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Abstract 

In wheat, a meta-analysis was performed using previously identified QTLs associated with drought stress, heat 

stress, salinity stress, water-logging stress, pre-harvest sprouting, and aluminium stress which predicted a total 

of 134 meta-QTLs (MQTLs) that involved at least 28 consistent and stable MQTLs conferring tolerance to five 

or all six abiotic stresses under study. Seventy-six MQTLs out of the 132 physically anchored MQTLs were also 

verified with genome-wide association studies. Around 43% of MQTLs had genetic and physical confidence 

intervals of less than 1 cM and 5 Mb, respectively. Consequently, 539 genes were identified in some selected 

MQTLs providing tolerance to 5 or all 6 abiotic stresses. Comparative analysis of genes underlying MQTLs 

with four RNA-seq based transcriptomic datasets unravelled a total of 191 differentially expressed genes which 

also included at least 11 most promising candidate genes common among different datasets. The promoter 

analysis showed that the promoters of these genes include many stress responsiveness cis-regulatory elements, 

such as ARE, MBS, TC-rich repeats, As-1 element, STRE, LTR, WRE3, and WUN-motif among others. 

Further, some MQTLs also overlapped with as many as 34 known abiotic stress tolerance genes. In addition, 

numerous ortho-MQTLs among the wheat, maize, and rice genomes were discovered. These findings could help 

with fine mapping and gene cloning, as well as marker-assisted breeding for multiple abiotic stress tolerances in 

wheat. 

 

Introduction 

Continued crop improvement is paramount to feeding the continuously increasing human population, which is 

more critical regarding climate change, meeting sustainability goals, and limited natural resources1,2. Wheat is 

consumed by two-thirds of the world’s population, meeting 20% of dietary calories, and grown in a wide 

geographical distribution, 45 0 S in Argentina to 670 N in Scandinavia, including some high-altitude regions in 

the tropics and subtropics3,4,5. Owing to its wide distribution and climate variability, wheat is affected by various 

biotic (yellow, brown, and stem rusts, fusarium head blight, tan spot, and several other diseases, insects, and 

nematodes) and abiotic stresses (drought, heat, salinity, water-logging, pre-harvest sprouting, and mineral 

toxicity, among others)6. Breeding climate-resilient wheat cultivars is the best approach to assisting wheat in 

surviving abiotic stresses, which could be facilitated by mapping the genomic regions involved, marker-assisted 

breeding, and other advanced approaches such as genome editing, genomic-assisted breeding (involving the use 

of high-throughput genotyping and phenotyping systems), and haplotype-based breeding7,8,4,5,9. 

 Drought stress (DS), heat stress (HS), salinity stress (SS), water-logging stress (WS), pre-harvest sprouting 

(PHS), and aluminium stress (AS) are the major abiotic stresses affecting yield around the world10,11. Heat stress 

affects 58% of the wheat production area, while drought affects 42%12. Climatic uncertainty causes erratic 

rainfall, and warmer temperatures are projected in the future, which may convert long-season productive mega-

environments into short-season heat stress environments13. These conditions, along with other abiotic stresses, 

represent a unique challenge to plant scientists in developing climatically resilient cultivars. Owing to the 

genetic (quantitative inheritance) and physiological complexity of tolerance traits, progress in enhancing 

tolerance or developing tolerant cultivars has been very slow. Furthermore, the wide variability of field 

conditions and the ineffectiveness of selection procedures impede progress. Traits contributing to tolerances to 

abiotic stresses are inherited quantitatively and controlled by a number of genetic loci. While numerous QTLs 

for each of the above-mentioned abiotic stress have been identified (http://www.wheatqtldb.net/), very few of 

the associated markers have been utilized in marker-assisted breeding (MAB) programmes owing to the 

comparatively lower heritability of the QTLs and other factors impacting the gene/QTL expression. Further, 

these studies are conditioned on different QTL mapping methods and various breeding methods, which makes it 

challenging to choose appropriate QTLs for breeding programmes that could confer tolerance to more than one 

abiotic stress at a time (a phenomenon known as multiple abiotic stress tolerance, or MAST). Several reports are 

already available in wheat where a single gene/QTL is known to provide tolerance to two or more abiotic 

stress14,15,16,17. 
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 Considering this, it would be fascinating if these already identified QTLs could be presented in an 

integrated manner with a comprehensive analysis to evaluate them. To do so, a systematic, statistical strategy 

that takes into consideration the parameters used in previous experiments is needed to generate reliable, robust, 

and stable target QTLs. However, the pyramiding of multiple QTLs for distinct stresses can be undertaken by 

breeders in an effort to breed for MAST. However, because this strategy starts with integrating two QTLs for 

two different stresses into one line and then adding another QTL to get the desired traits once the generation is 

established, it can be a lengthy procedure. Furthermore, the introgressed QTLs may interact epistatically, 

affecting the outcome of the introgression process. The attempt to introgress several QTLs can be avoided if 

there are instances where QTLs for different stresses coincide. To see if there is any co-localization of QTLs, all 

of the QTLs reported for the stresses should be presented in an integrated manner and mapped out. Meta-QTL 

analysis can efficiently integrate information from a multitude of QTL mapping studies, allowing for a high 

level of statistical power over a large amount of data18,19,20. 

 The construction of a consensus map and subsequent projection of QTL allows for the identification of 

regions where the QTL for a given trait is densely populated. In addition, new chromosomal positions are 

obtained that agree with all the maps reported in earlier studies. The decrease of confidence intervals (CIs) in 

MQTLs, which leads to increased genetic resolution for marker-assisted breeding (MAB) and the identification 

of high-confidence candidate genes (CGs), is another advantage of this approach. For instance, meta-analysis of 

QTLs associated with several traits has already been conducted in wheat, for instance, disease resistance21,22.23, 

nitrogen use efficiency and root related traits24,25, yield and associated traits26,27, and quality traits28,29. In 

addition, meta-analysis of QTLs associated with some of the individual abiotic stresses has also been conducted 

previously, for instance, (i) salinity stress30, (ii) drought stress31,32, heat stress31,33 and pre-harvest sprouting72. 

However, no meta-analysis for QTLs associated with WS and AS has been reported in the literature. Further, a 

comprehensive study covering all the major abiotic stresses has never been conducted on wheat and other 

cereals (except barley;34,35). 

 In addition, with the advancement of next-generation sequencing technology, high-throughput genotyping 

based on SNP arrays, and genome-wide association studies (GWAS), the identification of significant effects of 

genomic loci on complex quantitative traits is becoming increasingly popular36. Several studies have shown that 

a combination of QTL meta-analysis and GWAS may be used to investigate key genomic regions and the 

genetic basis of major quantitative traits37,26. Overall, the goal of this meta-analysis was to integrate QTLs 

conferring tolerance against different abiotic stresses, including DS, HS, SS, WS, PHS, and AS in wheat, in 

order to identify consensus genomic regions and their verification using GWAS that can be used in MQTL-

assisted breeding and to compile comprehensive information for increasing tolerance against multiple abiotic 

stresses. The genes available in MQTL regions were identified and functionally characterized. In addition, 

multiple abiotic stress-responsive genes showing differential expressions in the wheat tissues were discovered 

using RNA-seq and microarray datasets. In addition, ortho-MQTL analysis was also performed using the 

information on genomic synteny and collinearity among the cereals to assess the transferability of the generated 

information to other crops. The findings will be used in cereal breeding programmes to improve selection for 

yield potential and stability under multiple abiotic stresses. 

 

Results 
Salient features of QTL studies, collected QTLs and consensus map 
A total of 3,102 QTLs were available from 116 interval mapping studies, comprising 66 studies for individual 

DS and HS or combined DS and HS, 20 studies for SS, 2 studies for WS, 2 studies for AS, and 26 studies for 

PHS (Table S2). In these studies, 85 bi-parental populations [including doubled haploid (DH), recombinant 

inbred lines (RILs), F2, and backcross populations] were used, with some populations being tested for different 

stresses multiple times in independent studies. The population size utilised for mapping varied from 3497 to 

188496. The average number of QTLs per abiotic stress was around 517, ranging from 86 (WS) to 917 (SS) (Fig. 

1a). The collected QTLs for various stresses were distributed unevenly among the 21 wheat chromosomes, 

ranging from 73 on 4D to 266 on 3B, with an average of around 147 QTLs per chromosome (Fig. 1b). 37.49% 

(1163/3102) of the total collected QTLs were found in sub-genome A, 39.23% (1217/3102) in sub-genome B, 

and 23.27% (722/3102) in sub-genome D. About 93% of QTLs (as many as 2,888 QTLs) had all of the 

information needed for projection and meta-analysis. PVE values for different QTLs also differed significantly, 

with 68.89% (2,137/3,102) of total QTLs and 67.83% (1,959/2,888) of QTLs used for projection having PVE 

values of less than 10% (Fig. 1c). Likewise, 58.89% (1,827/3,102) of total QTLs and 61.21% (1,768/2,888) of 

QTLs used for projection had a CI greater than 10 cM (Fig. 1d). The consensus map had 100,614 markers 

(mainly SSR, RFLP, and SNPs) distributed over 6,647 cM (ranging from 91.11 cM for 4B to 446.7 cM for 7A, 

with an average of 316.52 cM) (Table S3). Overall, there were 16.13 markers per cM, with 4.28 markers per cM 

on chromosome 4D and 42.2 markers per cM on chromosome 1B. Sub-genome A had 34,680 markers over 

2,576.31 cM, sub-genome B had 46,359 markers over 1,890.85 cM (highest marker density with 24.52 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497482doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497482


markers/cM), and sub-genome D had 19,575 markers over 2,179.83 cM (lowest marker density with 8.98 

markers/cM). 

 

MQTLs associated with multiple abiotic stress tolerance  
Only 2,888 QTLs (out of a total of 3,102 QTLs) were utilized for projection onto the consensus map, the 

remaining 214 QTLs could not be used for projection because of the lack of necessary information (required for 

projection) from the source studies. For either of the following reasons, only 2,229 QTLs out of 2,888 could be 

projected onto the consensus map, leaving 659 QTLs un-projected: (i) a lack of associated markers in the 

consensus map, (ii) a large CI. Of 2,229 projected QTLs, 2,139 QTLs were clustered into 147 QTL hotspots, 

leaving 13 singletons and 47 unassigned to any hotspot. Out of 147 QTL hotspots, 13 hotspots included initial 

QTLs only from a single study, and therefore could not be considered as true MQTLs. The 134 true MQTLs 

were distributed on all 21 chromosomes, with a minimum of only one MQTL on chromosome 3A and a 

maximum of 10 MQTLs on chromosome 7A (Table S4; Fig. 2a). The number of QTLs included in an individual 

MQTL ranged from only 2 QTLs in seven MQTLs (MQTL3D.5, MQTL4D.6, MQTL5B.1, MQTL6A.2, 

MQTL6A.8, MQTL6B.1, MQTL6B.7) to a maximum of 107 QTLs in MQTL3B.4. In addition, 45 MQTLs 

were based on fifteen or more QTLs from different studies (Fig. 2b). Furthermore, the number of MQTLs did 

not match to the number of initial QTLs on individual chromosomes. For instance, the proportion of MQTLs on 

chromosomes 2A and 3A was low in comparison to the number of QTLs involved. 

 Individual MQTLs explained 2.9 to 36.06% of phenotypic variation, whereas LOD scores ranged from 

2.81 to 33.32 %. The MQTLs had an average CI of 9.93 times smaller than the initial QTLs (the average CI of 

initial QTLs was 19.58 cM), and there were substantial differences in CI reduction among different 

chromosomes. On chromosomes 2D and 3B, the average CI of MQTL was reduced by 22.84 and 20.92 times, 

respectively, followed by 19.5 and 18.68 times on chromosomes 7A and 2A, respectively (Fig. 2c). 

Interestingly, only a single MQTL was identified on chromosome 3A, which showed a CI of only 0.01 cM, 

whereas, the initial QTLs located on chromosome 3A had an average CI of 16.35 cM. Further, all MQTLs 

(except MQTL5B.9 and MQTL5D.7) were physically positioned on the wheat reference genome. The physical 

CI ranged from 4,553 bp (MQTL6B.6) to 653.8 Mb (MQTL6B.1) with a mean of 47.09 Mb. In total, 72% 

(97/134) of MQTLs occupied a physical length of less than 20 Mb in the wheat genome. There were five 

MQTLs (MQTL2B.3, MQTL3A.1, MQTL3B.4, MQTL5A.2, and MQTL7B.3) that provided tolerance against 

all the six stresses; 23 MQTLs each conferred tolerance to five different stresses (Table 1); the remaining 

MQTLs provided tolerance to 1 to 4 abiotic stresses. 

 

MQTL validation and the availability of known genes within MQTL regions 
There were considerable overlaps between the MQTLs discovered through meta-analysis and the significant 

markers (MTAs) identified through the GWAS approach that are associated with various abiotic stresses in the 

wheat genome. Remarkably, 817 MTAs identified in wheat GWAS for various abiotic stresses overlapped with 

76 MQTLs out of the 132 physically anchored MQTLs (Table S5, Fig. 3). For instance, there were significant 

differences in the number of MTAs overlapping with an individual MQTL. For instance, the MQTL2B.3 

overlapped with 132 MTAs, followed by the MQTL6B.1 which overlapped with 122 MTAs, while, several 

MQTLs each overlapped with only one MTA. Some MQTLs (e.g., MQTL1B.3, MQTL2B.3, MQTL2D.1, 

MQTL4B.2) overlapped with more than 24 MTAs and involved 20 or more initial QTLs. Overall, GWAS was 

used to validate 57% of the total MQTLs. 
 The MQTLs identified in the current study also co-localized with 34 known genes conferring tolerance to 

various abiotic stresses [including 5 genes for DS (TaERF3, TaMOR-4B, TaZFP34, TaER2-6B, and 

TaWRKY33), 6 for HS (TaHSFA6e, TaHSP101B, TaHsfA6f, TaGASR1, TaPEPKR2, and TaHSP20), and 16 for 

SS (TaGBF1, TdSHN1, TaWRKY19, TaPP2C1, TaMYB30-B, TaOPR1, TaCIPK29, TaEXPA2, TaACO1, TaGly 

I, TaNAC2, TaSC, TaNAC47, TaAOC1, TaNAC67, and TaMYBsdu1), 2 for WS (TaERFVII.1‐5A and 

TaERFVII.1‐5B), 1 for AS (TaALMT1), and 4 for PHS (TaSdr-A1, TaAFP-B1, TaABI3, and TaCYP707A1). For 

instance, MQTL2B.6 overlapped TaSdr-A1, TaAFP-B1, TaWRKY19, and TaMYB30-B genes, MQTL5A.8 

overlapped TaZFP34, TaGly I, TaNAC2, and TaERFVII.1‐5A genes, MQTL5B.2 co-localized with TaPEPKR2, 

TaSC, and TaERFVII.1‐5B genes, and MQTL6B.1 overlapped TaER2-6B, TaWRKY33, TaCYP707A1, TaAOC1, 

and TaNAC67 genes (Table S6, Fig. 3). These genes encode different types of proteins involved in different 

pathways, for instance, transcription factors (e.g., AS2/LOB, ERF, MYB, NAC, and WRKY), protein kinases 

(e.g., CBL-interacting protein kinase, LRR receptor-like kinase protein, phosphoenolpyruvate carboxylase 

kinase), transporters (e.g., aluminium-activated malate transporter) and other proteins including ABA 8´-

hydroxylase, ABI5 binding protein, allene oxide cyclase, aminocyclopropane-1-carboxylate oxidase, GA-

stimulated transcript family protein, glyoxalase, nicotianamine synthase, etc. 
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Candidate genes available from MAST-MQTLs 
As many as 539 gene models were detected in the genomic regions of 28 selected MQTLs, each based on at 

least nine QTLs (providing tolerance to at least five different abiotic stresses) and with an average genetic and 

physical CI of 0.65 cM and 59.66 Mb, respectively (Table S7). These gene models included 66 gene models 

with no function descriptions. At the two extremes, a maximum of 45 gene models were available from 

MQTL1D.4, whereas, a minimum of only 4 gene models were available from MQTL2B.3. Gene models with 

similar protein products were identified repeatedly in different MQTL regions, for instance: 27 gene models for 

proteins with protein kinase domains, 18 for TRAF-like proteins, 14 for proteins with F-box domains, 14 for 

zinc finger proteins (including C2H2-type, Dof-type, GRF-type, RING-type), 9 for nucleotide-diphospho-sugar 

transferases, 7 gene models each for cytochrome P450 proteins, for proteins belonging to the glycoside 

hydrolase family, and for UDP-glucuronosyl/UDP-glucosyltransferases, 5 gene models for ABC transporter-like 

proteins, etc.  
 

In silico expression analysis of genes and common cis-regulatory elements in the promoters of multiple 

abiotic stress responsive genes  

In silico expression analysis was performed on all 539 gene models available from 28 selected MQTLs. The 

first transcriptomic dataset (which included data on genes expressed under DS, HS, and combined DS and HS 

conditions) identified 70 differentially expressed genes (DEGs), including 25 up-regulated genes, 7 down-

regulated genes, and 38 genes that were up-regulated in some conditions but down-regulated in others. 

MQTL7D.1 had the most DEGs (7), but none were available for MQTL2A.5, MQTL3B.6, MQTL7A.5, 

MQTL7A.6, MQTL7B.3, and MQTL7D.3. The second dataset (which included gene expression data under 

PEG-simulated drought conditions) identified 81 DEGs, with 7 genes up-regulated, 44 genes down-regulated 

and 30 genes up-regulated at the one time point but down-regulated at another. From this dataset, MQTL4A.5 

had a maximum of 11 DEGs, whereas, no DEG was available from the following five MQTLs: MQTL2A.5, 

MQTL3A.1, MQTL7A.5, MQTL7A.6, and MQTL7D.3. The third dataset (including data on differential 

expression of genes in a DH population grown under water stress conditions) uncovered a total of 108 DEGs 

with 52 up-regulated and 56 down-regulated genes. The fourth dataset (which contained data on genes 

expressed during grain development with and without the dormancy QTL) contained a maximum of 10 DEGs; 

no DEGs were obtained from the MQTL2A.5 and MQTL7B.3. Similarly, MQTL3B.4 had a maximum of 4 

DEGs, whereas, several MQTLs gave no DEGs.  

 Overall, 191 DEGs were identified from 27 MQTLs (no DEG was available from MQTL2A.5). 

Furthermore, 27 genes were common between the first and second transcriptomic datasets, and 36 genes were 

common between the third and fourth transcriptomic datasets. There were 11 genes (TraesCS2B02G319600, 

TraesCS2D02G211100, TraesCS3B02G029900, TraesCS3B02G039900, TraesCS3B02G040300, 

TraesCS3B02G466000, TraesCS4A02G017700, TraesCS5A02G404900, TraesCS7A02G143900, 

TraesCS7B02G408900, TraesCS7D02G079400) which were common among first, second and third datasets; 

whereas, two genes (TraesCS2D02G211100, TraesCS3B02G039900) showed differential expression across all 

the four transcriptomic datasets investigated (Table 2). A representative heat map of these 11 most promising 

DEGs is presented in Fig. 4.  

 Gene control is mediated by cis-regulatory elements (CREs) in promoter regions. It is crucial to study 

the CREs found in the putative promoter regions of the DEGs reported in this study. CREs were studied in 1.5 

kb 5′ upstream promoter regions of each of the 11 multiple abiotic stress-responsive genes. A total of 374 CREs 

were discovered, including 20 unnamed/uncharacterized CREs (Table S8). The CREs were divided into three 

categories: plant growth and development, stress responsiveness, and phytohormone responsiveness, in addition 

to the conventional cis-elements found in promoters of DEGs (Fig. 5). Shoot and root meristem expression 

(CAT-box), endosperm expression (GCN4-motif and AAGAA-motif), flowering (CCAAT-box, AT-rich 

element, and Circadian), and zein metabolism (O2 site) were all included in the plant growth and development 

category. Drought-inducibility (MBS), anaerobic induction (ARE), stress (TC-rich repeats, As-1 element, 

STRE), low temperature (LTR), and wounding responsiveness (WRE3 and WUN-motif) were all included in 

the stress responsiveness group. Many cis-elements, including salicylic acid (TCA-element), ethylene (ERE), 

Me-JA (TGACG-motif and MYC), auxin (TGA-element), and abscisic acid (ABRE), were shown to be related 

to phytohormone responsiveness. ABRE, MYC, and ERE were the most common cis-elements, and they were 

all related to hormone responsiveness. These findings show that complex regulatory networks play a role in the 

transcriptional regulation of genes that play a role in MAST. 

 

Conserved genomic regions control tolerance to multiple abiotic stresses in different cereals 
The syntenic relationship was also observed for wheat genes available from MQTL regions with the maize and 

rice genomes. The 5,161 and 5,893 wheat genes available from MQTLs were used to detect the 5,842 maize 

orthologues, and 5,277 rice orthologues, respectively (Fig. 6a, b). This synteny analysis revealed several 

genomic regions in both maize and rice genomes where several MQTLs have already been identified in previous 
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studies for different abiotic stresses; such genomic regions conserved between ‘wheat and maize’ and 'wheat 

and rice’ may be termed as ‘ortho-MQTLs’. Out of 5,842 maize genes, 2,565 genes were available in 101 maize 

MQTL regions previously identified to be associated with drought stress tolerance38,39,40.  Similarly, out of 5,277 

rice genes, 2,704 genes belonged to 140 rice MQTLs earlier reported to be associated with heat, drought, and 

salinity stress tolerance41,42,43,44,45. The number of conserved genes at corresponding orthologous positions of 

MQTLs (between ‘wheat and maize' and ‘wheat and rice’) ranged from just a few to hundreds of genes. 

Detailed information related to maize and rice orthologues of wheat genes and ortho-MQTLs is presented in 

Table S9. Some earlier studies46,35 did not provide physical positions of MQTLs; thus, these studies could not be 

used to mine ortho-MQTLs. 

 

Discussion 
DS, HS, SS, WS, PHS, and AS are all abiotic stresses that are detrimental to wheat, posing significant 

intimidation to the environment and agriculture and resulting in considerable crop yield loss. These abiotic 

stresses may be avoided by growing wheat varieties conferring tolerance to individual or multiple abiotic 

stresses. Thus, new wheat cultivars must contain novel loci/genes to provide tolerance against these stresses that 

influence plant development and yield. A number of studies on QTL mapping for different abiotic stresses in 

wheat have been undertaken over the last two decades (Table S1). Most of the QTLs found in these previously 

reported studies had a long CI and a relatively low PVE, which made them ineffective for use in MAB to 

develop wheat varieties providing tolerance against different abiotic stresses. Furthermore, validation is also 

required whenever these QTLs are planned to be used in a wheat breeding programme. In comparison to the 

QTLs that have been previously identified, MQTLs are observed to be more stable and consistent, with a narrow 

CI and comparatively higher confidence, making them useful for crop improvement programmes as well as for 

basic research programmes, including the cloning and further characterization of favorable QTLs/genes26. 

Furthermore, several QTLs have been detected and characterized, each conferring tolerance to multiple abiotic 

stresses in different crops, including wheat47,48,49,10,50,51,52. Furthermore, numerous studies reported the 

availability of individual genes conferring tolerance to multiple abiotic stresses in wheat, which are regarded as 

extremely valuable assets for future breeding programmes aimed at developing climate-smart wheat 

varieties15,53,14. Based on these studies, the MAST hypothesis was figured out, which says that one locus is 

thought to make a plant more resistant to more than one abiotic stress. 

 Several meta-QTL analyses for various traits in cereal crops such as maize39, rice41,46,20, and barley have 

already been conducted35. In wheat, meta-QTL studies have been undertaken for four different abiotic stresses, 

including PHS54, SS30, DS32, and HS33, but no meta-analysis has been conducted for the traits contributing to 

WS and AS stresses. Furthermore, to our knowledge, no MAST meta-analysis has ever been performed on 

wheat. In addition, the information from such studies quickly becomes outdated due to the identification and 

characterization of new QTLs in recently conducted studies. This necessitates a comprehensive meta-QTL 

analysis at a regular interval for proper utilization in the breeding pipeline. Meta-QTL studies for abiotic stresses 

in wheat have been done before. In this study, we looked at the QTLs for six different abiotic stresses that have 

been reported up until 2021). 

 This study's consensus map is much better and more comprehensive than previous consensus maps used for 

MQTL for some of these abiotic stress tolerance traits32,33,30. The consensus map contained 100,614 markers 

(mostly SSR and SNPs) scattered throughout 6,647 cM. Based on the QTL information and the development of 

the consensus map in this study, it is observed that the sub-genome B carries the maximum number of markers 

and contains the highest density of QTLs, while the sub-genome D has the minimum number of markers and 

contains the lowest density of QTLs. The characteristics of marker distribution and density of QTLs on different 

wheat chromosomes analysed in the current meta-study are in agreement with other meta-studies on individual 

abiotic stress tolerance earlier conducted in wheat31,32,33. 

 In this study, we predicted 134 MQTLs using previously identified QTLs. The majority of MQTLs 

(87.31%; 117/134) were each associated with tolerance against at least two of the six stresses under study. 

Furthermore, 23 MQTLs each were involved in tolerance for at least five different stresses, while five MQTLs, 

each were associated with all six abiotic stresses under study. As discussed, several MQTLs contained QTLs for 

different abiotic stress tolerance traits, suggesting a strong association between different abiotic stress tolerance 

traits. Furthermore, QTLs for the same abiotic stress tolerance from different mapping populations were 

projected onto the same chromosomal region, confirming that those regions exist. The meta-analysis conducted 

in this study refined the CIs and compared the genomic positions of different QTLs detected in individual 

studies associated with different stresses. The average CI of MQTLs in this study was reduced by 9.93 times 

compared to the CI of initial QTLs. A circular diagram representing the salient characteristics of QTLs and 

MQTLs is provided in Fig. 7. 

 Interestingly, more than 57% (76/134) of MQTLs were validated with GWAS-MTAs associated with 

different abiotic stress tolerance traits identified in wheat. The MQTL2B.3 overlapped with the maximum 

number of MTAs (132) obtained from multiple GWA studies, while some MQTLs overlapped with only one 
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MTA. Some recent studies also provided similar results, such as 54.6%, 63%, and 61.3% verification of MQTLs 

with GWAS, respectively23,26,27. Furthermore, the MQTLs validated using GWAS data are important genomic 

regions that could be utilized effectively in future wheat breeding programmes and cloning of MAST genes 

available from MQTLs.  

 A comparison of MQTLs with known genes for distinct abiotic stresses in wheat could aid investigation 

into the molecular mechanisms that confer tolerance to various abiotic stresses. As a result, the relationships 

between MQTLs and known genes were also investigated in the present study. Twenty-one MQTLs were found 

to be co-localized with 34 genes in wheat that are involved in providing tolerance to different abiotic stresses. 

For instance, MQTL2B.6 overlapped with 2 PHS tolerance genes (TaSdr-A135 and TaAFP-B155), and 2 SS genes 

(TaWRKY1956 and TaMYB30-B57). MQTL5A.8 overlapped with one DS gene (TaZFP3458), two SS genes 

(TaGly I59 and TaNAC260), and one WS gene (TaERFVII.1‐5A61). MQTL5B.2 co-localized with one HS gene 

(TaPEPKR214), one each for SS (TaSC62 and WS (TaERFVII.1‐5B61). Similarly, MQTL6B.1 overlapped with 

two DS genes (TaER2-6B63 and TaWRKY3364), one PHS gene (TaCYP707A165), and two SS genes (TaAOC166 

and TaNAC6717). According to these findings, the twenty-one MQTLs, which overlapped with 34 known genes 

for different abiotic stresses, appear to be promising candidates for improving tolerance to multiple abiotic 

stresses and could be valuable assets in breeding for climate resilience. However, more work is required to find 

functional variants of these genes in the MQTL regions that are being studied. 

 Furthermore, there are several genes known in wheat that confer tolerance to multiple abiotic 

stresses35,67,16,60,68. Unfortunately, no MAST gene or QTL providing tolerance against all the six abiotic stresses 

under this study has been identified. In the present study, mining of genes in genomic regions of the 28 selected 

MAST-MQTLs allowed the identification of 539 non-redundant gene models. In silico expression analysis 

unravelled the 11 promising CGs showing differential expressions in at least three transcriptomic datasets. 

These genes included 7 genes encoding for characterized proteins (viz., late embryogenesis abundant protein, 

sugar transporter-like, O-acyltransferase, zinc finger protein, transmembrane protein, fatty acid hydroxylase, and 

protein kinase), and the remaining 4 genes encode for uncharacterized proteins (viz., protein of unknown 

function DUF1666, protein of unknown function DUF247, uncharacterized conserved protein UCP031279, and 

un-characterized protein).  

The relevance of some of these genes encoding for known proteins can be summarized as follows: (i) Late 

embryogenesis-abundant (LEA) proteins are a large and diverse family of proteins that are hypothesized to play 

a role in normal plant growth and development as well as protecting cells against a variety of abiotic stresses. 

Chen and colleagues69 identified and characterized several LEA family genes conferring tolerance to multiple 

environmental stresses69. (ii) In a recent study, Xuan and colleagues70 reported that a higher expression level of 

sugar transporter genes regulates plant responses to different stresses, including drought, salt, and low-

temperature stress. (iii) Transgenic plants with increased expression of the WSD1 gene, which encodes for wax 

synthase/acyl-CoA:diacylglycerol acyltransferase showed improved tolerance to abscisic acid, mannitol, 

drought, and salinity71. These findings showed that manipulating cuticular waxes could be beneficial for 

increasing plant productivity in a rapidly changing climate. (iv) Overexpression of ZFP182, a TFIIIA-type zinc 

finger protein significantly improved tolerance against salt, cold, and drought stresses in transgenic rice72. 

Further, zinc finger proteins have been termed the master regulators of abiotic stress responses in plants100. 

However, these genes are assumed to have a pleiotropic function, but there is still no evidence of how these 

genes may confer tolerance to multiple abiotic stresses; further studies are required to characterize their 

functionality in response to multiple abiotic stresses. Moreover, the DEGs with no function descriptions 

available may be characterized for their possible roles in MAST in wheat in further studies.  

Since there is a cross-talk between different abiotic stresses, identification of common and/or overlapping 

CREs is crucial for developing wheat cultivars that show tolerance towards them. CREs are DNA sequences 

found in gene promoters that transcription factors bind to, and they further drive gene expression by either 

enhancing or silencing transcription regulations in response to unfavorable environmental conditions73. In the 

present study, all 11 multiple abiotic stress-responsive DEGs were identified to be equipped with three different 

functional categories of cis-elements, such as plant growth and development, stress responsiveness, and 

phytohormone responsiveness. In the case of stress responsiveness cis-elements, for instance, the MYB binding 

site (MBS) element present in the ZmSOPro promoter region triggers drought stress tolerance in 

transgenic Arabidopsis74. Stress-responsive gene regulation in Arabidopsis and soybean essentially depends on 

the TGGTTT (ARE), activation sequence-1 (as-1) and TC-rich repeat elements75,76,77. In addition, WUN-motif is 

a dehydration-related element detected in the regulatory region of the StDREB gene in tomato78. 

 The current study additionally investigated chromosomal regions with MQTLs that are conserved across 

several cereals. These ortho-MQTL regions were identified by integrating the two different approaches utilized 

by Saini et al.26 and Sandhu et al.20, respectively. Ortho-MQTLs have recently been conducted in wheat for 

different traits including quality traits28, thermotolerance33, salinity stress tolerance30, nitrogen use efficiency24, 

grain yield and component traits22. The discovery of ortho-MQTLs in closely related species shows their 

relevance and stability, as well as the reliability of associated genes54. Functional validation of the orthologous 
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genes uncovered in this study is feasible, and gene-based functional markers for cereal breeding programmes 

can be developed79. 

 Further, based on the criteria given in Saini et al.26, we selected the five most promising MQTLs for MAST 

breeding programmes in wheat (viz., MQTL1D.4, MQTL2D.5, MQTL3A.1, MQTL4A.2, and MQTL7A.6). 

These MAST-MQTLs, which are involved in providing tolerance to at least five abiotic stresses under study, 

had CI ranging from 0.01 to 1.16 cM and comparatively high PVE values (ranging from 12.19 to 21.66). In 

addition, these MQTLs included 16-79 initial QTLs derived from 11 to 35 interval mapping studies. Therefore, 

these are believed to be the most stable and consistent MAST-MQTLs across all genetic backgrounds and 

environments. These MAST-MQTLs are important breeding materials. They can be used either in MAB 

programmes aimed at developing wheat varieties providing tolerance to multiple abiotic stresses under study or 

subjected to fine mapping to identify key genes involved in tolerance against multiple abiotic stresses in wheat. 

 
Concluding remarks 

The results of interval mapping studies on DS, HS, SS, WS, PHS, and AS tolerance were successfully integrated 

during the current study, resulting in the identification of 134 MQTLs. GWAS was used to confirm more than 

half of these MQTLs. Thirty-four known genes associated with various abiotic stresses overlapped several of 

these MQTLs as well. Furthermore, 28 MQTLs conferred tolerance to five or all of the six abiotic stresses 

studied. Putative genes associated with several abiotic stresses were discovered, and 11 genes encoding 

important proteins showed differential expression across different transcriptome datasets. For the development 

of tolerance to numerous abiotic stresses in wheat cultivars, five promising MQTLs imparting tolerance to at 

least five abiotic stresses were recommended for use in marker-assisted breeding. Overall, these findings 

provide useful information as well as robust candidate genes for further functional investigation aimed at 

enhancing wheat MAST. 

 

Material and methods 

Collection of QTL mapping studies and data on QTLs 
The literature associated with QTL mapping studies of different abiotic stresses, including DS, HS, SS, WS, 

PHS, and AS in wheat, was collected using relevant keywords through online platforms such as PubMed 

(https://www.pubmed.ncbi.nlm.nih.gov/) and Google Scholar (https://www.scholar.google.com/). This 

investigation was supplemented by a newly developed wheat QTL database (WheatQTLdb; 

www.wheatqtldb.net;98. Each independent study was further used to obtain the following information: (i) 

markers flanking the QTLs, (ii) information on mapping populations (size and type), (iv) genetic peak position 

and confidence interval (CI), (v) LOD score, and (vi) phenotypic variation explained by individual QTLs (R2 or 

PVE).  

 Studies with incomplete datasets were excluded. In some cases, the peak position of the QTL was not 

available, consequently, the mid-point of both the flanking markers was considered the peak. Simultaneously, a 

LOD score of 3.0 and a PVE value of 10 were assigned wherever no LOD score or PVE value was provided. All 

of the QTLs involved in this study were given unique identities as follows: the author's name followed by the 

year of publication, the abbreviated name of the trait, stress, and chromosome involved, respectively. Numerals 

after the chromosome numbers were used to distinguish various QTLs for the same trait and stress on the same 

chromosome. Under each stress condition, QTLs associated with different traits, including yield and related 

traits, and several morpho-physiological traits, were reported in the literature. For the purpose of this analysis, 

all the QTLs associated with different component traits identified under a particular stress condition were treated 

as QTLs associated with the abiotic stress in question. 

 

Construction of the consensus map and projection of QTLs 
A highly dense consensus map was constructed by integrating the following high-quality linkage maps: (a) 

‘Wheat, Consensus SSR, 2004’80 (b) ‘Synthetic x Opata BARC map’81 and SNP maps assayed through (c) ‘Illu-

mina iSelect 90K SNP Array’82, (d) ‘Wheat 55K SNP array’83. In addition, markers flanking the individual 

QTLs were also integrated into this consensus map to ensure the projection of the maximum number of QTLs. 

The R package ‘LPMerge’ was utilized to generate the consensus map84.  

 Separate map and QTL data input files from several QTL mapping experiments were prepared. The map 

file included information mainly on linkage groups, markers, and their genetic positions, whereas, the QTL file 

contained information on QTL name, stress name, chromosome number, LOD, PVE, and genetic positions 

(peak position and CI) of individual QTLs. In some studies where the original CI for individual QTLs was not 

reported, CI (95%) was obtained for each QTL using different population-specific equations85,86,87. According to 

Chardon et al.,99 QTLs were projected onto the newly created consensus map using the projection tool (QRL-

Proj) in Biomercator v4.2 software (2004). To select the optimum projection context, QTLProj employs a dy-

namic strategy. A perfect context consists of a pair of common markers that flank the QTL in the original map 

and a consistent distance estimate between the two maps (initial and consensus). The behavior of the procedure 
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to get such a configuration is influenced by the minimal value of the flanking marker interval distances ratio and 

the minimal p-value produced by confirming the homogeneity of the flanking marker interval distances between 

the initial and consensus maps19. 

 

Prediction of MQTLs and their validation using GWAS 
Individual MQTLs were predicted for each wheat chromosome as per instructions provided in the manual 

(https://www.ebi.ac.uk/eccb/2014/eccb14.loria.fr/programme/id_track/ID10-summary.pdf) and keeping abiotic 

stress as a meta-trait (including all six abiotic stresses: DS, HS, SS, WS, PHS, and AS). The two-steps method 

proposed by Veyrieras et al.19 was utilized for the prediction of MQTLs. The first step involves the selection of 

the best MQTL model based on obtaining the lowest values of the selection criteria in at least three of the fol-

lowing five models: (i) AIC (Akaike information content), (ii) AICc (AIC correction), (iii) AIC3 (AIC 3 candi-

date models), (iv) BIC (Bayesian information criterion), and (v) AWE (average weight of evidence). The second 

step predicts the total number of MQTLs on a chromosome along with information about peak position, CI 

(95%), and weightage based on the model selected. An MQTL was described as a genomic region in which two 

or more QTLs from distinct mapping studies were involved. The means of the LOD and PVE values of the ini-

tial QTLs involved were used to compute the LOD and PVE values of the predicted MQTLs. When more than 

one MQTL was found on a single chromosome, the MQTLs were named using the standard procedure, which 

begins with the individual identification of each chromosome, followed by a point and a number (e.g., 

MQTL1A.1, MQTL1A.2). 

 The physical positions were obtained for each MQTL using the available sequences of each marker flank-

ing the MQTLs. These nucleotide sequences were retrieved for each marker, using either the published studies 

or online databases, including GrainGenes (https://wheat.pw.usda.gov/GG3/), Gramene 

(https://www.gramene.org/), and CerealsDB (https://www.cerealsdb.uk.net/cerealgenomics/CerealsDB 

/indexNEW.php). Consequently, these nucleotide sequences were subjected to BLASTN searches against the 

reference genome of wheat available in the Ensemble Plants database (https://plants.ensembl.org/index.html). 

Genomic regions of some SNPs were obtained from the URGI-JBrowse wheat genome browser (https://wheat-

urgi.versailles.inra.fr/).  

 Furthermore, data from 32 independent GWA studies (involving 10 GWA studies on DS, 4 on HS, 9 on 

SS, 2 on PHS, and 1 on AS, 6 studies including both DS and HS; no GWAS study was available for WS) were 

collected to validate the MQTLs discovered in the current study (Table S1). GWA studies, involving durum 

wheat, hexaploid wheat (e.g., spring and winter wheat), and synthetic hexaploid wheat were conducted across 

11 countries. The population size ranged from 7088 to 71789. The population size, abiotic stress associated, geno-

typing platform, number of SNP markers employed, and significant markers identified in individual studies are 

all listed in Table S1. The physical positions of identified significant markers were retrieved from source studies 

or databases (such as the URGI-JBrowse wheat genome browser and CerealsDB) and compared to the physical 

coordinates of MQTLs identified on individual chromosomes. MQTLs co-localizing with at least one significant 

marker were accepted as GWAS validated/verified MQTLs. 

 

Co-localization of known genes with MQTLs 

The association between MQTLs and known genes involved in stress tolerance was also investigated. Sequences 

of these genes or related markers were BLASTed against the wheat reference genome in the Ensemble Plants 

database to determine their physical positions. The physical positions of known genes were compared with the 

physical positions of MQTLs to identify the co-localization of MQTLs with known genes. 

 

Candidate gene mining, expression analysis, and promoter analysis 
MQTLs each conferring tolerance to five or all six abiotic stresses were selected for the identification of 

underlying gene models. Of the selected MQTLs, MQTLs with a physical CI of ≤ 2 Mb were directly utilized 

for gene mining. Only a 2 Mb physical region (1 Mb physical region on either side of the MQTL peak) was 

examined for the availability of gene models for the remaining MQTLs with longer physical CI. The peak 

genomic positions of the MQTLs were estimated using the formula proposed by our group recently26, which is 

as follows: 

 
 The InterPro database (https://www.ebi.ac.uk/interpro/) was used to obtain descriptions of the functions of 

discovered gene models. In silico expression analysis of the available gene models was performed using 

transcriptome data from the wheat expression browser (expression and visualisation platform) powered by 

expVIP (http://www.wheat-expression.com;90). For this purpose, the following relevant expression datasets 

were utilized: (i) ‘drought and heat stress time-course in seedlings’91, (ii) ‘seedlings with PEG to simulate 

drought’90, (iii) ‘spikes with water stress’90, and (iv) ‘grain developmental time-course with 4A dormancy 
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QTL’92. The first dataset91 included differential gene expression in the drought and heat tolerant wheat cultivar 

TAM107 grown under DS (20% PEG-6000), HS (400C), and both DS and HS conditions (40°C and 20%, PEG-

6000), with leaf samples collected separately at 1 and 6 hours after treatment. Seedlings in normal growth 

conditions (well-watered, 22°C) were used as controls in all of the experiments. The second dataset90 consisted 

of differential expression of genes in two cultivars (Gemmiza10 and Giza168) grown under DS (PEG 6000) 

with samples from seedlings collected 2 and 12 h after treatment. The third dataset90 consisted of differential 

expression of genes in a doubled haploid population (Westonia x Kauz) grown under water stress conditions 

with samples collected from the spike at the early booting stage. The fourth dataset92 consisted of expression 

data from 9 NILs (segregating for the 4A dormancy QTL region) and four parental varieties (Baxter, Chara, 

Westonia, and Yipti) with grain samples collected as 15, 25, and 35 days post-anthesis. The remaining three 

abiotic stresses, SS, WS, and AL, did not have expression datasets accessible from expVIP. The expression data 

was given as log2 transformed TPM (transcripts per million) values. Only genes with a substantial fold change 

(FC ≥ 2 or FC ≤ − 2 TPM values) compared to control were considered differentially expressed. To represent 

gene expression patterns, heat maps were created using the web tool Morpheus 

(https://software.broadinstitute.org/morpheus/). 

 The 1500-bp nucleotide sequences upstream of the translational start site (i.e., ATG) were retrieved from 

the Ensemble Plants database and uploaded to the PlantCARE database93 for cis-regulatory elements (CREs) 

prediction and potential activities. Only response elements available only on the sense strand with a matrix value 

of 5 were acceptable, as reported in Sharma et al.94. 

 

Revealing conserved genomic regions in different cereals associated with multiple abiotic stress tolerances 
Some of the most promising MQTLs (each conferring tolerance to 5 or all 6 stresses in question) were selected 

for identification of conserved genomic regions (including ortho- or syntenic MQTL regions) among the wheat, 

rice, and maize genomes. This analysis involved the following two steps: (i) gene models from the selected 

MQTL regions were BLASTed against rice and maize genomes at Ensemble Plants to discover conserved 

genomic regions, and (ii) the matching rice and maize orthologues were retrieved from the database with their 

genomic coordinates. In order to identify the ortho-MQTLs from the genomic regions conserved among all the 

three cereals, genomic positions of gene models underlying wheat MQTLs were compared with the orthologous 

genes available from rice MQTLs for SS tolerance41, DS tolerance42,43, HS tolerance44,45 and maize MQTLs for 

DS tolerance38,95,39,40. MQTLs containing similar gene models located on conserved genomic regions of wheat, 

barley, rice, and maize were considered ortho-MQTLs.  
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Table 1 MQTLs providing tolerance to five or all six stresses under study 

MQTL From 

(cM) 

Left marker Right marker Number 

of QTLs 

(number 

of 

studies) 

Avg. 

PVE 

Associated stress 

MQTL1B.3 65.69-

65.96 

BS00082577_

51 

RFL_Contig59

37_1699 

37 (17) 7.89 AS (2), D+H (7), DS (13), 

HS (3), PHS (2), SS (10) 

aMQTL1D.

4 

90.8-

91.96 

BS00110144_

51 

AX-94558596 23 (11) 16.3

9 

AS (7), D+H (2), DS (1), 

HS (5), SS (6), WS (3) 

MQTL2A.5 157.81-

157.89 

wsnp_Ex_c77

0_1514612 

Excalibur_c308

4_1843 

44 (14) 10.7 AS (1), D+H (1), HS (27), 

SS (10), WS (5) 

MQTL2B.3 63.78-

63.98 

BobWhite_c3

1708_99 

Excalibur_c434

9_1050 

84 (34) 10.1

2 

AS (5), D+H (18), DS (10), 

HS (22), PHS (4), SS (20), 

WS (4) 

MQTL2B.4 66.49-

67.8 

Kukri_c34861

_523 

Kukri_c5497_3

12 

13 (12) 8.01 AS (3), D+H (4), DS (2), 

HS (1), PHS (1), SS (2) 

MQTL2B.6 79.65-

80.15 

RAC875_c983

87_130 

Kukri_rep_c10

9981_150 

16 (9) 11.7

6 

D+H (2), DS (2), HS (1), 

PHS (1), SS (5), WS (5) 

MQTL2D.4 61.3-

61.38 

Xwmc453.1 Xcfd56 33 (14) 8.89 AS (1), D+H (1), DS (10), 

HS (6), PHS (1), SS (14) 

aMQTL2D.

5 

77.81-

78.25 

Excalibur_rep

_c107558_367 

GENE-

0875_887 

25 (12) 21.6

6 

AS (4), D+H (3), DS (3), 

HS (4), PHS (1), SS (10) 

aMQTL3A.

1 

180.39-

180.4 

BobWhite_c2

448_96 

Excalibur_c470

78_512 

70 (35) 12.1

9 

AS (6), D+H (9), DS (8), 

HS (10), PHS (13), SS 

(21), WS (3) 

MQTL3B.3 103.68-

106.27 

AX-94385276 Tdurum_contig

80344_144 

15 (8) 7.72 AS (1), DS (1), HS (3), SS 

(9), WS (1) 

MQTL3B.4 117.12-

117.21 

AX-95131037 BS00021992_5

1 

107 (25) 8.78 AS (3), D+H (17), DS (16), 

HS (23), PHS (6), SS (37), 

WS (5) 

MQTL3B.5 124.66-

125.5 

AX-95020422 wsnp_Ra_c162

64_24873670 

18 (7) 9.03 AS (1), D+H (4), HS (2), 

SS (10), WS (1) 

MQTL3B.6 155.98-

156.42 

Ku_c30806_2

35 

Xksug53 9 (6) 10.5

7 

AS (4), D+H (1), HS (2), 

PHS (1), SS (1) 

MQTL3B.7 202.00-

202.33 

AX-94458019 BS00048754_5

1 

16 (9) 11.7

8 

D+H (6), HS (1), PHS (2), 

SS (6), WS (1) 

aMQTL4A.

2 

115.90-

116.03 

Tdurum_conti

g1868_249 

wsnp_BE40527

5A_Ta_1_1 

79 (32) 12.9

5 

AL (9), D+H (10), DS 

(18), HS (9), SS (18), WS 

(1) 
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MQTL4A.5 154.63-

154.63 

BS00040648_

51 

RAC875_c1022

_3059 

16 (9) 9.11 AL (2), D+H (2), PHS (4), 

SS (8) 

MQTL5A.2 117.42-

118.07 

BS00100510_

51 

Tdurum_contig

29286_319 

69 (24) 10.1

1 

AS (3), D+H (9), DS (26), 

HS (10), PHS (2), SS (14), 

WS (5) 

MQTL5B.5 121.79-

122.3 

Excalibur_rep

_c104627_106 

AX-95113708 54 (25) 9.25 D+H (11), DS (4), HS (14), 

PHS (1), SS (20), WS (4) 

MQTL6B.3 92.89-

93.49 

BS00088277_

51 

AX-94404945 51 (22) 8.47 AS (4), D+H (1), DS (23), 

HS (6), PHS (1), SS (16) 

MQTL7A.4 107.20-

107.65 

AX-95205723 AX-94402237 27 (14) 11.3

4 

AS (5), D+H (1), DS (10), 

HS (3), PHS (1), SS (7) 

MQTL7A.5 122.91-

123.40 

AX-95260715 AX-94457603 47 (22) 10.5

2 

AS (3), D+H (8), DS (21), 

HS (6), PHS (1), SS (8) 

aMQTL7A.

6 

127.9-

128.38 

AX-94917420 AX-95206892 16 (11) 15.2

4 

AS (2), D+H (4), DS (3), 

HS (1), PHS (1), SS (5) 

MQTL7A.7 130.35-

130.83 

AX-95226392 AX-94423924 13 (10) 11.6 D+H (2), DS (4), HS (2), 

PHS (1), SS (2), WS (2) 

MQTL7B.3 110.98-

111.48 

Tdurum_conti

g47317_100 

BS00066647_5

1 

61 (24) 9.71 AS (2), D+H (18), DS (8), 

HS (16), PHS (1), SS (9), 

WS (7) 

MQTL7B.4 124.39-

125.17 

BS00064367_

51 

IAAV8521 11 (8) 12.7

5 

D+H (1), DS (2), HS (1), 

PHS (1), SS (5), WS (1) 

MQTL7D.1 32.05-

34.75 

Xgwm635 AX-94527430 13 (10) 11.6

4 

D+H (1), DS (1), HS (5), 

PHS (1), SS (4), WS (1) 

MQTL7D.2 70.80-

72.57 

D_GA8KES4

01ANMPM_1

40 

BobWhite_c56

54_231 

26 (12) 11.2

6 

D+H (5), DS (5), HS (4), 

PHS (6), SS (4), WS (2) 

MQTL7D.3 81.29-

81.8 

D_contig1215

6_209 

Kukri_c20975_

765 

18 (13) 11.9

4 

AS (2), D+H (6), DS (1), 

HS (2), PHS (2), SS (5) 

aPromising MQTLs selected for breeding programmes.  

Table 2 Important differentially expressed candidate genes detected in the current study 

MQTL Candidate genes Gene start 

(bp) 

Gene end 

(bp) 

GO term name Function description 

MQTL2B.6 TraesCS2B02G319600 455586854 455589182 integral 

component of 

membrane 

Late embryogenesis abundant 

protein 

MQTL2D.5 TraesCS2D02G211100 168234746 168236329 integral 

component of 

membrane 

Major facilitator, sugar 

transporter-like 

MQTL3B.3 TraesCS3B02G029900 13744964 13749320 diacylglycerol 

O-

acyltransferase 

activity 

O-acyltransferase, WSD1 
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MQTL3B.4 TraesCS3B02G039900 19263438 19270330 - Transmembrane protein 

MQTL3B.5 TraesCS3B02G040300 19869669 19872504 - Protein of unknown function 

DUF1666 

MQTL3B.7 TraesCS3B02G466000 708516550 708520943 integral 

component of 

membrane 

Protein of unknown function 

DUF247 

MQTL4A.2 TraesCS4A02G017700 11716257 11718716 nucleus Zinc finger protein 

MQTL5A.2 TraesCS5A02G404900 596552839 596553578 - Uncharacterised conserved 

protein UCP031279 

MQTL7A.4 TraesCS7A02G143900 94786762 94791447 plasma 

membrane 

- 

MQTL7B.4 TraesCS7B02G408900 678124719 678128411 integral 

component of 

membrane 

Fatty acid hydroxylase 

MQTL7D.1 TraesCS7D02G079400 46838388 46843665 ubiquitin-protein 

transferase 

activity 

Protein kinase domain 
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Fig. 1 Salient characteristics of QTLs used for meta-analysis: (a) distribution of QTLs associated with different 

abiotic stresses, (b) chromosome-wise distribution of QTLs, (c) PVE values, and (d) confidence intervals (CI) of 

total collected QTLs and those used for projection 
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Fig. 2 Salient features of MQTLs detected in the current study: (a) chromosome-wise distribution of MQTLs, 

(b) frequency of QTLs included in different MQTLs, and (c) comparison of CIs of initial QTLs and MQTLs 
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Fig. 3 Distribution of MQTLs (GWAS-validated MQTLs are shown with blue), differentially expressed 

candidate genes (showing differential expression in at least three datasets), and known genes co-localizing with 

MQTLs (some of the MQTLs with large physical regions are not shown). 
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Fig. 4 Differential expression of 11 most promising candidate genes under different conditions. 

 

Fig. 5 Information on cis-regulatory elements in promoter regions of 11 multiple abiotic stress tolerance genes 
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Fig. 6 Syntenic relationship of genes available from the wheat MQTL regions with the (a) maize and (b) rice 

genomes. The physical sizes of the chromosomes are indicated by the ruler drawn above on them, with larger 

and smaller tick marks at every 100 and 20 Mbp, respectively. 
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Fig. 7 Circular diagram depicting the salient characteristics of QTLs and MQTLs. Circle A- chromosome wise 

distribution of number of QTLs, QTLs projected on consensus map, average confidence interval (CI) of MQTLs 

and average CI of initial QTLs. Circle B- Number of markers, chromosome lengths and density of markers on 

different chromosomes. Circle C- The number of QTLs involved in individual MQTL. Circle D- The number of 

QTLs for each stress in individual MQTLs (i.e., DS, HS, DS+HS, SS, WS, PHS, and AS) and number of traits 

associated with individual MQTLs. Circle E- Densities of the gene in different MQTL regions. The physical 

maps of wheat chromosomes are represented by the outer circle. 
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