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Abstract: Fat distribution differences between males and females are a major risk factor for 
metabolic disease, but their genetic etiology remains largely unknown. Here, we establish 
ADGRG6 as a major factor in adipogenesis and gender fat distribution. Deletion of ADGRG6 in 
human adipocytes impairs adipogenesis due to reduced cAMP signaling. Conditionally knocking 
out Adgrg6 in mouse adipocytes or deleting an intronic enhancer associated with gender fat 
distribution generates males with female-like fat deposition, which are protected against high-fat-
diet-induced obesity and have improved insulin response. To showcase its therapeutic potential, 
we demonstrate that CRISPRi targeting of the Adgrg6 promoter or enhancer prevents high-fat-
diet-induced obesity. Combined, our results associate ADGRG6 as a gender fat distribution gene 
and highlight its potential as a therapeutic target for metabolic disease.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2022.06.24.497411doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497411


 2 

2 

Introduction: 
Obesity, an excess of white adipose tissue (WAT), is a global epidemic and is closely associated 
with chronic metabolic diseases, such as type 2 diabetes and cardiovascular disease (1, 2). Obesity-
related metabolic diseases are not simply the result of excess fat, but rather the distribution of 
adipose tissue has a major effect on these co-morbidities. While most studies have used clinical 
measures of overall fat and body mass index (BMI) to estimate disease risk, many studies using 
CT and MRI clearly show that abdominal visceral adipose tissue (VAT), but not subcutaneous 
adipose tissue (SAT), is associated with an increased risk for type 2 diabetes (3-9). Additional 
studies also showed that increased VAT represents a risk factor for developing insulin resistance 
and cardiovascular disease (4-6, 10-15). During periods of high metabolic activity, VAT release 
free fatty acids (FFA) that contribute more to plasma FFA than SAT (12). As a less metabolic 
active organ, SAT has better long-term lipid storage capacity and is a buffer during intake of 
dietary lipids, protecting other tissues from lipotoxic effects (16). In addition, SAT was found to 
be associated with increased HDL and decreased LDL cholesterol levels (17-19), indicating its 
protective role for cardiovascular disease. Upon cold or b-adrenergic stimuli, SAT can also acquire 
characteristics of brown adipose tissue (BAT), known as browning (20-23), becoming more 
metabolically active by dissipating energy via thermogenesis. Thus, increased SAT with browning 
potential correlates with improved insulin sensitivity (24-26).  
Body fat distribution significantly differs between genders. Fat distribution differences are 
observed before puberty but become more prominent upon puberty (27, 28). Following puberty, 
females predominantly accumulate SAT, while males amass significantly more VAT. Women 
accumulate fat in the hip and limbs, while men accumulate a greater extent of fat in the trunk (29-
31). Accumulation of adipose tissue around the viscera, the body's internal organs, is associated 
with an increased risk of disease in both men and women (3-5, 32). In contrast, the preferential 
accumulation of adipose tissue in the lower extremities, such as the hips and legs, has been 
suggested to contribute to a lower incidence of myocardial infarction and coronary death in women 
during middle age (33, 34). This difference is thought to be due to numerous genes that are 
differentially expressed in adipose tissue between obese males and females, with only a few 
located on sex chromosomes (35). Many of these genes are involved in immune response and lipid 
and carbohydrate metabolism as well as clock genes, including PER2, BMAL2, and CRY1 (36). 
The differential distribution of body fat between genders has been attributed to downstream effects 
of sex hormone secretion. Although sex steroids, especially estrogen, are involved in determining 
adipose distribution, several additional factors also play an important role. Recent human genome-
wide association studies (GWAS) have identified multiple novel loci and pathways associated with 
measures of central obesity (37, 38). A recent GWAS study on body fat distribution difference 
between genders, identified multiple loci that are gender-heterogenous and associated with gender-
specific fat distribution (39). Many of these loci have marked gender dimorphic patterns, the 
majority of which have stronger associations in women than in men; however, the mechanisms 
underlying this dimorphism remain largely unknown.  
In a GWAS for gender-specific fat distribution in the UK Biobank, a noncoding single nucleotide 
polymorphism (SNP), rs6570507, near the adhesion G protein-coupled receptor G6 (ADGRG6; 
also called GPR126) showed gender heterogeneity for trunk fat ratio association, and was found 
to be associated with female trunk fat, but not with males (39). ADGRG6 is a G-coupled receptor 
that is involved in the formation of the myelin sheath, regulates Schwann cell differentiation via 
activation of cyclin adenosine monophosphate (cAMP) (40-42), and maintains connective tissue 
in intervertebral disc (43, 44), inner ear (45), ventricles (46), and placenta (47). Ablation of Adgrg6 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2022.06.24.497411doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497411


 3 

3 

in mouse 3T3-L1 adipocytes has been shown to prevent adipocyte differentiation (48). The 
ADGRG6 locus is also associated with adolescent idiopathic scoliosis (AIS), and several enhancers 
in this locus were previously characterized by our lab due to this association (49). However, there 
is very little known about the role of ADGRG6 in adipose tissue.  Here, we performed gender-
specific genetic association analyses using the UK Biobank (50, 51) and found that rs9403383, 
which is in high linkage disequilibrium (LD) with rs6570507 (r2=0.99), is associated with female 
trunk fat (P-value= 5.03478e-13) but is not associated with trunk fat in men. We show that 
rs9403383, leads to reduced enhancer activity and via transcription factor binding site and 
chromatin immunoprecipitation analyses demonstrate that the associated SNP affects HoxA3, GR 
(glucocorticoid receptor), and PGR (progesterone receptor) binding to an enhancer region. 
Knockout of this gene or enhancer in human adipocytes leads to impaired adipogenesis. 
Conditional knockout of Adgrg6 in adipocytes in mice, using two different Cre driving promoters 
(Pdgfra and Fabp4), leads to fat deposition differences, making males more female like, protects 
against high-fat-diet-induced obesity, and shows improved glucose tolerance and insulin 
sensitivity. Furthermore, removal of the adipocyte enhancer in mice similarly leads to female-like 
fat deposition, lower body weight in male mice, high-fat-diet induced obesity protection and 
improved insulin response. Finally, CRISPRi targeting of the promoter or enhancer of Adgrg6 
prevents high-fat-diet induced obesity and improves insulin response. Combined, our results 
identify ADGRG6 as an important adipogenesis factor regulating gender fat deposition and 
showcase its use as a therapeutic target to treat obesity and its co-associated morbidities. 

Results: 
A preadipocyte enhancer near ADGRG6 is associated with gender-specific fat distribution 
A SNP in an intron of ADGRG6, rs6570507, was found to be associated with gender body fat 
distribution from segmental bioelectrical impedance analysis (sBIA) data (39), having a larger 
effect in female VAT than males. In addition, rs6570507 is also associated with body fat 
distribution using waist-to-hip ratio adjusted for BMI and obesity in females (37, 52). We 
examined ADGRG6 expression in the Genotype-Tissue Expression (GTEX) portal (53), finding 
higher expression in males versus females in VAT (fig. S1A). rs9403383, which is in high LD 
with rs6570507 (r2=0.99), was found to be significantly associated with trunk fat mass (p-
value=2.61x10-11) in the UK Biobank (50, 51) (fig. S1B) and to have significant cis-eQTL 
association with both VAT (p-value=3.26x10-5) and SAT in the GTEX portal (p=5.2x10-13) (fig. 
S1C). To determine whether SNP rs9403383 at ADGRG6 was associated with trunk fat mass in 
humans and had different effects in men and women, we conducted sex-specific analyses in the 
European ancestry sample of the UK Biobank (UKB) cohort. While SNP rs9403383 was genome-
wide significantly (beta [95% CI] = -0.016, [-0.021 to -0.012]; P-value= 5.03 × 10-13) with trunk 
fat mass in women, we observed no significant association (beta [95% CI] = -0.0044 [-0.0044 to 
0.0002]; P-value = 0.06) in men (N=205,628). In addition, analysis of the Genome Aggregation 
Database (gnomAD) (version 3.1.2) of control/biobank populations (54), we found that rs9403383 
has higher allele frequency in females (0.4618) than in males (0.3951). 
We next set out to assess whether rs6570507 or SNPs in LD with it (r2>0.8) overlap potential 
active enhancer sequences, by analyzing H3K27ac ChIP-seq data from human adipose tissue (55). 
We found two H3H27ac peaks, which were previously named in a previous study in our lab that 
characterized AIS-associated enhancers, named ADGRG6_3 and ADGRG_4 (49), to overlap 
rs6570507 and rs9403383, respectively (Fig.1A). To functionally validate whether sequences at 
both H3K27ac peaks might have adipocyte enhancer activity, we cloned both regions into an 
enhancer assay vector, pGL4.23 (Promega), that contains a minimal promoter followed by the 
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luciferase reporter gene. We transfected these constructs into human preadipocytes, finding only 
ADGRG6_4 to have enhancer activity, showing ~15-fold higher luciferase expression than the 
negative control (Fig. 1B). We next tested whether rs9403383 affects ADGRG6_4 enhancer 
activity, finding that the gender body fat distribution associated variant significantly reduced 
enhancer activity compared to the unassociated variant (Fig. 1C).  
We next examined whether rs9403383 leads to transcription factor binding site (TFBS) changes. 
Using PROMO (56) and TRANSFAC (57, 58), we found that the unassociated sequence contains 
TFBS for multiple TFs that are critical for adipocyte differentiation, such as CCAAT/enhancer-
binding protein delta (C/EBPd) and glucocorticoid receptor (GR). The associated variant could 
disrupt the TFBS of Homeobox protein A3 (HoxA3), progesterone receptor (PGR) and GR (Fig. 
1D). We generated a human preadipocyte cell line carrying the rs9403383 associated variant by 
transfecting Cas9, gRNA, and a ssDNA donor sequence containing the associated variant. We 
selected for single-cell colonies and validated them for the existence of this variant by sequencing. 
We then preformed ChIP-qPCR with either HOXA3, GR, or PGR antibodies on human 
preadipocytes containing either the unassociated or associated rs9403383 variant. We also used 
IgG and PPARg as negative controls and histone H3 as a positive control. We observed 
significantly decreased enrichment for all three transcription factors (HOXA3, GR, or PGR) in the 
cells having the associated allele (Fig. 1E), indicating that the associated rs9403383 variant affects 
the binding of these transcription factors to the enhancer sequence. Taken together, we identified 
a novel adipocyte enhancer in the intron of ADGRG6 that carries a SNP associated with gender-
specific fat distribution and can hinder its activity. 
 

ADGRG6 is highly expressed in adipose progenitors and mesenchymal stem cells 
We next examined the role of ADGRG6 in adipose tissue. We measured, via qRT-qPCR, ADGRG6 
mRNA levels during human adipocyte differentiation and found them to be the highest in 
preadipocytes and to significantly decrease when subjected to adipocyte differentiation (fig. S2A). 
The expression pattern of ADGRG6 was similar to SOX9, which is required for adipogenesis and 
is known to decrease during adipocyte differentiation (59). In contrast, PPARg and FABP4, known 
adipogenic markers, were significantly increased during adipogenesis (fig. S2A). Analysis of 
ADGRG6 protein levels using Western showed similar results, whereby its protein expression was 
higher in preadipocytes and markedly decreased upon adipocyte differentiation (fig. S2A).  
We next examined Adgrg6 expression levels in mouse adipose tissues. We isolated the stromal 
vascular fraction (SVF) and adipocytes of pWAT of male mice. Gene analysis revealed that 
Adgrg6 mRNA levels were similar to Sox9, being 100-fold higher in the SVF fraction than 
adipocytes and in contrast to Fabp4 levels which were significantly higher in the adipocyte fraction 
(fig. S2B). We next FACS-isolated mesenchymal stem cells (MSC) (CD105+), adipose 
progenitors (APC) (CD34+, Pdfrga+) and immune cells (CD45+) from the SVF. We observed that 
Adgrg6 is highly expressed in MSC, indicating that Adgrg6 might be required for adipose lineage 
development (fig. S2C). Overall, these results demonstrate that ADGRG6 is highly expressed in 
early adipose progenitors and MSCs and significantly decreases in expression during adipocyte 
differentiation, potentially playing an early role in adipogenesis. In addition, Adgrg6 shows a 
similar expression pattern in both humans and mice (fig.S2D), suggesting that mice could be used 
as a model to characterize its function. 
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Fig. 1. A preadipocyte enhancer in the intron of ADGRG6 is associated with gender-specific 
fat distribution. (A) A linkage disequilibrium plot and integrative genomic viewer snapshot for 
the ADGRG6 locus showing the lead SNP rs6570507 and the linked SNP rs9403383 with 
H3K27ac ChIP-seq peaks, ADGRG6_3 and ADGRG6_4, from human adipose tissue [49]. The 
colors of the triangles reflect the degree of linkage disequilibrium (LD) with the lead SNP 
measured by r2 and the estimated recombination rates (cM/Mb) from HapMap CEU release 22 
shown as gray lines. (B) Luciferase assays in human preadipocytes for ADGRG6_3 and 
ADGRG6_4. pGL4.13 (Promega) with an SV40 early enhancer was used as a positive control and 
the pGL4.23 empty vector as a negative control. Data are represented as mean ± S.D ***≤0.001. 
(C) Luciferase assays for ADGRG6_4 and the associated variant containing rs9403383. Data are 
represented as mean ± S.D ***≤0.001. (D)Transcription factor binding site analysis of 
unassociated and associated variant sequences showing HOXA3, GR, and PGR binding sites. (E) 
HOXA3, GR, and PGR ChIP-qPCR relative to input for the unassociated and associated variant. 
IgG and PPARg are used as negative controls and Histone H3 as a positive control. Data are 
represented as mean ± S.D *≤0.05, **≤0.01, ***≤0.00 

4

rs6570507 rs9403383

rs9403383

rs9403383 (G/A)

Neg
ati

ve
 co

ntr
ol

Pos
itiv

e c
on

tro
l

ADGRG6-4

AD
GR
G6
-

rs9
40

33
83

0
10
20

10
12
14
16
18

0
5

10
15
20
25

4
6
8

10

Fo
ld

 c
ha

ng
e

(x
10

3 )

Figure 1. 

A

B C E

3

Inp
ut

IgG

Hist
on

e H
3

Ho
xA
3

GR PGR
PP
AR
g

Neg
ati

ve
 co

ntr
ol

Pos
itiv

e c
on

tro
l

AD
GR
G6

-3

AD
GR
G6

-4

***

*** ***

***

0

5

10

15

20
Unassociated
Associated

**

***

*

%
 In

pu
t

Scale
chr6:

50 kb hg38
142,310,000 142,320,000 142,330,000 142,340,000 142,350,000 142,360,000 142,370,000 142,380,000 142,390,000 142,400,000 142,410,000 142,420,000 142,430,000 142,440,000

s sUCSC annotations of RefSeq RNAs (NM_* and NR_*)ADGRG6/
NM_020455

0.78087 _

0 _

HOXA3
GR
PGR

Unassociated

Associated

D

rs6570507

GACAATGTTTTGAA

GACAATATTTTGAA

Chromosome 6

Li
nk

ag
e 

di
se

qu
ilib

riu
m

 (r
2)

Recom
bination rate (cM

/M
b)

ADGRG6 > < RP11-440G9.1

142,650k 142,700k 142,750k 142,800k 142,850k 142,900k142,625k 142,675k 142,725k 142,775k 142,825k 142,875k 142,925k

0

0.2

0.4

0.6

0.8

1

0

20

40

60

Sentinel SNP
not in LD
LD r2 > 0.2
LD r2 > 0.5
LD r2 > 0.8

Fo
ld

 c
ha

ng
e

(x
10

3 )

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2022.06.24.497411doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497411


 6 

6 

ADGRG6 is involved in adipogenesis 
To characterize the role of ADGRG6 in adipogenesis, we knocked out the gene, the ADGRG6_4 
enhancer, and generated a human preadipocyte line containing the associated rs9403383 SNP (Fig. 
2A). For the gene knockout (KO), we transfected human preadipocytes with Cas9 protein and two 
gRNAs targeting exon 2 of ADGRG6. For the ADGRG6_4 enhancer KO (EKO), human 
preadipocytes were transfected with gRNAs targeting the two ends of the enhancer sequence, 
along with Cas9 protein. For the associated SNP knockin (AKI), we first sequenced the human 
preadipocyte cell line and observed that it contains the unassociated allele. These human 
preadipocytes were transfected with a gRNA targeting ADGRG6_4 and an ssDNA donor 
containing the associated SNP rs9403383. Single-cell clones for all three manipulations were 
FACS isolated and screened by genotyping for homozygous colonies. We then measured, using 
qRT-PCR, ADGRG6 mRNA levels finding the gene KO cells to have nearly depleted levels of 
ADGRG6 transcripts, EKO cells 50% reduction and the associated variant 20% reduction 
compared to wild-type (WT) cells (Fig. 2B). We then subjected the ADGRG6 KO, ADGRG6 EKO, 
associated variant and WT cells to adipocyte differentiation. mRNA expression analyses using 
qRT-PCR showed that ADGRG6 KO, ADGRG6_4 EKO, and ADGRG6 AKI had lower expression 
of adipogenic markers, such as C/EBPb, PPARg, and FABP4 compared to the WT cells. In 
contrast, SOX9 levels, an adipogenesis inhibitor (59), were higher in ADGRG6 KO, EKO, AKI 
compared to WT cells (Fig. 2B). Oil red O lipid staining showed that KO, EKO, and AKI cells 
have lower lipid accumulation compared to WT (Fig. 2C). In addition, using Fiji (60), to quantify 
lipid droplet size, we observed ADGRG6 KO, ADGRG6_4 EKO, and ADGRG6 AKI cells to have 
more smaller lipid droplets containing cells than WT cells (Fig. 2C).  

To analyze the effect of increased ADGRG6 expression on adipogenesis, we overexpressed 
ADGRG6 in human preadipocytes. Myc-tagged ADGRG6 was transfected into human 
preadipocytes, followed by their differentiation into adipocytes. ADGRG6 mRNA levels, as 
measured by qRT-PCR, were significantly higher in the overexpressing cells compared to WT 
cells throughout differentiation (Fig. 2D). Immunoblotting further confirmed the overexpression 
of ADGRG6 (Fig. 2D). In contrast to the knockout cells, ADGRG6 overexpressing cells exhibited 
higher levels of adipogenic genes (C/EBPb, C/EBPd and FABP4) and lower levels of SOX9 
compared to WT cells (fig. S3). In addition, ADGRG6 overexpressing preadipocytes had much 
higher lipid accumulation than control cells and increased lipid droplet size (Fig. 2E). Combined, 
these data suggest that ADGRG6 has an important role in adipogenesis and deletion of its enhancer 
or the fat distribution associated SNP reduces its expression level leading to impaired 
adipogenesis.  

 
ADGRG6 increases cAMP levels during adipogenesis 

Previously characterized ADGRG6 ligands, such as Type IV collagen and Laminin-211, were 
shown to induce an adenosine 3’-5’-monophosphate (cAMP) response (42, 61). cAMP is a well-
known signaling molecule that initiates adipogenesis by increasing protein kinase A (pKA), which 
then phosphorylates early transcription factors, including C/EBPb (62-64). To test whether 
ADGRG6 might increase cAMP levels in preadipocytes, we measured cAMP levels in WT and 
ADGRG6 KO human preadipocytes in both basal condition and treatment with forskolin, which is 
an agonist pKA, using ELISA. We found that cAMP levels were approximately 2-fold lower in 
ADGRG6 KO cells compared to WT cells. In addition, upon forskolin treatment, WT cells had a 
2-fold increase in cAMP levels compared to the basal condition while ADGRG6 KO cells did not 
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show a significant increase (Fig. 2F). We also measured cAMP levels in human preadipocytes that 
overexpress ADGRG6. In the basal condition, ADGRG6 overexpression significantly increased 
cAMP levels and in the stimulated condition, cAMP levels were increased by 2-fold compared to 
WT (Fig. 2F). In order to test whether ADGRG6 can directly affect cAMP levels via adenyl cyclase 
(AC), that converts ATP to cAMP, we treated ADGRG6 overexpressing preadipocytes with 2',5'-
Dideoxyadenosine (aAdo), an inhibitor of AC. In the basal condition, cAMP levels were reduced 
in both WT and ADGRG6 overexpressing cells upon aAdo treatment (Fig. 2F). Moreover, in the 
Ado stimulated condition, the ADGRG6 overexpressing preadipocytes only increased cAMP 
levels by 25% compared to WT (Fig. 2F). Furthermore, we also examined the downstream target 
of cAMP-PKA, CREB phosphorylation. Immunoblotting revealed that in basal condition, 
ADGRG6 KO cells have lower levels of p-CREB compared to control cells (Fig. 2G), while 
ADGRG6 overexpression significantly increased p-CREB (Fig. 2H). In the stimulated condition, 
p-CREB increased in WT cells but not in ADGRG6 KO cells (Fig. 2G). In contrast, ADGRG6 
overexpression did not further increase p-CREB (Fig. 2H), likely due to significant increase in the 
basal condition. Taken together, our result suggests that ADGRG6 increases cAMP levels and its 
downstream target CREB in human preadipocytes to promote adipocyte differentiation (Fig. 2I).  

 
Conditional knockout of Adgrg6 in adipocytes leads to female-like fat depots in males 

To examine the role of Adgrg6 on adipose tissue development in vivo, we generated adipose-
specific knockout mice (Adgrg6ASKO). We crossed loxP flanked Adgrg6 exon 3 and 4 (Adgrg6fl/fl) 
mice (65) with the platelet derived growth factor receptor alpha (Pdgfra) promoter-driven Cre 
mice (Pdgfra-Cre), in which Cre is highly expressed in adipose-lineage cells and progenitors (66) 
(Fig. 3A). qRT-PCR analysis of Adgrg6ASKO/ASKO homozygous mice, showed Adgrg6 mRNA levels 
to be 80% in iWAT (inguinal) and 40% in pWAT (perigonadal) compared to the Cre(-)/floxed 
Adgrg6 mice (termed hereafter as control mice). This ablation efficiency is reported in previous 
studies using the Pdgfra-Cre mice (67). Notably, there was no significant difference in Adgrg6 
expression between female Adgrg6ASKO/ASKO and female control littermates (Fig. 3B). Adipogenic 
markers, such as Pparg and Fabp4 were decreased in iWAT and pWAT in Adgrg6ASKO/ASKO male 
mice and Sox9, an adipogenesis inhibitor, showed higher mRNA levels compared to control 
littermate male mice (fig. S4A). Adgrg6ASKO/ASKO male mice showed significantly lower body 
weight (BW) than WT mice, while the female Adgrg6ASKO/ASKO mice displayed no difference in 
BW compared to their control littermates (Fig. 3C). There was no difference in food intake 
between control and KO mice (fig. S4B). However, the BW of the Adgrg6ASKO/ASKO male mice was 
similar to age-matched female KO mice (Fig. 3C).  

The Pdgfra-driven promoter has been utilized to label and genetically modify adipose lineage 
genes; however, its expression is also detected in other tissues, such as the retina and glial cells 
(66-69). We thus also conditionally knocked out Adgrg6 by crossing Adgrg6fl/fl mice with the 
adiponectin C1Q and collagen domain containing (Adipoq) promoter-driven Cre mice (Adipoq-
Cre). The Adipoq promoter is known to drive expression in more mature adipocytes (70); however 
some studies utilized this mouse model to manipulate genes expressed in earlier adipose 
progenitors (71, 72). Similar to the Pdgfra-Cre driven mice, homozygous Adipoq-Cre;Adgrg6fl/fl 
male mice showed reduced body weight compared to control mice (fig. S4D). While the effect on 
BW was not as substantial as that of the Pdgfra-driven Cre, likely due to Adgrg6 expression being 
primarily in early adipose progenitors, the difference remained significant. All subsequent 
experiments were carried out in Pdgfra-driven Cre mice due to their stronger adipose progenitor 
expression. 
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Fig. 2. ADGRG6 regulates adipogenesis via cAMP. (A) Schematic of the various ADGRG6 
manipulations generated in human preadipocytes. ADGRG6 knockout (KO), enhancer knockout 
(EKO), ADGRG6 associated knockin (AKI) and ADGRG6 overexpression. (B) qRT-PCR of 
ADGRG6 and adipogenic markers (C/EBPb, PPARg, FABP4 and SOX9) during adipocyte 
differentiation of control, ADGRG6 KO, ADGRG6 EKO, and ADGRG6 AKI cells. Data are 
represented as mean ± S.D *≤0.05, **≤0.01, ***≤0.001. (C) Oil red O staining (left) and lipid 
distribution (Right) by Fiji of control, ADGRG6 KO, ADGRG6 EKO, and ADGRG6 AKI cells. 
Data are represented as mean ± S.D *≤0.05, ***≤0.001.  (D) qRT-PCR of ADGRG6 during 
adipocyte differentiation of control and ADGRG6 overexpressing cells (Left). Immunoblotting for 
ADGRG6 (Right). Data are represented as mean ± S.D ***≤0.001. (E) Oil red O staining (left) 
and lipid distribution (Right) by Fiji of control, ADGRG6 overexpressing cells. Data are 
represented as mean ± S.D **≤0.01, ***≤0.001. (F) cAMP levels of control, ADGRG6 KO, 
ADGRG6 overexpressing cells and ADGRG6 overexpressing cells treated with 2',5'-
Dideoxyadenosine (dAdo) in basal condition or stimulated with forskolin. Data are represented as 
mean ± S.D *≤0.05, **≤0.01, ***≤0.001. (G) Immunoblotting for phospho-CREB, CREB, and 
GAPDH in ADGRG6 KO in basal condition or stimulated with forskolin. (H) Immunoblotting for 
myc-ADGRG6, phospho-CREB, CREB, and GAPDH in ADGRG6 overexpressing cells in basal 
condition or stimulated with forskolin. (I) Proposed model of ADGRG6 function during 
adipogenesis. 
 

We next used dual energy X-ray absorptiometry (DEXA) to examine body fat mass in these mice. 
We observed that the fat mass of Adgrg6ASKO/ASKO male mice was approximately six grams lower 
than control littermates, with no difference in lean mass. There was no difference in fat mass 
between Adgrg6ASKO/ASKO female mice and the perspective female WT mice (Fig. 3D). 
Adgrg6ASKO/ASKO male mice displayed similar fat mass to age-matched control female mice (Fig. 
3D). While Pdgfra is not thought to be involved in skeletal development (73) and  Adgrg6 does 
play a role in this process (65), but was associated with AIS, we assessed if skeletal development 
was altered. Analysis of spine morphology and bone mineral density (BMD) did not find any 
apparent skeletal abnormalities (Fig. 3E) nor altered BMD (fig. S4C) in Adgrd6ASKO/ASKO mice. 
Upon tissue dissection, Adgrg6ASKO/ASKO male mice showed significantly lower iWAT and pWAT 
mass compared to control littermates, with no changes in brown adipose tissue (BAT) or kidney 
(Fig. 3F). No significant differences were observed between female Adgrg6ASKO/ASKO and control 
littermates (Fig. 3F). As the BW of Adgrg6ASKO/ASKO male mice was reduced and similar to control 
females, we next examined their glucose tolerance (GTT) and insulin sensitivity (ITT). We 
observed that Adgrg6ASKO/ASKO male mice have significantly higher glucose tolerance than control 
mice at all measured time points, with significantly improved insulin sensitivity (Fig. 3G).  

To further evaluate Adgrg6 ablation on adiposity, we placed Adgrg6ASKO/ASKO male mice on a high-
fat diet (HFD) (Fig. 3H). Compared to control mice, Adgrg6ASKO/ASKO male mice gained 
significantly less BW (Fig. 3I). In addition, the weight of all adipose depots, including BAT, 
iWAT, and pWAT of Adgrg6ASKO/ASKO male mice was significantly lower than control mice with 
no changes in the kidney (Fig. 3J). In addition, Adgrg6ASKO/ASKO male mice showed significantly 
improved GTT and ITT compared to control males (Fig. 3K), indicating that Adgrg6 ablation in 
males can reduce diet-induced obesity and improve obesity-associated insulin resistance. Taken 
together, our data suggest that Adgrg6 has an important role in adipogenesis in vivo and its removal 
in adipocytes leads to a female-like fat distribution in male mice, protecting them against HFD-
induced obesity and providing improved insulin response. 
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Adgrg6_4 enhancer knockout male mice have female-like fat depots 
We next set out to characterize the in vivo function of the Adgrg6_4 enhancer by knocking it out 
in mice. We first identified sufficient mouse sequence homology to the human Adgrg6_4 enhancer 
using LiftOver (74) and ENSEMBL (75) (fig. S5A). We designed two gRNA to target the enhancer 
and generated Adgrg6_4 enhancer KO mice, which were named Adgrg6ARS-/- (adipose regulatory 
sequence) using the improved-Genome editing via Oviductal Nucleic Acids Delivery (i-GONAD) 
approach (76) (Fig. 4A). Knockout mice were validated for proper targeting via genotyping and 
Southern blot (fig. S5B). Interestingly, analysis of Adgrg6 mRNA expression levels by qRT-
qPCR, found it to be significantly reduced only in pWAT of male Adgrg6ARS-/- mice (Fig. 4B). 
There were no significant changes in Adgrg6 expression in other adipose depots, including BAT 
and iWAT, and other tissues, such as liver and muscle. Moreover, Adgrg6 mRNA levels in female 
Adgrg6ARS-/- mice did not change (Fig. 4B). These results suggest that the enhancer of Adgrg6 is 
only active in pWAT. Analysis of the mRNA expression of adipogenic markers, C/ebpb, Pparg, 
and Fabp4 and the adipogenesis inhibitor, Sox9, showed changes similar to the conditional gene 
knockout only in pWAT of male Adgrg6ARS-/- mice (Fig. 4C).  
Similar to Adgrg6ASKO/ASKO mice, male Adgrg6ARS-/- mice exhibited lower body weight than 
littermate control mice, while there was no difference in female mice (Fig. 4D). Using DEXA, we 
showed that the fat mass of male Adgrg6ARS-/- mice was approximately two grams lower than 
control male mice and similar to female mice (Fig. 4E). There was no difference in lean mass. 
Evaluation of bone mass and density due to Adggr6 known role in chondrocyte development found 
no changes in skeletal abnormalities in Adgrg6ARS-/- mice (Fig. S5C). We next measured the mass 
of all adipose depots. We observed that male Adgrg6ARS-/- mice had lower pWAT and iWAT mass 
(Fig. 4F). The lower iWAT mass could be a result of the whole-body lean phenotype, despite 
Adggr6 lower expression being observed only in pWAT. The Adgrg6ARS-/- male mice did not show 
significant difference in GTT and ITT under chow diet (fig. S5D).  We next placed Adgrg6ARS-/- 

male mice on HFD for thirteen weeks (Fig. 4G). Adgrg6ARS-/- mice had significantly lower body 
weight than littermate control mice (Fig. 4H). In addition, these mice had smaller iWAT and 
pWAT mass (Fig. 4I). Adgrg6ARS-/- mice also showed improved GTT and ITT compared to control 
males (Fig. 4J), indicating that Adgrg6 enhancer knockout can protect mice against diet-induced 
obesity and improve obesity-associated insulin resistance. Combined, our data demonstrate that 
the Adgrg6_4 enhancer is VAT-specific, has an important function in adipogenesis and leads to 
gender-specific effects on adipose tissue distribution.  

 
CRISPRi-mediated Adgrg6 knockdown prevents high fat diet-induced obesity 

To showcase the therapeutic potential of Adgrg6 downregulation in males, we utilized CRISPRi, 
targeting either the Adgrg6 promoter or Adgrg6_4 enhancer, to knockdown Adgrg6 expression in 
vivo (Fig. 5A). We first designed five gRNAs targeting either the Adgrg6 promoter or Adgrg6_4 
enhancer, cloned them into an rAAV-mCherry vector and tested them along with dCas-KRAB in 
mouse 3T3-L1 preadipocytes. We found two gRNAs targeting the promoter and one gRNA 
targeting the Adgrg6_4 enhancer to significantly reduce Adgrg6 mRNA levels by ~50-70%, as 
determined by qRT-PCR (fig. S6A). The gRNAs along with dCas9-KRAB were packaged into 
AAV serotype 9, which is known to effectively express transgenes in mouse adipose depots (77). 
AAV9 co-infection of individual gRNA along with dCas9-KRAB into 3T3-L1 cells found all three 
gRNAs to significantly reduce Adgrg6 expression (fig. S6B).  
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Fig. 3. Adgrg6 adipose-specific knockout leads to female-like fat distribution in male mice. 
(A) Schematic of Adgrg6 adipose-specific knockout mice (Adgrg6ASKO/ASKO) generation and a 
summary of the measured metabolic phenotypes. Glucose tolerance test (GTT), insulin tolerance 
test (ITT). (B) qRT-PCR of Adgrg6 in brown adipose tissue (BAT), inguinal adipose tissue 
(iWAT), and perigonadal adipose tissue (pWAT) of control Adgrg6fl/fl (male=9 mice, female=8) 
and Adgrg6ASKO/ASKO (male=9, female=6) mice. Data are represented as mean ± S.D *≤0.05, 
**≤0.01, ***≤0.001. (C) Body weight (left) of control (male=9 mice, female=8) and 
Adgrg6ASKO/ASKO (male=9, female=8) mice measured for 17 weeks. Data are represented as mean 
± S.D **≤0.01. Representative mouse image of mice at 17-week-old and fed on chow diet (right) 
(D) Fat and lean mass of control (male=9 mice, female=9) and Adgrg6ASKO/ASKO (male=10, 
female=8) measured by dual energy X-ray absorptiometry (DEXA). Data are represented as mean 
± S.D **≤0.01. (E) Whole-body scan images of control and Adgrg6ASKO/ASKO male and female 
mice. (F) Tissue weight (left) of control (male=8 mice, female=8) and Adgrg6ASKO/ASKO (male=10, 
female=7). Data are represented as mean ± S.D **≤0.01, ***≤0.001.  Representative tissue images 
(right) of mice fed on regular chow diet at 17-weeks of age. (G) Glucose tolerance test (GTT) and 
insulin tolerance test (ITT) of male control (n=5 mice) and Adgrg6ASKO/ASKO (n=5). Data are 
represented as mean ± S.D **≤0.01, ***≤0.001. (H) Schematic of male Adgrg6ASKO/ASKO mice fed 
with high-fat diet (HFD) and the metabolic phenotypes measured. (I) Body weight (left) of control 
and Adgrg6ASKO/ASKO male mice (N=6) on HFD measured for 16 weeks. Data are represented as 
mean ± S.D ***≤0.001. Representative mouse images (right) of 20-week-old mice that were fed 
on HFD for 16 weeks. (J) Tissue weight (left) of male control (n=6 mice) and Adgrg6ASKO/ASKO 
(n=5) mice. Data are represented as mean ± S.D **≤0.01, ***≤0.001. Representative tissue images 
(right) from 20-week-old mice fed on HFD for 16 weeks. (K) Glucose tolerance test (GTT) with 
area under the curve (AUC) and insulin tolerance test (ITT) with AUC of male control (n=6) and 
Adgrg6ASKO/ASKO (n=5) 20-week-old mice fed on HFD for 16 weeks. Data are represented as mean 
± S.D *≤0.05 **≤0.01, ***≤0.001. 

We intravenously injected five weeks old C57BL/6J male mice via tail vein with a guide targeting 
the Adgrg6 promoter (g5 which showed the strongest AAV9-based reduction of Adgrg6 
expression) or enhancer (g3) along with another virus encompassing dCas9-KRAB (control). After 
2-week of injection, these mice were fed on a HFD for twelve weeks (Fig. 4A). We then measured 
by qRT-PCR, mCherry and Adgrg6 mRNA levels in adipose tissues, kidney, liver, and heart. 
mCherry levels were detected in all adipose tissues with the highest level in BAT and pWAT (Fig. 
S6D), consistent with tissue distribution of AAV9 (77). Adgrg6 expression levels were 
significantly reduced in pWAT, iWAT and BAT in promoter targeted mice and only significantly 
reduced in pWAT in enhancer targeted mice (the reduction in iWAT and BAT was not significant), 
fitting with its Adgrg6 enhancer knockout expression (Fig. 5B). These data suggest that dCas9-
KRAB CRISPRi, as used in our AAVs, was only able to downregulate gene expression in the 
tissue where the targeted regulatory element is active, likely due to open chromatin accessibility. 
CRISPRi Adgrg6 promoter or enhancer targeted mice showed reduced body weight compared to 
mice injected with dCas9-KRAB only, as a negative control (Fig. 5C). DEXA analyses found 
these mice also to have lower fat mass compared to dCas9-KRAB only mice (Fig. 5D) and smaller 
BAT, iWAT, and pWAT upon dissection (Fig. 5E). The observed lower BAT and iWAT mass in 
the enhancer targeted CRIPSRi mice could be a result of their overall whole-body lean phenotype. 
In addition, these mice showed significantly improved GTT and ITT compared to dCas9-KRAB 
only injected males (Fig. 5E). In summary, our data indicate that Adgrg6 CRISPRi targeting of 
either the promoter or Adgrg6_4 enhancer protects mice against HFD obesity and diabetes, 
suggesting that Adgrg6 could be a potent therapeutic target to treat these diseases. 
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Fig. 4. Adgrg6 enhancer knockout exhibits gender-specific fat distribution. (A) Schematic of 
Adgrg6_4 adipose enhancer knockout (Adgrg6ARS-/-) generation and a summary of the phenotypes 
measured. (B) qRT-PCR of Adgrg6 in brown adipose tissue (BAT), inguinal adipose tissue 
(iWAT), and perigonadal adipose tissue (pWAT) of control (male=8 mice, female=8) and 
Adgrg6ARS-/- (male=12, female=6). Data are represented as mean ± S.D. ***≤0.001. (C) qRT-PCR 
of adipogenic markers (C/EBPb, PPARg, FABP4 and SOX9) in BAT, iWAT, and pWAT control 
(male=8 mice, female=8) and Adgrg6ARS-/- (male=12, female=6) mice. Data are represented as 
mean ± S.D. *≤0.05, **≤0.01. (D) Body weight (left) of control (male=8 mice, female=8) and 
Adgrg6ARS-/- (male=12, female=6) measured for 17 weeks. Data are represented as mean ± S.D. 
*≤0.05. Representative mouse images (right) of 19-week-old mice fed on regular chow diet. (E) 
Fat and lean mass of control (male=6, female=7) and Adgrg6ARS-/- (male=10, female=10) measured 
by dual energy X-ray absorptiometry (DEXA) (Left). Data are represented as mean ± S.D. *≤0.05. 
Representative images of whole-body scans of control and Adgrg6ARS-/- male and female mice 
(right). (F) Tissue weight (left) of control (male=7, female=7) and Adgrg6ARS-/- (male=6, female=6) 
mice. Data are represented as mean ± S.D. **≤0.01, ***≤0.001. Representative tissue images 
(right) of 16-week-old mice fed on regular chow diet. (G) Schematic of male Adgrg6ARS-/- mice fed 
with high-fat diet (HFD) and the metabolic phenotypes measured (H) Body weight (left) of control 
and Adgrg6ARS-/- male mice (n=6) on HFD measured for 13 weeks. Data are represented as mean 
± S.D  *≤0.05. Representative mouse images (right) of 18-week-old mice fed on HFD for 13 
weeks. (I) Tissue weight (left) of male control (n=3 mice) and Adgrg6ARS-/- (N=3) mice. Data are 
represented as mean ± S.D *≤0.05, **≤0.01. Representative tissue images (right) of 8-week-old 
mice fed on HFD for 13 weeks. (J) Glucose tolerance test (GTT) with area under the curve (AUC) 
and insulin tolerance test (ITT) with AUC of male control (n=6) and Adgrg6ARS-/- (n=6) of 18-
week-old mice fed on HFD for 13 weeks. Data are represented as mean ± S.D *≤0.05 **≤0.01, 
***≤0.001. 

Discussion: 
Body fat distribution is gender-specific and is a major risk factor for metabolic disease, including 
obesity, diabetes, and cardiovascular disease. Here, we found that ADGRG6, an adhesive G-
coupled receptor, is more highly expressed in visceral fat of males than females. We identified an 
ADGRG6 enhancer that overlaps with a SNP that is associated with the visceral fat of females and 
show that the associated allele leads to reduced enhancer function and lower ADGRG6 mRNA and 
protein levels. We further show by either knocking out ADGRG6, its enhancer or overexpression 
that ADGRG6 promotes adipocyte differentiation by increasing cAMP levels. Adipocyte 
conditional removal of Adgrg6 or knocking out its adipocyte enhancer (Adgrg6_4) in mice, leads 
to decreased adiposity and obesity in male mice. These male Adgrg6ASKO/ASKO or Adgrg6ARS-/- mice 
are resistant to HFD-induced obesity with improved glucose tolerance and insulin sensitivity. 
CRISPRi targeting of the Adgrg6 promoter or Adgrg6_4 enhancer protected male mice against 
HFD-induced obesity and improved insulin response, suggesting Adgrg6 is a potential therapeutic 
target to treat obesity and metabolic disease in males.  

There are several efforts to map the genetics of favorable adipose phenotypes and elucidate the 
causal mechanism of gender-specific genetic associations with central obesity and body fat 
distribution. GWAS provides a powerful tool to identify, in an unbiased manner, loci associated 
with complex traits and diseases, such as obesity. Large-scale GWAS and whole-exome 
sequencing efforts have mapped a treasure trove of novel findings for BMI, central obesity 
phenotypes, adipose distribution, and related metabolic traits. 
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Fig. 5. CRISPRi-mediated Adgrg6 knockdown prevents diet-induced obesity. (A) Schematic 
of AAV-based Adgrg6 CRISPRi intravenous tail vein injection followed by high-fat diet (HFD) 
and phenotypic measurements. (B) qRT-PCR of Adgrg6 in brown adipose tissue (BAT), inguinal 
adipose tissue (iWAT), and perigonadal adipose tissue (pWAT), kidney, liver, and heart of control 
mice (dCas9-Krab) (n=6), CRISPRi targeting Adgrg6 promoter (n=6), or enhancer (n=6) mice. 
Data are represented as mean ± S.D. *≤0.05, ***≤0.001. (C) Body weight (left) of control (n=6) 
and Adgrg6 promoter (n=6), or enhancer (n=6) AAV-CRISPRi targeted mice on high-fat diet 
measured for 12 weeks. Data are represented as mean ± S.D. *≤0.05, **≤0.01. Representative 
mouse images (right) of 20-week-old mice fed on HFD. (D) Fat and lean mass of control (n=6), 
AAV-CRISPRi targeting promoter (n=6), or enhancer (n=6) of Adgrg6 measured by dual energy 
X-ray absorptiometry (DEXA). (E) Tissue weight (left) of control (n=3), CRISPRi targeting the 
Adgrg6 promoter (n=3) or enhancer (n=3). Data are represented as mean ± S.D. *≤0.05, 
***≤0.001. Representative tissue images (right) of 20-week-old mice fed on HFD. (F) Glucose 
tolerance test (GTT) with area under the curve (AUC) and insulin tolerance test (ITT) with AUC 
of control (n=6), CRISPRi targeting promoter (n=6), or enhancer (n=6) of Adgrg6 of 20-week-old 
mice fed on HFD. Data are represented as mean ± S.D *≤0.05 **≤0.01, ***≤0.001. 
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Interestingly, several studies have found that more than 50% of central obesity loci have significant 
gender dimorphism (37, 38, 78, 79), with the majority of SNPs residing in noncoding regions of 
the genome, likely associated with gene regulatory elements that reside in these regions. Here, we 
characterized one of these loci, ADGRG6, but there are many more associated loci to identify and 
characterize. It will also be interesting to assess combinations of these SNPs and how they might 
affect obesity and polygenic risk scores for this phenotype. Interestingly, rs6570507, is also 
associated with adolescent idiopathic scoliosis (AIS), which is more common in females compared 
to males (80-82). It will be interesting to analyze whether loci influencing a gender specific effect 
in a certain phenotype could be used to inform regions that are more likely to have these effects 
also on another phenotype and how this mechanism evolved to influence multiple phenotypes. 

Fat depot distribution differences is the major cause of obesity-related diseases (7-9). VAT is 
highly correlated with obesity, insulin resistance and cardiovascular disease while SAT is shown 
to be metabolically protective against obesity-related metabolic diseases (4-6). The differential 
location of fat has various functional implications on adipokine production, development of insulin 
sensitivity, inflammation response, mitochondrial function, lipolysis, and free fatty acid release, 
all of which differ between adipose depots (10-12, 14, 15, 83). Our data showed that ADGRG6 
promotes adipocyte differentiation by activating cAMP in preadipocytes. We also found ADGRG6 
to have gender-differential expression in VAT in humans with VAT of males showing higher 
expression of ADGRG6 than females. Previous reports have found that numerous genes are 
differentially expressed in adipose tissue from obese males and females with very few on the sex 
chromosomes (35, 36, 84). However, there is lack of understanding of how these genes are 
differentially regulated between genders. Here, we found rs6570507 to be highly associated with 
female trunk fat and reside in an adipocyte enhancer of ADGRG6. We demonstrate that this 
associated SNP alters the binding sites of multiple transcription factors, such as GR and PR that 
are involved adipogenesis (64, 85-89) and disrupts the binding affinity of these proteins, leading 
to lower expression of ADGRG6. Our work showcases how genetic variation can allow to identify 
an enhancer that can lead to gender-differential gene expression and phenotype, gender-specific 
fat distribution.  

Ablation of Adgrg6 in adipose tissue using Pdgfra- or Adipoq-driven Cre (Adgrg6ASKO and 
Adgrg6Adipoq-Cre) or its enhancer (Adgrg6ARS-/-) in mice all led to reduced BW and VAT mass in 
male mice but not in female mice. Male mice from all three deletions develop less VAT and exhibit 
similar metabolic phenotypes to female mice. They also demonstrated lower adiposity with 
improved glucose tolerance and insulin sensitivity compared to WT male mice. Moreover, these 
male mice also became resistant to high-fat diet-induced obesity. Similar to humans, Adgrg6 
expression was higher in VAT than SAT in male mice compared to female mice. Thus, the gender-
specific body weight and adiposity phenotypes we observed in Adgrg6ASKO/ASKO or Adgrg6Adipoq-Cre 

might be due to the fact that Adgrg6 basal expression level is low in VAT of females compared to 
males. Deleting this gene or the Adgrg6_4 enhancer, that is conserved between mouse and humans, 
did not have a significant impact on VAT development in females. Interestingly, ablation of the 
Adgrg_4 enhancer reduced Adgrg6 mRNA levels only in pWAT (Fig. 4B), indicating visceral fat 
specificity for this enhancer. This was further corroborated by its CRISPRi knockdown which 
significantly lowered Adgrg6 expression only in pWAT (Fig. 5B). To date, Wilms Tumor 1 (WT1) 
is the only reported factor to be highly expressed in visceral fat (90) and its promoter is used to 
drive Cre to conditionally ablate genes in visceral fat (91). The Adgrg_4 enhancer could also be 
utilized to drive tissue specific expression of a gene of interest in pWAT of male mice. While 
further work needs to be done, for example in non-human primates, to suggest this gene and 
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regulatory element have a similar effect in humans, our results provide strong support for its role 
in adipogenesis and gender specific fat distribution.  

Cis regulation therapy (CRT), the use of nuclease deficient gene editing systems coupled to 
transcription modulating proteins has shown great promise to treat genetic disease (92). For 
example, our lab has demonstrated that by upregulating via CRISPRa either Sim1 or Mc4r in 
heterozygous mice we can rescue their obese phenotype (93). Gender-specific fat distribution 
contributes to differential metabolic outcomes and co-morbidities. Utilizing CRISPRi, we show 
that downregulation of Adgrg6 via CRISPRi by targeting either its promoter or enhancer could 
provide a viable therapeutic option for male obesity and its associated co-morbidities. Our data 
clearly shows that our gRNAs specifically target Adgrg6 in adipose tissues and can lower body 
weight, adiposity, and improved insulin sensitivity. Interestingly, we also observed tissue-specific 
downregulation depending on the targeted regulatory element. For the promoter targeted mice, we 
observed downregulation of Adgrg6 in all examined adipose tissues, while the enhancer targeted 
mice only showed significant downregulation in pWAT. This is in line with our previous work 
showing targeted regulatory element tissue-specific upregulation with CRISPRa (93), likely due 
to dCas9 binding being more amendable in low nucleosome occupancy regions, as previously 
shown for various CRISPR screens (94, 95). This regulatory element guided tissue-specificity 
provides an added advantage for CRT over standard gene replacement therapy. Further 
development of CRT approaches that specifically target and downregulate ADGRG6 could provide 
a novel strategy to combat obesity and its co-morbidities in males. In addition, fat transplantation 
could also be considered for this treatment. As it is commonly used in many surgical procedures, 
such as aesthetic and reconstructive surgery, it could readily be used for therapeutic treatments 
(96). In humans, there is a growing interest to carry out human adipose tissue grafting by using 
adipose stem cells/progenitors due to their resistance to trauma and long-term survival following 
transplantation (97-99). Modulating ADRG6 in VAT and transplanting it in individuals might be 
novel way to treat obesity and associated metabolic diseases.  

Materials and Methods: 
UK Biobank Cohort and Sex-Specific Analyses at ADGRG6 
The UK Biobank (UKB) is a large prospective study following the health of approximately 
500,000 participants from five ethnic groups (European, East Asian, South Asian, African British, 
and mixed ancestries) resident in the UK aged between 40 and 69 years-old at the baseline 
recruitment visit (51, 100). Demographic information and medical history were ascertained 
through touch-screen questionnaires. Participants also underwent a wide range of physical and 
cognitive assessments, including blood sampling. In the UKB, the trunk fat mass phenotype data 
(Data-Field 23128 on the web-site: https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=23128; 
description: Trunk fat mass in kg; category: Body composition by impedance ; version March 
2022) were collected on 492,768 participants. Phenotyping, genotyping, and imputation were 
carried out by members of the UK Biobank team. Imputation to the Haplotype Reference 
Consortium (HRC) has been described (www.ukbiobank.ac.uk), and imputation at a few non-HRC 
sites (for replication) was done pre-phasing with Eagle (101) and imputing with Minimac3 (102) 
with the 1000 Genomes Project Phase I. We first ran a linear regression of trunk fat mass and SNP 
rs9403383 at ADGRG6 using PLINK (103) v1.9 (www.cog-genomics.org/plink/1.9/) adjusting for 
age, sex, and ancestry principal components (104). We then assessed the association between trunk 
fat mass and SNP rs9403383 by sex (245,000 women and 205,628 men, respectively, in self-
reported whites with global ancestry PC1≤70 and PC2≥80, as described(104)). The analyses 
presented in this paper were carried out under UK Biobank Resource project #14105. 
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Human adipocytes 
For adipocyte differentiation, human preadipocytes (kind gift from Dr. Hei Sool Sul, UC Berkeley) 
were cultured to 100% confluency in DMEM, supplemented with 10% FBS and fresh media were 
replaced. After 48hr, cells were subjected to adipocyte differentiation by adding MesenCult 
Adipogenenic Differentiation Kit (Stemcell, 05412). Media was replaced every 2 days during 
differentiation. To generate ADGRG6 KO, ADGRG6 EKO, and ADGRG6 AKI cells, human 
preadipocytes in a 6-well plate were transfected with 6.25ug Cas9 protein (Fisher Scientific, 
A36498) and 800ng  sgRNAs (IDT), 1.5ug ssDNA donor (IDT) (for ADGRG6 AKI) and 0.5ug 
GFP plasmid (Addgene, 13031) using LipoMag transfection reagent (OZ Biosciences, LM80500) 
following the manufacturer’s protocol. After 48 hours, GFP+ cells were isolated into 96 well-
plates into single clones using FACS (BD FACSAria Fusion). These colonies were then genotyped 
to collect properly edited clones. For ADGRG6 overexpression, in 12-well plates, sub-confluent 
human preadipocytes were transfected with 500ng ADGRG6 expression plasmid Myc-DDK-
tagged human G protein-coupled receptor 126 (Origene, RC212889) using LipoMag transfection 
reagent and cells were then subjected to the adipocyte differentiation protocol described above.  
Luciferase Assay 

ADGRG6_3 and ADGRG_4 sequences were PCR amplified from human genomic DNA and 
cloned into the pGL4.23 plasmid (Promega, E8411). Human preadipocytes, in a 12-well plate, 
were transfected with 0.5ug luciferase constructs and 50ng pGL4.73 [hRluc/SV40] plasmid 
(Promega, E6911) containing Renilla luciferase, to correct for transfection efficiency, using 
LipoMag transfection reagent (OZ Biosciences) following the manufacturer’s protocol. Empty 
pGL4.23 was used as a negative control and pGL4.13 (Promega, E668A) with an SV40 early 
enhancer as a positive control. Forty-eight hours after transfection, cells were lysed, and luciferase 
activity was measured using Dual-Luciferase Reporter Assay System (Promega, E1910). Six 
technical replicates were performed for each condition. 
RNA Isolation and qRT-PCR 

Total RNA from sorted or cultured cells was extracted using Trizol reagent (ThermoFisher, 
15596026). Reverse transcription was performed with 1μg of total RNA using qScript cDNA 
Synthesis Kit (Quantabio, 95047) following the manufacturer’s protocol. qRT-PCR was 
performed on QuantStudio 6 Real Time PCR system (ThermoFisher) using Sso Fast (Biorad, 
1705205). Statistical analysis was performed using ddct method with GAPDH primers as control 
(see primer sequences in Table S1). Gene expression results were generated using mean values 
for over n=4-6 biological replicates.  
Separation of SVF and Adipocyte Fractions 

SVF fractionation was carried out as previously described (103). Subcutaneous and visceral mouse 
adipose tissue depots were dissected from 16 week-old C57BL/6J mice into ice-cold PBS. The 
tissue was finely minced using scissors and digested with Collagenase type II (Sigma-Aldrich, C2-
22)in 3% BSA-HBSS buffer at 37°C for 45 minutes with gentle shaking. The cell suspension was 
then centrifuged. The floating fraction containing adipocytes were collected and the pellet was 
resuspended and passed through 100μm cell strainer and spun at 500g for 5 minutes. The cell pellet 
was resuspended in HBSS buffer and passed through 70μm and 40μm cell strainers to ensure a 
single cell preparation. The cells were spun at 500g for 5 minutes to pellet, and the red blood cells 
in the pellet were then lysed by incubating the pelleted cells in red blood cell lysis buffer on ice 
for 5 min with shaking. The remaining cells were washed twice with HBSS and spun at 500g for 
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5 min to pellet. SVF cells were incubated with indicated antibodies for 20 minutes in the dark, 
washed, spun at 300g for 5 minutes, resuspended in PBS and passed through a 40μm filter prior to 
FACS analysis. FACS was performed on ARIA Fusion Cell Sorter. Cells that were not incubated 
with antibody were used as a control to determine background fluorescence levels. Cells were 
initially chosen based on forward and side scatter (FFS, and CCS). Single cells were then separated 
into Lin+ cells (CD45+, CD31+, Ter119) and Lin- cells. In the Lin- fraction, messenchymal stem 
cells (MSC) were then selected by CD109, adipose progenitors (APC) were sorted by CD34 and 
Pdfrga (indicated anitbodies in Table S2). Cells were collected in PBS for RNA isolation or in 
DMEM+20% FBS for cell culture. 
Oil red O staining 

Differentiated adipocytes were fixed with 1% paraformaldehyde (PFA) for 20 minutes. Cells were 
then washed 3x with water and incubated in 60% isopropanol. Oil red O staining solution (3mg/ml) 
was added to the cells and followed by staining for 15 minutes. Cells were then washed with water 
and images were obtained with a Leica DFC700T. Lipid droplet size and number were analyzed 
by Fiji software (59). At minimum of 100 cells were counted for each condition. 
ChIP qPCR 

ChIP was performed using ChIP-IT Express Chromatin Immunoprecipitation kits (Active Motif, 
53009). Briefly, cells cultured on 15cm plate were harvested and fixed with 1% PFA for 10 
minutes. The reaction was stopped by incubating with 125 mM glycine for 10 minutes. Cells or 
tissues were rinsed with ice-cold phosphate-buffered saline (PBS) for three times and lysed in IP 
lysis buffer. Nuclei were collected by centrifugation at 600 × g for 5 minutes at 4°C. Nuclei were 
released by douncing on ice and collected by centrifugation. Nuclei were then lysed in nuclei lysis 
buffer and sonicated three times by 20 second bursts, each followed by 1 minute cooling on ice 
using Covaris m220 ultrasonicator. Chromatin samples were diluted 1:10 with the dilution buffer 
containing 16.7 mM Tris pH 8.1, 0.01% SDS 1.1% Triton X-100 1.2 mM EDTA, 1.67 mM NaCl, 
and proteinase inhibitor cocktail. Antibodies (2ug) of Histone H3 (Abcam, ab4729), glucocorticoid 
receptor (Abcam, ab3671), progesterone receptor (Abcam, ab2765), and HoxA3 (Sigma-Aldrich, 
H3791) or normal mouse IgG (Diagenode, C15400001) and protein A/G magnetic beads (Thermo-
Fisher, 88802) were used. After the antibody-bead-chromatin mixtures were incubated at 4C 
overnight, the beads were washed and cross-linked reversed. DNA fragments were purified, and 
samples were analyzed by qPCR for enrichment in target area of Adgrg6 enhancer using primers 
targeting 150bp around the associated SNP (table S1). Four replicates were used for each antibody. 
The fold enrichment values were normalized to input. 
Mouse lines 

All animal studies were carried out in accordance with University of California San Francisco 
Institutional Animal Care and Use Committee. Mice were housed in a 12:12 light-dark cycle, and 
chow diet (Envigo, 2018S) and water were provided ad libitum. Mice were fed with either chow 
diet or high fat diet with 40% fat (Research Diet, D12492i). GPR126fl/fl mice (64) were provided 
by Dr. Ryan Gray. Adgrg6ASKO/ASKO constitutive adipose tissue knockout mouse were generated by 
cross-mating Pdgfra-driven Cre mouse (Jackson Laboratory, 012148) and GPR126fl/fl mouse. 
Adgrg6Adipoq-Cre mice were created by crossing the Adipoq-driven Cre mouse (Jackson Laboratory, 
010803) with the GPR126fl/fl mouse. The Adgrg6ARS-/- mouse was generated as described in (104). 
Briefly, the 4 kilobase Adgrg6 adipose regulatory sequence was converted to mouse sequence 
using the UCSC Genome Browser LiftOver tool (73). Two gRNAs (IDT) (30uM), designed to 
target the 5′ and 3′ ends of this region (table S1), were mixed with Cas9 (1mg/ml) protein and 
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were injected into the oviduct lumen of female mice that were mated the night before. Subsequent 
offspring were genotyped via PCR-Sanger sequencing of the breakpoint and Southern blot. PCR-
Sanger sequencing was preformed using standard techniques using three primers (table S1). For 
Southern blot analyses, genomic DNA was treated with AvrII (New England Biolabs, catalog no. 
R0193) and fractionated by agarose gel electrophoreses. Following capillary transfer onto nylon 
membranes, blots were hybridized with Digoxigenin (DIG)-labeled DNA probes (corresponding 
to chr2:147,202,083-147,202,444; mm9) amplified by the PCR DIG Probe Synthesis Kit (Sigma-
Aldrich, 11636090910). The hybridized probe was immunodetected with antidigoxigenin Fab 
fragments conjugated to alkaline phosphatase (Sigma-Aldrich, 11093274910) and visualized with 
a CDP star (Sigma-Aldrich, 11685627001) according to the manufacturer’s protocol. 
Chemiluminescence was detected using the FluorChem E (ProteinSimple, 92-14860-00). 
Body composition and food intake analyses 

Body composition was measured using dual energy x-ray absorptiometry (DEXA) by PIXImus 
Mouse Desnitometer (GE Medical Systems). For DEXA, mice were anesthetized with 2% 
isoflurane and measured for bone mineral density and tissue composition (fat mass and lean mass). 
Food intake was measured by using the Columbus Instruments Comprehensive Lab Animal 
Monitoring System (CLAMS) (Columbus Instruments). Mice were housed individually and 
acclimatized on powdered picodiet (PicoLab 5058) for 3 to 4 days, and food intake measurements 
were done over 4 to 5 days. 
Glucose tolerance test (GTT) 

Mice were fasted overnight. Blood glucose of each mouse was measured to get the value for the 0 
time point. Blood glucose level was determined by Contour Next Blood Glucose meter (Contour, 
7277) in tail vein blood. Tail snipping was used to get blood. Glucose (1g/kg of BW) (Sigma-
Aldrich, G8270) was then administered intraperitoneally. Blood glucose was measured at 30, 60, 
and 120 minutes after injection. 
Insulin tolerance test (ITT) 

Mice were fasted for 4 hours. Blood glucose was measured for each mouse to get the value for the 
0 time point. Blood glucose levels were determined by Contour Next Blood Glucose meter 
(Contour, 7277) in tail vein blood. Recombinant human insulin (0.75 IU insulin/kg BW) (Sigma-
Aldrich, I9278) was then administered intraperitoneally. Blood glucose was measured at 30, 60, 
and 120 minutes after injection.  
CRISPRa AAV in vitro optimization 

Five gRNAs targeting the promoter of human ADGRG6 or mouse Adgrg6 were designed using the 
Broad Institute CRISPick Tool (105) (table S1). These guides were individually cloned into 
pAAV-U6-sasgRNA-CMV-mCherry-WPREpA (92) at the BstXI and XhoI restriction enzyme 
sites using the In-Fusion (Takara Bio, 638910) cloning methods as described in (92). Mouse gRNA 
constructs and pCMV-sadCas9-KRAB (kind gift from Dr. Alejandro Lomniczi OHSU) were co-
transfected into human preadipocytes X-tremeGene (Sigma, 6366236001) while human gRNA 
plasmids and pCMV-sadCas9-KRAB were co-transfected into mouse 3T3-L1 preadipocytes. Both 
cell lines were maintained in DMEM supplemented with 10% FBS. After 48 hours, cells were 
lysed with Trizol and RNA was collected and cDNA and qRT-PCR were performed, as mentioned 
for RNA Isolation and qRT-PCR, and differential expression was determined using ddct method 
with GAPDH primers as control. The two gRNAs that reduced human ADGRG6 or mouse Adgrg6 
expression the most were packaged into rAAV-9 serotype virons. rAAV-9 serotype virons were 
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produced by transfecting AAVpro 293T cell (Takara, 6322723) with pCMV-sadCas9-KRAB 
(Addgene, 115790) or pAAV-U6-sasgRNA-CMV-mCherry-WPREpA (92) along with packaging 
vectors, including PAAV2/9n (Addgene, 112865) and pHelper vectors using TransIT293 reagent 
(Mirus, 2700). After 72 hours, AAV particles were collected and purified using AAVpro Cell & 
Sup. Purification Kit Maxi (Takara, 6676) and quantified by the AAVpro Titration Kit (Takara, 
6233). gRNA AAV viruses (1x103 MOI) and dCAS9-KRAB AAV (1x103 MOI) were used to 
infect human or mouse preadipocytes. After five days, RNA was collected, and cDNA was made 
and qRT-PCR was done as previously described. Differential expression was determined using the 
ddct method with GAPDH primers as control (primer sequences in table S1). 
CRISPRi mouse injections 

C57BL/6J mice at 4wk old were kept under live anesthetic isoflurane at 1.0%-2.0%. A single dose 
of AAV9-dCas9-Krab and AAV9-gRNA (1x1011vg/mouse) at 1:1 ratio were injected 
intravenously via tail-vein. Body weight was recorded weekly. Five-week post-injection, mice 
were subjected to DEXA, GTT, and ITT.   
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