references used are: UniVec, Illumina adapters, grass carp
(Ctenopharyngodon idella genome, GCA_019924925)62, Escherichia phage phiX174,
Rfam63, Dfam64, TnCentral65, ACLAME66, ICEberg67, CRISPR direct repeats68,
ITSoneDB69, ITS270; and also the reference genome of interest for the study. (Grass
carp was used as a control as it contains many artifactual Illumina adapters.) To perform
these annotations, bowtie2 indices were built from the respective reference FASTAs,
using bowtie2-build with default parameters. Anchors and targets were then aligned to
each index, using bowtie2-align with default parameters. For each sequence, we report
the alignment to the reference and the position of that alignment for each reference in
the prespecified set. Anchors and targets, and their respective element annotations, are
reported in the element annotation summary files.

Genome annotations
Anchor, target, and consensus sequences can be aligned by SPLASH to

reference genomes and transcriptomes, to provide information about the location of
sequences relative to genomic elements. All alignments reported are run in two modes
in parallel: bowtie2 end-to-end mode (the bowtie2 default parameters) and bowtie2 local
mode (`-local`, in addition to the bowtie2 default parameters). To report alignments to
the transcriptome, the sequences are aligned to the reference transcriptome with
bowtie2, with `-k 1`, in addition to the above parameters, to report a maximum of one
alignment per sequence. If there is a transcriptome alignment, we report the alignment
to the reference and the MAPQ score of the alignment. To report alignments to the
genome, the sequences are aligned to the reference genome, with the same
parameters above. If there is a genome alignment, we report the alignment to the
reference, the strand of the alignment, and the alignment MAPQ score.

Splice junction calls
To identify exon coordinates for reporting annotations in this manuscript,

consensus sequences are mapped with STAR aligner (default settings)71. Gapped
alignments are extracted and their coordinates are annotated with known splice junction
coordinates using ‘bedtools bamtobed --split’; each resulting contiguously mapping
segment is called a “called exon”. From each consensus sequence, called exons are
generated as start and end sites of each contiguously mapped sequence in the spliced
alignment. These ‘called exons’ are then stratified as start sites and end sites. Note that
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the extremal positions of all called exons would not be expected to coincide with a
splice boundary; “called exon” boundaries would coincide with an exon boundary if they
are completely internal to the set of called exon coordinates. Each start and end site of
each called exon is intersected with an annotation file of known exon coordinates; it
receives a value of 0 if the site is annotated, and 1 if it is annotated as alternative. The
original consensus sequence and the reported alignment of the consensus sequence
are also reported. Gene names for each consensus are assigned by bedtools intersect
with gene annotations (hg38 RefSeq for human data by default), possibly resulting in
multiple gene names per consensus.

SPLASH protein domain profiles
Custom scripts were used to generate protein domain profiles. For each set of

enriched anchors, homology-based annotation was attempted against an annotated
protein database, Pfam14. For each dataset, up to 1000 of the most significant anchors
(q-value < 0.01) were retained for the following analysis: we first generated a substring
of each downstream consensus by appending each consensus nucleotide assuming
both conditions were met: a minimum observation count of 10 and a minimum
agreement fraction of 0.8, until whichever metric first exhibited two consecutive failures
at which point no further nucleotide was added. A limit of 1000 anchors was used due to
computational constraints from HMMer3 (see below). Anchors that did not have any
consensus nucleotides appended were kept as is. An extended anchor was generated
for each experiment in which an anchor was found. Each extended anchor was then
stored in a final concatenated multi FASTA file with unique seqID headers for each
experiment’s extended anchors.

To assess these extended anchors for protein homology, this concatenated
FASTA file was then translated in all six frames with the standard translation table using
seqkit72 prior to using hmmsearch from the HMMer3 package73 to assess resulting
amino acid sequences against the Pfam35 profile Hidden Markov Model (pHMM)
database. The resulting ‘raw’ .tblout outputs were then processed, keeping the best hit
(based on E-value) per each initial anchor, and any hits with an E-value better than 0.01
were parsed into an *_nomad.Pfam (or *_control.Pfam) file used for subsequent
plotting.

All hits to the Pfam database were then binned at different E-value orders of
magnitude and plotted. In each case, control assessments were performed by repeating
the extension and homology searches against an equivalent number of control anchors
(see below). The number of matched anchors used for SPLASH and control analysis
per dataset were as follows: 201 high effect size (.5) anchors in SARS-CoV-2 from
South Africa, 252 high effect size (.5) anchors in SARS-CoV-2 from France; 1000
anchors (no effect size filter) were used for rotavirus, human T cells, human B cells,
Microcebus natural killer T cells, and Microcebus B cells. We note that while the number
of input anchors for SPLASH and control sets are matched, it is possible to have more
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control protein domains in the resulting barplots, as only high E-value hits to Pfam are
reported in the visualizations. Domain profiling summaries are in Data S1.

A hypergeometric test was used to give p-values for protein domain analysis. For
a given domain, we construct the 2×2 contingency table, where the first row is the
number of SPLASH hits for this domain, followed by the total number of SPLASH hits
not in this domain. The second row is the mirror of this for control, where the first entry
is the number of control hits for this domain, followed by the total number of control hits
not in this domain. A one-sided p-value is computed using Fisher’s exact test, which is
identically a hypergeometric test. We apply Bonferroni correction for the total number of
protein domains expressed by either SPLASH or control, to yield the stated p-values.

Lastly it is worth noting that while only counts of the best scoring Pfam hits were
assessed in this study, other information is also produced by HMMer3. In particular,
relative alignment positions are given for each hit which could be used to more finely
pinpoint the precise locus at which sequence variation is detected.

Control analyses
To construct control anchor lists based on abundance, we considered all anchors

input to SPLASH and counted their abundance, collapsing counts across targets. That
is, an anchor receives a count determined by the number of times it appears at an offset
of 5 in the read up to position R - max(0,R/2-2*k) where R is the length of the read,
summed over all targets. The 1000 most abundant anchors were output as the control
set. For analysis comparing control to SPLASH anchors, min( |SPLASH anchor list|,
1000) most abundant anchors from the control set were used and the same number of
SPLASH anchors were used, sorted by p-value.

Generation of contingency table heatmaps.
To plot the anchor-target heatmaps, we exclude targets with low counts.

Concretely, we by default filter out targets that occur fewer than 5 times, have less than
5% of the total counts of that anchor, and retain at most the top 10 targets, while
ensuring that at least 2 targets are plotted. Then, all samples with fewer than 5 counts
are discarded. For clarity of presentation, we include or remove rows corresponding to
additional targets based on biological relevance.

SARS-CoV-2 analysis
SARS-CoV-2 data was downloaded from the NCBI: France9 (SRP365166) and

South Africa8 (SRP348159). Sample metadata for the France dataset was provided by
the authors via personal communication, and consists of their calls of the primary and
secondary infecting strains for each patient sample. We note that sample
‘WTA-022002271301_S1’ appeared to be mislabelled, appearing in the metadata file
but not in the NCBI sample list. Conversely, the sample ‘Pl924-022002271301_S1472’
appears in the NCBI sample list, but not in the metadata file. Thus, we associate these
labels to each other, to obtain metadata labeling for all 106 samples. We do not have
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information regarding which samples are replicates. We provide the NCBI sample list
and the strain metadata file as Data S8.

The SARS-CoV-2 datasets used in this manuscript were analyzed with
SPLASH’s unsupervised mode (no sample metadata provided). To identify high effect
size anchors, a threshold of `effect_size_randCjs` > 0.5 was used (table S2).

For the purposes of strain-defining mutation analysis, we manually constructed
“archetype” genome sequences for variant strains Delta, Omicron BA.1, and Omicron
BA.2 by editing the Original (Wuhan) reference NC_045512.2 to contain all (and only)
the defining mutations specified at CoVariants.org10; these are provided as Data S5.

To determine what SPLASH calls (and control anchors) were strain defining we
perform the following. To generate SPLASH’s calls, we filter for anchors that are
significant (with a BY corrected p-value less than .05) and have large effect size (> .5),
yielding a list of N SPLASH-called anchors. Control anchors are generated by taking the
N anchors with the highest counts. For each of these anchors we construct their target ×
sample contingency table, first filtering out all anchors with fewer than 30 counts, only 1
unique target, or only 1 unique sample, and filtering out all samples with 5 or fewer
counts. Then, we discard all targets that constitute less than 5% of the remaining counts
for that anchor. The remaining anchors and targets are then bowtie aligned to an index
comprised of the Wuhan reference genome (NC_045512.2), and Delta, Omicron BA.1,
and Omicron BA.2 archetype genomes. For this alignment, options `-a -v 0` were used.
Then, for each set of anchors (SPLASH calls, and controls), the list is filtered to only
anchors that align perfectly to at least one of the reference assemblies, further requiring
that each anchor have at least one target that aligns perfectly to a reference assembly.
Then for each anchor, we declare it to be strain defining if, for any of the reference
assemblies, it has at least one target that maps to it and one target that does not.

Identifying cell-type specific isoforms in single-cell data (lung macrophages and
capillary cells)

The human lung scRNA-seq data used here (HLCA SS2)20 is accessible through
the European Genome-phenome Archive (accession number: EGAS00001004344);
FASTQ files from donor 1 (P2) and donor 2 (P3) generated with the Smart-seq2
protocol were used. In the analysis of HLCA SS2 data, we utilize “isoform detection
conditions” for alternative isoform detection. These conditions select for (anchor, target)
pairs that map exclusively to the human genome, anchors with at least one
split-mapping consensus sequence, mu_lev > 5, and M > 100. mu_lev is defined as the
average target distance from the most abundant target as measured by Levenstein
distance. M is defined as the total number of counts in the anchor’s contingency table.
To identify anchors and targets that map exclusively to the human genome, we included
anchors and targets that had exactly one element annotation, where that one element
annotation must be grch38_1kgmaj. To identify anchors with at least one split-mapping
consensus, we selected anchors that had at least one consensus sequence with at
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least 2 called exons. The conditions on Levenshtein distance, designed to require
significant across-target sequence variation, significantly reduced anchors analyzed
(excluding many SNP-like effects). We further restricted to anchors with M > 100, to
account for the lower numbers in macrophage cells; note that the user can choose to
use a lower M requirement, based on input data. These isoform detection parameters
were used to identify the SS2 examples discussed in this manuscript, MYL12. For HLA
discussion, gene names were called using ​​consensus_gene_mode.

While here we focus on anchors that have aligned to the human genome, we
note in passing that SPLASH makes many predictions of cell-type specific RNA
expression that include sequences that map to repetitive elements or do not map to the
human reference: for individual P2 (respectively P3), 53% (61%), of 4010 (4603)
anchors map to the human genome and no other reference; 35% (30%) map to both the
Rfam and human genome; 6% (7%) have no map to any reference used for annotation
which includes repetitive and mobile elements. As an example, 9 and 18 such anchors
(donor 1 and 2 respectively) BLAST to MHC alleles in the NCBI database.

Immune single-cell analysis
To study human B and T cells, we utilize Tabula Sapiens data (Smart-seq2)34,

downloaded from https://tabula-sapiens-portal.ds.czbiohub.org/; B cells were used from
donor 1 (TSP1) and CD4+ T cells from donor 2 (TSP2). Mouse lemur single-cell
RNA-seq data used in this study was generated as part of the Tabula Microcebus
consortium36; the FASTQ files were downloaded from
https://tabula-microcebus.ds.czbiohub.org. B cells and natural killer T cells were
analyzed separately; both were from spleen and were a mixture of individual L2 and L4.
To determine the most frequent transcriptome annotation for a dataset, all significant
anchors were mapped to the human transcriptome (GRCh38, Gencode) with bowtie2,
using default parameters and `-k 1` to report at most one alignment per anchor (Data
S4). Then, the bowtie2 transcript hits are aggregated by counting over anchors. The
transcript hits with the highest counts over all anchors were reported. Protein domain
profiling was performed as described above.

SPLASH comparison to BASIC analysis in lemur spleen B cells
As part of the Tabula Microcebus consortium36, mouse lemur B cells were

annotated with BASIC38 to identify Ig variable domains. However, BASIC was unable to
identify the light chain variable domain in 35 cells. We used a simple approach to see if
SPLASH could identify variable domains in these uncalled B cells. We checked the
SPLASH genome annotations for these cells for anchors mapping to human “IGL” or
“IGK” genes; there were only five such anchors, all to IGL, and these were found in only
eight cells. For those eight cells, we retrieved the SPLASH consensus sequences for
these anchors, which ranged from 2-5 per cell. Where consensuses for a cell
overlapped, one was chosen, and these were submitted to BLAST against the nr/nt
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database. Many hits were to “immunoglobulin lambda-like polypeptide” 1 or 5 (IGLL),
surrogate light chain genes that contain sequence similar to lambda J and C regions (as
well as a unique N-terminal region) and so could mimic alignment to a true lambda
variable domain. Therefore, BLAST alignments were checked to see whether the match
could be assigned to V, J, C, or IGLL-unique regions. 4 cells matched C-region, 2
matched IGLL-unique region, and 2 had sequence beyond J-region (presumed
V-region). For the latter two, we attempted to extend the consensus further into the
V-region by `grep` in raw reads; one could not be extended as it only had adaptors
adjacent to J-region sequence. The other consensus was extended through the full
V-region, and its sequence is given in Note S4, along with the IGLL-unique matches.

SPLASH for Zostera marina (eelgrass) and Octopus bimaculoides
Data was downloaded from SRP327909 (eelgrass42), and SRP278619

(Octopus43), using nf-core fetchngs run in default mode 74 and preprocessed with
FASTP 75 run in default mode to mitigate false positive calls due to adapter
concatenation. An updated version of SPLASH 54 was run with gap length=0,
anchor_unique_targets_threshold=1, anchor_count_threshold=50,
anchor_samples_threshold=1, anchor_sample_counts_threshold=5, and excluding
anchor-targets containing poly A / C / G / T run of length 8. 500 pairs of random c and f
were chosen. Fastp v0.3.9 was installed on 2/23/23 using bioconda.

Anchor-targets were selected from the SPLASH calls if they had homopolymer
length ≤ 5, effect size > 0.1, and corrected p-value < 0.01. Element annotations were
run using SPLASH commit ID 728066b; anchor-targets mapping to UniVec, Illumina
adapters, SARS-CoV-2, or grass carp were removed. Anchor-targets were aligned with
STAR 2.7.5 to a reference index generated from either the O. bimaculoides reference
genome76 (NC_068981.1) and transcriptome43; or the Z. marina nuclear genome77 (v3.1,
https://phytozome-next.jgi.doe.gov/info/Zmarina_v3_1) and mitochondrial and
chloroplast genomes78 (NC_035345.1 and NC_036014.1, respectively).

For protein domain profiling, anchor-targets with no element annotation were in
silico translated in all six frames and submitted to HMMer search of the Pfam database.
For Figure 5B (eelgrass), anchors were ordered by descending number of observations;
the top 200,000 were concatenated with their anchor-targets and submitted to Pfam;
these anchor-targets are defined as controls. The best Pfam hit by full sequence
E-value is retained for each anchor-target. For each domain, the top 4 domains hit by
anchor-targets and by controls are plotted, where bar height is the number of
anchor-targets that hit the domain with a full-sequence E-value < 0.01.

For BLAST analysis, we selected anchors with no more than 1 target mapping
with either STAR to the reference genome or Bowtie2 element annotations, thus cases
where no sample-specific variation would be detected if a reference genome were used.
In eelgrass, targets were selected if their fraction exceeded 0.5 and their anchor’s effect
size exceeded 0.9; in octopus, targets were selected if their fraction exceeded 0.3 and if
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their anchor’s effect size exceeded 0.8. The 1808 anchor-target pairs satisfying these
criteria in octopus were submitted to BLAST with parameters:

-db nt -evalue 0.1 -task blastn -dust no -word_size 24 -reward 1 -penalty -3
-max_target_seqs 4

BLAST hits were merged into SPLASH output, with an indicator variable for whether the
sequence was queried. For octopus anchor-targets, 1061/1808 had a BLAST hit (max
E-value 0.028). There were 288 hits to octopus, of which 281 were annotated as from
O. sinensis and 7 from O. bimaculoides. Selected sequences mapping to O. sinesis
were further analyzed. For eelgrass, 1606/4081 had a BLAST hit (max E-value 0.028).

SPLASH output, merged with Pfam and BLAST analyses, are in Data S6 and
Data S7 (octopus and eelgrass, respectively).

Supplemental Information
Document S1. Figures S1 to S7; Notes S1 to S7.
Data S1. Protein domain profiling output tables.
Data S2. Tables for SARS-CoV-2 and single-cell analyses: significant anchors, anchor
statistics, and cj’s used for each anchor.
Data S3. Additional summary tables for macrophage and capillary single-cell analyses:
significant anchors, their targets, anchor statistics, anchor and target reverse
complement information, highest priority element annotations for anchors and targets,
anchors annotations, and consensus annotations.
Data S4. Tables for human and lemur immune single-cell analyses: significant anchors,
and their genome and transcriptome annotations.
Data S5. Artificial genome sequences with defining mutations for SARS-CoV-2 Delta,
Omicron BA.1, and Omicron BA.2 strains.
Data S6. Table for Octopus bimaculoides analysis: significant anchors, their targets,
anchor statistics, STAR mapping annotations, Pfam results, and BLAST results.
Data S7. Table for Octopus bimaculoides analysis: significant anchors, their targets,
anchor statistics, STAR mapping annotations, Pfam results, and BLAST results.
Data S8. SARS-CoV-2 metadata.
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Document S1

Figures S1 to S7
Figure S1. SPLASH computations.
Figure S2. Rotavirus protein domain profiling.
Figure S3. Effectiveness of SPLASH randomized sample splitting.
Figure S4. Additional details for single cell analyses.
Figure S5. Lemur COX2 allelic detection, additional Ig/TCR anchors.
Figure S6. O. bimaculoides 3’ UTR anchors show tissue-specific expression.
Figure S7. Diatom anchors in eelgrass samples show variation with
location/season or Day vs Night.

Supplemental Figure Legends

Notes S1 to S7
Note S1. Generality of SPLASH.
Note S2. SPLASH statistical inference.
Note S3. SPLASH is robust to parameter choices and effective without metadata.
Note S4. Lemur lamba light chain and surrogate light chains found by SPLASH.
Note S5. Octopus and eelgrass analyses, additional notes.
Note S6. SPLASH runs on a laptop.
Note S7. Anchor and target sequences, q-values, and binomial p-values.
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B. MYL12

C. HLA-DPB1 D. HLA-B, human T cell
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ferredoxin (diatom)

ferredoxin [Thalassiosira oceanica]

Sequence ID: EJK54785.1 Length: 125
E-value: 3e-15 
Query  2   TSLGYSVKLISEEEGIDETIECADDVFIVDAAEEAGIELPYSCR  45
           TSL YSVK+ +EEEGID T ECADDVFIVDAAEE G++LPYSCR
Sbjct  26  TSLDYSVKVFNEEEGIDATFECADDVFIVDAAEEEGVDLPYSCR  69

ferredoxin [Schizostauron trachyderma]

Sequence ID: UDP55462.1 Length: 99
E-value: 2e-13 
Query  6   YSVKLISEEEGIDETIECADDVFIVDAAEEAGIELPYSCR  45
           Y VKL+SEE+GID TI+C DDVF++DAAEE G+ELPYSCR
Sbjct  4   YKVKLLSEEQGIDTTIDCNDDVFVLDAAEEQGVELPYSCR  43

anchor

    P  T  S  L  G  Y  S  V  K  L  I  S  E  E  E  G  I  D  E  T  I  E  C  A  D  D  V 
 CGCCGACCTCTCTCGGATATTCTGTCAAGCTCATCTCGGAGGAAGAAGGCATCGATGAAACCATCGAGTGTGCCGACGACGTC…

  F  I  V  D  A  A  E  E  A  G  I  E  L  P  Y  S  C  R 
…TTCATTGTCGACGCTGCTGAAGAAGCCGGAATTGAACTTCCCTACTCGTGCCGT
 ||||||||||||||||| |||||||||
…TTCATTGTCGACGCTGCCGAAGAAGCC2

1

targets

France, June, Day (14)
France, June, Day (26)
France, June, Day (91)
France, June, Day (22)
France, June, Day (39)
France, June, Day (58)
Norway, December, Night (8)
Norway, December, Day (40)
Norway, December, Day (10)

21

consensus extension of target 1

group protein B3 [Seminavis robusta]

Sequence ID: CAB9513894.1 Length: 75
E-value: 6e-09
Query  1   VKEDDPDLTFGGVGKKLGEMWRALSDKEKQEFKDR  35
           VKE++P++TFG +GKKLGEMWRAL+D+E++EFK R
Sbjct  39  VKEENPEITFGQMGKKLGEMWRALTDEEREEFKKR  73

HMG high mobility group box-containing protein 

[Nitzschia inconspicua]

Sequence ID: KAG7340638.1 Length: 79
E-value: 6e-08
Query  1   VKEDDPDLTFGGVGKKLGEMWRALSDKEKQEFKD  34
           +KE+ PDLTFGGVGKKLGEMWRAL +K K+ +K 
Sbjct  40  LKEEHPDLTFGGVGKKLGEMWRALDEKTKENYKS  73

HMG-box (diatom)

anchor

  V  K  E  D  D  P  D  L  T  F  G  G  V  G  K  K  L  
 GTGAAGGAAGACGATCCTGATTTGACCTTTGGTGGTGTAGGAAAGAAGCTTG…

 G  E  M  W  R  A  L  S  D  K  E  K  Q  E  F  K  D  R  
…GTGAAATGTGGAGGGCTCTTTCGGATAAAGAGAAGCAAGAATTCAAGGACCGCA
 | ||||||||||| |||||  ||||  |||||||||||||||||||||||||||
…GAGAAATGTGGAGAGCTCTGACGGACGAAGAGAAGCAAGAATTCAAGGACCGCA
 G  E  M  W  R  A  L  T  D  E  E  K  Q  E  F  K  D  R  

2

1

targets

consensus extension of target 1

Norway, December, Day (7)
Norway, December, Day (71)
Norway, December, Day (165)
Norway, December, Night (58)
Norway, December, Night (39)
France, June, Day (20)
France, June, Day (12)
France, June, Day (27)
France, June, Night (9)
France, June, Night (26)
France, June, Night (29)
France, June, Day (14)
France, June, Day (18)
France, June, Day (43)

21

protein fucoxanthin chlorophyll a�c protein
 [Phaeodactylum tricornutum CCAP 1055�1]
Sequence ID: XP_002184619.1 Length: 197
E-value: 1e-20
Query  1   GAQPPLGFFDPLGLVADGDQETFDRLRFVELKHGRISMLAVVGY  44
           GAQPPLGFFDPLGLVADGDQE FDRLR+VELKHGRISMLAVVGY
Sbjct  38  GAQPPLGFFDPLGLVADGDQEKFDRLRYVELKHGRISMLAVVGY  81

Chain 19, FCP-F [Chaetoceros gracilis]

Sequence ID: 6JLU_19 Length: 166
E-value: 3e-20
Query  1   GAQPPLGFFDPLGLVADGDQETFDRLRFVELKHGRISMLAVVGY  44
           GAQPPLGFFDPLGLVADGDQE FDRLR+VE+KHGRISMLAVVGY
Sbjct  7   GAQPPLGFFDPLGLVADGDQEKFDRLRYVEIKHGRISMLAVVGY  50

fucoxanthin chlorophyll a/c protein (diatom)
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Supplemental Figure Legends
Figure S1. SPLASH computations.

A. p-value computation for SPLASH for user specified vectors f and c. Contingency
table transposed for visual convenience (rows are samples and columns are
targets). Starting with a samples by targets counts matrix, SPLASH utilizes one
(or several) functions f mapping targets to values within [0,1]. The mean with

respect to f is taken over the targets in each row j to yield , and an estimate forµ
𝑗

^

the mean over all target observations of f is taken, yielding . The anchor-sampleµ
^

scores Sj are then constructed as the difference between the row mean andµ
𝑗

^

the overall mean , and is scaled by . These anchor-sample scores areµ
^

𝑛
𝑗

weighted by cj in [-1,1] and summed to yield the anchor statistic S. Finally, a
p-value is computed utilizing classical concentration inequalities, which we
correct for multiple hypothesis testing (with dependence) by constructing
q-values using Benjamini-Yekutieli, a variant of Benjamini Hochberg testing which
corrects for arbitrary dependence.

B. Effect size computation for SPLASH. Reported effect size is calculated based on
the random split c and random function f that yielded the most significant
SPLASH p-value. Fixing these, the effect size is computed as the difference
between the mean across targets (with respect to f) across those samples with
cj = +1, and the mean across targets (with respect to f) across those samples
with cj = -1. This should be thought of as studying an alternative where samples
from cj = +1 have targets that are independent and identically distributed with
mean (under f) of , and samples with cj = -1 have targets that are independentµ

1

and identically distributed with mean (under f) of . The total effect size isµ
2

estimated as .µ
1
− µ

2

Figure S2. Rotavirus protein domain profiling.
We performed SPLASH protein domain profiling in a dataset of virally enriched

samples from breakthrough infections in patients that had been vaccinated against
rotavirus; nearly all did have rotavirus infection, but some also had other coinfections17.
The top domains were rotavirus VP3 (Rotavirus_VP3, 76 SPLASH hits vs 9 control hits)
followed by rotavirus NSP3 (Rota_NSP3, 87 SPLASH vs 35 control hits), indicating that
these rotavirus genes have sequences that vary significantly among these patients; they
have roles in blocking host innate immunity18, and so may be under selective pressure
for variation.
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Figure S3. Effectiveness of SPLASH randomized sample splitting.
Random c’s can recover samplesheet c’s. For the HLCA dataset, of the 3439

anchors (1384 genes) called by the input metadata (samplesheet c’s) in donor 1 (BY
correction, alpha=.05), we have that 72% of the genes called were also called by
SPLASH’s selection of random c’s (6287 called by anchors by random c’s, 2268 genes).
Left plot indicates for each gene (dot) how many times it was called by samplesheet c’s
vs random c’s. Red dots indicate those genes not called by random c’s. On the right plot
we have the fraction of genes that are called at least x times by samplesheet c’s that
are also called by random c’s. We see that for x = 2 (i.e. all genes hit by at least 2
anchors), random c’s call >94% of those genes called by samplesheet c’s.
For donor 2 similar results are observed, with 3775 (5619) anchors from samplesheet
c’s and 1125 (1844) genes for samplesheet c’s (random c’s) respectively. >90% of
samplesheet c discoveries for x = 2, >94% for x = 3.

Figure S4. Additional details for single cell analyses.
Heatmaps show the complete data for the called anchors. Each set of heatmaps

is for one anchor sequence. The primary plot is the center left one, which shows the
samples × targets contingency table. Each column represents a sample, and each row
represents a unique target. The color indicates what fraction of the sample’s (column’s)
targets come from the target corresponding to that row. The x-ticks correspond to nj, the
number of times the anchor was observed in this sample. The y-ticks indicate the
number of times this target appeared (following this anchor), and the targets are sorted
by abundance. The two top plots indicate the cj’s used; when samplesheet cjs are
available, they will be in the upper left, and the optimizing random cjs will be in the upper
right.

The middle left plot is used to visualize the targets that follow this anchor. Each
row represents a target (sequence given in y-tick) corresponding to the row to the left of
it in the contingency table. The columns are base pair positions along the sequence of
each target. Each nucleotide is color-coded, to show the similarity of the targets (e.g. to
indicate whether they differ by a SNP, deletion, alternative splicing, etc).

The two bottom plots relate to the consensus sequences. The lower left plot
shows the nucleotide sequence (same color scheme as the center right one for the
targets). Each column corresponds to the consensus sequence for the sample of the
same column above it in the contingency table. The rows are base pair positions along
each consensus. These consensus sequences are variable length, and a value of -1
(yellow color) on the bottom of a sequence indicates that the consensus has ended. The
bottom right plot shows the fraction agreement per nucleotide within a sample with its
consensus sequence. We can see that for samples where only one isoform / SNP is
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expressed the consensus stays near 100%, while for samples with a diverse set of
targets the consensus is less uniform.

Panels A-C are macrophage and capillary cells from human lung (HLCA
dataset). In the samplesheet cjs metadata heatmap (upper left) and histogram plots for
panel A, pink is macrophage and blue is capillary cell.

A. MYL6. SPLASH rediscovers alternative splicing in MYL6: capillary cells express
more of the exon-inclusion variant, while macrophages express predominantly
the exon-skipped variant. At the bottom is a UCSC Genome Browser screenshot,
showing BLAT mapping of macrophage and capillary consensus sequences
which fully capture the inclusion or exclusion of the short alternative exon.

B. MYL12. This data is partly presented in Figure 3A.
C. HLA-DPB1. This data is partly presented in Figure 3C.
D. HLA-B (human T cells, Tabula Sapiens). This data is partly presented in

Figure 3D. In this case, all cells have the same metadata label (CD4+ T cell) so
only the optimizing random cjs heatmap is relevant and so it is shown in the
upper left. The best random cjs found divide the cells into two groups that differ in
their relative distribution of targets (note that other cjs might give an even larger
difference), indicating that HLA-B expression is not uniform across this set of
cells.

Figure S5. Lemur COX2 allelic detection, additional Ig/TCR anchors.
For panels B-D, target × sample heatmaps are shown on the left (samples are

individual cells), and bp color-maps on the right. The latter encode the target sequences
with different colors for each type of base, and are only provided to give a quick visual
impression of the sequence variability. The small numbers at the sides of the heatmaps
are summed target counts (over rows or columns).

A. COX2. SPLASH detects numerous anchors that have targets that correspond
precisely to the identities of the two lemur individuals represented in the set of
cells analyzed. One example is an anchor in COX2. The alignment of two
consensuses (both from NKT cells) shows that targets 1 and 2 differ at a single
silent position (C vs T) and another silent SNP is also present outside the target
region (G vs A); these positions are highlighted in red. Consensuses 1 and 2
align perfectly to different lemur mitochondrial genome accessions
(NC_028718.1 and KR911907.1). Targets 1 and 2 are found exclusively in
individuals L4 and L2, respectively.

B. Ig-lambda C-region. Depicted is a lemur anchor that maps to the 5’ end of the
human Ig-lambda C3 segment. It has 97 different targets, which lie within the
hypervariable CDR3 region. Nearly all targets are expressed clonotypically (i.e.,
cells do not share targets), except for targets 1 and 3 (at the top of the heatmap).
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C. Ig-beta J-region. We analyzed natural killer T (NKT) cells from lemur. In humans
and mice, a subset of NKT cells express stereotypical or shared TCR genes;
Figure 4B shows an example anchor in TCR-alpha. Here we show an anchor that
maps to a human TCR-beta J-region (J2-1); targets reside in the V-region. A
number of the NKT cells express a shared TCR-beta target (seen in the top row
of the heatmap). All of these cells derive from individual L4.

D. Ig-gamma V-region. There is evidence for shared TCR-gamma sequences in
NKT cells as well. This anchor maps to a human TCR-gamma V-region (TRGV9);
the targets lie at the V-J junction. Individual L4 has two different shared targets
(rows 1 and 3) while individual L2 shows three cells expressing a shared target
(row 2). Other NKT cells express unique targets, however.

Figure S6. O. bimaculoides 3’ UTR anchors show tissue-specific expression.
In the heatmap , the parenthetical numbers are summed anchor counts.

A. Carboxypeptidase D (CPD). The anchor and targets align to the 3’ UTR of the
O. sinensis CPD mRNA (XM_029795433.2), but are not found in the O.
bimaculoides genome assembly. The NCBI Browser screenshot at lower-right
shows that the 3’ UTR of the O. bimaculoides CPD gene (LOC106880679,
Ch.25) is entirely missing from the genome: right after the end of the coding
region, a run of Ns begins (red box). (There is a second O. bimaculoides CPD
gene on Ch.16, LOC106873734, but has much lower identity to the sole O.
sinensis CPD.) Target 2 is identical to O. sinensis except for two mismatches;
target 1 has a 12-nt deletion relative to target 2. Target 1 is only expressed in
dissociated cells from sucker rims, and at a low level in one olfactory organ
sample. All other tissues express only target 2.

B. Upf2 (regulator of nonsense transcripts 2). The alignment of Upf2 mRNAs
from O. bimaculoides (XM_014915650.2) and O. sinensis (XM_036513028.1)
shows that they diverge just before the stop codon, so the 3’ UTRs are unrelated.
Our anchor-targets from O. bimaculoides map only to O. sinensis Upf2; neither
the anchor-targets nor the O. sinensis 3’ UTR match anywhere in the O.
bimaculoides genome. The alignment also shows the downstream portion of the
O. sinensis 3’ UTR where the anchor-targets map. The targets differ in the
number of tandem repeats of CAG: target 1 and 2 have six and five repeats,
respectively. Target 1 is expressed in dissociated cells from sucker rims, and in
olfactory organ; the other tissues express target 2.

C. Netrin receptor/DCC. The alignment of the O. bimaculoides genome (gene
LOC106883766) and O. sinensis mRNA (XM_036508072.1) shows that the two
diverge shortly after the stop codon. The O. bimaculoides gene ends in
dinucleotide repeats just before the genome becomes a run of Ns (in red). Our
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anchor-targets from O. bimaculoides map only to O. sinensis netrin receptor 3’
UTR (also shown in the alignment); neither the anchor-targets nor the O. sinensis
3’ UTR match anywhere in the O. bimaculoides genome. The targets differ at a
single nucleotide: target 1 and 2 have G and A, respectively; O. sinensis has a G
in this position. If the O. bimaculoides genome encodes A, then target 1 is
consistent with A-to-I RNA editing (inosine read as G during reverse
transcription). The majority of tissues express target 2 only, while target 1 is only
expressed in dissociated cells of sucker rims.

Figure S7. Diatom anchors in eelgrass samples show variation with
location/season or Day vs Night.

A. HMG (high mobility group) box domain. The two targets show several
nucleotide differences that result in two coding differences. The translation of the
consensus sequence has its best two protein BLAST matches to HMG box
proteins from diatom species, shown in the inset. Its best Pfam match is also
HMG_box. Target 1 is found only in Norway/December samples, while target 2 is
found only in France/June samples; both targets are found in both Day and Night
samples.

B. Ferredoxin. The two targets show a silent single nucleotide polymorphism. The
translation of the consensus sequence has its best protein BLAST matches to
ferredoxin from several diatom species, the top two are shown in the inset. Its
best Pfam match is also ferredoxin (Fer2 = 2Fe-2S iron-sulfur cluster binding
domain). Target 1 is found only in France/June samples, while target 2 is found
only in Norway/December samples.

C. Fucoxanthin chlorophyll a/c protein (FCP). This anchor and its targets are
also presented in Figure 5C. At left, the translation of the consensus sequence
has its best protein BLAST matches to several diatom species, two that are
named as FCP are shown in the inset. The amino acid identity for
Phaeodactylum tricornutum is 42/44 (95%). The consensus also BLASTs to the
P. tricornutum genome, nucleotide identity 107/132 (81%) (not shown); this level
of mismatch suggests the true origin species is not in the NCBI database. At
right, histogram shows total anchor counts for Night are ~60% lower than for Day,
indicating circadian regulation of this gene. All are samples from France in
December (the only location/season in which this anchor had both Day and Night
representation).
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Note S1. Generality of SPLASH.
In this work we focused our experimental results on identifying changes in viral

strains and specific examples of RNA-seq analysis. SPLASH’s probabilistic formulation
extends much further however, and subsumes a broad range of problems. Many other
tasks, some described below, can also be framed under this unifying probabilistic
formulation. Thus, SPLASH provides an efficient and general solution to disparate
problems in genomics. We outline examples of SPLASH’s predicted application in
various biological contexts, highlighting the anchors that would be flagged as significant:

● RNA splicing, even if not alternative or regulated, can be detected by comparing
DNA-seq and RNA-seq

○ Examples of predicted significant anchors: sequences upstream of spliced
or edited sequences including circular, linear, or gene fusions

● RNA editing can be detected by comparing RNA-seq and DNA-seq
○ Examples of predicted significant anchors: sequences preceding edited

sites
● Liquid biopsy – reference free detection of SNPs, centromeric and telomeric

expansions with mutations
○ Examples of predicted significant anchors: sequences in telomeres (resp.

centromeres) preceding telomeric (resp. centromeric) sequence variants
or chromosomal ends (telomeres) in cancer-specific chromosomal
fragments

● Detecting MHC allelic diversity
○ Examples of predicted significant anchors: sequences flanking MHC allelic

variants
● Detecting disease-specific or person-specific mutations and structural variation in

DNA
○ Examples of predicted significant anchors: sequences preceding structural

variants or mutations
● Cancer genomics e.g. BCR-ABL fusions

○ Examples of predicted significant anchors: sequences preceding fusion
breakpoints

● Transposon or retrotransposon insertions or mobile DNA/RNA
○ Examples of predicted significant anchors: (retro)transposon arms or

boundaries of mobile elements
● Adaptation

○ Examples of predicted significant anchors: sequences flanking regions of
DNA with time-dependent variation

● Novel virus’ and bacteria; emerging resistance to human immunity or drugs
○ Examples of predicted significant anchors: sequences flanking rapidly

evolving or recombined RNA/DNA
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● Alternative 3’ UTR use
○ Examples of predicted significant anchors: 3’ sequences with targets

including both the poly(A) or poly(U), or adapters in cases of libraries
prepared by adapter ligation versus downstream transcript sequence

● Hi-C or any proximity ligation
○ Examples of predicted significant anchors: for Hi-C, DNA sequences with

differential proximity to genomic loci as a function of sample; similarly, for
other proximity ligation anchors would be predicted when the represented
element has differential localization with other elements

● Finding combinatorially controlled genes e.g. V(D)J
○ Examples of predicted significant anchors sequences in the constant, D, J,

or V domains

Generality of SPLASH anchor, target and consensus construction
SPLASH can function on any biological sequence and does not need

anchor-target pairs to take the form of gapped k-mers, and can take very general forms.
For example, one could consider schemes that respect triplet codons:
[X1X2Y1][X3X4Y2][X5X6Y3]... where Xi are bases in the anchor and Yi are bases in the
target, this would focus specifically on variation in the wobble position, the fastest to
diverge; similar schemes might be appropriate for mechanisms with known patterns of
diversity, such as diversity generating retroelements79. X and Y could also be amino
acid sequences or other discrete variables considered in molecular biology. SPLASH
consensus building can be developed into statistical de novo assemblies, including
mobile genetic elements with and without circular topologies. Much more general forms
of anchor-target pairs (or tensors) can be defined and analyzed, including other
univariate or multivariate hash functions on targets or sample identity. SPLASH can also
be further developed to analyze higher dimensional relationships between anchors,
where statistical inference can be performed on tensors across anchors, targets, and
samples. Similarly, hash functions can be optimized under natural maximization
criterion, which is the subject of concurrent work. The hash functions can also be
generalized to yield new new statistics, optimizing power against different alternatives.

Note S2. SPLASH statistical inference.
Statistical Inference

In this section we discuss the statistics underlying our p-value computation. As
discussed, detecting deviations from the global null, where the probability of observing a
given target k-mer t, R bases downstream of an anchor a, is the same across samples,
can be mapped to a statistical test on counts matrices (contingency tables).

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2023. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=86158&pre=&suf=&sa=0
https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


Probabilistic model
Formally, we study the null model posed below.

Null model:
Conditional on anchor a, each target is sampled independently from a common
vector of (unknown) target probabilities not depending on the sample.

Despite its rich history, the field of statistical inference for contingency tables still
has many open problems 80. The field’s primary focus has been on either small
contingency tables (2×2, e.g. Fisher’s exact test 81), high counts settings where a
chi-square test yields asymptotically valid p-values, or computationally intensive
Markov-Chain Monte-Carlo (MCMC) methods. While contingency tables have been
widely analyzed in the statistics community 80,82,83, to our knowledge no existing tests
provide closed form, finite-sample valid statistical inference with desired power for the
application at hand.

We note that even though we are not aware of directly applicable results, it may
be theoretically possible to obtain finite-sample-valid p-values using likelihood ratio tests
or a chi-squared statistic. However, even if this were possible, it would not allow for the
modularity of our proposed method, where we can a) weight target discrepancies
differently as a function of their sequences, to allow for power against different
alternatives, b) reweight each sample’s contribution to normalize for unequal
sequencing depths, and c) offer biological interpretability in the form of cluster detection
and target partitioning. Overall, the statistics we develop for SPLASH are extremely
flexible. Ongoing work is focused on further optimizing this general procedure, including
application specific tuning of the functions f and robustification of the statistic against
biological and technical noise.

Test intuition
The test statistic used by SPLASH can be thought of as using a vector f to

partition the rows (targets) of the contingency table into two groups, assigning them 1
and 0 respectively. Then, for each sample, we compute the expected value of its target
(i.e. what fraction of the targets from this sample were assigned a 1). We construct a per
sample score as the difference between its target expected value and the global target
expected value (with respect to the target distribution across all samples), and scale this
difference by the square root of the number of observations of this anchor. A vector c
assigns each sample a scalar value, and the final test statistic is computed as the
c-weighted sum of these per-sample scores. Due to the linear structure of the test
statistic, finite-sample p-value bounds are possible through classical concentration
inequalities.

For fixed vectors f and c, there are many alternatives that SPLASH would not
have power against. Thus, to detect different alternatives, SPLASH utilizes several
randomly chosen f and c, applying Bonferroni correction to the result. In subsequent
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work, more sophisticated (optimization-based) approaches to computing improved f and
c have been developed, leveraging a linear algebraic perspective on the test statistic.
Additional generalizations of f and c may be of interest.

p-value computation
SPLASH’s p-value computation is performed independently on each anchor, and

so statistical inference can be performed in parallel across all anchors. Our test statistic
is based on a linear combination of row and column counts, giving valid false discovery
rate (FDR) controlled q-values by classical concentration inequalities and multiple
hypothesis correction (Figure S1A). To formalize our notation, we define Dj,k as the
sequence identity of the k-th target observed for the j-th sample. This ordering with
respect to k that we assign is for analysis purposes only, it has no relation to the order in
which targets are observed in the actual FASTQ files (can be thought of as randomly
permuting the order in which we observe the targets). Under the null model, each Dj,k is
then an independent draw from the common target distribution.

SPLASH’s test statistic poses many exciting research directions, which we
explore in a separate statistical work55. To construct p-values, we first estimate the

expectation (unconditional on sample identity) of f(Dj,k) as by collapsing acrossµ
^

samples. Next, we aggregate f(Dj,k) across only sample j to compute , constructing Sjµ
𝑗

^

as the difference between the these two, normalizing by to ensure that each Sj will𝑛
𝑗

have essentially constant variance (up to the correlation between ). This isµ
^
, µ

𝑗

^

performed as below:

We see that Sj is a signed measure of how different the target distribution of
sample j is from the table average, when viewed under the expectation with respect to f.
This function f is critical to obtain good statistical guarantees, and the choice of f
determines the direction of statistical power, such as power to detect SNPs versus
alternative splicing or other events. In this work we design a general probabilistic
solution, utilizing several random functions f which take value 0 or 1 on targets,
independently and with equal probability. In order to increase the probability that
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SPLASH identifies anchors with significant variation, several (K = 10 by default) random
functions are utilized for each anchor, though more may be desired depending on the
application.

After constructing these signed anchor-sample scores, they need to be reduced
to a scalar valued test-statistic. Consider first the case where we are given sample
metadata, i.e. we know that our samples come from two groups, and we want our test to
detect whether the target distribution differs between the two groups. One natural way
of performing such a test is to first aggregate the anchor-sample scores over each
group, and then compute the difference between these group aggregates.

We formalize this by assigning a scalar cj to each sample, where in this two
group comparison with metadata cj = ±1 encodes the sample’s identity, and construct
the anchor statistic S as the inner product between the vector of cj’s and the
anchor-sample scores. This statistic will have high expected magnitude if there is
significant variation in target distribution between the two groups.

In many biologically important applications however, cell-type metadata is not
available. In these cases, SPLASH detects heterogeneity within a dataset by performing
several (L = 50 by default) random splits of the samples into two groups. For each of
these L splits SPLASH assigns cj = ±1 independently and with equal probability for each
sample, computes the test statistic for each split, and selects the split yielding the
smallest p-value.

We now investigate the statistical properties of S. First, observe that S has mean
0 under the null hypothesis. This allows us to bound the probability that the random
variable S is larger than our observed anchor statistic as follows. Since f and c are fixed,
and are independent of the data, we have that since f(Dj,k) are bounded between 0 and
1 we can apply Hoeffding's inequality for bounded random variables. Defining as theµ
expectation with respect to the common underlying distribution of f(Dj,k) (unknown), we

center our random variables by subtracting the sample mean , our estimate of the trueµ
^

mean . Standard bounds can now be applied to decompose this deviation probabilityµ
into two intuitive and standard terms:

1) the probability that the statistic , constructed with unavailable knowledge of the true𝑆
~

is largeµ,

2) the probability that is far from .µ
^

µ
Following this approach, we have that
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where (a) comes from the assumption that the sum in the denominator of the second
term is nonzero, as otherwise this second term is 0 and we can essentially set a = 0. (b)
utilizes Hoeffding's inequality on each of these two terms. We can easily optimize this
bound over a to within a factor of two of optimum by equating the two terms (as one is
increasing in a and the other is decreasing), which is achieved when

Thus, for an observed value of our test statistic S, we construct SPLASH’s finite-sample
valid p-values as

q-value computation
q-values are computed using Benjamini Yekutieli correction 58 as

which enables SPLASH to control the FDR of the reported significant anchors.
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Effect size
SPLASH provides a measure of effect size when the cj’s used are ±1, to allow for
prioritization of anchors with fewer counts but large inter-sample differences in target
distributions. Effect size is calculated based on the split c and function f that yield the
most significant SPLASH p-value. Fixing these, the effect size is computed as the
difference between the mean over targets with respect to f across those samples with
c = +1, and the mean over targets (with respect to f) across those samples with c = -1.
This effect size is bounded between 0 and 1, with 0 indicating no effect (target
distributions are identical when aggregated within each group), and 1 indicating disjoint
supports. Defining A+ as the set of j where cj > 0, and A- as the set of j where cj < 0
(generalizing beyond the case of cj = ±1), this is formally computed as:

In this simple case of cj = ±1 and {0,1} valued f, this is simply a projection of the
T×p table to a 2×2 table. Even considering more general f, there is an easy to
understand alternative that SPLASH is designed to have power against. The effect size
should be thought of under the alternative hypothesis where the columns follow
multinomial distributions with probability vector p1 or probability vector p2, depending on
the group identity cj. The effect size we compute can be thought of in this scenario as
measuring the difference between the expectation of f under p1 and p2. In the case of
maximizing the effect size over all possible {0,1}-valued f, the effect size will be equal to
the total variation distance between the empirical distributions of the group cj = +1 and
cj = -1. Thus, the effect size will be 1 if and only if the two sample groups partition
targets into 2 disjoint sets on which the function f takes opposite values, as to be
expected from the total variation distance interpretation (Figure S1B). This f will place a
value of 1 on targets where the empirical frequency of the +1 group p1,t is larger than
that of the -1 group p2,t. Since p1 and p2 are probability distributions, this ends up being
exactly the total variation distance between them (i.e. half the vector ℓ1 distance). Note
that we can also consider a signed variant of this effect size measurement, where if we
restrict ourselves to the same c and f for several anchors, the effect size sign gives us
additional information about the direction of the effect.

Note S3. SPLASH is robust to parameter choices and
effective without metadata.
SPLASH is robust to parameter choices

We give examples of how choices of k, R, and tiling length impact results in
France SARS-CoV-2 data as follows, showing that SPLASH yields similar results for a
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range of parameter choices. Default parameters shown in bold: we tested k = [25, 27,
30]; Tile = [3, 5, 7]; Lookahead = [0, 15, 23]. For k = 25, 94.4% of anchors with default
parameters contain at least one of the K=25 anchors as a substring. For k = 30, 93.8%
of anchors with k = 30 contain at least one of the anchors with default parameters a
substring. For tile size of 3, 85% of the anchors from the default run can be found in the
significant anchors of tile size of 3. For tile size of 7, 85% of the anchors from the default
run can be found in the significant anchors of tile size of 5. For lookahead distance of 0,
37% of the anchors from the default run can be found in the significant anchors of tile
size of 3; for lookahead distance of 15, 76% of the anchors from the default run can be
found in the significant anchors. Overall, as tile size decreases, anchor calls increase
(4715, 5522, 7891 for [7, 5, 3] respectively). As k varies, anchor calls stay essentially
the same (5875, 5522, and 5958 for k = [25, 27, 30] respectively). Finally, for lookahead
distance, the total number of calls decrease as lookahead distance increases (13239,
8295, 5522 for R = [0, 15, 23] respectively).

SPLASH is effective without metadata
As discussed, SPLASH can be run without any metadata. For the HLCA dataset,

when run on the two donors without metadata, SPLASH calls 6287 anchors (2269
genes) as opposed to the 3439 anchors (1384 genes) called with metadata for donor 1.
Filtering for genes hit by more than two anchors, SPLASH’s metadata free approach
calls >94% of the genes called by the metadata-based approach (Figure S3). For donor
2, SPLASH calls 5619 anchors (1844) genes without any metadata as opposed to the
3775 anchors (1125) genes called with metadata. Filtering for genes hit by more than
two anchors, SPLASH’s metadata free approach calls >90% of the genes called by the
metadata-based approach, increasing to >94% for those genes hit by at least 3
anchors.

Note S4. Lemur lambda light chain and surrogate light chains
found by SPLASH.
As detailed in Methods, we attempted to identify light chain variable regions in lemur B
cells where the BASIC pipeline38 could not. We were successful in identifying a full
variable region by extension (using `grep` of raw reads) of an initial seed consensus
sequence found by SPLASH. Below we give the sequence identified, and the NCBI
IgBlast report for it. IgBlast uses human Ig reference sequences (lemur Ig regions are
not well annotated) so it is uncertain which differences are due to lemur and which to
hypermutation, however there appears to be a high mutational load in this variable
region, which may be why BASIC could not identify it.

This is the cell that had a full V-region:
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cell: MAA001400_B109012_I1_S193
>cons1-MAA001475_B112525_O18_S354_R1_001
GGCCTTGGGCTGACCTAGGACGGTGAGCTGGGTCCCTCTGCCGAAGACAAACATCGACTGAGGCTCAGACCAA

>cell_1_lambda_VJ_assembled
GTGAGTCCCCAGGAACCAGAGCTCACAGGAGCCTCCACCATGGCCAGGGCTCCTGTCCTC
GTCCCTCTCCTCGCTCTCTGCTCAGGGTCCTGGGCACAGTCTGGACTCACCCAGGAAGCC
TTGGTGTCAGGGTCTGTGGGACACAAGGTCACCCTGTCCTGCGCTGGACACAGCAACAGT
GTTGGTTCATTTGGGGTGGACTGGTGCCAGCAGGTTCCTGGTGGTGCCCCCAAAACTGTG
ATGCTCGGGACAACTCGGCCCTCAGGGATCCCCGATCGCTTCTCCGGCTCCAGGTCTGGG
AACACGGCCTCTTTGACCATCTCGGACCTCCCGGACCTCCAGCCGGAGGACGAGGCTGAC
TATTACTGTTCAACTTGGGACAGAACCCTGCGTGCTCATGTGTTCGGCGGTGGGACCAAG
GTGATCGTCGTAGGTCAGCCCAAGGCCGCCCCCTCGGTCACGCTGTTCCCGCCCTCCTC

Protein translation:
>cell_1_lambda_VJ_assembled
MARAPVLVPLLALCSGSWAQSGLTQEALVSGSVGHKVTLSCAGHSNSVGSFGVDWCQQVP
GGAPKTVMLGTTRPSGIPDRFSGSRSGNTASLTISDLPDLQPEDEADYYCSTWDRTLRAH
VFGGGTKVIVVGQPKAAPSVTLFPPS

Below is the NCBI IgBlast report for the full V-region (FASTA sequence given at the
end.) Coding differences from germline gene are shown in magenta.
Top V gene
match

Top J gene
match

Chain
type

stop
codon

V-J frame Productive Strand V frame
shift

IGLV2-14*05 IGLJ6*01 VL No In-frame Yes + No

V region end V-J junction J region start
TACTG TTCAACTTGGGACAGAACCCTGCGTGCTC ATGTG

<--------------------------------FR1-IMGT---------------------------------><----------CDR1
Q S G L T Q E A L V S G S V G H K V T L S C A G H S N S V

Query_1 97 CAGTCTGGACTCACCCAGGAAGCCTTGGTGTCAGGGTCTGTGGGACACAAGGTCACCCTGTCCTGCGCTGGACACAGCA---ACAGTGTT 183
V 69.1% (192/278) IGLV2-14*05 1 .......CC..G..T...CCT....CC.....T......CCT.....GTC.A.....A.C......A.....AC.....GTG..GT..G. 90

Q S A L T Q P A S V S G S P G Q S I T I S C T G T S S D V G
V 68.7% (191/278) IGLV2-18*01 1 .......CC..G..T...CCTC...CC.....C......CCT.....GTCA......A.C......A.....AC.....---GTGAC... 87
V 68.7% (191/278) IGLV2-18*02 1 .......CC..G..T...CCTC...CC.....C......CCT.....GTCA......A.C......A.....AC.....---GTGAC... 87

-IMGT---------><--------------------FR2-IMGT---------------------><CDR2-IM><--------------
G S F G V D W C Q Q V P G G A P K T V M L G T T R P S G

Query_1 184 GGTTCATTTG---GGGTGGACTGGTGCCAGCAGGTTCCTGGTGGTGCCCCCAAAACTGTGATGCTCGGG---ACAACTCGGCCCTCAGGG 267
V 69.1% (192/278) IGLV2-14*05 91 ....ATAACT---AT..CTC.....A...A...CAC..A..CAAA.........CTCA....TTAT.A.GTC.GT.A............. 177

G Y N Y V S W Y Q Q H P G K A P K L M I Y E V S N R P S G
V 68.7% (191/278) IGLV2-18*01 88 ...AGT.A.AACC.T..CTC.....A.......CCC..A..CACA.........CTCA....TTAT.A.GTC.GT.A............. 177
V 68.7% (191/278) IGLV2-18*02 88 ...AGT.A.AACC.T..CTC.....A.......CCC..A..CACA.........CTCA....TTAT.A.GTC.GT.A............. 177

---------------------------------------FR3-IMGT-------------------------------------------
I P D R F S G S R S G N T A S L T I S D L P D L Q P E D E A

Query_1 268 ATCCCCGATCGCTTCTCCGGCTCCAGGTCTGGGAACACGGCCTCTTTGACCATCTCGGACCTCCCGGACCTCCAGCCGGAGGACGAGGCT 357
V 69.1% (192/278) IGLV2-14*05 178 G....T...........T.......A......C...........CC.........---------.T.GG......G.T............ 258

V P D R F S G S K S G N T A S L T I S G L Q A E D E A
V 68.7% (191/278) IGLV2-18*01 178 G....T...........T..G....A......C...........CC.........---------.T.GG......G.T............ 258
V 68.7% (191/278) IGLV2-18*02 178 G....T...........T..G....A......C...........CC.........---------.T.GG......G.T............ 258

-----------><-----------CDR3-IMGT-----------><--------FR4-IMGT--------->
D Y Y C S T W D R T L R A H V F G G G T K V I V V

Query_1 358 GACTATTACTGTTCAACTTGGGACAGAACCCTGCGTGCTCATGTGTTCGGCGGTGGGACCAAGGTGATCGTCGTAG 433
V 69.1% (192/278) IGLV2-14*05 259 ..T........----------------------------------------------------------------- 269

D Y Y
V 68.7% (191/278) IGLV2-18*01 259 ..T........----------------------------------------------------------------- 269
V 68.7% (191/278) IGLV2-18*02 259 ..T........----------------------------------------------------------------- 269
J 90.6% (29/32) IGLJ6*01 3 ----------------------------------------...........A....C..........C....---- 34
J 88.2% (30/34) IGLJ3*02 5 ------------------------------------------...........A.........C...C....C... 38
J 87.1% (27/31) IGLJ2*01 8 ---------------------------------------------........A.........C...C....C... 38

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2023. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


Here are the BLAST matches of consensuses from two cells to the unique region of
IGLL1/5, one of the surrogate light chains. This suggests that these two cells have not
yet rearranged their light chain.

cell: MAA001475_B112525_C4_S52
>cons1-MAA001475_B112525_C4_S52_R1_001
GGCCTTGGGCTGACCTGCTCCACGGGATCCGCGGCACTGGACCGGCTGCTTCCCGCCCGGGCTCCGGGGCC

Consensus sequence above is the original strand, but BLAST was done with its
reverse-complement, the sense strand (this is the Query). The alignment indicates a
1-nt insertion in the consensus relative to IGLL5 (which would cause a frameshift).
PREDICTED: Microcebus murinus immunoglobulin lambda-like polypeptide 5 (LOC105882024),
transcript variant X2, mRNA
Sequence ID: XM_012784097.2 Length: 821 Number of Matches: 1 Range 1: 193 to 250
Score Expect Identities Gaps Strand
91.6 bits(49) 1e-14 56/59(95%) 1/59(1%) Plus/Plus

G P G A R A G S S R S S A A D P V E Q
A P E P G R E A A G P V P R I P W S R

Query 1 GGCCCCGGAGCCCGGGCGGGAAGCAGCCGGTCCAGTGCCGCGGATCCCGTGGAGCAGGT 59
||||| ||||||||||||||||||||||||||||| ||||||||||||||||||||||

Sbjct 193 GGCCCTGGAGCCCGGGCGGGAAGCAGCCGGTCCAG-CCCGCGGATCCCGTGGAGCAGGT 250
G P G A R A G S S R S S P R I P W S R

Protein comparison of the mouse lemur IGLL5 above to human IGLL5 (where domains
are identified) shows that the above region clearly lies in the IGLL5 N-terminal unique
region. The matching part above is shown in blue.
Query 12 LRLGKGQVGCDAPK--GPGPRLRWPLLLLGLAVGTHGFLSSTEAPRSRAPGPGARAGSSR 69

+R GQVGC+ P+ GPGPR RWPLLLLGLA+ HG L AP+S P PGA GSSR
Sbjct 1 MRPKTGQVGCETPEELGPGPRQRWPLLLLGLAMVAHGLLRPMVAPQSGDPDPGASVGSSR 60

Query 70 SSPRIPWSRFLLQPSPRGAGARCWPRGFWSEPQSLWYIFGRGTQLTILGQPKAAPSVTLF 129
SS R W R LLQPSP+ A RCWPRGFWSEPQSL Y+FG GT++T+LGQPKA P+VTLF

Sbjct 61 SSLRSLWGRLLLQPSPQRADPRCWPRGFWSEPQSLCYVFGTGTKVTVLGQPKANPTVTLF 120
J-region C-region

Query 130 PPSSEELQANKATLVCLMSDFYPGAVSVAWKADGSAVTQGVETTQASKQSNGKYAASSYL 189
PPSSEELQANKATLVCL+SDFYPGAV+VAWKADGS V GVETT+ SKQSN KYAASSYL

Sbjct 121 PPSSEELQANKATLVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYL 180

Query 190 SLSPAQWKAGGRFSCQVTHEGSTVEKTVAPAECA 223
SL+P QWK+ +SCQVTHEGSTVEKTVAP EC+

Sbjct 181 SLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS 214

cell: MAA001475_B112525_O18_S354
>cons1-MAA001475_B112525_O18_S354_R1_001
GGCCTTGGGCTGACCTAGGACGGTGAGCTGGGTCCCTCTGCCGAAGACAAACATCGACTGAGGCTCAGACCAA

Consensus sequence above is the original strand, but BLAST was done with its
reverse-complement, the sense strand (this is the Query). Here the match is to human
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IGLL5. The consensus includes regions upstream of the J-region, so part of the
IGLL5-unique region.
Homo sapiens immunoglobulin lambda like polypeptide 5 (IGLL5), transcript variant 1, mRNA
Sequence ID: NM_001178126.2 Length: 1300 Number of Matches: 1 Range 1: 502 to 577
Alignment statistics for match #1 Score Expect Identities Gaps Strand
86.9 bits(95) 5e-13 65/76(86%) 3/76(3%) Plus/Plus

W S E P Q S M F - V F G R G T Q L T V L G Q P K A
Query 1 TTGGTCTGAGCCTCAGTCGATGTTT---GTCTTCGGCAGAGGGACCCAGCTCACCGTCCTAGGTCAGCCCAAGGCC 73

|||||||||||||||||| ||| | |||||||| | |||||| || ||||||||||||||||||||||||||
Sbjct 502 TTGGTCTGAGCCTCAGTCACTGTGTTATGTCTTCGGAACTGGGACCAAGGTCACCGTCCTAGGTCAGCCCAAGGCC 577

W S E P Q S L C Y V F G T G T K V T V L G Q P K A
J-region

Note S5. Octopus and eelgrass analyses, additional notes.
Octopus bimaculoides Myo-VIIa
We give more detailed alignment information for Myo-VIIa anchor and targets, to
document the unannotated alternative first exon “1b” (that is expressed specifically in
statocyst tissue) and the absence of sequence matching exon 2 in the O. bimaculoides
genome. Note that we do not have information on the start of exon “1b”. We use
reverse-complements of the anchor and targets (the sense strand).

Alignment to O. sinensis genome.
<<< start of first exon (not shown) = 79,843,996
...CATCCCGGATTTTCTACTCAATTCTacCGTct-TGTTGCCGGCATGCCTTATAACTTGTGgtaggta annotated first exon = "1a"

| |
79,844,331 79,844,375
| |
| MetProTyrAsnLeu*** MetV

consensus_1 TACTCAATTCTGGCGTTTCTGTTGCCGGCATGCCTTATAACTTGTGATATAATTGGATTTTAAACAAAAAGCAAAAATGG
:::::::::::::::::::::::::::::::::::

consensus_2 TTTATTATCACCAATATGGACGGAAATAGTGTATCCATTTATTAAGATATAATTGGATTTTAAACAAAAAGCAAAAATGG
| MetAspGlyAsnSerValSerIleTyr***|| |
| || |
| |79,932,654 79,932,687 79,932,701
| || | |
| ccttttattttctatttcagATATAATTGGATTTTAAACAAAAAGCAAAAATGGTGATTCTTGCAAAGgtaa
| | ***LeuAspPheLysGlnLysAlaLysMetValIleLeuAlaLys
79,871,237 79,871,281 annotated exon 2
| |

...AATGACTCACTTTATTTATTATCACCAATATGGACGGAAATAGTGTtTCCATaTATTAAGgtaagc unannotated alternative first exon "1b"
MetThrHisPheIleTyrTyrHisGlnTyrGlyArgLys*** (expressed in statocyst tissue)

MetAspGlyAsnSerValSerIleTyr***

anchor is in blue; target 1 in green; target 2 in red.
brown = genomic sequence from O. sinensis, showing splice signals. Splice dinucleotides and ATGs underlined.
lowercase-orange = SNP differences in O. sinensis from anchor-targets (O. bimaculoides)
All upstream ATGs have downstream stop codons shortly after, and the annotated start codon has an upstream stop shortly before. Thus the
alternative first exons do not introduce additional protein sequence at the N-terminus.
Numbers are genome coordinates for O. sinensis chromosome LG8 = NC_043004.1 "Octopus vulgaris isolate Ov201803 linkage group LG8,
ASM634580v1". The O. sinensis myoVIIa gene model is LOC115214860.

Alignment to O. bimaculoides genome.
There is no full perfect match for the relevant exon 2 portion nor for the anchor (underlined sequence) (ATATAATTGGATTTTAAACAAAAAGCAAAAATGG) in
O. bimaculoides. Sequences matching exons 1a and 1b are present in the O. bimaculoides genome. The splice donor for O. sinensis myoVIIa exon
1a matches perfectly to an O. bimaculoides splice donor in an annotated noncoding RNA XR_008264717.1 (gene LOC128248543) located upstream
of the annotated O. bimaculoides myoVIIa transcript.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2023. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


9,633,631 9,633,645 9,633,690
| | |

...CATCCCGGATTTTCTACTCAATTCTGGCGTTTCTGTTGCCGGCATGCCTTATAACTTGTGgtaagtat O.bimaculoides splice donor, XR_008264717.1

...CATCCCGGATTTTCTACTCAATTCTacCGTct-TGTTGCCGGCATGCCTTATAACTTGTGgtaggta O.sinensis annotated first exon = "1a"
| |
| MetProTyrAsnLeu*** MetV

consensus_1 TACTCAATTCTGGCGTTTCTGTTGCCGGCATGCCTTATAACTTGTGATATAATTGGATTTTAAACAAAAAGCAAAAATGG
:::::::::::::::::::::::::::::::::::

consensus_2 TTTATTATCACCAATATGGACGGAAATAGTGTATCCATTTATTAAGATATAATTGGATTTTAAACAAAAAGCAAAAATGG
| MetAspGlyAsnSerValSerIleTyr***||
| |exon 2 no match in O. bimaculoides
| |
9,658,490 9,658,536
| |

...AATGACTCACTTTATTTATTATCACCAATATGGACGGAAATAGTGTATCCATTTATTAAGgtaagc unannotated alternative first exon "1b"
MetThrHisPheIleTyrTyrHisGlnTyrGlyArgLys*** (expressed in statocyst tissue)

MetAspGlyAsnSerValSerIleTyr***

Numbers are genome coordinates for O. bimaculoides chromosome 8 = NC_068988.1 "Octopus bimaculoides isolate UCB-OBI-ISO-001 chromosome
8, ASM119413v2, whole genome shotgun sequence". The O. bimaculoides myoVIIa gene model is LOC106880717.

There appears to be an assembly issue for the O. sinensis Myo-VIIa gene on
chromosome LG8 that matches our anchor-targets. There are several O. sinensis
genes annotated with myosin-VIIa in the genome. We list them below, including their
protein domain content.
Name/Gene ID Description Location a.a. transcripts, protein domains
LOC115224051 unconventional

myosin-VIIa
Chromosome LG24, NC_043020.1
(10520014..10643911)

920 one variant. Has Motor_domain and IQ
domain.

LOC115215798 myosin-VIIa Chromosome LG9, NC_043005.1
(49378971..49480887)

1,239 two variants, same a.a. size; for X2, longer
RNA. No motor domain. Has [MyTH4,
B41/FERM1_F1_Myosin-VII,
FERM_C1_MyoVII], [MyTH4,
B41/Ubl1_cv_Nsp3_N-like, PH-like].

LOC115214860 unconventional
myosin-VIIa

Chromosome LG8, NC_043004.1
(79843996..80027230)

855 one variant. Has MYSc_Myo7 motor and IQ
domain.

LOC115214969 myosin-VIIa Chromosome LG8, NC_043004.1
(79707148..79764229,
complement)

1,237 one variant. No motor domain. Has [MyTH4,
B41/FERM1_F1_Myosin-VII, PH-like,
FERM_C1_MyoVII], SH3, [MyTH4,
B4/FERM2_F1_Myosin-VII, PH-like,
FERM_C2_MyoVII].

LOC115229165 unconventional
myosin-VIIa-like

NW_021832531.1
(136771..143156)

--- only RNA is labeled as a pseudogene

LOC115217708 unconventional
myosin-X

Chromosome LG11, NC_043007.1
(70820204..71380859)

2,422 variant X1, the longest. Has MYSc_Myo22
motor and [MyTH4,
B41/FERM_F1_DdMyo7_like, PH-like],
[MyTH4, B41/FERM_F1_DdMyo7_like,
PH-like].

Red is the Myo7a that matches our anchor-targets. The two genes on chromosome LG8 have pale-orange background.
Slash "/" means the domains overlap. Square brackets "[]" highlight repeat structure.

Neither of the two myo-VIIa genes on Ch. LG8 has a full complement of protein
domains: LOC115214860 has the N-terminal myosin motor domain, but lacks the tail
domains. LOC115214969 has all the tail domains but lacks the motor domain. The two
genes are adjacent on the chromosome, but are in head-to-head orientation, as shown
in this graphic screenshot from NCBI (LOC115214860 is the red arrow, LOC115214969
has been marked with a red box):
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If LOC115214860 was inverted, then all domains would be present in the correct linear
order.

Zostera marina (eelgrass) NADPH quinone oxidoreductase subunit L (NdhL)
intron retention
We have confirmed the intron retention event by sequence extension of target 4 from
raw reads to reach the end of exon 2 (data not shown).
We show here the predicted translation of the intron retention isoform of NdhL (target 4
of Figure 5D). It causes a frameshift and termination shortly after the end of exon 3
(where the other targets are located). The anchor is in exon 4.
anchor is in blue. target4 is in red. target1 is in green, target2 and target3 are aligned underneath target1, differences in magenta.
Intron sequence is shown in lowercase, splice dinucleotides underlined. Reverse-complements of anchor-targets are shown.
>LFYR01000468.1:167070-167279 Zostera marina strain Finnish scaffold_137, whole genome shotgun
sequence
GCAAGATTTGACTTCAGTGCTTATACAATCAGGAGCATTTGCTTTCTTCTACTTCCTTATCATGCCGgta

...SerGlyAlaPheAlaPhePheTyrPheLeuIleMetProVal
target2 TGTTTTCTTCTACTTCCTTATCATGCC

ValPhePheTyrPheLeuIleMetPro
target3 TGCTTTCTTCTACTTCCTTGTCATGCC

AlaPhePheTyrPheLeuValMetPro

tataattgcaaagtgatacttacataataattatttcattgactttacaactgcgaacagtactgattga
TyrAsnCysLysValIleLeuThr******LeuPheHis***LeuTyrAsnCysGluGlnTyr***LeuI

tcattgattgaactgcatgatcgaagCCTATCATCATGAATTGGCTTCGATTGAGATGGTACAAGCGCAA
leIleAsp***ThrAla***SerLysProIleIleMetAsnTrpLeuArgLeuArgTrpTyr...

The frameshift and termination occur within the second transmembrane domain of the
protein. (There is a third transmembrane domain, but it is not predicted by all programs.)
The topology below was predicted by CCTOP (https://cctop.ttk.hu/ )
blue = cytoplasmic; red = transmembrane; green = extracellular. The InterPro NdhL domain is underlined.
>full-length_NdhL
MTHLLLPLPSKVTGAFNHREWSCHRVPHPVSSAQRTRPLISASISKTKKINGRLMCNIESSKATNSTLLHLGVLLTSIA
DEPAFAVTGSNNYEQDLTSVLIQSGAFAFFYFLIMPPIIMNWLRLRWYKRKLFETYLQFMFVFLFFPGILLWAPFINFR
RLPRDPTMKHPWSTPRDSST
>intron-retention_NdhL
MTHLLLPLPSKVTGAFNHREWSCHRVPHPVSSAQRTRPLISASISKTKKINGRLMCNIESSKATNSTLLHLGVLLTSIA
DEPAFAVTGSNNYEQDLTSVLIQSGAFAFFYFLIMPVYNCKVILT
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Note S6. SPLASH runs on a laptop.
Computational benchmarking for SPLASH

SPLASH is computationally much more efficient than other approaches, due to
its use of k-mers rather than reference alignment, and its closed-form statistics obviating
compute-intensive significance testing. SPLASH is implemented as a fully containerized
and parallelized workflow that requires only the FASTQ read files and no parameter
tuning by the user. We ran SPLASH on a 2015 Intel laptop with an Intel® Core™
i7-6500U CPU @ 2.50GHz processor, generating significance calls for single cell
RNA-seq totaling over 10 million reads in only 1 hour 45 min. When performed on a
compute cluster, the same analysis is completed in an average of 22.8 minutes with 750
MB of memory for 10 million reads.

Timing for SS2
Because code was run on a server with dynamic memory, we report summary

statistics as follows. For the steps parallelized by FASTQ file, such as anchor and target
retrieval, total time for dataset run, as reported by Nextflow, was parsed per cell. Thus,
the average time per cell is reported. For the steps parallelized by 64 files (q-value
calculations), total extracted times were summed and divided by number of cells. For
steps that consisted of aggregating files, total run time was divided by number of cells.
Thus, the total time and memory should be multiplied by the total number of cells to
achieve an estimate of the pipeline time for this dataset.

Laptop analysis details
Laptop specs:
An Intel® Core™ i7-6500U CPU @ 2.50GHz (launched in 2015)
2 cores, total of 4 threads, 3 of which SPLASH was allowed to use.
8 GB DDR3 RAM
SODIMM DDR3 Synchronous 1600 MHz (0.6 ns)

Laptop analysis dataset:
Ten B and T cells from donor 2 blood sequenced by Smart-Seq2 were used for the
laptop benchmarking. These files totalled 43,870,027 reads, averaging 4.3M reads per
cell. The fastq files for the Tabula Sapiens data were downloaded from
https://tabula-sapiens-portal.ds.czbiohub.org/. Files used:
TSP2_Blood_NA_SS2_B114581_B133053_Lymphocytes_A13_S73_R1_001.fastq.gz
TSP2_Blood_NA_SS2_B114581_B133053_Lymphocytes_A18_S78_R1_001.fastq.gz
TSP2_Blood_NA_SS2_B114581_B133053_Lymphocytes_A19_S79_R1_001.fastq.gz
TSP2_Blood_NA_SS2_B114581_B133053_Lymphocytes_A21_S81_R1_001.fastq.gz
TSP2_Blood_NA_SS2_B114581_B133053_Lymphocytes_A3_S63_R1_001.fastq.gz
TSP2_Blood_NA_SS2_B114581_B133053_Lymphocytes_A5_S65_R1_001.fastq.gz
TSP2_Blood_NA_SS2_B114581_B133053_Lymphocytes_A6_S66_R1_001.fastq.gz
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TSP2_Blood_NA_SS2_B114581_B133053_Lymphocytes_A8_S68_R1_001.fastq.gz
TSP2_Blood_NA_SS2_B114581_B133053_Lymphocytes_A9_S69_R1_001.fastq.gz
TSP2_Blood_NA_SS2_B114581_B133053_Lymphocytes_B10_S94_R1_001.fastq.gz

Note S7. Anchor and target sequences, q-values, and
binomial p-values.
Binomial p-value bound computation for plots depicting target fraction
abundance

We provide p-values to quantify the visually striking nature of the plots depicting
fraction abundance per a specific target (target 1 by default). Under a null model, where
all samples are expressing this target with the same probability, the number of times
each sample expresses target 1 is binomial(nj,p), for common p. As seen from the plots,
many samples exhibit highly deviating occurrences (number of observations of target 1
that are far from the expected pnj. The p-values we provide to this effect are not used in
any SPLASH discovery or analysis, and are just used to quantify the visuals.

p-values are constructed as follows: first, we compute p, the average occurrence
of target 1 for this anchor (sum of counts of observations of target 1 divided by the total
number of observations). Then, for all possible nj, we compute 1% and 99% quantiles
(confidence bounds) for a binomial distribution with nj trials and heads probability p. If
the fraction of target 1 in each sample was independent of sample identity, and were
indeed binomially distributed, then each sample would have at least a 98% probability of
falling within this confidence interval. Thus, we compute our test statistic X as the
number of samples that fall outside of the [1,99] quantiles, and compute as our p-value
the probability that a binomial random variable Bin(m,q)≥ X, where with m = number of
samples and q = .02.

While intuitive, the above analysis is loose. Firstly, since binomials are discrete
distributions, we will rarely be able to compute exact 1% and 99% quantiles. Thus, the
probability that for any given nj a sample will fall outside of the [1,99] quantiles, which
we denote qj, is almost always substantially less than .02. The true distribution of X is
then poisson binomial, with this vector of probabilities (all at most .02), one for each
sample. However, as this p-value is numerically difficult to compute, we bound this
p-value as the probability that Bin(m,q’)≥X, where m = number of samples with q’=maxj

qj , where q’ ≤.02.

Anchor and target sequences, with q-values and binomial p-values
Targets are numbered by decreasing abundance, unless otherwise stated.
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q-values are the BY-corrected p-values output by SPLASH, as detailed in Note S2.
Binomial p-value calculations are described above, and are with respect to target 1,
unless otherwise stated.

SARS-CoV-2 mutation K417N (Figure 2A)
q-value: 9.4e-05
binomial p-value: 6.4e-07
>anchor
ATTCATTTGTAATTAGAGGTGATGAAG
>target_1_Delta
ACTGGAAAGATTGCTGATTATAATTAT
>target_2_K417N_Omicron
ACTGGAAATATTGCTGATTATAATTAT

SARS-CoV-2 mutations V213G, NL211I, R214REPE (Figure 2B)
q-value: 8.3e-08
binomial p-value: 1e-13
>anchor
TTTAAGAATATTGATGGTTATTTTAAA
>target_1_Delta
TAATTTAGTGCGTGATCTCCCTCAGGG
>target_2_V213G_BA.2
TAATTTAGGGCGTGATCTCCCTCAGGG
>target_3_NL211I-R214REPE_BA.1
TATAGTGCGTGAGCCAGAAGATCTCCC

SARS-CoV-2 mutations P681R, N679K, P681H (Figure 2C)
q-value: 1.2e-04
binomial p-value: 4.9e-12
(reverse-complements are shown in Figure 1C)
>anchor
GTGACATAGTGTAGGCAATGATGGATT
>target_1_P681R_Delta (abundance order = 1)
CGACGAGAATTAGTCTGAGTCTGATAA
>target_2_P681R-Q677H (abundance order = 3)
CGACGAGAATTAGTATGAGTCTGATAA
>target_3_P681R-Q677H (abundance order = 4)
CGACGAGAATTAGTGTGAGTCTGATAA
>target_4_N679K-P681H_Omicron (abundance order = 2)
CGATGAGACTTAGTCTGAGTCTGATAA

MYL12A / MYL12B (Figure 3A, S4B)
P2 q-value: 2.5e-08
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P2 binomial p-value: 9.9e-37 (with respect to target 2)
P3 q-value: 2.3E-42
P3 binomial p-value: 2.2e-45 (with respect to target 1)
>P2_anchor
AAGAGGCCTTCAACATGATTGATCAGA
>P2_target_2_MYL12A
TTCATTGGGGAAGAATCCAACTGATGA
>P2_target_1_MYL12B
TTCTCTAGGGAAGAATCCCACTGATGC
>P2_consensus_MYL12A_macrophage
ACAGAGATGGTTTCATCGACAAGGAAGATTTGCATGATATGCTTGCTTCATTGGGGAAGAATCCAACTG
ATGAGTATCTAGATGCCATGATGAATGAGGCTCCAGGCCCCATCAATT
>P2_consensus_MYL12B_capillary
ACAGAGATGGCTTCATCGACAAGGAAGATTTGCATGATATGCTTGCTTCTCTAGGGAAGAATCCCACTG
ATGCATACCTTGATGCCATGATGAATGAGGCCCCAGGGCCCATCA
>P3_anchor
AAGAGGCCTTCAACATGATTGATCAGA
>P3_target_1_MYL12A
GAAGATTTGCATGATATGCTTGCTTCA
>P3_target_2_MYL12B
GAAGATTTGCATGATATGCTTGCTTCT
>p3_consensus_MYL12A_macrophage
ACAGAGATGGTTTCATCGACAAGGAAGATTTGCATGATATGCTTGCTTCATTGGGGAAGAATCCAACTG
ATGAGTATCTAGATGCCATGATGAATGAGGCTCCAGGCC
>p3_cons_MYL12B_capillary
ACAGAGATGGCTTCATCGACAAGGAAGATTTGCATGATATGCTTGCTTCTCTAGGGAAGAATCCCACTG
ATGCATACCTTGATGCCATGATGAATGAGGCCCCAGGGCCCATCAATTT

HLA-DRB1 / HLA-DRB4 (Figure 3B)
P2 q-value: 4.0e-10
P2 binomial p-value: 2e-17
P3 q-value: 1.2e-4
P2 binomial p-value: 1.6e-08
(reverse-complements are shown in Figure 3B)
>P2_anchor
GGAAGCCACAAGGGAGGACATTTTCTG
>P2_target_1_DRB1
GTGGAAGAATAACTGCCAAGCAGGAAA
>P2_target_2_DRB4
GGAAGAATAAGAGCCAAGTGGGAAAGC
>P2_consensus_DRB1_macrophage
GGAAGCCACAAGGGAGGACATTTTCTG
CAGTTGCCGAACCAGTAGCAACCAGGTCCTGAGAAAGCCCTCTCTTGTGGAAGAATAACTGCCAAGCAG
GAAAGCTTTTCATTCTGCAAAGCTGGGACAGAAGGTTCTTCCTTGAATGT
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>P2_consensus_DRB4_capillary
CAGAGTTGCTGAACCAGTAACAACCTGGTCCTGACAAAGCTCTTGTGGAAGAATAAGAGCCAAGTGGGA
AAGCTTTTCATCTTGCAAAGCTGGGGCAGAAGGTTCTTCCTTGAATGT
>P3_anchor (same sequence as P2_anchor)
GGAAGCCACAAGGGAGGACATTTTCTG
>P3_target_1_DRB1
AGGTCCTGAGAAAGCCCTCTCTTGTGG
>P3_target_3_DRB4
CCTGGTCCTGACAAAGCTCTTGTGGAA
>P3_consensus_DRB1_macrophage
CAGTTGCTGAACCAGTAGCAACCAGGTCCTGAGAAAGCCCTCTCTTGTGGAAGAATAACAGCCAGGAGG
GAAAGCTTTTCATCCTGCAAAGCTGGGGCAGAAAGTTCTTCT
>P3_consensus_DRB4_capillary
GGAAGCCACAAGGGAGGACATTTTCTG
CAGAGTTGCTGAACCAGTAACAACCTGGTCCTGACAAAGCTCTTGTGGAAGAATAAGAGCCAAGTGGGA
AAGCCTTTCATCTTGCAAAGCTGGGGCAGAAGGTTCTTCCTTGA

HLA-DPA1 / HLA-DPB1 (Figure 3C, S4C)
P3 q-value: 7.9e-22
P3 binomial p-value: 9.15e-18
(anchor as given here is sense strand for DPA1, antisense strand for DPB1)
>P3_anchor
AGATGTATCTCTCCAGGAAGCGCTGTG
>P3_target_1_DPA1
TGCCGTCCCTGGAAAAGGTGAATCCCA
>P3_target_2_DPB1
TGCCGTCCCTGGAAAAGGTAATTCTCT
>P3_consensus_DPB1_macrophage
TCCCATTAAACGCGTAGCATTCCTGCCGTCCCTGGAAAAGGTAATTCTCTGGAGTGGCCCTGCCCTGGA
CCACAGATGTGAGCAGCACCATCAGTAACGCCGTCAGAGCCACT
>P3_consensus_DPA1_capillary
TCCCATTAAACGCGTAGCATTCCTGCCGTCCCTGGAAAAGGTGAATCCCAGCCATGCTGATTCCTCTCC
ACCCATTTCCAGTGCTAGAGGCCCACAGTTTCAGTCTCATCTGC

HLA-B (Figure 3D, S4D)
q-value: 2.7e-05
binomial p-value: 1.7e-25
>anchor
TTGGGACCGGAACACACAGATCTTCAA
>target_1_HLA-B
AGAGCCTGCGGAACCTGCGCGGCTACT
>target_2_HLA-B
AGAACCTGCGGATCGCGCTCCGCTACT
>consensus_1_HLA-B
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TTGGGACCGGAACACACAGATCTTCAAGACCAACACACAGACTGACCGAGAGAGCCTGCGGAACCTGCG
CGGCTACTACAACCAGAGCGAGGCCGGGTC
>consensus_2_HLA-B
TTGGGACCGGAACACACAGATCTTCAAGACCAACACACAGACTTACCGAGAGAACCTGCGGATCGCGCT
CCGCTACTACAACCAGAGCGAGGCCGGGTC

human Ig-kappa C-region (Figure 4B)
q-value = 1.6E-35
>anchor
TGGCGGGAAGATGAAGACAGATGGTGC
>Targ0
GCTTGGTCCCCTGGCCAAAAGTCCCGG
>Targ1
GCTTGGTCCCCTGGCCAAAAGGGCTAC
>Targ2
GCTTGGTCCCCTGGCCAAAAGTGTACG
>Targ3
CCTTGGTCCCTCCGCCGAAAGAAGGTG
>Targ4
GCTTGGTCCCCTGGCCAAAAGTGTCGT
>Targ5
GCTTGGTCCCCTGGCCAAAAGTGCCCG
>Targ6
CTTTGGTCCCAGGGCCGAAAGTGAATA
>Targ7
CCTTGGTCCCTTGGCCGAACGTCCACC

human TCR-alpha C-region (Figure 4B)
q-value = 3.4E-5
>anchor
GTACACGGCAGGGTCAGGGTTCTGGAT
>Targ1
TGCCTTTGCCGAAGTTGAGTGCATACC
>Targ2
TCCCTGATCCAAAGATTATCTTGGAAG
>Targ3
TGCCTGTCCCAAAGGTGAGTTTGTTTC
>Targ4
TCCCAGCGCCCCAGATTAACTGATAGT
>Targ5
TCCCCCTTGCAAAGAGCAGCTTCTGGC
>Targ6
TTCCTCCTCCAAAAGTTAGCTTGTTGC
>Targ7
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TCCCTGTCCCAAAATAGAACTGGTTAC
>Targ8
TTCCTCTTCCAAAGTATAGCCTCCCCA
>Targ9
TTCCCTTTCCAAAGACCAGCTTTTCAG
>Targ10
TTCCCTGTCCGAAGATAAGCTTTCCTC
>Targ11
TCCCTGCTCCAAAGCGCATGTCATTGT
>Targ12
TTCCCTTCCCAAAGATCAGAGCAGTTC
>Targ13
TCCCAGATCCAAAGTAAAATTTGTTGA
>Targ14
TCCCTTGCCCAAAGATTAGTTTGCCTG
>Targ15
TTCCTCTTCCAAATGTAGGTATGTAGC
>Targ16
TTCCATCTCCAAACATGAGTCTGGCAT
>Targ17
TTCCACTCCCAAAAGTAAGTGCTCTCC
>Targ18
TTCCTTTTCCAAATGTCAGTTTATAGT
>Targ19
TGCCTGTTCCAAAGATGTATTTGTAGG
>Targ20
TTCCAGTTCCAAAGGTAACTTTCTGGT
>Targ21
TCCCTTGTCCAAATGTCAGCTTTCCAT
>Targ22
TCCCCTTCCCGAAAGTGAGTTGGTAAC
>Targ23
TGCCAGTTCCAAAGATGAGCTTGTTTG

lemur Ig-heavy V-region (Figure 4B)
q-value = 1.3E-11
>anchor
AGCCTGGGGGGTCCCTGAGACTCTCCT
>Targ0
AGTGACTACTACATGAGCTGGGTCCGC
>Targ1
AGCAGCTATGGGATGAACTGGGTCCGC
>Targ2
AGCAACTACTGGATGAGCTGGGTCCGC
>Targ3
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AAGAACTATGAGATAAACTGGGTCCGC
>Targ4
AGCAGCTACTACATGCACTGGGTCCGC
>Targ5
AGCAGCTACGATATGAACTGGGTCCGA
>Targ6
AGTGACTACTACATGAACTGGGTCCGC
>Targ7
AGCAGCCATGGAATGCACTGGGTCCGC
>Targ8
AGCAGCTACGATATGAACTGGGTCCGC
>Targ9
AGCAGCTATGATATGCATTGGGTCCGC
>Targ10
AGTGACCACCACATGAGCTGGGTCCGC
>Targ11
GATGACTACCTCATGCACTGGATCCGC
>Targ12
AGCAGCTATGCCATGAGCTGGGTCCGC
>Targ13
AGTAGTTACTGGATGAACTGGGTCCGC
>Targ14
GATTACTATGGCATGAACTGGGTCCGC
>Targ15
ACCAATTTTGGGATGAACTGGGTCCGC
>Targ16
AGCAGCTATGGGATGCACTGGGTCCGC
>Targ17
ACCAGTTATGGGATGAACTGGGTCCGC

lemur TCR-alpha C-region (Figure 4B)
q-value = 4.1E-7
>anchor
TCAGCTGGTACACGGCGGGGTCAGGGT
>Targ0
AGTCTGGTCCCTGCTCCAAAGCGCAGA
>Targ1
AGCCTGGTCCCTGCTCCAAAAATCAAC
>Targ2
AGCAGAGTGCCAGTCCCAAAGATGAGC
>Targ3
ACGGTGGTTCCTTTCCCAAAGATCAAC
>Targ4
AGTTGGGTGCCAGTTCCAAACACGGGT
>Targ5
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AACTGGGTCCCGGATCCAAAGGTCAGT
>Targ6
AGTTGTGTCCCTTTTCCAAAGGTGACT
>Targ7
AGTTTGGTCCCAGATCCAAAGTAAAAT
>Targ8
AATCTGGTCCCAGTCCCAAAGATGAGC
>Targ9
AGTCTGGTCCCTGATCCAAAGATTAGC

Octopus bimaculoides Myo-VIIa (Figure 5A)
q-value = 4.0e-03
(reverse-complements shown in Figure 5A)
>anchor
CCATTTTTGCTTTTTGTTTAAAATCCA
>target_1
ATTATATCACAAGTTATAAGGCATGCC
>target_2
ATTATATCTTAATAAATGGATACACTA

fucoxanthin chlorophyll a/c protein, diatom (Figure 5C)
q-value = 6.0e-08
(reverse-complements shown in Figure 5C)
>anchor
AAGTATCCAACAACGGCAAGCATGGAG
>target_1 (abundance order = 1)
ATACGTCCGTGCTTGAGCTCGACAAAT
>target_2 (abundance order = 6)
ATACGGCCGTGCTTGAGCTCGACAAAT
>target_3 (abundance order = 2)
ATACGTCCGTGCTTGATCTCGACGTAT
>target_4 (abundance order = 4)
ATACGTCCGTGCTTGATCTCAACGTAT
>target_5 (abundance order = 5)
ATACGTCCGTGCTTGATCTCGACGTAC
>target_6 (abundance order = 3)
ACACGTCCATGCTTAATTTCGACATAT

Zostera marina NADPH quinone oxidoreductase subunit L (NdhL) (Figure 5D)
q-value = 6.5e-56
(reverse-complements shown in Figure 5D)
>anchor
AATCGAAGCCAATTCATGATGATAGGC
>target1

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2023. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


GGCATGATAAGGAAGTAGAAGAAAGCA
>target2
GGCATGATAAGGAAGTAGAAGAAAACA
>target3
GGCATGACAAGGAAGTAGAAGAAAGCA
>target4
TTCGATCATGCAGTTCAATCAATGATC

human MYL6 (Figure S4A)
>anchor
AAGGTCCTCAGCCATTCAGCACCATGC
>P2_consensus1_macrophage
GGACGAGCTCTTCATAGTTGATACAACCATTGCTGTCCTCATGCCCTGCCACCAGCATCTCTACTTCTT
CCTCTGTCATCTTCTCACCCAGTGTGACAAGAACATGCCGGATTTC
>P2_consensus2_capillary
GGACGAGCTCCGCCCCATGGGCCCGTCACCCCGACAGGATATGCCTCACAAACGCTTCATAGTTGATAC
AACCATTGCTGTCCTCATGCCCTGCCACCAGCATCTCTACTTCTTCC
>P2_target1
TGCCACCAGCATCTCTACTTCTTCCTC
>P2_target2
CACAAACGCTTCATAGTTGATACAACC
>P3_consensus_macrophage
AAGGTCCTCAGCCATTCAGCACCATGCGGACGAGCTCTTCATAGTTGATACAACCATTGCTGTCCTCAT
GCCCTGCCACCAGCATCTCTACTTCTTCCTCTGTCATCTTCTCACCCAGTGTGACAAGAACATGCCGGA
>P3_consensus_capillary
AAGGTCCTCAGCCATTCAGCACCATGCGGACGAGCTCCGCCCCATGGGCCCGTCACCCCGACAGGATAT
GCCTCACAAACGCTTCATAGTTGATACAACCATTGCTGTCCTCATGCCCTGCCACCAGCATCTCTACTT
CTTCCT

mouse lemur COX2 (cytochrome c oxidase subunit II) (Figure S5A)
(reverse-complements are shown in Figure S5A)
>anchor
ATTTAGGCGCCCTGGGATAGCATCTGT
>target_1
TTCATGAATGTAGTACGTCTTCTGAAG
>target_2
TTCATGAATGTAATACGTCTTCTGAAG

lemur IGLC3 with 97 targets (Figure S5B)
>anchor
ACCGAGGGGGCGGCCTTGGGCTGACCT
>Targ0
GCCGAACACCCCAGTGCCACCACTCCT
>Targ1
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GCCGAAGATATGACCACTCAGGCTGTC
>Targ2
GCCGAACACATGATTGTAGCTGCCATC
>Targ3
GCCGAATACATTAACACCACTGTTGTC
>Targ4
GCCGAACACATAACCATATGAATCACC
>Targ5
GCCGAACACACCACCACTGCTGTCCCC
>Targ6
GCCGAACACATTAACACCACCGTCCCA
>Targ7
GCCGAATACAGCACTGTTGTGCCACAC
>Targ8
GCCGAAGATATAAGTGTTCCTGCCCGC
>Targ9
GCCGAACACACCAACACCACTGCTGTC
>Targ10
GCCGAACACACCAACACCAGTTTCCCA
>Targ11
GCCGAAGATAACACCACTGTTGTCCCA
>Targ12
GCCGAACACACTGTAGCTGCCATCATA
>Targ13
GCCGAACACATAACCATATGAACCACC
>Targ14
GCCGAAGATATACTGAATGCTGCTCCC
>Targ15
GCCGAAGATATAAGTATTAGAGCTGCC
>Targ16
GCCGAACACCCGAGCATCAAGACTGCT
>Targ17
GCCGAATACATAAGCACTCAGGCTTTT
>Targ18
GCCGAACACCCGACCATTCAGGCTGCT
>Targ19
GCCGAATACATAAGTGCCACTGTTGGC
>Targ20
GCCGAAGATATACGCACTCAGGCTACT
>Targ21
GCCGAACACCTGACCACTCAGGCTACT
>Targ22
GCCGAACACACCAACACCACTGTTGTC
>Targ23
GCCGAACACCCAACTAGCACTGGCATC
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>Targ24
GCCGAACACACCAGCACGTAGGCTGCT
>Targ25
GCCGAACACATGACCACTCAGGCTACT
>Targ26
GCCGAACACATGAGCACTCAGGCTTCT
>Targ27
GCCGAACACCCGACTGTAGCTGCCATC
>Targ28
GCCGAAGATATTAACACCACTGTTGTC
>Targ29
GCCGAAGATATCACTCAGGCTACTGTC
>Targ30
GCCGAACACCCAACTCTTAGAGCTGCC
>Targ31
GCCGAACACATCAGCACTGTTGTGCCA
>Targ32
GCCGAACACAAGATTGTAGCTGCCATC
>Targ33
GCCGAACACATAACTCTTAGAGCTGCC
>Targ34
GCCGAACACCCCAGTGCCACCACTCTT
>Targ35
GCCGAACACATCACCACTCAGGCTACT
>Targ36
GCCGAACACCCTGCTGTCATAGGACTG
>Targ37
GCCGAACACCCAATTAACACCACTGCT
>Targ38
GCCGAACACCCAAGCATCAAGACTGGT
>Targ39
GCCGAACACACGAGCATCAAGACTGCT
>Targ40
GCCGAACACCCAACCATATGAATCACC
>Targ41
GCCGAACACACCATGACCACTCAGGCT
>Targ42
GCCGAACACACCATAGTTTCCATAACC
>Targ43
GCCGAACACCGCATTAAGACTGCTGTC
>Targ44
GCCGAAGATATACTGGTTGCTGAACCA
>Targ45
GCCGAACACACCATGAGTACCAGTGCT
>Targ46
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GCCGAATACATGACCACTCAGGCTGTC
>Targ47
GCCGAACACACCATCAAGACTGCTGTC
>Targ48
GCCGAAGATATAAGTGCCGCTGCCCGC
>Targ49
GCCGAACACATGACCACTCAGGCTTCT
>Targ50
GCCGAACACACCAGCATCAAGACTGCT
>Targ51
GCCGAAGATATAAGTGTTGCTGCCCGC
>Targ52
GCCGAACACCCAAGCATCAAGACTGCT
>Targ53
GCCGAACACACCATGACTCAGGCTGCT
>Targ54
GCCGAACACCCAAACACCACTGTTGTC
>Targ55
GCCGAACACATGAGCACTCAGGCTACT
>Targ56
GCCGAACAGACCACTCAGGCTACTATC
>Targ57
GCCGAAGATATACCCATATGAACCACC
>Targ58
GCCGAAGATATGACCACTCAGGCTACT
>Targ59
GCCGAACACCCAACCATATGAACCACC
>Targ60
GCCGAATACATAATTGTAGCTGTCATC
>Targ61
GCCGAACACACCACCACTCAGGCTGTC
>Targ62
GCCGAACACAAAATTAACACCACTGCT
>Targ63
GCCGAACACAGCACGCAGACTGCTGTC
>Targ64
GCCGAACACCCAAGTGCCGCTGCCCGC
>Targ65
GCCGAACACCCAGCACTGTTGTGCCAC
>Targ66
GCCGAAAACATAAGTCTTAGACCTGCC
>Targ67
GCCGAAGATATACGTATCAAGACTGCT
>Targ68
GCCGAAGATATTGTTTTCACTAACCCA
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>Targ69
GCCGAAGATAGCACTGTTGTGCCACAC
>Targ70
GCCGAACACACGAGCACCCAGACTACT
>Targ71
GCCGAATACATGACCATTCAGGCTGCT
>Targ72
GCCGAATATATAACTCTTAGAACTGCC
>Targ73
GCCGAACACAAAACGGTTGCTGAACCA
>Targ74
GCCGAACATCCAACTCTTAGAGCTGCC
>Targ75
GCCGAACACCCAAGTCTTAGAGCTGCC
>Targ76
GCCGAACACATGACTGTAGCTGTCATC
>Targ77
GCCGAACACCCAATGGTTGCTGAACCA
>Targ78
GCCGAACACCCAAAGTGCCGCTGCCCG
>Targ79
GCCGAACACACCAGTCTTAGAGCTGCC
>Targ80
GCCGAAGATATTAACACCAGTTTCCCA
>Targ81
GCCGAACACACTGTAGCTGTCATCATA
>Targ82
GCCGAATACAAATGGTTGCTGAACCAC
>Targ83
GCCGAACACCCTATTAACACCACTGCT
>Targ84
GCCGAACACAGCATCAAGACTGCTGTC
>Targ85
GCCGAATACATAATCAAGACTGCTGTC
>Targ86
GCCGAACACACCACTCAGGCTACTATC
>Targ87
GCCGAAGATAGCATGAGTACCAGTATT
>Targ88
GCCGAAGATAAGACCACTCAGGCTACT
>Targ89
GCCGAACACAATAGCTGCCATCATAAG
>Targ90
GCCGAACACCTGATTGTAGCTGTCATC
>Targ91
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GCCGAACACAAGACTAACACTGTCATC
>Targ92
CAGAGGCCTGTGTCCACCTGGGGAGCC
>Targ93
GCCGAACACACCTAGAGCTGCCATTCC
>Targ94
GCCGAATACATTAACACCACTGCTGTC
>Targ95
GCCGAATACATAATTGTAGCTGCCATC
>Targ96
GCCGAAGACAAACATCGACTGAGGCTC

lemur TCR-beta J-region (Figure S5C)
>anchor
CCGGGTCCCTGGCCCGAAGAACTGCTC
>Targ0
TGCCGCTGCAGATGTAGACGCCGCTGT
>Targ1
CGCAGAGATACAGGGCCGAGTCCCCCA
>Targ2
TGGCACAGAGGTACGTGGCGGAGTCTT
>Targ3
TGCTGGCACAGAGGTACGTGGCAGAGT
>Targ4
AGAGGAACAGGGCCGAGTCCCCCAGCG

lemur TCR-gamma V-region (Figure S5D)
>anchor
ACCCTCACCATTCACAATGTAGAGAAA
>Targ0
TGCCCGTGAACTCTTCAGTAATGGAAC
>Targ1
TGCCTCCTGGGAGTCTAGGAAACTCTT
>Targ2
TGCCTCCTGGGACTGACGACTTACCAA
>Targ3
TGCCTCCTGGGAGTTGAATTTTTATAG
>Targ4
TGCCTCCTGGGAGTTGCACAGTGTCAC
>Targ5
GCCCGTGAACTCTTCAGTAATGGAACA
>Targ6
TGCCTCCTGGGAGTCGCTCTCTAATAT
>Targ7
TGCCTCCTGGGAGTTGCACAGAAGATT
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Octopus bimaculoides carboxypeptidase D (Figure S6A)
(reverse-complements are shown in Figure S6A)
>anchor
GGAATTAGAAGAAAAATCTATTATGAA
>target_1
AAATGTTTAGGCCAATATCTAAAGGCA
>target_2
AAATGTTTAGGAAAAATTTTCTGCCAA

Octopus bimaculoides Upf2 (regulator of nonsense transcripts 2) (Figure S6B)
(reverse-complements are shown in Figure S6B)
>anchor
GTATTGCACTGCATTGTACTGCACTGT
>target_1
CGCTGCTGCTGCTGCTGCTGCCAATTG
>target_2
CGCTGCTGCTGCTGCTGCCAATTGCCT

Octopus bimaculoides netrin receptor / DCC (Figure S6C)
(reverse-complements are shown in Figure S6C)
>anchor
TCTATTACAGCTATCATCAATACACTT
>target_1
TTGGATGTCTTCGTGTTCTCACTGCAG
>target_2
TTGGATGTCTTTGTGTTCTCACTGCAG

HMG-box (diatom) (Figure S7A)
(reverse-complements are shown in Figure S7A)
>anchor
TGCGGTCCTTGAATTCTTGCTTCTCTT
>target_1
TATCCGAAAGAGCCCTCCACATTTCAC
>target_2
CGTCCGTCAGAGCTCTCCACATTTCTC

ferredoxin (diatom) (Figure S7B)
(reverse-complements are shown in Figure S7B)
>anchor
ACGGCACGAGTAGGGAAGTTCAATTCC
>target_1
GGCTTCTTCAGCAGCGTCGACAATGAA
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>target_2
GGCTTCTTCGGCAGCGTCGACAATGAA
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