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Abstract1

After more than 100 years of generating monoculture batch culture growth curves,2

microbial ecologists and evolutionary biologists still lack a reference method for infer-3

ring growth rates. Our work highlights the challenges of estimating the growth rate from4

growth curve data and shows that inaccurate estimates of growth rates significantly impact5

the estimated relative fitness, a principal quantity in evolution and ecology. First, we con-6

ducted a literature review and found which different types of methods are currently used7

to estimate growth rates. These methods differ in the meaning of the estimated growth8

rate parameter. Kinetic models estimate the intrinsic growth rate µ whereas statistical9

methods – both model-based and model-free – estimate the maximum per capita growth10

rate µmax. Using math and simulations, we show the conditions in which µmax is not a11

good estimator of µ. Then, we demonstrate that inaccurate absolute estimates of µ is not12

overcome by calculating relative values. Importantly, we find that poor approximations13

for µ sometimes lead to wrongly classifying a beneficial mutant as deleterious. Finally, we14

re-analyzed four published data-sets using most of the methods found by our literature15

review. We detected no single best-fitting model across all experiments within a data-set16

and found that the Gompertz models, which were among the most commonly used, were17

often among the worst fitting. Our study provides suggestions for how experimenters can18

improve their growth rate and associated relative fitness estimates and highlights a ne-19

glected but fundamental problem for nearly everyone who studies microbial populations20

in the lab.21

1 Introduction22

Measuring batch culture growth curves is a common method used by nearly all who work23

with single-celled organisms in the laboratory. Growth curves allow experimenters to readily24
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measure population phenotypes, like the dynamics and efficiency of growth in particular en-25

vironments, for microscopic organisms whose individual cell phenotypes are often laborious26

or expensive to quantify. The growth rate is an especially important trait for evolutionary27

microbiologists and microbial ecologists. The growth rate is important because it is related28

to fitness in population biology, it is used to estimate the number of generations a microbial29

culture has been growing for (e.g., Wein and Dagan 2019), it is more responsive to selection30

that other traits in microbial evolution experiments (Wahl and Zhu, 2015), and it is central31

in describing competition for limited resources (Miller et al., 2005; Bernhardt et al., 2020).32

Overall, growth curves are commonly used because they are easy to obtain, have been used33

for a long time, and usually give consistent results within an experiment. The importance of34

growth curves is only increasing in the age of high-throughput experimental screens of micro-35

bial populations, from which conclusions are drawn about responses to ecological challenges,36

to antimicrobial drugs, and about optimal strains for agricultural purposes. Nevertheless,37

despite the popularity of gathering growth curve data and the proliferation of methods for38

extracting growth parameters from said data, it is not clear what is the best method for39

estimating values of interest for these data.40
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Figure 1: A schematic illustration of the same simulated batch culture population
growth curve, plotted in three different ways.: A) Population size N versus time t.
The quantity K corresponds to the carrying capacity and N0 to the initial population size.
The initial population density or fraction is given by N0/K. B) Logarithm of the population
size divided by the initial population size y = ln(N/N0) versus time t. Note that in other
publications the quantity ln(N/N0) is sometimes denoted as y. The quantity A = ln(K/N0)
is the logarithm of the fold increase over the initial population size at carrying capacity. C)
First derivative of the logarithm of the population size divided by the initial population size
dy/dt = d ln(N/N0)/dt versus time t. The function dy/dt may be interpreted as the per
capita growth rate. The quantity µmax is the per capita maximum growth rate and λ the lag
phase duration.

The idea behind the batch culture growth curve is simple: inoculate a sterile culture41

medium with a small number of individuals N0 and track the increase in population size42

over time using any available method to estimate population size (e.g., colony forming units,43

optical density, microscopy cells counts, flow cytometry). An idealized growth curve is shown44

in Figure 1, in which each panel shows the same simulated data but with a different y-axis.45

When an experimenter assesses a growth curve, what they may first observe is perhaps a “lag46

phase” with little growth. Then, they will always observe a phase of rapid growth, alternately47

called the “log phase” or “linear phase” by different researchers, in which the growth is linear48
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when shown with the y-axis on a log-scale (Figure 1B). Figure 1C shows the first derivative of49

Figure 1B: in other words, the instantaneous per capita growth rate. The fastest growth rate50

is usually reached during the “log/linear phase” (Figure 1C; Monod 1949). Then, this phase51

may be followed by more decelerations and subsequent accelerations under diauxic/diphasic52

growth conditions (not shown or further discussed herein). Eventually the population growth53

slows down to halt at the “stationary phase”, reaching the final carrying capacity (denoted54

K in linear-scale, Figure 1A, or A in log-scale, Figure 1B) when all the usable resources are55

depleted from the batch culture.56

Growth curves are often used to estimate the per capita growth rate and fitness. The57

per capita growth rate is important in population biology because it is used to calculate the58

growth of a mutant strain as compared to a wild-type strain: this is the relative growth rate, or59

the relative fitness (w). The relative fitness is particularly important in evolutionary biology60

since it classifies a mutant as deleterious (w < 1), neutral (w = 0) or beneficial (w > 1)61

with respect to natural selection. Indeed, when the relative fitness is greater than 1, the62

mutant reproduces faster than the wild-type, and conversely when w is less than 1. Although63

there is still discussion in the field about whether the relative growth rates measured from64

monoculture growth curves are predictive of competitive fitness (Concepción-Acevedo et al.,65

2015; Ram et al., 2019), many biologists use the growth rate as a measure of fitness (e.g.,66

Knopp and Andersson 2018).67

Microbial batch culture protocols have been used for over 100 years in microbiology (e.g.,68

Slator 1916) and population ecology (e.g., Carlson 1913), and remain a mainstay of experi-69

mental evolution and ecology. During this time, many experimental protocols (Delaney et al.,70

2013; Hall et al., 2014; Stevenson et al., 2016; Kurokawa and Ying, 2017) and estimation71

methods (Zwietering et al., 1990; Baranyi and Roberts, 1994; Jung et al., 2015) have been72

developed for this type of data. Since the early 1990s, automated plate readers that incubate73

and periodically scan the opacity of the cultures growing in the microwells have simplified74

the process of gathering data for hundreds of bacterial populations simultaneously growing in75

(relatively) homogeneous batch culture environments. Sources of inconsistency, like the batch76

effect (Blomberg, 2011), can be mitigated, for example by growing all cultures of interest on77

the same day(s), in order to arrive at consistent data. Nevertheless, despite the long tradi-78

tion and good recommendations for setting up experiments, programs and papers detailing79

methods for estimating growth rates (and other growth parameters) from this data continue80

to be published and highly sought after. Many of these estimation methods are implementa-81

tions of classical models (e.g. Sprouffske and Wagner 2016; Petzoldt 2020). This shows that82

also after 100+ years of generating growth curve data, microbial ecologists and evolutionary83

biologists are still struggling to find the best way of estimating the growth rate from their data.84

85

The main goal of our paper is to demonstrate that there are significant limitations to ex-86

isting methods for using batch culture growth curve data to estimate the intrinsic growth rate87

µ, which is the fastest per capita number of divisions per time unit possible when the cell’s88

resources are limitless or otherwise optimal. These limitations impact the calculation of quan-89

tities of interest such as the selection coefficient and the relative fitness. We first take stock90

of how the community currently analyzes growth curve data by semi-quantitatively reviewing91

the literature to survey which methods are used in evolution and ecology. After explaining92

different approaches for modelling growth curves, we then use math and simulations to show93

that many of the currently used approaches are inappropriate for accurately estimating the94
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intrinsic growth rate µ. We quantify the errors for the intrinsic growth rate µ when the max-95

imum attained growth rate µmax is used as an estimator and the generating model is known.96

Next, we present the limited set of conditions in which an exponential approximation can97

be used for estimating µ. Importantly, we demonstrate that using inaccurate estimates of µ98

to estimate the relative fitness often leads to inaccurate fitness estimates and sometimes to99

wrongly classifying a beneficial mutation as deleterious in some cases. Finally, we apply our100

theoretical insights to previously published data and show that both absolute and relative101

growth rate estimates may vary greatly depending on the method. Overall, we present a102

systematic evaluation of different methods, with recommendations for best practices.103

2 Results & Discussion104

2.1 Literature review: How does the community analyze the data?105

We reviewed 50 papers from evolution and ecology that estimated growth curves for all types106

of microbial data (see Table S1 and Methods section). Most of the data (90%) were acquired107

by an automated microplate reader tracking optical density (OD) over time. Other data108

types included cell counts or fluorescent yields over time. Several papers (6%) did not report109

the starting inoculum size. Of those papers that reported the inoculum size, 52% used a110

fixed absolute initial population size (N̂0) for inoculation whereas 44% used a constant initial111

population fraction (N̂0 = K̂× dilution factor), which we hereafter refer to as the dilution112

fraction. A constant dilution fraction means that stationary-phase cultures, whose populations113

are at their carrying capacity, K, were diluted by a constant dilution factor (e.g., 1/1000×).114

This means that for experiments with a constant dilution fraction the absolute population115

size of the inoculum, N0, differed between strains/treatments when the carrying capacities,116

K, were different. For experiments using a constant dilution fraction, the reported dilution117

factor varied between 10−4 to 10−1 with a geometric mean value of 10−2.37.118

We found that the growth rate was by far the most commonly estimated growth parameter119

(94% of all papers reviewed). The other estimated growth parameters were: the carrying120

capacity (44%), the lag time (34%), and the area under the curve (AUC; 12%). The growth121

rate was usually reported as an absolute value for each strain/treatment. Moreover, 24% of122

papers estimated the relative growth rate, or relative fitness, of different strains as compared123

to the wild-type.124

Methods that explicitly fit a model of population growth were used about as often as125

“model-free” or “nonparametric” approaches (i.e., methods that do not require a model;126

Figure 2A). One particular model-free approach, the “Easy Linear” method, was especially127

popular (right doughnut chart of Figure 2A): it was used in about a third of all papers. When128

models were used, only one model was usually reported to have been fit (left doughnut chart129

of Figure 2A).130

We classified the growth curve analysis methods as either kinetic or statistical (Figure131

2B). A kinetic model is a mechanistic representation that allows researchers to simulate the132

underlying process. In contrast, a statistical approach enables researchers to describe and133

quantify the pattern of interest but without simulating the underlying process. We found134

that statistical approaches were used more often than kinetic models (Figure 2B). The most135

popular methods within the statistical approach were the various model-free methods (right136

doughnut of Figure 2B). The logistic model was by far the most popular kinetic model used137
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(left doughnut of Figure 2B). Depending on its equation, the Gompertz model is either a138

statistical or a kinetic model (table 1); however, we found that the kinetic Gompertz model139

was never fitted whereas the statistical Gompertz model was popular (18% of all papers and140

28% of all statistical methods used).141

We found that many growth curve experimental methods, data, and analyses do not yet142

conform with recommendations for reproducible research (e.g., Wilkinson et al. 2016; Munafò143

et al. 2017). Over 10% of the papers reviewed reported insufficient information about how144

growth curves were analyzed and therefore could not be classified for Figure 2. Some highly-145

cited papers (e.g. Gullberg et al. 2011; Trindade et al. 2012) neither cited an established146

method nor included sufficient description of their ad hoc methods for estimating growth147

rates (see table S1). Beyond reporting of experimental methods, the data-set itself was often148

not shared: about half (46%) of all papers do not show any figures of nor provide any of the149

growth curve data (see table S1). 40% of papers provided plots of at least a subset of the150

growth curves and 14% of all papers published their raw growth curve data.151

Our finding from Figure 2 that ∼ 13% of articles provide insufficient information regarding152

their growth curve analysis methods likely underestimates the magnitude of the problem.153

This is because we found articles for inclusion in the review by searching among the citations154

to previously published growth curve analysis methods papers (see methods). Therefore,155

most of the papers we included cited an established method for analyzing growth curve data.156

Hopefully these issues of methods under-reporting will improve as scientists become more157

knowledgeable about recommendations for open science and data management (Wilkinson158

et al., 2016; Munafò et al., 2017).159

Our finding of insufficiently reported information regarding the analysis of growth curves160

corroborates previous concerns about the lack of a standard method for growth curve analysis161

(Fernandez-Ricaud et al., 2016). The remainder of our article discusses different methods162

for analyzing growth curves and, thus, will hopefully contribute to an increased appreciation163

of why it is important to provide sufficiently detailed methodological information on data164

analyses.165
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Figure 2: Pie and doughnut charts of literature review results. A) Model-free methods
were used about as often as model-based methods across all 50 papers reviewed.
“Both” refers to when both a model-free and a model-based method were used in the same
paper. The doughnut charts surrounding the central pie-chart illustrate how frequently differ-
ent models, including both statistical and kinetic models, were used (left, shades of green) and
how frequently different statistical model-free methods were used (right, shades of purple). B)
Statistical approaches were used more often than kinetic models. “Both” refers to
when both a kinetic model(s) and a statistical approach(es) were used in the same paper. The
doughnut charts surrounding the central pie-chart illustrate how frequently different kinetic
models were used (left, shades of blue) and how frequently different statistical approaches
were used (right, shades of red-orange). The Gompertz model is listed twice because it is
either a kinetic model or a statistical model, depending on the equation; however, no paper
was found to use a kinetic Gompertz model. Both of the statistical Gompertz models listed
in Table 1, Gompertz and modified Gompertz, are grouped together. For more details on
the methods and equations used by each paper, see table S1. All slices within each pie and
doughnut chart show the counts of papers included.
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2.2 Exposition of existing models and methods166

2.2.1 Conceptual distinctions between parametric vs non-parametric methods167

and statistical vs kinetic models168

A variety of approaches have been developed over the years to describe and quantify growth169

curves, as shown in Figure 2. Below we explain the main differences between the most170

commonly used approaches and models, then we compare the advantages of each.171

Model-free vs model-based methods:172

One way to classify the different methods is to distinguish between model-free (or non-173

parametric) methods and model-based (or parametric) methods. Model-free methods use174

an algorithm to find an estimate of the growth rate that is relatively robust to any noise error175

in the data. For example, in the classical exponential approximation from Monod (1949)176

that is featured in many introductory microbiology textbooks, growth rate is estimated by177

measuring cell concentrations (N1 and N2) at two time points (t1 and t2) during the “log”178

phase of growth, then calculating R = (log2N2 − log2N1)/(t2 − t1). This is an algorithm179

that can easily be used by hand or performed by a computer. The Easy Linear method (Hall180

et al., 2014; Mira et al., 2017) is a more complex algorithm that uses a sliding window of five181

successive data points to calculate the maximum slope among many linear regressions fitted182

to the log-scale growth curve data. Another example is the Spline method that calculates the183

maximum value of the first derivative of the log-scale growth curve data by either using the184

mean of three successive pairs of points (e.g., Ashino et al. 2019) or kernel smoothing of the185

growth curve (e.g., Kahm et al. 2010; Petzoldt 2020) in order to remove experimental noise.186

The parameters of these algorithms are usually tunable, for example the size of the sliding187

window used by the Easy Linear method. However, no explicit assumptions are made about188

the shape of the growth curves.189

Model-based methods, on the other hand, use equations to explicitly describe the relation-190

ship between time, the independent variable, and population size (or a proxy of population191

size, like OD), the dependent variable. A model fitting algorithm is then used to find the192

model parameters that best fit the observed data, usually by numerical minimization of the193

residual sum of squares. Model-based methods tend to be preferred by theoretical and sta-194

tistical biologists because models specifically define the assumptions that are being made,195

model-based methods have defined protocols for assessing goodness of fit, and model-fitting196

allows quantification of the (frequentist or Bayesian) error of the estimates (Otto and Day,197

2011; Bolker, 2008).198

Empiricists tend to prefer to apply model-free approaches to biological growth curve data199

both because it is technically more difficult to fit and compare models and because of the200

inflexibility of existing models to fit the data (source: personal communication). In other201

words, the main advantage of model-free approaches is that they do not require a model.202

Model-free approaches have drawbacks, however: since there is no model, it is not clear how203

to compare the likelihood or goodness-of-fit between different methods and bootstrappind is204

necessary to quantify the error around estimates (for example, in order to generate the 95%205

confidence intervals).206

Kinetic vs statistical models:207

Within model-based methods, there is a distinction between kinetic and statistical models.208

Kinetic models may also be called mechanistic/process models and statistical models can be209

called phenomenological/pattern models (Bolker, 2008). We define kinetic models as mecha-210
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nistic representations that simulate the underlying process of interest. For population growth211

curve models in particular, the per capita growth rate of a kinetic model is by definition the212

intrinsic growth rate µ when the cell’s resources are limitless or otherwise optimal.213

Statistical models can be thought of as ‘black-box empirical models’ (Chezeau and Vial,214

2019). They are created by selecting functions that have a similar shape as the pattern of215

interest. Then, the parameters of those functions are given a biologically relevant meaning.216

For growth curves in particular, statistical population growth models are defined such that217

the point on the curve with the fastest rate of per capita growth (i.e., the inflection point218

of y = ln(N/N0)) corresponds to the maximum growth rate µmax (Zwietering et al., 1990,219

equations 4 & 5). Model-free (non-parameteric) methods all belong to the statistical category,220

as shown in Figure 2B, as they quantify specific parameters of interest without simulating the221

underlying process.222

Although the distinction between kinetic models and statistical methods may seem arcane,223

we explain below how serious pitfalls in estimating growth rates are a direct result of the224

differences between growth rates estimated by kinetic models (i.e., the intrinsic growth rate225

µ) and statistical methods (i.e., the maximum growth rate µmax).226

2.2.2 Mathematical description of models and model parameters, including the227

initial fraction228

Many models have been developed to describe growth curves (e.g., Tsoularis and Wallace 2002;229

Huang 2011; Baranyi and Roberts 1994). We have summarized the equations and parameters230

of the most prevalent models found by our literature review in Table 1, distinguishing kinetic231

models (Kin) from statistical models (S). As explained in the section above, a main difference232

to note is that kinetic models are defined in terms of the intrinsic growth rate µ, whereas233

statistical models are defined in terms of the maximum growth rate µmax. Kinetic models234

describe population size N as a function of time (i.e., linear scale), whereas statistical models235

describe y = ln(N/N0) as a function of time (i.e., they operate on a logarithmic scale).236

The common feature of all models, whether kinetic or statistical, is that they have a237

sigmoid or ‘S’ shape (Zwietering et al., 1990). All models consider single-strain, well-mixed238

bacterial populations whose every individual divides at the same per capita rate, although the239

division rate varies over time. Each of these populations starts with N0 microbes and their240

maximum population size is defined by a carrying capacity, written as K for kinetic models241

or A for statistical models.242

The models differ in important ways. Most of the models derive from the logistic model243

but seek to generalize it (Tsoularis and Wallace, 2002). For example, the Richards (both244

kinetic and statistical) and Baranyi models include a parameter to set the growth inflection245

and a lag phase, respectively, whereas the Huang model incorporates both. The Gompertz246

models (both kinetic and statistical) have no additional parameters but display faster growth247

than the logistic model for the same set of parameters since they have a higher per capita248

growth rate. Futhermore, the Richards model requires an extra parameter β that determines249

how quickly deceleration occurs as the stationary phase is reached, whereas the Baranyi model250

includes a lag phase specified by the parameter h0. The Huang model includes a lag phase251

defined by τ in addition to a parameter α determining the curvature.252

The initial fraction, N0/K, is an important value to keep in mind throughout our paper.253

This is the size of the population at inoculation (i.e., N at time t = 0) divided by the final254
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carrying capacity. Only when the initial fraction is small can one distinguish models that255

have an initial exponential growth, like the logistic model, from models with a lag phase, like256

the Gompertz, Richards, Baranyi, and Huang models.257

2.2.3 What is the difference between µ and µmax?258

It is important to distinguish between three growth rate estimators: the maximum population259

growth rate (max
(
dN/dt

)
), the per capita maximum growth rate (µmax), and the per capita260

intrinsic growth rate (µ). The maximum population growth rate max
(
dN/dt

)
is the fastest261

increase in size achieved by the entire population. We are not interested in the maximum262

population growth rate parameter since it is not estimated by any of the methods or models we263

discuss here; we only mention it so that the reader does not mistake it for the maximum growth264

rate (µmax). The maximum growth rate µmax is the fastest per capita number of divisions265

per unit of time actually achieved in the observed growth curve. In more quantitative terms,266

µmax is the maximum value of the curve d ln(N/N0)/dt (Figures 1B-C). As mentioned above,267

the maximum growth rate µmax is a value estimated using statistical approaches. Finally, the268

intrinsic growth rate µ (sometimes denoted as r (Sprouffske and Wagner, 2016), called the269

Malthusian parameter of population growth, or the intrinsic rate of increase) is the fastest per270

capita number of divisions per unit of time theoretically possible and, because it is a kinetic271

model parameter, it is used for simulating population growth processes. We here focus on272

the intrinsic growth rate µ and the maximum growth rate µmax because these are the two273

quantities estimated by the most used methods.274

There is an important conceptual difference between the intrinsic growth rate µ and the275

maximum growth rate µmax. The intrinsic growth rate µ is the theoretical maximum number276

of cell divisions per time unit assuming population dynamics that follow an exponential law.277

However, No real population achieves an infinite size because the division process is limited278

by space and/or nutrients, for instance. Thus, the number of divisions per time unit is279

not constant over time, so the maximum division rate µmax is the largest per capita value280

observed during the population growth. Therefore, the intrinsic growth rate µ can quantify281

the strain-specific division rate theoretically independently of the environment or experimental282

conditions. On the other hand, the maximum growth rate µmax (like other values estimated283

by statistical methods) is always specific to the experiment itself and cannot be generalized284

as a strain-specific value that applies to different environments or conditions. As will be285

shown below, in the best case scenario µmax approximates µ, but in other scenarios µmax is a286

composite parameter that depends on other values, like the inoculum size and lag time.287

Previous work has pointed out confusions between different growth rate estimators (Perni288

et al., 2005). The confusion between these terms is so prevalent that some papers mistook µ289

for µmax (Yang et al., 2006), vice versa (Wu et al., 2017), or distinguished between the two but290

swapped the names (Khan et al., 2017). Furthermore, some authors wrote the kinetic logistic291

equation as dN/dt = µmax(1 − N0/K)N (Petzoldt, 2020), whereas other authors preferred292

dN/dt = µ(1−N/K)N and µmax = max(d ln(N(t)/N0)/dt) (Sprouffske and Wagner, 2016).293

Different naming conventions become even more misleading for models in which the intrinsic294

growth rate is a function of the resource concentration, such as the Monod class of models that295

have their own specific, kinetic definition for µmax (Monod, 1949; Chezeau and Vial, 2019).296

We will not discuss substrate-use models herein. Having explained the conceptual differences297

between the µmax maximum growth and µ intrinsic growth rates above, we now expand on298
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Model Equation Parameters

Logistic (Kin) N(t) =
N0K exp(µt)

K +N0(exp(µt)− 1)
K, N0, µ

Gompertz (Kin) N(t) = (N0/K)exp(−µt)K K, N0, µ

Richards (Kin) N(t) =
N0K

(Nβ
0 + (Kβ −Nβ

0 ) exp(−µβt))−1/β
K, N0, µ, β

Baranyi (Kin) N(t) =
(−1 + exp(h0) + exp(µt))N0K

(exp(µt)− 1)N0 + exp(h0)K
K, N0, µ, h0

Huang (Kin) N(t) =
N0K

N0 + (K −N0)(1 + exp(ατ))µ/α(exp(αt) + exp(ατ))−µ/α
K, N0, µ, α, τ

Logistic (S) y(t) =
A

1 + exp(4µmax(λ− t)/A+ 2)
A, µmax, λ

Gompertz (S) y(t) = A exp(− exp(µmax exp(1)(λ− t)/A+ 1)) A, µmax, λ

modified Gompertz (S) y(t) = A exp(− exp(µmax exp(1)(λ− t)/A+ 1)) +A exp(α(t− tshift)) A, µmax, λ, α, tshift

Richards (S) y(t) = A(1 + ν exp(1 + ν + µmax(1 + ν)1+1/ν(λ− t)/A))−1/ν A, µmax, λ, ν

Table 1: Different population growth models: The population growth models considered
in this paper with their equation and parameters. Kinetic models are indicated by (Kin) and
describe the population size N as a function of time t. Every kinetic model includes a carrying
capacity K, an initial population size N0 and an intrinsic growth rate µ. The kinetic Richards
model includes a parameter β to adjust its inflection point and the Baranyi model has a lag
phase defined by h0. The Huang model has both with parameters α and τ , respectively.
Statistical models are indicated by (S) and describe y = ln(N/N0) as a function of time t.
Every statistical model includes a carrying capacity A = ln(K/N0), a maximum growth rate
µmax and a lag phase λ. The modified Gompertz model (S) displays a second increase after
the growth reaches a first saturation plateau. The parameters tshift and α control the time
and the slope of the second increase. The inflection point in the statistical Richards model is
adjustable by the parameter ν.
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the mathematical differences.299

Deriving the difference between µmax vs. µ:300

In the following, we mathematically explain why µmax is not always a good proxy for µ,301

especially at large initial population fractions, N0/K. Analytical math is combined with302

simulations to show for which initial population fractions an experimenter can estimate the303

intrinsic growth rate µ from the maximum growth rate µmax.304

We assumed that the population dynamics follow one of the kinetic growth models from305

Table 1 and mathematically derived µmax for the five kinetic models. As reported in Table 2,306

µmax depends on the system parameters, namely the initial population fraction N0/K as well307

as the parameters β and h0 for the Richards and the Baranyi models, respectively.308

The results of Table 2 are illustrated by the points in Figure 3A. The estimated maximum309

growth rate (µmax) values differ between models with the same parameter values (intrinsic310

growth rate µ = 1 and carrying capacity K = 105). In general, the maximum growth rate311

is approximately equal to the intrinsic growth rate when the initial fraction of individuals312

satisfies N0/K � 1 and (N0/K)β � 1 in the Logistic and Richards models, respectively.313

Indeed, these conditions lead to µmax = µ(1 −N0/K) ≈ µ and µmax = µ(1 − (N0/K)β) ≈ µ314

for the Logistic and Richards models, respectively (see Table 2). The Gompertz model is a315

special case since the maximum division rate is a good proxy for the intrinsic division rate316

when the initial fraction is large, roughly equal to exp(−1) ≈ 0.37 (i.e., an inoculum size317

corresponding to a dilution factor for the stationary phase batch culture of between one-third318

and two-fifths).319

In order to test the analytical predictions from Table 2, we evaluated the growth rates320

as estimated by model-free methods using data simulated under each of the five population321

growth models. Unlike experimental data, for which the true µ value that generated the322

data is never known, estimating the growth rate from simulated data allows us to check the323

accuracy of the estimates as compared to the known µ parameter that the data was simulated324

under.325

We focus on two model-free methods, the popular Easy Linear (Hall et al., 2014) and326

the Spline (e.g., Adkar et al. 2017; Ashino et al. 2019) methods, to determine the maximum327

growth rate µmax. Both methods assume that only the exponential stage of growth is useful to328

estimate the maximum growth rate. We generated data using individual based stochastic sim-329

ulations for the Gompertz, Richards, Logistic, Huang, and Baranyi models. Then we used the330

two different model-free methods, Spline and Easy Linear, to compute the maximum growth331

rate µmax for different parameter values. In practice, both model-free methods provided us332

with the same results. Our simulated data averaged over several stochastic realizations did333

not include the myriad sources of noise present in experiments, therefore resulting in a low334

noise level.335

As shown by the lines in Figure 3A, there is an excellent agreement between our analytical336

predictions (lines) and the estimates from simulated data (points). As predicted analytically,337

the estimated maximum growth rate µmax is not equal to the known intrinsic growth rate µ338

value used to create the simulations, unless N0/K � 1. For the Baranyi, Huang, Logistic, and339

Richards models, the smaller the initial population fraction, the better the maximum growth340

rate performs as a proxy for estimating the intrinsic bacterial growth rate, µ. However, this is341

not the case for the Gompertz model. For the Baranyi and Richards models (supplementary342

Figures S4A and S4B), the smaller the parameter h0 and the larger the parameter β, the343

closer is the maximum growth rate µmax to the intrinsic growth rate µ. Similarly, for the344
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Model Derived maximum growth rate µmax

Logistic (Kin) µ(1−N0/K)

Gompertz (Kin) −µ ln(N0/K)

Richards (Kin) µ(1− (N0/K)β)

Baranyi (Kin)
µe−h0(−2(1 +

√
(−1 + eh0)(eh0(K/N0)− 1))(N0/K) + eh0(1 +N0/K))

1−N0/K

Huang (Kin) Numerical solution

Logistic (S) µmax

Gompertz (S) µmax

modified Gompertz (S) µmax

Richards (S) µmax

Table 2: Maximum growth rates: The maximum growth rate µmax for the population
growth models considered in this paper. Kinetic models are indicated by (Kin), whereas the
statistical models are indicated by (S). The maximum growth rate was derived for the kinetic
models by analytically determining max(dy/dt) = max(d ln(N/N0)/dt). All statistical models
have the same maximum growth rate, whereas the maximum growth rate differs between
kinetic models.

Huang model, the higher the curvature defined by α and the shorter the duration τ of the lag345

phase, the better µmax is as a proxy for µ (see Figures S4C and S4D).346

We have shown that the maximum growth rate µmax is not always equivalent to the347

intrinsic growth rate µ. Therefore, methods that estimate the maximum growth rate µmax348

but then (often implicitly) assume that this value can be treated as the µ of a kinetic model349

must be applied with caution. As we have demonstrated in Table 2 and Figure 3A, µmax350

tends to underestimate the true intrinsic growth rate µ – except when population growth351

follows the Gompertz kinetic model, in which case the maximum growth rate µmax mostly352

overestimate the true intrinsic growth rate µ. This is because the per capita growth rate is353

generally smaller than the intrinsic one. Hence, we recommend that a clear distinction must354

be made between the intrinsic growth rate µ and the maximum growth rate µmax.355
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Figure 3: A) The Gompertz model and large initial population fractions make the
maximum growth rate a poor proxy for the intrinsic growth rate: Maximum growth
rate µmax versus initial population fraction N0/K for different kinetic population growth
models, where µ = 1. Each point represents estimated values by Spline (from Petzoldt 2020)
from simulated data averaged over 104 stochastic realizations. The solid lines correspond to
the analytical predictions of the maximum growth rate (see Table 2). The dashed line shows
the intrinsic growth rate value µ. Parameter values: K = 105, µ = 1, α = 2, β = 2, h0 = 2
and τ = 2. The initial population fraction is defined as a combination of model parameters,
N0/K, while the initial dilution fraction is an empirical quantity extracted from experimental
data as detailed in the literature review methods. B) For the most commonly used
dilution fractions in the literature, the maximum growth rate is a good proxy
for the intrinsic growth rate: Histogram of the estimated dilution fractions observed for
the 27 (out of 50) papers that provided sufficient information to estimate this value. Each
circle represents a publication and the number inside the circle indicates the number of the
reference as given in supplementary table S1. Several publications appear more than once
because they used more than one dilution fraction for different experiments.
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The initial fraction is a key parameter determining the relationship of µmax356

and µ357

Above we showed that (for most models) we can use the estimated maximum growth rate358

µmax as an approximation of µ when initial population fractions N0/K are small. We esti-359

mated the initial dilution fractions used in different experiments in order to ascertain whether360

most studies are using appropriately small initial fractions. Figure 3B shows the estimated361

dilution fractions used by different papers included in our literature review. Papers that had362

experiments with multiple, different batch culture starting conditions are included as multi-363

ple points with the same number. For example, Ganucci et al. 2018 (labeled as 21) has a364

dilution fraction near 1. The authors used cell viability counts to track yeast growth in media365

with increasing ethanol concentrations, sometimes resulting in almost no growth. Two values366

from Ganucci et al. (2018) are summarized in Figure 3B, indicating the largest (0.1) and the367

smallest (0.94) dilution fractions observed. Since methods differ between publications, with368

some using a mid-exponential phase culture and others using a stationary phase culture for369

inoculation (see supplementary table S1), the estimated dilution fraction should be considered370

as an upper bound for the initial fraction used in each paper.371

More than two-thirds of papers use at least one estimated dilution fraction smaller than372

10−2; the geometric-mean observed dilution fraction was 10−2.7. For such small dilution373

fractions, if there is no lag time, and if growth follows one of the population growth models374

except Gompertz, the maximum growth rate µmax tends to be a good estimator of the intrinsic375

growth rate µ. When the true growth curve dynamics in the experiments follows one of the376

kinetic models other than Gompertz, the relative difference between the maximum growth377

rate and the intrinsic growth rate for the mean initial population fraction N0/K = 10−2.7 is378

between 0-12%. Here, the largest difference between µmax and µ is obtained for the Baranyi379

model. However, for the Gompertz model the relative difference between the maximum growth380

rate and the intrinsic growth ranges from -821% to 31% (see Figure 3).381

Discussion of the difference between µmax and µ:382

We showed that the µmax values calculated from kinetic models depend on other parameters383

in addition to µ, such as the initial population fraction. Conversely, one cannot obtain µ384

from µmax alone. For kinetic models, additional parameters such as the initial population385

size and carrying capacity are required (see Table 1) to be able to calculate µ from µmax.386

For statistical approaches, which are specified directly in terms of µmax, µ is not defined.387

Nevertheless, even when µmax is estimated by statistical models, its estimated value will388

be different when experimental quantities such as the initial population size and carrying389

capacity change. In reality, the estimated values for both µmax and µ may also vary with the390

experimental conditions (such as genotype, medium, temperature, etc).391

We emphasize that the main difference between the maximum growth rate µmax and the392

intrinsic growth rate µ is that µmax is a statistical quantity, whereas µ is a model parameter.393

Therefore, obtaining different estimates of µ and µmax is expected and not a sign of bad394

performance of a model or method, especially for large initial population fractions. For395

example, the manual of one software (Delaney, 2014) provides options for fitting various396

statistical models and a single kinetic model but discourages users from applying the kinetic397

model because “it predicts fastest growth” as compared to the other implemented models.398

Our results can readily explain this observation and debunk the implied worse performance of399

the kinetic model. Indeed, the publication associated with this software recommends a large400

inoculum size (Delaney et al. 2013; associated studies labeled as 8, 22, 25, 42, and 43 in Figure401
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3B and supplementary table S1), for which we showed that µmax consistently overestimates402

µ.403

Given the differences between µmax and µ, which of these should preferably be estimated?404

Unfortunately, there is not a one-size-fits-all answer to this question. From a theoretician’s405

perspective, we recommend that researchers estimate the intrinsic growth rate µ. Most studies406

perform growth curve experiments to characterize growth for specific strains, treatments, or407

environments in the (either explicit or implicit) context of population ecology or mechanistic408

models – all of which are defined in terms of µ. Only the intrinsic growth rate µ can be409

used for simulating mechanistic models and therefore to identify the mechanisms which best410

explain the observed dynamics. The maximum growth rate µmax, on the other hand, is phe-411

nomenological: it describes what is observed in the data contingent on the population starting412

conditions and the experimental environment. At best, µmax approximates µ. However, from413

an experimenter’s perspective, estimating µmax has the advantage that model-free methods414

are technically easier to use than estimators of kinetic models, especially for data that dis-415

play diphasic or other non-sigmoid/non-‘S’ shaped growth. We strongly urge researchers who416

decide to estimate µmax to use (and report) a small initial population fraction and to assert417

that the data do not have a significant lag time.418

When using statistical methods, a second decision is necessary about whether to use model-419

based or model-free methods. In our noise-free, simulated data, model-based and model-free420

statistical methods yielded the same estimates for µmax (Figure 3A); future work should421

elaborate on their performance in the presence of different sources of noise (e.g., to expand422

on the work that has already been done by Mira et al. (2017) for the Easy Linear method).423

Although models are preferable from a theoretician’s view, certain types of experimental data424

(for example, displaying diauxic growth, curves without samples in the stationary phase, and425

other non-sigmoid shaped data as well as very noisy data) may not be fitted well by a model of426

sigmoidal growth. In this case the data may be better summarized by a model-free statistical427

method. Importantly, we recommend that the choice of method is justified clearly and in428

writing, no matter which method is used.429

2.3 Guidelines for estimating growth rates430

2.3.1 Ad hoc fitting an exponential curve to growth curves should be avoided431

One common approximation (Monod, 1949; Kassen, 2014) that is used to obtain an estimate432

of the intrinsic growth rate µ is to fit an exponential equation, like N(t) = N0e
µ t, to the early433

phases of growth (i.e., during the “log”/“linear” phase, prior to the deceleration and stationary434

phases). This method is explained in many introductory microbiology textbooks, as previously435

summarized in the explanation of model-free methods of section 2.2.1 above, and we refer to436

this approach as an exponential approximation. Under the exponential approximation, the437

intrinsic growth rate is given by µ = ln(N(t)/N0)/t.438

To test the accuracy of the exponential approximation when applied to batch culture439

population growth, we expressed the intrinsic growth rate as a function of population size440

and other possible parameters for different kinetic population growth models (Table 3 and441

Figure S5).442

We found that the exponential approximation is frequently a poor estimator of the intrinsic443

growth rate µ. The exponential approach is never valid for a population following Gompertz444
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Kinetic model Intrinsic growth rate µ

Exponential ln
(
N(t)
N0

)
/t

Logistic ln
(
N(t)
N0

1−N0/K
1−N(t)/K

)
/t

Gompertz ln
(

ln(N0/K)
ln(N(t)/K)

)
/t

Richards ln
(

(N(t)/N0)β(1−(N0/K)β)
1−(N(t)/K)β

)
/(tβ)

Baranyi ln
(

1− eh0 (1−N(t)/N0)
1−N(t)/K

)
/t

Huang α ln((−1+K/N(t))/(1−K/N0))
ln((1+eα τ )/(eα t−eα τ ))

Table 3: Intrinsic growth rate as function of the model parameters at time t for
different kinetic population growth models The difference between the equations in-
dicates that the exponential approximation may often not be appropriate; see also Figure
S5.

growth. There is no parameter range for which the equation ln (ln(N0/K)/ ln(N(t)/K)) /t445

reduces to ln (N(t)/N0) /t (see Table 3). The exponential approach is valid for the lo-446

gistic growth when the initial population size is very small in comparison to the carry-447

ing capacity (i.e., N0 � K) and for time points at which the population size remains448

small in comparison to the carrying capacity (i.e., N(t) � K). These conditions lead to449

ln(N(t)(1 − N0/K)/(N0(1 − N(t)/K)))/t ≈ ln(N(t)/N0)/t (see Table 3). This makes sense450

since the phase during which these conditions are satisfied corresponds to the regime in451

which logistic growth can be reduced to exponential growth. The same conditions apply452

to Baranyi growth, with the additional condition that the lag phase must be short (i.e.,453

h0 � 1), so that one obtains ln
(
1− eh0(1−N(t)/N0)/(1−N(t)/K)

)
/t ≈ ln(N(t)/N0)/t454

(see Table 3). If the lag phase is not short, the exponential phase starts later whereas the455

exponential approach assumes that it starts at the beginning of the growth. Richards growth456

is more complex. Here, the quantities (N0/K)β and (N(t)/K)β must be much less than 1457

to make the exponential approach valid. Thus, the larger the deceleration parameter β is458

when N0 � K and N � K, the more abruptly the “log”/“linear” phase transitions into459

the stationary phase, and the more valid the exponential approximation becomes, so that460

ln
(
(N(t)/N0)β(1− (N0/K)β)/(1− (N(t)/K)β)

)
/(tβ) ≈ ln(N(t)/N0)/t (see Table 3). Con-461

sequently, the exponential approximation is valid only in a very restricted set of conditions:462

when there is no lag phase, the initial population fraction is very small, and the measured463

population sizes remain small as compared to the carrying capacity. Most experimental data464

probably do not meet this necessary set of conditions.465

It is of note that throughout the literature, including introductory textbooks, the term466

“exponential growth rate” tends to be used to describe the intrinsic growth rate µ and some-467
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times deemed the same as the maximum growth rate µmax (e.g., Basra et al. 2018; Novak468

et al. 2009). We here strongly caution against this conflation of potentially very different469

quantities. In particular, we recommend that approximating batch culture growth with an470

exponential curve in order to get an estimate for the intrinsic growth rate µ requires careful471

assurance that the assumption is valid for the data at hand.472

2.3.2 Theory predicts that using µmax or the exponential approximation for es-473

timating relative fitness can yield wrong results474

In evolution and population biology, the relative fitness w of a mutant (M) compared to a475

wild-type (WT) is classically defined as the ratio of µM/µWT . The relative fitness or the476

selection coefficient, defined as s ≡ w − 1 = µM/µWT − 1, is used to classify a mutant as477

deleterious (w < 1 or s < 0), neutral (w = 1 or s = 0), or beneficial (w > 1 or s > 0).478

Thus, to infer how natural selection favors one strain over another from monoculture growth479

curves, microbial ecologists and evolutionary biologists need the intrinsic growth rate, which480

is obtained by fitting a kinetic model.481

One argument regarding the issues of miscalculation of the intrinsic growth rate µ discussed482

above is that these concerns are important for absolute growth rate estimates, but can be483

disregarded when considering relative estimates. Here, the argument is that whereas absolute484

estimates cannot be compared between data-sets, relative growth rates can be estimated485

within a data-set by using a common reference sample and these relative growth rates can then486

be compared between data-sets.Moreover, with regards to selection coefficients, the sign may487

be more important than the absolute value. Namely, incorrect absolute estimates should yield488

correct rankings of growth rate estimates, and thus correctly estimated signs of the selection489

coefficient. Below, we demonstrate that these assumptions are wrong and that incorrect490

estimates of the growth rates (for example, by assuming that µmax = µ) can severely affect491

the classification of strains into beneficial, neutral, or deleterious.492

To demonstrate the effects on relative fitness estimates of assuming µmax = µ, we simulated493

growth curve data from separate batch monocultures for two strains and estimated their494

maximum growth rates µmax using the growth curves. Then we assumed (erronously) that495

the maximum growth rate µmax was a good approximation of the intrinsic growth rate µ. We496

calculated the relative fitness of the mutant with respect to the wild-type as w = µMmax/µ
WT
max497

(or the selection coefficient as s = µMmax/µ
WT
max − 1).498

Figure 4A shows that using µmax to estimate the relative fitness generally infers incorrect499

values for the relative fitness (as well as the selection coefficient), unless both strains have500

exactly the same initial population fraction (N0/K). Even more concerning, this estimation501

sometimes categorizes the mutant as deleterious when it is beneficial, and vice versa. This502

is especially worrisome because we assumed noise-free data and an ideal case in which both503

bacterial strains follow the same population dynamics. In summary, equivocating µmax with504

µ is likely to lead to wrong estimates of fitness and selection coefficients.505

Mis-estimation of the selection coefficient also occurs when calculating relative growth rate506

values using the exponential approximation. Lenski et al. (1991) extended the exponential507

approximation to calculate the fitness of a mutant strain (M) relative to the fitness of a508

wild-type strain (WT ), w = ln(NM (t)/NM
0 )/ ln(NWT (t)/NWT

0 ) (or the selection coefficient509

s ≡ w − 1 = ln(NM (t)/NM
0 ))/ ln(NWT (t)/NWT

0 ) − 1). Note that under the assumption of510

exponential growth, both the relative fitness and the selection coefficient measured by the511
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equation stated above are time-independent. Both Lenski et al. (1991) and Ram et al. (2019)512

empirically set the time interval of measurements t to 24 hours.513

Similarly to using µmax as a proxy for µ, the exponential approximation yields wrong es-514

timates for the relative fitness (as well as the selection coefficient) in many cases (Figure 4B).515

For growth curves (except for the Gompertz model) in which the initial population fraction516

of the mutant is smaller than that of the wild-type, the exponential approximation is a more517

conservative estimator than µmax; it is less likely to overestimate the relative fitness. However,518

when the initial population fraction of the mutant is larger than that of the wild-type, the519

exponential approximation is likely to incorrectly infer that a beneficial mutant is deleteri-520

ous (Figure 4B). Thus, the exponential approximation both misestimates and misclassifies521

throughout much of the experimentally reasonable parameter range.522

Implications for the estimation of selection coefficients from growth rates:523

We showed that using µmax as a proxy for µ in order to calculate the relative growth rates or524

relative fitness can lead to biased estimates (Figure 4). The amount of bias in the estimate525

becomes larger as the difference in the true growth parameters between the two studied strains526

becomes larger. Accordingly, we strongly recommend that experimenters use the intrinsic527

growth rate µ to estimate relative fitness. According to population biology, relative fitness528

is defined as the ratio of the intrinsic growth rate of the mutant strain over the wild-type529

strain, µM/µWT (Lenski et al., 1991; Crow and Kimura, 2009; Chevin, 2011). From this530

point of view, it follows that relative fitness can only be estimated using the intrinsic growth531

rate µ. Nevertheless, fitness-related phenotypes, like µMmax/µ
WT
max, are sometimes used as a532

summary statistic of population growth that is contextual to the environmental, temporal,533

and population conditions (e.g., Adkar et al. 2017). Above we showed that a proxy of the534

intrinsic growth rate (like µmax or the exponential approximation) can accurately estimate535

the relative fitness only if specific criteria are met. When these criteria are not met, µmax536

becomes a composite parameter that depends on other experimental quantities that should537

be reported, like the initial fraction and lag time. Only if experiments are set up with small538

and equal initial fractions of the mutant and wild-type strains and if the strains do not exhibit539

a lag phase, using µmax as a proxy for µ to estimate the relative fitness may be justified.540

2.4 Application of theory: Re-analyzing 4 published data-sets541

In order to clarify the theoretical considerations discussed above, we re-analyzed four pub-542

lished data-sets using the diversity of methods discussed above and then compared how the543

different methods performed on the same data. Among the 50 studies reviewed, we identified544

four that were appropriate for re-analysis since these papers provided their complete data-set545

and reported their estimated values (Adkar et al., 2017; Hammer et al., 2021; Ram et al.,546

2019; Todd and Selmecki, 2020). Each of these bacterial growth curve data-sets reports op-547

tical density versus time for different bacterial strains, with a total of 142 curves across all548

studies. We used three publicly available R packages, Growthcurver, grofit and growthrates,549

to estimate growth parameters (Sprouffske and Wagner, 2016; Kahm et al., 2010; Petzoldt,550

2020). We tested two model-free methods (Spline and Easy Linear) and the model-based551

methods listed in Table 1. These models are based on different equations that are statistical552

(Zwietering et al., 1990) or kinetic (Tsoularis and Wallace, 2002; Baranyi and Roberts, 1994;553

Huang, 2011). We focused on inferring the maximum growth rate (µmax), both because it is554

of greatest relevance to the work discussed above and because it is the only quantity common555
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Figure 4: Different initial population fractions between wild-type and mutant batch
cultures result in poor estimates of relative fitness: Relative fitness ω̂ estimate versus
initial fraction N0,M/K of mutants for different kinetic population growth models. As a re-
minder, ω = µM/µWT . A) the maximum growth rate µmax is used as a proxy for the
intrinsic growth rate µ. Each point represents estimated values by Spline (growthrates
package) from simulated data averaged over 104 stochastic realizations. The solid lines cor-
respond to the analytical predictions of the relative fitness using estimates of the maximum
growth rate (see Table 2). B) the intrinsic growth rate is obtained applying the expo-
nential approximation. Solid lines correspond to the analytical predictions of the relative
fitness using estimates of the maximum growth rate (see Table 3). In both panels the dashed
line shows the real relative fitness value w. The dotted line represents the configuration in
which the growth model parameters of the mutant are equal to the parameters of the wild-
type (except their intrinsic growth rates). The dash-dotted line corresponds to the neutral
case, i.e. when both the mutant and the wild-type have the same growth rate. Parameter
values: KWT = KM = K = 105, µWT = 1, µM = 1.1, αWT = αM = 2, βWT = βM = 2,
h0,WT = h0,M = 2, τWT = τM = 2 and t = 1.

to all methods we tested. For kinetic models (which are defined in terms of µ), we estimated556

µmax by using derivatives to find the maximum slope of ln(N/N0) (as shown in Figure 1C;557

see Table 2).558

The maximum growth rate (µmax) values estimated from the same data vary widely de-559

pending on the method used (Figure 5A, and Figures S1A, S2A and S3A). It is not possible to560

assess the accuracy of the estimates for the model-free methods. However, we used goodness-561

of-fit tests to assess the model-based methods by calculating the residual sum of squares562

(RSS). The RSS measures the discrepancy between the data and the fitted model. Thus, the563

smaller the RSS, the better the model. Since the models we tested have different numbers of564

parameters, we also calculated Akaike’s Information Criterion (AIC) for kinetic models using565

the method of López et al. (2004). The results of the AIC are consistent with those of the566

RSS (see Supplementary Material). Despite the discrepancy in the inferred maximum growth567

rate, many of the models fit the data well in most cases because the RSS values are low and568

similar (Figures 5B-C, and Figures S1B-C, S2B-C and S3B-C).569

A visual inspection of the fits corroborates our findings that all models fit the data gener-570
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ally well (visualizations of all fits available at available at https://github.com/LcMrc/GrowthRates).571

We emphasize that a visual inspection is important to ensure that the estimated values are572

appropriate. Indeed, in a few cases, the fits proved to be unsatisfactory although the summary573

statistics were good (see, e.g., Figure S6).574

No model is consistently preferred for all samples of a data-set. This highlights the dif-575

ficulty of choosing ‘the one’ right model, although this choice has a great impact on the576

growth parameter estimates. The Gompertz equation, whether statistical or kinetic, fre-577

quently yielded the worst statistics, although our literature review indicates the statistical578

Gompertz equation as the most frequently used model. Moreover, the models used in the579

original publications of the data were not always the models that we found to obtain the best580

statistics.581

As previously stated, model-free methods may be preferred for some research questions,582

especially when neither the underlying mechanisms nor relative fitness estimates are of in-583

terest. Model-free methods obtain the maximum growth rate by determining the maximum584

of the function d ln(N(t)/N0)/dt (see Figure 1C). A quick comparison with the derivative of585

the experimental data ensures the validity of the estimate. We found that Easy Linear gave586

slightly different results from the Spline method because the former requires the user to spec-587

ify how many data points to include for the analysis of the log-linear part of the growth curve.588

Note that model-free methods are likely to be more accurate than model-based methods for589

estimating µmax because the latter involve more parameters and a data fit.590

Relative growth rate estimates from empirical data:591

Adkar et al. (2017) used µmax estimates from a statistical Gompertz model in order to estimate592

relative fitnesses. Therefore, this study allowed us to evaluate our concerns about using µmax593

for relative fitness estimates. First, we used all approaches (model-free methods, statistical594

models, and kinetic models) to estimate µmax for the wild-type and mutant strains from this595

data-set. Assuming (erroneously) that µmax was a proxy for µ, we then calculated the relative596

fitness. Figure 5D shows that kinetic models (circles) estimate more beneficial fitness values597

than methods that estimate µmax directly (diamonds for model-free methods and squares for598

statistical models). Especially for strains that were estimated by Adkar et al. 2017 (crosses)599

to have especially low fitness, we found a large variation in the fitness values estimated by600

different methods.601

Next, we used kinetic models to estimate the intrinsic growth rate µ for the wild-type and602

mutant strains from this data-set and subsequently calculated the relative fitness. In Figure603

5E we compared our estimated values with those published by Adkar et al. (2017). Again,604

many models estimate larger fitness values than those reported in the original study. This is605

especially pronounced for samples that were estimated by Adkar et al. 2017 (crosses) to have606

especially low fitness.607

The overall conclusion of this section is that estimating relative fitness using inaccurate608

estimates of µ likely propagates to the level of relative fitnesses, and causes large discrep-609

ancies between relative fitness values estimated using different methods. Importantly, these610

discrepancies are most pronounced for samples that are of special interest in an experiment.611
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Figure 5: Analysis of published data-sets (Adkar et al., 2017) shows that estimates
differ vastly depending on the method: A) Maximum growth rate µ̂max estimate for
each strain. Each growth curve was analyzed using three different R packages including both
model-free and model-based methods. The crosses show the values reported in the paper, the
circles are obtained by methods based on kinetic models, the squares by methods based on
statistical models and the diamonds by model-free methods. B) Goodness-of-fit measured as
residual sum of squares (RSS) by strain for the statistical models. C) RSS by strain for the
kinetic models. We include the RSS of statistical and kinetic models in different plots as the
scale of the y-axes differ between these models: statistical models operate on a logarithmic
scale since y = ln(N/N0) but kinetic models operate on a linear scale N(t). Relative fitness:
D) and E) Relative fitness estimate ω̂ versus strain. In D) the relative fitness is computed
using µmax whereas in E) it is computed using µ.
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Implications of data re-analysis612

Our analysis indicates that the choice of the best method to analyze growth curve data is very613

difficult. Especially, identifying the ‘right’ model that best fits all strains/treatments within614

a data-set seems daunting. This difficulty might explain why there exists such a diversity of615

methods for analyzing growth curve data, as we found in the literature review. Interestingly,616

we saw that most articles only report using one method for analyzing their data. We suspect617

that different labs and researchers have their own preferences and habits on how to obtain618

growth rate estimates. In the interest of time (and sanity), researchers may be using the model619

and method they know best and for which they have obtained reasonable-looking results in620

the past, rather than trying out a multitude of unfamiliar computational tools.621

One clear finding from our re-analysis of published data is that the Gompertz family of622

models – both statistical and kinetic – are usually not the best choice. This point was previ-623

ously made by López et al. (2004). We corroborate their empirical results with mathematical624

arguments. However, our literature review showed that the Gompertz models have remained625

popular long after López et al.’s study in 2004. We recommend that experimenters fit and626

compare more than one model when analyzing data. In the light of our results, it will be im-627

portant to develop one easy-to-use framework that allows for model choice and comparison,628

which would easily single out inappropriate models.629

Our results confirmed the finding of (Peleg and Corradini, 2011) that standard statistical630

techniques for model selection were often unhelpful (Figure 5B-C): when comparing the fit of631

different models to the same data, the goodness-of-fit statistics did not always select the model632

that looked best upon visual inspection and/or there was not much difference between models633

in terms of goodness-of-fit. This corroborates our personal communications with empiricists634

that they are reluctant to use models for fitting their growth curve data.635

3 Recommendations & Conclusions636

Despite the long-established study of batch culture growth curve data, estimating growth637

rates is still not straightforward. Using a literature review, math, simulations, and analysis of638

previously published data, our work highlights experimental and theoretical pitfalls encoun-639

tered by many researchers who work with batch monoculture growth curves. To that end,640

we have summarized our recommendations for better growth rate estimates as a checklist in641

Figure 6.642

General recommendations:643

We urge readers to remember that the intrinsic growth rate µ, a model parameter estimated644

from kinetic models, is not the same as the maximum growth rate µmax, a statistical quantity645

of data estimated using statistical models or by model-free methods. Although µmax is often646

used as a proxy for µ, this assumption is not always justified.647

We recommend that researchers make their raw data and methods available and repro-648

ducible. In particular, this involves reporting all experimental parameters like inoculum size,649

carrying capacity or initial fraction, and lag time. During our literature review, we were sur-650

prised by the lack of sufficient information on experimental methods, estimated values, and651

data availability.652

Experimental recommendations:653

Good data begin with good experimental methods. In the absence of a lag phase, the fastest654
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✓ Remember that the maximum growth rate  is not always a good proxy for the intrinsic growth rate .


✓ Make your data and methods available and reproducible. Report all experimental parameters.
μmax μ

✓ Use the smallest possible inoculation size above the threshold of detection.

✓ When the aim is to compute relative growth rates, mutant and reference must start from the same initial fraction.

✓ Applying different methods:

❖ When using model-based methods, choose the best fitting of several models.

❖ Use goodness-of-fit statistics to compare the models and select the best fit for each growth curve.


❖ When using model-free methods to estimate , evaluate different methods.

❖ Always visually inspect the fit against the data.


✓ Keep in mind that statistical models and model-free methods compute different quantities than kinetic models (  vs. ).


❖ Most studies are interested in the intrinsic growth rate , or a proxy for . If possible, directly estimate .


❖ Use only estimates of the intrinsic growth rate  to estimate relative fitnesses or selection coefficients.

✓ Check whether the necessary conditions for using proxies or assumptions are met.

✓ Avoid the Gompertz model

μmax

μmax μ
μ μ μ

μ

General recommendations

Experimental recommendations

Inference recommendations

Figure 6: A list of recommendations for better growth rate inference from monoculture growth
curves.

growth rate (both for the maximum growth rate µmax and for the intrinsic growth rate µ) is655

observed at the very start of the growth curve. As we show in Figures 3A and 4, the estimates656

of interest can be highly sensitive to the inoculum size. Also, when a lag phase is suspected,657

reliable data from the start of the growth curve are necessary to quantify the lag time and658

growth rate. Therefore, we recommend that experimenters use the smallest inoculation size659

possible that is still reliably above the threshold of detection (if using a microplate reader,660

follow the recommendations of Hall et al. 2014).661

For accurate estimation of the relative growth rate, we stress that the mutant and reference/wild-662

type strains should start from the same initial fraction (NM
0 /KM = NWT

0 /KWT ; Figure 4),663

which is not necessarily the same absolute size. If the strains have the same carrying capacity664

(KM = KWT ) at stationary phase, then it is possible to either dilute the cultures used for inoc-665

ulation by the same dilution factor or begin the growth curves at the same absolute inoculum666

size (NM
0 = NWT

0 ). However, if the carrying capacities differ between strains, then the same667

absolute inoculum size cannot be used. We found in our literature review that about half of668

papers use a fixed absolute inoculum size to start their growth curve experiments whereas the669

other half use a fixed dilution factor, usually without justifying either choice. We recommend670

that experimenters interested in calculating relative growth rates use a fixed dilution factor.671

A pilot experiment is ideal to inform on the carrying capacities and corresponding optimal672

inoculum sizes.673

Inference recommendations:674

Regarding inference methods, our main recommendation is to try out several different methods675

on the same data. We recommend that a computational method is used to estimate the growth676

rate. (Manual) Fitting of an exponential model should be avoided (Table 3), regardless677
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of whether the exponential model is fit explicitly or implicitly by using the equation R =678

(log2N2 − log2N1)/(t2 − t1).679

Model-free computational methods tend to be technically easier to use than model-based680

methods, but they can only estimate µmax. If a model-free method is used, we recommend681

to try different programs, ideally based on different algorithms. Model-based methods often682

require more computational knowledge for fitting, but we still recommend that researchers683

try to fit more than one model. We recommend this because, by re-analyzing previously684

published data, we showed that there is not one model that fits best for all data-sets or even685

one model that best fits every curve within a specific data-set (Figures 5B-C, S1B-C, S2B-C686

and S3B-C). Therefore, it is important to select the best fitting model for each curve. For687

those familiar with the R statistical programming language, we recommend the growthrates688

package, because all of the kinetic models presented in Table 1, as well as model-free methods689

for estimating µmax, can easily be fitted with this package. We recommend that researchers690

use goodness-of-fit summary statistics (like the RSS, AIC, etc.) to compare models and select691

the best fit. However, additional visual inspection of the estimated value and the data is692

essential because goodness-of-fit statistics can be misleading (e.g., Figure S6).693

Our work explains and demonstrates that and why the maximum growth rate µmax is694

different from the intrinsic growth rate µ, which is a key point to take away and remember from695

this paper. We suggest that researchers attempt to estimate µ directly from their data using696

kinetic models. However, we have shown that it can be justified to use the statistical quantity697

µmax as a proxy for the model parameter µ if certain conditions are met. We recommend698

that experimenters decide which one makes more sense to use for the experimental question699

at hand and, based on that decision, select the types of models or model-free approaches700

to use. If µmax is to be inferred, model-free methods or fits of statistical models can be701

used. Model-based methods can either be used to estimate the maximum growth rate µmax702

of statistical models, or the intrinsic growth rate µ of kinetic models. We urge experimenters703

not to compare estimates obtained from kinetic and statistical models because these different704

model types estimate different growth rate parameters. Researchers should be aware that705

confusion between the two quantities is common and different authors/fields use different706

naming conventions. We hope that this paper provides readers with the necessary conceptual707

understanding to critically navigate the literature. Finally, we note that only the intrinsic708

growth rate µ (and not µmax or the exponential approximation) should be used for estimating709

the relative fitness (Figure 4) from monoculture growth curves.710

It is important to verify that the necessary conditions are met for the inference method(s)711

to be used. For example, the exponential approximation should only be used when the712

following assumptions are met: the inoculum size is much smaller than the carrying capacity713

(N0 � K, e.g., by at least 2 orders of magnitude), only time points at which the population714

size remains much smaller than the carrying capacity are considered (N(t)� K), and the lag715

time is very short or absent (e.g., h0 � 1 for growth following a Baranyi model). Given these716

restrictive assumptions, rather than demonstrating that the conditions for the exponential717

approximation are met, it may be more feasible for researchers to directly fit one of the718

kinetic models listed in Table 1. Another approximation that requires justification is the use719

of µmax as a proxy for µ. This approximation is only valid for small initial population fractions720

(Figure 3) and short (or absent) lag times. To demonstrate that this is the case, it is essential721

that experimenters report the initial population fraction(s) and the lag time(s) when using722

µmax as a proxy for µ.723
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Finally, we recommend that researchers avoid fitting the Gompertz model for both absolute724

and relative estimates of µ. In our study, the kinetic Gompertz model consistently showed725

wrong estimates for simulated data (Figures 3-4) and unusually large estimates for empirical726

data (Figure 5).727

4 Methods728

4.1 Literature review729

We quantified the most frequently used methods of analyzing growth curve data for extracting730

summary statistics. To this end, we used Web of Knowledge and Google Scholar to search731

for peer-reviewed papers in the evolution and ecology literature that gathered any type of732

growth curve data proportional to the number of individuals growing in a homogeneous,733

liquid culture and estimated growth parameters from those data. Papers that quantified734

binary presence/absence of growth (e.g. to assay lag time or spore viability) were excluded.735

Most papers were found because they cited one of the following growth curve methods papers,736

Zwietering et al. (1990); Hall et al. (2014); Sprouffske and Wagner (2016); or Delaney et al.737

(2013). From each paper, we extracted information about whether the method used to analyze738

growth curves is explicitly cited or described, what type(s) of growth curve summary statistic739

was used, whether a model-free or model-based approach was used, whether the growth rate is740

from a statistical or kinetic approach, which model(s) were fitted (if no equation is given, then741

the name of the model as reported by the author), whether the growth curves were inoculated742

from a fixed starting value or as a fraction of the carrying capacity, and whether the growth743

curve raw data are publicly available or, at least, plotted (summarized in table S1). For all744

papers in which growth curves were inoculated using a fraction from overnight cultures, the745

dilution factor was used as an estimator of the initial dilution fraction. If given, we extracted746

the initial dilution factor and any accompanying information about the inoculum (e.g., length747

of overnight culture) to indicate whether the dilution factor is a good proxy for the initial748

population fraction (N0/K). For papers in which growth curves were inoculated using a fixed749

absolute number of cells, we report the dilution fraction only if sufficient information about750

the inoculum size and carrying capacity was provided in the methods. Finally, we categorized751

different model-free growth rate estimation methods that were applied ad hoc as either “Easy752

Linear” if a consistent method was given for selecting which points to include in the regression753

(since this is the main feature of popular model-free methods like that of Hall et al. 2014), or754

as “exponential approximation” if there was no information about which points were included755

in the regression or as “spline” if pairs of successive measurements were used to estimate the756

local slope of the curve.757

4.2 Analyzing 4 published data-sets758

Data-sets appropriate for our analysis were found during our literature review and the data759

were accessed as indicated in each paper.760

We used the following R (version 4.1.1) packages to re-analyze the data: Growthcurver761

(version 0.3.1), grofit (version 1.1.1-1) and growthrates (version 0.8.2). Each of them was762

downloaded from the CRAN repository except grofit that we obtained from Kahm et al.763

(2010). Indeed the latter was found to be removed from the CRAN repository. The package764
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Growthcurver is based on the kinetic logistic model, whereas grofit includes four statistical765

models (Logistic, Gompertz, modified Gompertz and Richards). The package growthrates766

provide both model-free methods (Easy Linear and Spline) as well as methods based on767

kinetic models (Logistic, Gompertz, Richards, Baranyi and Huang).768

We analyzed 143 population growth curves (31 from Adkar et al. 2017; 6 from Ram et al.769

2019; 66 from Todd and Selmecki 2020; and 40 from Hammer et al. 2021) using all methods770

mentioned above. We focused on the maximum growth rate µmax, because it is the only771

quantity common to all models and methods. Since the kinetic models are defined based on772

the intrinsic growth rate µ, we used Table 1 to calculate the maximum growth rate µmax from773

the respective model.774

To test the accuracy of the fits obtained by the model-based methods, we calculated the
residual sum of squares (RSS). We used the definition from López et al. (2004):

RSS =

n∑
i=1

(ODi − ÔDi)
2 .

Here, n is the number of data points, ODi is the ith optical density value to be estimated775

and ÔDi is the ith estimated optical density value. Since the models have different numbers776

of parameters, we also calculated the Akaike’s Information Criterion (AIC) for the kinetic777

models as given in López et al. (2004) and explained in the supplementary methods.778

779

4.3 Simulations780

We generated data representing the dynamics of microbial populations using a Gillespie al-781

gorithm for the kinetic Gompertz, Richards and Logistic models (Gillespie, 1976, 1977). For782

the Baranyi and Huang models, a modified Next-Reaction algorithm was required since these783

models have time-dependent growth rates (Anderson, 2007). All simulation code was writ-784

ten in C and is available at https://github.com/LcMrc/GrowthRates. We detail below the785

algorithms used.786

Gillespie algorithm: Let us denote by N the number of individuals. The only elementary787

event that can happen is division of a microbe, whose rate is denoted by kN→N+1. Let us note788

that kN→N+1 = µ log(K/N)N , kN→N+1 = µ(1 − N/K)N and kN→N+1 = µ(1 − (N/K)β)N789

for the kinetic Gompertz, Logistic and Richards models, respectively. Simulation steps are as790

follows:791

1. Initialization: The population starts from N0 microorganisms at time t = 0.792

2. Time update: The time increment ∆t is sampled randomly from an exponential distri-793

bution with mean 1/kN→N+1 and the time t is updated such that t← t+ ∆t.794

3. Number of individuals update: a division occurs and the population size N increases by795

one such that N ← N + 1.796

4. We go back to Step 2 and iterate until the desired time limit is reached.797
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Next-Reaction algorithm: Let us denote by N the number of individuals. The only798

elementary event that can happen is division of a microbe, whose time-dependent rate is799

denoted by kN→N+1(t). Let us note that kN→N+1(t) = µeµt(1 − N/K)N/(eh0 − 1 + eµt)800

and kN→N+1(t) = µ(1 − N/K)N/(1 + eα(t−τ)) for the kinetic Baranyi and Huang models,801

respectively. In the following, we will denote by P the first firing time and T the internal802

time.803

1. Initialization: The population starts from N0 microorganisms at time t = 0. The first804

firing time P is sampled from an exponential distribution of mean 1 and the internal805

time T is set to 0.806

2. Time update: The time increment ∆t is computed solving

∫ t+∆t

t
kN→N+1(u)du = P−T807

and the time t is updated such that t← t+ ∆t.808

3. Number of individuals update: a division occurs and the population size N increases by809

one such that N ← N + 1.810

4. Internal time update: The internal time T is updated such that T ← T + ∆T , where811

∆T =

∫ t+∆t

t
kN→N+1(u)du.812

5. First firing time update: The first firing time P is updated such that P ← P + ∆P ,813

where ∆P is sampled from an exponential distribution of mean 1.814

6. We go back to Step 2 and iterate until the desired time limit is reached.815

4.4 Data availability816

The authors state that all data necessary for confirming the conclusions presented in the article817

are represented fully within the article or Supplemental Material. Annotated C implemen-818

tations of numerical simulations, annotated code to reproduce all computationally produced819

graphs, and additional figures and tables reporting the data re-analysis fits and estimates are820

available at https://github.com/LcMrc/GrowthRates.821
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1 Supplementary methods

As explained in the main text, we re-analyzed the population growth curves from previously
published data sets by fitting many different models and calculating the residual sum of
squares (RSS). Since the models have different numbers of parameters, we also calculated the
Akaike’s Information Criterion (AIC) for the kinetic models giving N(t), which reads

AIC = n ln

(
RSS

n

)
+ 2(p+ 1) +

2(p+ 1)(p+ 2)

n− p− 2
, (1)

where p is the number of parameters (López et al. 2004).
However, this equation may not be valid for the statistical models because these models are

on a logarithmic scale (y = ln(N/N0)) and therefore the errors around the data are probably
not normally distributed as assumed by López et al. 2004.

∗Co-first and co-corresponding author: hermina.ghenu@gmail.com
†Co-first and co-corresponding author: loic.marrec@iee.unibe.ch
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Figure S1: Analysis of published data sets - Hammer, Le, and Moran 2021: A)
Maximum growth rate µ̂max estimate versus strain. Each growth curve was analyzed using
three different R packages including both model-free and model-based methods. The crosses
show the values reported in the paper, the circles are obtained by methods based on kinetic
models, the squares by methods based on statistical models and the diamonds by model-free
methods. B) Residual sum of squares RSS versus strain for the statistical models. C) Residual
sum of squares RSS versus strain for the kinetic models.
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Figure S2: Analysis of published data sets - Ram2019: A) Maximum growth rate µ̂max

estimate versus strain. Each growth curve was analyzed using three different R packages
including both model-free and model-based methods. The crosses show the values reported
in the paper, the circles are obtained by methods based on kinetic models, the squares by
methods based on statistical models and the diamonds by model-free methods. B) Residual
sum of squares RSS versus strain for the statistical models. C) Residual sum of squares RSS
versus strain for the kinetic models.
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Figure S3: Analysis of published data sets - Todd and Selmecki 2020: A) Maximum
growth rate µ̂max estimate versus strain. Each growth curve was analyzed using three different
R packages including both model-free and model-based methods. The crosses show the values
reported in the paper, the circles are obtained by methods based on kinetic models, the
squares by methods based on statistical models and the diamonds by model-free methods.
B) Residual sum of squares RSS versus strain for the statistical models. C) Residual sum of
squares RSS versus strain for the kinetic models.
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Figure S4: Maximum growth rate: A) Maximum growth rate µmax versus parameter h0 for
the Baranyi model. B) Maximum growth rate µmax versus parameter β for the Richards model.
C) Maximum growth rate µmax versus parameter α for the Huang model. D) Maximum growth
rate µmax versus parameter τ for the Huang model. In every panel, each point represents
estimated values from simulated data averaged over 104 stochastic realizations. The solid
lines correspond to the analytical predictions of the maximum growth rate (see Table 2 in
the main text). The dashed line shows the intrinsic growth rate value µ. Parameter values:
N0 = 102, K = 105, µ = 1, α = 2 for panel D and τ = 2 for panel C.
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Figure S5: Intrinsic growth rate: From A) to F) Intrinsic growth rate µ̂ estimate versus
parameter t for different initial population fractions N0/K, parameters and kinetic models
(A) Logistic, B) Gompertz, C) Richards, D) Baranyi, E) and F) Huang). The intrinsic growth
rate is analytically estimated using the exponential hypothesis µ/ = ln(N(t)/N0)/t. The black
dashed line shows the real value of µ. Parameter values: K = 105, µ, τ = 2 for E) and α = 2
for F).
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Figure S6: Analysis of published data: Optical density OD versus time t. The data points
are fitted using different kinetic models. The black (Paper) and red (Growthcurver - Logistic
(K)) lines are the same since it was the method applied in the paper.
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Figure S7: Selection coefficient: a) Estimated selection coefficient ŝ versus parameter h0 for
the Baranyi model. b) Estimated selection coefficient ŝ versus parameter β for the Richards
model. In every panel, each point represents estimated values from simulated data averaged
over 104 stochastic realizations. The solid lines correspond to the analytical predictions of the
selection coefficient using those of the maximum growth rate (see Table 2.2.1 in the main text).
The dashed line shows the real selection coefficient value s. The dotted line represents the
configuration where the parameters of the mutant are equal to those of the wild-type (except
their growth rates). The dash-dot line corresponds to the neutral case, i.e. where both the
mutant and the wild-type have the same growth rate. Parameter values: KW = KM = 105,
µW = 1, µM = 1.1, s = 0.1, βW = 2 and h0,W = 2. When not specified, βM and h0,M have
the same values as the wild-type.
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