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Abstract 

 

Over the last decade, the field of systems vaccinology has emerged, in which high throughput 

transcriptomics and other omics assays are used to probe changes of the innate and adaptive immune 

system in response to vaccination. RNA-Seq technology has matured in recent years and is now widely 

deployed for transcriptional analysis of clinical specimens. The goal of this study was to benchmark 

technical parameters of RNA-Seq in the context of a multi-site, double-blind randomized clinical trial 

using primary patient samples. We collected longitudinal peripheral blood mononuclear cell (PBMC)  

samples from 10 subjects after vaccination with a live attenuated Francisella tularensis vaccine and 

performed RNA-Seq at two different sites using aliquots from the same sample to generate two large-

scale replicate datasets. We evaluated the impact of: (i) filtering lowly-expressed genes, (ii) using external 

RNA controls, (iii) fold change and false discovery rate (FDR) filtering, (iv) read length, and (v) 

sequencing depth on differential expressed genes (DEGs) concordance between replicate datasets. Using 

synthetic mRNA spike-ins, we developed a method for empirically establishing minimal read-count 

thresholds for maintaining fold change accuracy on a per-experiment basis. We defined a reference PBMC 

transcriptome by pooling sequence data, and established the impact of read depth and gene filtering on 

transcript representation. Lastly, we modeled statistical power to detect DE genes for a range of sample 

sizes, effect sizes, and coverage depths. The results from this study provide RNA sequencing benchmarks 

and guidelines for planning future similar vaccine studies. 
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Introduction: 

 

Since 2008, high-throughput technologies, primarily transcriptomics, have been used to characterize 

the in vivo response to clinical vaccination (1, 2). This approach, referred to as “Systems Vaccinology” 

has been employed to investigate the molecular mechanisms regulating vaccine activity (3), to identify 

correlates that predict antibody titer, breadth, or persistence (4-7), and to predict responses to 

vaccination (8). Systems vaccinology studies previously utilized microarray technology to identify 

transcriptomes. However, microarrays have now been virtually replaced by RNA-Seq technology due 

to its technical superiority (larger dynamic range, no signal saturation, and no restriction to a static set 

of printed probes) (9-12). Unlike microarrays, RNA-Seq is inherently flexible, and several technical 

parameters can be tailored uniquely for each experiment. The goal of this study was to establish 

parameters to optimally apply RNA-Seq to clinical vaccine studies. 

 

Some work has been done to benchmark RNA-Seq analysis and understand how technical parameters 

influence experimental findings (13-18). Quality metrics, methods to estimate reproducibility, and 

algorithms to estimate statistical power have been developed for RNA-Seq technology; however, these 

have almost exclusively been defined using standardized reference samples (14, 19-22). Despite these 

efforts, relatively little work has been done to benchmark the utility of reference controls (Universal 

Human Reference RNA (UHRRs)), External Reference Control Consortium (ERCC) synthetic RNA 

spike-ins) and to assess the impact of the choice of coverage and read length in the context of “real-

life” biological samples, or RNA-Seq-based clinical immunology/vaccine studies (23-26). In this study, 

we sought to empirically establish the impact of these and other technical parameters on the ability to 

accurately assess differential expressed genes (DEGs) using samples collected for a phase II clinical 

trial of a live attenuated tularemia vaccine. While we provide a high-level summary of transcriptomic 
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changes following vaccination, this study was not intended to be a comprehensive biological 

transcriptional characterization of Tularemia vaccination or to identify correlates of Tularemia vaccine 

protection; these studies recently have been published elsewhere (27, 28). Specifically, our main goals 

were to: (i) assess the reproducibility of gene expression measurements and the ability to detect the 

same DEGs in two different laboratories using technical replicate samples; (ii) assess the impact of 

sequencing depth on gene representation of the global PBMC transcriptome using pooled, ultra-deep 

transcriptomes; (iii) estimate statistical power to determine DEGs as a function of effect size, 

sequencing coverage, and sample size; (iv) define the impact of changes in technical parameters 

(coverage depth and read length) on identification of DEGs; (v) assess the accuracy of fold-change 

estimates using synthetic mRNA spike-ins for varying read-count filterings cutoffs; (vi) determine an 

empirical read-count cutoff for filtering out lowly-expressed genes; and (vii) establish 

recommendations for RNA-Seq analyses conducted in clinical vaccine studies. It is also important to 

note that the goals of this study were not to perform an exhaustive comparison of established analytical 

methods to quantify gene expression or detect DEGs, or to compare the performance of these tools, as 

these comparisons already exist in the literature (29). The replication of the study at different sites was 

performed in a manner similar to that described in the influential “SEQC/MAQ-III” studies that 

sequenced a small number of technical replicates at multiple sites (16). The rationale for replicating 

this benchmarking experiment on the same sample sets (parallel aliquots of PBMCs from the same 

subjects and time points) run in two separate laboratories was to firmly establish if the findings could 

be validated using “real world” clinical trial samples.  
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Results: 

 

Experimental Design 

The RNA-Seq benchmarking study described here utilized samples from a Phase 2, multi-center, 

double-blind randomized trial comparing the immunogenicity of two live attenuated vaccines 

against Francisella tularensis: an aging stock used for decades by the United States Army Medical 

Research Institute of Infectious Diseases (USAMRIID-LVS) and a novel lot produced by the 

Dynport Vaccine Company, DVC-LVS, intended to be its replacement (30) (Figure 1) (registered 

at ClinicalTrials.gov NCT01150695) (7). Replicate aliquots of the same PBMC sample from each 

subject time point were used to evaluate the agreement between laboratory RNA-Seq results 

(Figure 1B). Briefly, RNA was extracted from PBMCs from 10 healthy subjects at Days 0 (pre-

vaccination), 1, 2, 7, and 14 following DVC-LVS vaccination at both sites (referred to as Site 1 

and Site 2). Samples were prepared for sequencing using poly A selection followed by mRNA 

fragmentation, reverse transcription, adapter ligation and amplification at two different sequencing 

facilities; Site 1 employed Illumina TruSeq and Site 2 utilized a similar “in house” protocol(see 

Materials & Methods).  A single operator at each site extracted RNA, conducted the library 

preparation, and performed CBot clustering and loading of pooled libraries onto Illumina HiSeq 

3000 sequencers. Internal (ERCC) and external (UHRR) RNA controls were included in each 

experiment to estimate the dynamic range and fold change accuracy, as well as to evaluate the 

suitability of external RNA references for inter-site normalization. RNA sequencing was 

performed at each site by distributing the libraries for 53 samples evenly across 5 lanes of the 

respective Illumina HiSeq 3000 devices at each site (Figure 1B). Sequences were aligned to the 

GRCh38 reference genome.   

 

Sequencing Statistics 

A summary of the reference alignment statistics is listed in Table 1. Site 1 data was sequenced at 

151 nt singled ended (SE) to a median total depth of 31.8 x 106 reads, with 28.1 x 106 (93.8%) 

uniquely mapping reads, whereas Site 2 data was sequenced at 100 nt SE and had a median total 

and unique read depth of 34.9 x 106 and 28.8 x 106 (88.1%), respectively (Figure 1C and Table 

1). When reads were mapped against known gene models, a median of 22.4 x 106 and 20.1 x 106 

reads were uniquely counted in the expression quantification step for Site 1 and Site 2 data, 
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respectively. The majority (median of 86.6% for Site 1 and 76.6% for Site 2) of tags (i.e. spliced 

reads) mapped to known exonic regions, and fewer mapped to intronic (12.6% and 22.2%, 

respectively), and intergenic regions (0.9% and 1.2%, respectively) (Table 1). The GC content in 

sequenced libraries was comparable between sites (medians 49.3, 50.5 for Site 1 and Site 2 data, 

respectively). Of note, one baseline (pre-vaccination) sample at Site 1 showed substantial GC 

content bias with a median GC of 55.6% and was identified as an outlier in  principal component 

analysis (PCA). This sample was removed from downstream analyses unless otherwise specified.  

 

Taken together, these summary statistics demonstrated that, in general, the replicate samples were 

sequenced effectively at each site. However, despite using replicate PBMC samples as starting 

material and identical sequencing platforms, coverage metrics and mapping statistics varied. 

Variation was less pronounced for the 3 external UHRR control samples whose sequences were 

combined prior to processing (Figure 1) indicating that variability in RNA content between paired 

samples may have contributed to this. In addition, read lengths differed between protocols (151 

vs. 101 nt). Except for read length, we considered these differences between datasets to reflect true 

variability introduced by different operators generating distinct library preparations. Thus, these 

data should represent a good comparison set for investigating the overall reproducibility of 

Illumina-based RNA-Seq results in the context of a vaccine study. 

 

Inter-site agreement of RNA-Seq log2 counts per million and fold-change estimates improved 

after filtering out lowly-expressed genes  

A prior study assessed the technical accuracy of RNA-Seq measurements between laboratory sites 

(14). This prior study relied on comparison of read counts of reference RNAs (i.e. UHRR) between 

laboratories, which involved non-matching sequencing platforms. Here, we extended this 

benchmarking of RNA-Seq accuracy by using replicate samples from clinical samples. To assess 

the agreement of read-count estimation and fold change, and to test the impact of filtering lowly-

expressed genes, we calculated an adjusted Euclidean distance (which uses the mean squared 

distance rather than the sum of squared distances to normalize for the total number of genes) and 

Pearson correlation between the two sites for the log2 counts per million (LCPM) (n=49) and the 

log2 fold change (LFC) (n=36, post-vaccination vs. pre-vaccination) for each subject. This analysis 

was performed on the data after applying different counts-per-million (CPM) filtering cutoffs 
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(unfiltered, 1, 2, 4, and 8 CPM) to remove lowly-expressed genes; these filtering cutoffs were 

applied by removing any gene whose maximum expression level across samples was below the 

specified threshold.  

 

The Euclidean distance showed improved reproducibility of gene expression profiles between 

replicate samples as the CPM cutoff increased (Figure 2A); the average Euclidean distance was 

1.45 for the unfiltered dataset, and this distance dropped to 0.80 after applying the >1 CPM cutoff. 

Increasing the threshold to >2 CPM, >4 CPM, and >8 CPM showed additional, incremental shifts 

in the distribution toward lower Euclidean distances. Similarly, the Pearson correlation showed 

improved reproducibility with filtering; the mean correlation increased from 0.945 for the 

unfiltered data up to 0.960 for the >1 CPM filtering, but  it did not continue to increase substantially 

with additional filtering (Figure 2B). The Euclidean distances of the LFC profile for each replicate 

paired sample showed a similar trend: reproducibility between Sites improved with increased 

filtering (Figure 2C). The average Euclidean distances on the LFCs shrunk from 1.06 for the 

unfiltered dataset down to 0.30 for the >8 CPM filtering. In contrast to the LCPM profiles, the 

Pearson correlation of the LFCs did show continued improvement with additional filtering (Figure 

2D). The average Pearson correlation jumped from 0.11 for the unfiltered data to 0.48 with >1 

CPM filtering. Increasing the threshold continued to improve the correlation reaching an average 

of 0.73 with >8 CPM filtering. A similar analysis was performed looking at reproducibility by 

gene (rather than by sample), and this also demonstrated improvements in Euclidean distance and 

Pearson correlation after applying filtering (Supplemental Figure 1).Taken together, these results 

demonstrated that (i) the overall concordance of log2 counts per million and fold-change estimates 

increased with increasing minimum gene expression abundance, (ii) low expressed genes provide 

inaccurate measurements, as demonstrated here by low concordance of data between sites, and 

(iii) commonly used cutoffs such as >1 CPM might not be sufficiently stringent to ensure accurate 

calculation of fold changes.  

 

Discordance of detection of DE genes between sites was mainly driven by differences in mean 

fold change    

To assess and compare the strength of the biological signal, i.e. the change in magnitude of gene 

expression longitudinally over time (Days 1, 2, 7 and 14), we contrasted mean LFC and mean 
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LCPM using MA plots  (Figure 3A). We determined the number of DEGs using edgeR (FDR 

<0.05, fold change of ±1.5) after applying a maximum CPM ≤8 across samples to filter out lowly-

expressed genes. For both sites, an increase in fold change and the number of DEGs was observed 

over time indicating that the complexity of vaccine-induced gene expression signals in PBMCs 

reached a peak at Day 14. As shown in Figure 3A, substantially higher numbers of DEGs were 

detected at Day 14 as well as Day 7, compared to Day 1 and Day 2 for which few DEGs were 

detected. These results are consistent with other studies describing use of transcriptomics to 

characterize responses to live-attenuated vaccines, in which increases in gene expression 

corresponds with the initiation of the adaptive immune response. Overall, 1173 and 1218 DEGs 

were detected across all time-points for Site 1 and Site 2, respectively, of which 869 overlapped 

with a concordance of 74% for Site 1 and 71% for Site 2. To better understand where the loss of 

concordance in DEGs occurred, we examined whether missed DEGs were due to missing FDR 

and/or fold-change cutoffs or due to CPM filtering (Figure 3A, Supplemental Table 1). At the 

Day 1 and Day 2 time points, the overall DEG concordance was only ~60% (Figure 3A, right 

panel, green bar). However, when we accounted for genes that had a significant FDR but did not 

pass the fold-change threshold of ±1.5, the maximum concordance increased to nearly 80% 

(Figure 3A, right panel, grey bar). Generally, we noted that the failure of genes to pass a FC cutoff 

(grey bars) was consistently the largest contributor to gene list discordance, followed by the effects 

of different levels of CPM filtering (blue bars) (Figure 3A). However, failing both FDR and FC 

cutoffs had more pronounced effects than CPM filtering for the weaker biological signals observed 

at Days 1 and 2, indicating that statistical power was more negatively impacted by lower effect 

sizes and higher variability in changes for these days. Overall, only a small fraction of genes was 

discordant due to failing to pass only the FDR cutoff (orange bars). We considered that the lack of 

overlap due to fold change differences between Site 1 and Site 2 was due to the low magnitude of 

fold change for DEGs at Day 1 and Day 2. However, when we compared the Site 1 vs. Site 2 DEG 

overlaps from the Day 7 and Day 14 timepoints, which had more gene expression changes, the 

fraction of discordant genes due to failing to meet the fold-change criteria (grey bars) was similar. 

To examine the disagreement between fold changes in more in depth, we ranked the DEGs by fold 

change, from most downregulated to most upregulated, and plotted them for each post-vaccination 

day (Figure 3B).  DEG fold-change ranks were highly concordant between the two sites and 

overall directions agreed. Variability in ranks was greatest for the middle ranks and strongest 
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discordancy in ranks was mainly observed for genes at one site that had a fold change below the 

threshold of ±1.5 relative to the other site. These data were instructive for establishing the relative 

contribution of cutoffs to the discordance of DEGs between Sites. We demonstrated here that 

utilizing a lower FC cutoff of 1.5 can result in a reduction in inter-site agreement of DEGs by 20 

percentage points compared with using higher FC cutoffs. 

 

The influence of sequencing depth on gene representation of the PBMC transcriptome  

We next assessed the influence of sequencing coverage (read depth) on gene representation in our 

datasets. To establish a comprehensive reference of genes expressed in PBMCs, we first pooled, 

in silico, data from all 100 samples (10 individuals, 5 time points, 2 sequencing sites), yielding a 

reference transcriptome comprising 2.2 B total reads that mapped to hg38 human reference gene 

models. We next filtered out genes with fewer than 100 total aggregate reads (corresponding to 

approximately 1 read per sample). This resulted in a “PBMC transcriptome compendium” 

comprised of 26,172 gene models that we used as a reference set considered “truly expressed” in 

the PBMC compartment. To assess the impact of coverage on gene representation, we used the 

PBMC transcriptome compendium to determine the proportion of genes detectable per sample as 

a function of decreasing simulated coverage (i.e., read depth) (Figure 4). To focus on genes with 

strong evidence of genuine expression, we choose a cutoff of ≥16 reads per sample. At a depth of 

30 M reads, an average of 14,545 genes were detected with ≥16 reads, representing 56% of the 

truly expressed PBMC compartment (or 44% lost). While relaxing our read-count threshold 

increased the number of detected genes, there was still incomplete representation of transcripts: at 

a threshold of 5 reads, only 67% of genes in the compendium were detected, and at a threshold of 

1 read, detection was 83%. As expected, the number of detected genes from the PBMC reference 

transcriptome compendium decreased with lower coverage. At 25 M reads, the fraction of genes 

with ≥16 reads from the cumulative PBMC reference was 53%, and at 20 M reads the fraction of 

genes lost was 52%. In comparison, when subsampling in silico to 10 M reads per sample, 12,030 

genes (46%) were detected on average, representing a loss of 54% relative to the cumulative gene 

set. At coverage of 10 M reads, on average 2,515 genes (9.6%) fewer genes with ≥16 reads could 

be detected compared to samples at 30 M. This demonstrated that, even at relatively deep 

sequencing coverage of 30 M, a significant percentage of the gene content expressed in PBMCs 

was not detected. 
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Coverage was more influential than read length in ensuring consistent DEG results 

Two of the main technical parameters that determine cost in an RNA-Seq experiment are (i) read-

length and (ii) sequencing depth. The impact of read length on the ability to accurately measure 

DEGs has not been comprehensively studied to date: One previous study utilized data from the 

SEQC study and determined virtually no impact of using paired end reads on the ability to 

reproducibly detect DEGs defined by p-value (17). Thus, we focused our analysis on defining the 

optimal single-ended read length. In the Chhangawala study (17), the dataset utilized commercial 

reference RNA samples (UHRR and Ambion FirstChoice Human Brain Reference RNA) and 

relatively low replication (n=3). In this regard, the current study, which used “real-world” samples 

from a vaccine trial and was more robustly powered (n=10), provided an optimal opportunity to 

empirically test the impact of varying read-length parameter. To evaluate the impact of different 

read lengths on DEG identification, we used the Site 1 dataset as it utilized longer read lengths 

compared to Site 2. Different read lengths were simulated by right-truncating the actual sequencing 

reads (100 nt, 75 nt, and 50 nt read length) to most accurately mimic true Illumina sequencing and 

the range of Q-scores that would result from bona-fide sequencing at those lengths. To simulate 

different coverage levels, we randomly down-sampled the original 31.8 M reads to 25 M, 20 M, 

15 M, and 10 M reads.  For the comparisons, we used the DEG results identified for the original 

data (151 nt read length and 31.8 M read coverage) as the reference, essentially controlling for all 

other parameters. We then compared DEGs obtained using differing read lengths and coverage 

levels using the Jaccard index. Results showed that shortening read length had a lesser impact on 

DEG detection compared to reduction in sequencing depth (Figure 5). Notably, although the set 

of genes identified as DE was affected, the total number of DEGs detected did not change 

substantially with either shortening read length or a reduction in sequencing depth (Supplemental 

Figure 2). Reducing the read-length from 151 to 100, 75, and 50 nt at the same coverage level (35 

million) showed a mean DE agreement (based on Jaccard index) for days with strongest biological 

signals (Day 7-14) of 0.95, 0.94, and 0.91, respectively. At the lowest read length level of 50 nt, 

91% of the detected DEGs agreed. In contrast, reducing coverage from 35 to 25, 20, 15, and 10 M 

reads at the same read length (151 nt) showed a mean DE agreement (based on Jaccard index) for 

days with strongest biological signals (Day 7 and 14) of 0.93, 0.87, 0.83, and 0.80, respectively 

(Figure 5). In summary, this showed that read length had a much lesser impact on DEG agreement 
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compared to coverage. Changing the read length by approximately half from 151 nt to 75 nt only 

resulted in 6% disagreeing DEGs. In contrast, reducing coverage by approximately half from 32 

M to 15 M reads resulted in 17% disagreeing DEGs. The disagreement was not explained by a 

change in the total number of DEGs. 

 

Establishment of a read-count cutoff for accurate fold-change assessment 

In RNA-Seq experiments, pre-filtering genes with low read counts to reduce low quality data is an 

important part of the analysis but is frequently done using arbitrarily defined thresholds. As we 

have shown in Figure 2, filtering also improved inter-site agreement in LCPM and LFC based on 

Pearson correlation. Exogenous RNA species used as spike-in controls provide the ability to 

include within a dataset a set of references with known abundance levels that can be used as an 

internal “truth” by which to judge the accuracy of the analysis accounting for varying sequencing 

parameters. Here, we tested the utility of the spike-in controls provided by the External RNA 

Controls Consortium (ERCC) (24) to empirically derive read-count cutoffs within our datasets that 

result in a high agreement between expected and observed fold changes. To achieve this, we used 

92 ERCC spike-in RNA control pairs (ERCC2 vs. ERCC1 mixes with known abundance ratios) 

that were spiked into pre-defined sample pairs (n=40 for each site). The 92 spike-in transcripts 

were binned into 7 groups of increasing expression levels (based on the average LCPM of each 

ERCC1 and ERCC2 spike-in pair), and the Spearman correlation between the observed and 

expected ERCC 2 vs. ERCC 1 ratios was calculated within each bin (on average 13 ERCC1/2 

spike ins per bin) for each paired sample, along with the respective average LCPM. These values 

were used to model the relationship between the LCPM and the correlation of empirical vs. 

expected fold changes (Figure 6). The trend plots showed that the correlation increased with 

increasing LCPM values. We then empirically determined a read-count threshold based on LCPM 

abundance that marks good agreement between expected and observed LFC. We defined good 

agreement as having a correlation value of 0.9 or higher.  The non-linear relationship between 

Spearman correlation and average LCPM was modeled using a 3rd order polynomial. The model 

was fit to our two datasets (n=40 paired samples each), and the LCPM value that gave a predicted 

correlation value of 0.90 was used as the empirically determined threshold. This method yielded 

LCPM expression cutoffs of 3.34 and 1.73 for Sites 1 and 2, respectively. To assess the degree of 

variability of the point estimate we used bootstrapping. Resulting 95% CIs were 2.15 to 6.84 
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LCPM forSite 1 and 1.29 to 2.17 LCPM for Site 2 (Figure 6). These intervals can be used to 

balance the trade-off between fold change accuracy and filtering out too many genes. To maximize 

the number of genes for the analysis while maintaining good agreement between observed and 

expected fold changes, the lower bound of the 95% CI may be used as the cutoff threshold, in this 

case 2.15 and 1.29 for Site 1 and Site 2, respectively. With nearest integer increments typically 

used for read counts, this would translate to 3 and 2 LCPMs for Sites 1 and 2, respectively.  

 

In this section we highlighted a new algorithm that utilizes internal ERCC spike-ins for 

determining an optimal read-count threshold for each dataset independently. The advantage of this 

approach is that it is data driven and implicitly controls for any inherent sequencing parameters. 

These results suggested that the 8 CPM cutoff (3 LCPM) used in the original analysis of these data 

provided a good agreement between observed and expected fold changes for Site 1. For Site 2, a 

4 CPM cutoff (2 LCPM) would have been more optimal. 

 

Power estimates for vaccine studies for DEG detection 

To further evaluate the impact of different parameters on DEG identification, we assessed relative 

statistical power for different scenarios characterized by varying sample size (n=3 to n=15), effect 

size (1.25 to 2 minimum absolute fold change), and read coverage (10 to 60 M reads) (Figure 7). 

In lieu of a “truth set” of genes for which the differential expression was independently known, 

we defined a set of “truly differentially expressed genes” (TDEGs) as those genes identified as 

DEG for both sites using two different R packages (edgeR and DESeq2). Using these conservative 

criteria, we obtained 444, 357, 2,300, and 3,284 TDEGs for post-vaccination Days 1, 2, 7 and 14 

respectively. We then simulated negative binomial data for each post-vaccination day using Site 2 

data as the basis for power analyses as this set was more complete than Site 1 due to one outlying 

subject.  

 

The power curves shown in Figure 7 demonstrate that statistical power to detect TDEGs was most 

strongly influenced by sample size. Importantly, power was modulated by the overall magnitude 

and breadth of the biological vaccine effect, which was evident by the overall horizontal shifts in 

the power curves with increasing power for increasing vaccine effects reported for Days 1-14 (see 

Figure 3A). Most positively impacted was the statistical power to detect TDEGs with smaller fold 
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changes (FC ≥1.25 fold change), for example, with a sample size of n=10 and coverage of 30 M 

reads, the statistical power increased from ~30% on Day 1 to 50%, 55% and 68% on Days 2, 7, 

and 14, respectively. Three other notable trends were apparent:  

 

First, statistical power to detect TDEGs was remarkably higher for genes with larger effect sizes. 

For example, at Day 14, for genes with greater than 1.75-fold or 2-fold effect sizes, even at the 

lowest level of sample size evaluated (n=3) the statistical power was 55% and 68%, respectively. 

An increase in sample size to 10 or higher led to greater than 90% power for detection of TDEGs 

with fold changes at or above 1.75 (Figure 7). In contrast, at a lower effect-size cutoff of 1.5-fold, 

the approximated power was 37% at a sample size of n=3, and 90% power wasn’t attained until a 

sample size of 13 or more. For the smallest effect size considered, a cutoff of 1.25-fold, statistical 

power dropped much lower for smaller n with only 18% of TDEGs detected at n=3. However, 

sensitivity increased steadily with increased sample sizes: at n=6, 44% of TDEGs were detected; 

at n=10, 68% of TDEGs were detected; and at n=15, the largest sample size considered, 84% of 

TDEGs were detected.  

 

Second, read coverage had a minor effect on power (Figure 7). A noticeable negative effect on 

power was only observed when coverage was reduced from 20 M to 10 M, and even with this 

magnitude of coverage reduction, the power difference was minor. No substantial gains in 

statistical power were detected beyond 20 M reads. Furthermore, this lack of dependence of power 

on the read coverage depth was observed across all four days. This means, since the biological 

signal increased across time, deeper coverage over 20 M reads did not improve power in the 

presence of weaker biological signals.  

 

Lastly, the false discovery rate (FDR), defined by the proportion of statistically significant genes 

that were not TDEGs, showed a strong dependence on the strength of the biological signal 

(Supplemental Figure 3). The statistical significance of each gene was determined based on an 

adjusted p-value set to control the false discovery rate at a 5% level. At Day 1, when the signal 

was weakest, the approximated FDR was inflated to 41% for a sample size of n=3. However, the 

FDR improved as the sample size increased; with a sample size of n=13 or larger, the FDR was 

below 10% for all fold-change cutoffs and below 5% for the more stringent 1.75- and 2-fold-
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change cutoffs. In contrast, at Day 14 when the biological signal was strongest, the FDR was near 

5% for all sample sizes and fold-change cutoffs. Of note, the coverage level did not noticeably 

affect the FDR, regardless of the strength of the biological signal, similarly to what was observed 

for power. 

 

The type-I-error rate, defined as the proportion of non-TDEGs that were declared statistically 

significant, was also evaluated (Supplemental Figure 4). In all simulation settings, the type-I-

error rate was below 2%. It should be noted, however, that a low type-I-error rate is not surprising 

in this context because its value is directly related to the proportion of genes declared to be 

statistically significant. As a result, the type-I error should be assessed together with power to form 

an accurate summary of the performance. With this in mind, we found that: (i) the stronger 

biological signals at Days 7 and 14 led to increased type-I error relative to Days 1 and 2, but this 

was accompanied by improved power; (ii) there was no apparent dependence between coverage 

level and the type-I-error rate in any scenario; and (iii) the type-I-error rate remained relatively 

unchanged with increasing sample size, except at Days 7 and 14 when the lowest fold-change 

cutoff of 1.25 was used, in which case the type-I error showed a slight, gradual increase for each 

sample size considered even though power still improved.  

 

While the magnitude of the fold change for the TDEGs was fixed in this simulation, the variance 

of these genes was allowed to change based on each simulated coverage dataset. Since variance 

plays an important role in power – higher variance directly results in lower power, all else equal – 

we investigated whether the mean-variance relationship across genes was affected by the different 

coverage depths. Overall, the mean-variance trends across genes were maintained for different 

coverage depths considered in this simulation; the curves shift left with lower coverage to produce 

fewer total counts, but the trend of lowly-expressed genes having higher variance compared to 

highly-expressed genes persisted (Supplemental Figure 5A). While the trends shifted vertically 

with increasing log mean expression, the corresponding log over dispersion values remained 

similar. Additionally, after applying TMM-normalization and obtaining LCPM values for the gene 

expression in the simulated coverage datasets, these values aligned with the LCPM values in the 

original dataset (Supplemental Figure 5B). Hence, this suggested that coverage depth would also 

have a minimal differential impact on lowly-expressed gene filtering based on CPM. Thus, while 
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we performed this analysis for genes with  > 8 CPM, given this result, our findings that coverage 

did not have a substantial impact on power can be generalized to other CPM cutoffs.   

 

Discussion: 

RNA-Seq offers a large amount of flexibility in the design of experiments, and many technical 

parameters such as read length, sequencing depth, and replication (i.e. sample size) can be varied 

to match the needs of an experiment. In addition, choices of lowly-expressed gene and fold-change 

thresholds have an impact on downstream analysis. The goal of most RNA-Seq experiments is to 

detect genes with statistically significant differences in expression across conditions. Several 

studies in recent years have sought to investigate how technical parameters influence the 

composition of DEGs and to provide standards for the design of RNA-Seq experiments. The 

contributions of technical variation to RNA-Seq analysis have been reduced in recent years due to 

the improvements in library preparation methods and widespread use of Illumina sequencing; 

however, the contribution of biological variation remains unique to each dataset.  

 

With this in mind, we sought to provide general recommendations for conducting RNA-Seq in 

clinical vaccine studies using real-world data generated from a vaccine clinical trial. To achieve 

this, we assessed human blood PBMC transcriptomes for 10 healthy subjects at Days 0 (pre-

vaccination), 1, 2, 7, and 14 following vaccinations with a Francisella tularensis live vaccine strain 

(DVC-LVS) and compared results obtained from matching aliquots from two different sequencing 

laboratories addressing the following questions:  

 

(1) Inter-site reproducibility: How reproducible are data generated in separate laboratories? How 

can agreement be improved?  

(2) Technical Parameters: What is the impact of altering lowly-expressed gene thresholds, read 

length, and coverage? How is PBMC transcript coverage impacted? How can lowly-expressed 

gene thresholds be derived empirically? 

(3) Sample Size & Statistical Power: Given the biological variation and effect sizes observed in a 

clinical vaccine study, what relative role does sample size, effect size, and coverage play? What is 

the impact on false discoveries and the type 1 error? 
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Inter-site reproducibility: The seminal SEQC study investigated concordance of samples 

processed in multiple sites performing contrasts of two reference samples (Universal Human 

Reference RNA vs Brain Reference RNA). One important conclusion from SEQC was that while 

RNA-Seq fold-change estimates were generally concordant between laboratories, read-count data 

could not be reliably combined (16). Normalization improved overall inter-site agreement but not 

to the level where read counts could be combined (31).  

 

In this study, we showed that the inter-site agreement between log2 count per million and fold 

changes was strongly dependent on the degree of read-count filtering. While the commonly used 

cutoff of >1 CPM resulted in the biggest gain, inter-site agreement showed continuous further 

improvements with more stringent filtering and observed Pearson correlation was modest with an 

average of r=0.7 for LCPM and r=0.50 between LFCs. This indicated that (i) genes that are lowly 

expressed disproportionally contribute to disagreement between sites, as demonstrated here by 

lower concordance of data between sites when not excluded; (ii) that these low abundance 

transcripts are most effectively negated by filtering; (iii) average explained variance was 92% and 

24% for LCPM and LFC, respectively, when using >1 CPM demonstrating that a lot of the inter-

site variability remained unexplained; and (iv) commonly used cutoffs such as 1 CPM might not 

be stringent enough to ensure a high level of reproducibility of LCPM and LFC obtained from data 

run at two difference sites. For example, increasing the cutoff from 1 CPM to 8 CPM increased 

the explained variance for fold changes from 24% to 52%. 

 

Several groups have demonstrated that correlations are not sufficient to allow combination of 

datasets generated at distinct sites (16, 29). Thus, we extended our comparison to further 

investigate to what extent DEGs detected from Site 1 and Site 2 datasets were congruent after 

applying a >8 CPM low expressed gene cutoff and how gene filtering, fold change, and FDR 

cutoffs modulated this agreement. We found that when using >8 CPM, FDR <0.05 , and FC ≥1.5 

that (i) agreement increased with the strength of the biological signal (55-73% of DEGs agreeing 

between Days 1-14 with an average of 65% agreement) and (ii) the largest negative impact on 

inter-site DEG agreement was driven by genes meeting the FDR but not meeting the FC for one 

site but not the other (on average 68% of DEGs among genes with >8 CPM in both laboratories). 

These findings highlighted the importance of the accuracy of fold changes for inter-site DEG 
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agreement. Based on these findings, our recommendation for improving inter-site DEG agreement 

is to apply gene expression filtering and determine DEGs using a FDR cutoff, but to not use fold-

change cutoffs. In our case, after removing the fold-change cutoff requirement, the agreement in 

DEGs increased from 65% to 82% on average between the two sites. 

 

In addition to the aforementioned differences, global PCA and MDS analysis of LCPM across all 

100 samples showed a strong separation of the two sites indicating that the data could not simply 

be merged, e.g., by using the sum of the read counts obtained for the two aliquots belonging to the 

same sample (Supplemental Figure 6). This effect could not be removed using TMM 

normalization, a common approach used for normalizing systematic differences in RNA-Seq data. 

While sequencing technology was the same, each site utilized a similar, but distinct library 

preparation method: Site 1 used the Illumina TruSeq method and 500 ng of RNA as input, whereas 

Site 2 used a modified, in house method similar to TruSeq and 1 ug of RNA for starting material. 

Thus, even when using highly similar library preparation methodologies, the random variation 

added by different sequencing laboratories is sufficient to discourage pooling the data. In addition, 

biological variation between aliquots derived from the same samples may explain some of these 

differences as well. These results have important implications for RNA-Seq experimental design 

considerations in the setting of large consortia, in which hundreds or thousands of samples are 

sequenced across multiple sites. These data indicate that, even under scenarios in which 

sequencing laboratories have harmonized library prep methodology, strategies that pool data at the 

readcount level directly should be avoided.However, biological conclusions drawn from each 

individual dataset on the DEG level were very similar with the heatmap fold-change profiles 

showing clustering of all DEGs within aliquots from the same sample for all timepoints 

(Supplemental Figure 7). This indicated that, while differences were observed on the global gene 

expression level, these did not sufficiently confound the key signals in the data that were accurately 

captured in either experiment.  

 

Technical Parameters:  

 

Choice of read length We assessed the impact of differing read length on our ability to detect 

DEGs by truncating reads to mimic common Illumina sequencing configurations (100 nt SE, 75 
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nt SE, and 50 nt SE), and compared DEGs recovered to those found using 151 nt. Overall, for the 

strongest biological signal observed at Days 2-14, we found very little impact, the overlap in DEGs 

was >90% for all configurations, and it was 95% and 94% for the 100 nt and 75 nt simulations, 

respectively, based on Jaccard index. Our findings are largely in agreement with prior work 

examining this relationship: Chhangawala et al (17), utilized commercial reference RNA samples 

(UHRR and Ambion FirstChoice Human Brain Reference RNA) and found that very little 

difference in the sensitivity to detect DEGs when varying read length from 50-100 nt, but read 

lengths of 25 nt were inferior. In this regard, our study replicates and extends this principle to  

“real-world” samples from a vaccine trial. In contrast, recent data has emerged that indicates that 

short-paired end reads (i.e. 2x40 nt) outperform longer single-ended libraries for gene expression 

estimates (32). These findings are intriguing and warrant future investigation. However, it should 

be noted that the primary metrics for this determination were correlations of read counts to the 

“parent” dataset which comprised of 2 x 125 paired end reads. Given the size of our dataset, we 

did not utilize paired-end sequencing and are unable to directly test these findings. Collectively, 

our data demonstrate that RNA-Seq studies with clinical PBMC datasets can reduce read length 

down to 50 nt with relatively minimal impact on the ability to detect DEGs compared to the 

untruncated data. While our observations on the relatively modest impact of read count are 

generally consistent with prior observations, our simulation was performed using a dataset with 

relatively deep coverage (~35 M reads per sample), and the impact may be more evident on 

datasets with less sequencing depth. Nevertheless, these results indicate that reducing read length 

can be a viable option for cost-savings.  

 

Choice of Coverage For this analysis, we assessed the relative impact of reducing coverage from 

35 to 25, 20, 15, and 10 M reads on DEG agreement. Our main findings were that (i) compared to 

read length when coverage was kept constant (35 M reads), coverage had a larger influence on 

DEG agreement when read length was kept constant (151 nt); (ii) the relationship was modulated 

by the strength of the biological signal; (iii) for the strongest biological signals (Day 7 and 14), an 

approximate linear relationship was observed with a 5% drop in agreement with each drop in 5 M 

read coverage (down to 80% agreement with 10 M reads); and (iv) for the weaker signal at Day 2, 

a non-linear relationship was observed with the biggest drop seen between 15 M and 10 M, 
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indicating that weaker biological signals require higher coverage than stronger signals to produce 

robust DEG results.   

 

In order to assess the impact of coverage on accurately covering genes expressed in the PBMC 

transcriptome, based on pooled data, we generated a “PBMC transcriptome compendium” 

comprised of 26,172 genes. Cumulatively, our results demonstrated that, even at relatively deep 

sequencing coverage of 30 M, a significant percentage of the gene content expressed in PBMCs 

was not detectable (17-44% depending on read count filtering). This limitation in turn negatively 

impacts DEG detection contributing to an increased false negative rate.  

 

Choice of lowly-expressed gene cutoff  Our analysis showed that stronger filtering improved the 

inter-site agreement – in particular, the correlation between fold-change estimates – by removing 

lowly-expressed genes. This prompted us to investigate the relationship between known fold 

changes using endogenous reference RNA (ERCC1 and ERCC2 controls) which were spiked into 

clinical samples in a way to evaluate fold-change accuracy (ERCC1 was spiked into 10 samples, 

and ERCC2 was spiked into the remaining 40 samples). Based on the observed non-linear trend, 

we devised a method to empirically determine a low gene expression LCPM cutoff that represents 

good Spearman correlation of observed vs expected ERCC control fold changes. Using this 

approach with each site’s data separately, we established low gene expression thresholds of 3 

LCPM and 2 LCPM for Sites 1 and 2, respectively. These thresholds balance the trade-off between 

fold-change accuracy and filtering out too many genes for each site. These results were 

encouraging as they demonstrated that both sites retained a high level of technical precision to 

accurately quantify ERCC1/2 spike-in expression changes at relatively low CPM. However, 

differences remained with Site 1 requiring stronger filtering than Site 2 due to slightly lower depth 

of coverage and increased noise (one globally outlying sample was identified) for Site 1. This 

highlights the usefulness of internal ERRC1/2 spike-ins for estimating empirical gene expression 

filtering cutoffs accounting for systematic experimental differences across sites. 

 

Impact of Sample Size & Sequencing Depth on Statistical Power: One of the most important 

decisions to be made during the design of an RNA-Seq experiment is the number of samples to 

sequence. A set of “truly differentially expressed genes” or TDEGs was established based on a 
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stringent FDR threshold and replication in both sites using different DEG detection methods. This 

strategy to define a “truth set” has been used effectively by prior studies examining the relationship 

of RNA-Seq parameters with power (33). We defined statistical power, or sensitivity, as our ability 

to detect TDEGs with a given effect size at varying read depths and sample sizes for each post-

vaccination day. The results unambiguously demonstrated that sample size was a much more 

important factor than sequencing depth for detection of TDEGs in PBMCs after vaccination. A 

few other principles were identified: 

 

(i) the power to detect gene expression with variable sample sizes was highly influenced by the 

effect size (i.e. the fold change). When we restricted our analyses to genes with a greater than 2-

fold change on Day 14, the power was 66% to 68% for all coverage levels considered with only 

n=3 samples, and this increased to >90% with n=8 samples. In contrast, when we lowered the 

threshold to 1.5-fold changes, the power to detect TDEGs fell to below 38% with n=3, and was 

below 79% with n=8. While we did not run a simulation using all genes, our simulation using a 

fold-change threshold of ≥1.25-fold contained between 70% to 88% of all DEGs found at each 

day at an FDR <0.05, and we reasoned that this was an acceptable threshold likely to screen out 

unreliable transcripts with extremely low effect sizes and allow us to estimate the power to detect 

most (if not all) of the TDEGs. Nevertheless, using the fold-change cutoff of ≥1.25-fold, even at a 

simulated sample size of n=8, we were only able to detect fewer than 58% of the TDEGs on Day 

14. This relationship between effect size and power has been observed by others: Hart et al. found 

using simulated RNA-Seq datasets from PBMCs that genes with fold changes approaching 3 are 

nearly universally detected, but as the fold change becomes lower than 2-fold, sensitivity decreases 

sharply (34). 

 

(ii) the sample size needed to sensitively detect the full complement of differentially expressed 

genes (i.e., all TDEGs at all fold changes) is remarkably high. Even with enforcing a ≥1.25-fold-

change cutoff, our simulations indicated that a sample size of n=10 provided only 29% power to 

detect TDEGs on Day 1 and peaked on Day 14 with 68% power. This observation has been 

reported several times using a wide variety of datasets with differing samples: Wu et al. 

demonstrated that even using extremely high read depth, sample sizes of >10 were needed to 

achieve sensitivities above 80%. Ching and colleagues examined a diverse array of datasets: 
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whereas some datasets were able to achieve a high level of power at low replicates (i.e., n=3 to 5), 

these tended to be unique scenarios such as comparing reference samples from highly divergent 

tissues and employing technical replicates, where average fold changes of DEGs were high, and 

the gene-level dispersion extremely low (42). In contrast, our work demonstrated that when 

analyzing human samples from diverse individuals that mimic true biological variability and 

comparing responses in the same tissue induced by exogenous stimuli, the sample size to achieve 

power >80% across all fold-change cutoffs was n≥15 for the strongest biological signal observed 

at Day 14. At Day 7 and Day 2, power was ≥70% followed by Day 1 with ≥50%. Schurch et al.’s 

findings suggest that sample sizes should be larger than n=12 if the goal is to sensitively describe 

the majority of DEGs (20). Hart and colleagues demonstrated that the gene-level dispersion was 

the main driving factor determining the sensitivity of an RNA-Seq dataset and that while datasets 

with low coefficients of variation could achieve 80% power at n=8, other datasets needed n>20 or 

even n>40.  In the context of these prior studies, our power simulations illustrate the utility and 

limitations of RNA-Seq data using PBMCs in clinical studies. First, in our PBMC dataset, we 

found that at a relatively low fold-change cutoff of ≥1.5, we achieved 80% power at n=9 for 

TDEGs on Day 14. At this sample size, we had extremely high sensitivity to detect the genes most 

dramatically influenced by the perturbation. Conversely, when the gene set is defined with the 

fold-change threshold of ≥1.25, we estimated approximately 62% power at n=9 and attained 80% 

power only at n>14. In practical terms, these results provide guidance on how RNA-Seq data can 

be interpreted from studies using similar data. Importantly, these results do not imply that datasets 

where the sample size is <10 are totally unreliable. Rather, we conclude that, at smaller sample 

sizes, if one employs a higher fold-change cutoff, then there is a higher degree of confidence to 

detect true DEGs. However, more caution must be placed on interpreting genes that do not pass 

the FDR or fold-change threshold as true negatives – the study may be underpowered to detect 

them. If the goal of the experiment is to catalogue all (or nearly all) DEGs induced by a 

perturbation, then a large sample size is needed. While applying a fold-change cutoff increased 

statistical power, we have shown that inter-site agreement in DEGs was reduced when using ≥1.5 

due to variation in fold-change estimates between sites. Thus, the ability to detect true TDEGs 

would need to be balanced with the ability to reproduce findings between different experiments.  
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(iii) the impact of sequencing depth on the power to detect TDEGs was minimal. The ability to 

detect TDEG’s was indistinguishable ranging from 20 M reads to 60 M reads (at 10 M read 

intervals). A minor loss of sensitivity was observed when samples were subsampled down to 10 

M reads.  This result demonstrated that a sequencing depth of 20 M reads is sufficient to capture 

the majority of TDEGs in a PBMCs derived dataset. Ching et al reported nearly identical findings, 

that minimal increased sensitivity was gained above 20 M reads (33). Similarly, others have 

simulated the increase in power at increased depths and found that at 2-fold depth, the increase in 

power only increased 3-5%, and even at 10-fold coverage, that power only increased by 2-3%.  

 

While sequencing depth did not profoundly influence statistical power, we did observe that 

reducing depth had a stronger influence on transcript representation. We found that even at 

relatively deep sequencing depths, only approximately 65% of the total fraction of PBMC 

transcripts are reported in any individual sample. Decreasing sequencing depths led to a loss of 

content of approximately 5% of identifiable genes for each 10 M drop in depth. For example, 

reducing coverage from 30 M reads to 10 M reads detected 2,515 fewer genes. Taken together 

with our power simulations, this analysis demonstrates that while read depth does not alter overall 

power, a substantial proportion of genes with lower  expression will be lost or provide unreliable 

quantification. The true impact on the biological interpretation of reduced transcript representation 

needs to be evaluated for each RNA-Seq dataset independently. In summary, these results 

demonstrated that while it is possible to reduce costs in an RNA-Seq experiment with an overall 

loss of power by decreasing coverage, this step must be carefully considered as there is a tangible 

loss of gene content. As the cost-per-base continues to drop as sequencing technology improves, 

the relative savings in reducing sequencing depth are becoming minimal compared to the cost of 

gene-content loss in an RNA-Seq experiment. 

 

(iv) the false discovery rate and type-I error was dependent on the biological signal strength. Day 

14 produced the strongest biological signal, having a relatively high number of TDEGs and 

magnitude of fold changes compared to other days. The FDR was near or below the 5% level on 

Day 14, regardless of the sample size, coverage level, or fold-change threshold used. As we moved 

back toward Day 1, the strength of the biological signal weakened at each preceding time point, 

and the control of the FDR became more dependent on sample size. On Day 2 and Day 1, the 
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sample size was the most important factor for ensuring the FDR was not inflated. As with power, 

the sequencing depth did not have an effect on FDR as long as the depth was at or above 20 M.  

 

The strength of the biological signal appeared to be the greatest influencer on type-I error, but this 

effect was balanced by the power and FDR. For example, Day 14 shows the highest type-I-error 

rates (although still below 2% in all cases), but this is accompanied by the highest power and 

lowest FDR.  Sequencing depth had negligible impact on the type-I-error rate, consistent with the 

findings for power and FDR. 

 

Conclusions: In this study, our goal was to establish parameters and guidelines for RNA-Seq 

studies using patient PBMC samples obtained before and after vaccination with a live attenuated 

tularemia vaccine. Estimating statistical power in RNA-Seq studies is a complex endeavor, as 

power is strongly influenced by the biological variance of the particular experiment, range of effect 

sizes, and the technical factors we have described in this study. The near universal usage of 

Illumina sequencing has partially standardized the technical factors influencing RNA-Seq power. 

A number of recent studies have established a framework of statistical power and quality control 

for RNA-Seq experiments, and their findings are largely in agreement with our data (14, 16, 18).  

Here, we have extended these framework studies by demonstrating that the principles established 

hold true using “real world” clinical samples from a vaccine clinical trial. The main conclusions 

are: (i) filtering lowly-expressed genes is recommended, if possible guided via ERCC spike-ins, 

to improve fold-change accuracy and inter-site agreement – we provided an algorithm to 

accomplish this;  (ii) read length did not have a major impact on DEG detection, and although 

shortening reads will result in some lost DEGs compared to longer reads, it may be a good option 

to save costs (iii) applying fold-change cutoffs for DEG detection reduced inter-set DEG 

agreement and should be used with caution, if at all; (iv) reduction in coverage had a minimal 

impact on statistical power but reduced the identifiable fraction of the PBMC transcriptome – 20 

M reads appear to be sufficient; (v) sample size is the most important driver of statistical power 

followed by effect size (i.e. the magnitude of fold change) – a sample size of n=15 captured TDEGs 

with ≥ 1.25 fold change at > 80% power for the strongest signal (Day 14). As transcriptomics is 

being increasingly included in clinical drug and vaccine trials to understand biological molecular 
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mechanisms and to provide more sensitive monitoring for toxicities, this study should provide 

useful guidelines for the design of multicenter RNA-Seq studies. 

 

Materials and Methods 

Total RNA was extracted using the RNeasy kit (Qiagen, CA) and quantitated on a Thermo 

Nanodrop, quality assessment was performed on an Agilent Bioanalyzer. RNA with RIN score 

>7.5 were used for library construction.  

 

RNA-Seq Library Preparation and Sequencing: Site 1 

Libraries were prepared using the Illumina (Illumina Inc. San Diego, CA, USA) TruSeq™ mRNA 

stranded kit as per manufacturer’s instructions. 500 ng of total RNA was used for library 

preparation. ERCC synthetic spike-in 1 or 2 (Thermo Fisher Scientific Inc., Waltham, 

Massachusetts) was added to each total RNA sample and processed in parallel. The TruSeq method 

(high-throughput protocol) employs two rounds of poly-A based mRNA enrichment using oligo-

dT magnetic beads followed by mRNA fragmentation (120-200 bp) using cations at high 

temperature. First and second strand cDNA synthesis was performed followed by end repair of the 

blunt cDNA ends. One single “A” base was added at the 3’ end of the cDNA followed by ligation 

of the barcoded adapter unique to each sample. The adapter-ligated libraries were then enriched 

using PCR amplification. The amplified library was validated using a DNA tape on the Agilent 

4200 TapeStation and quantified using fluorescence-based method. The libraries were normalized 

and pooled and clustered on the HiSeq3000/4000 flow cell on the Illumina cBot. The clustered 

flowcell was sequenced on the Illumina HiSeq3000 system employing a single-end 101 cycles run, 

each samples was sequenced to an average depth of 25 M reads. 

 

RNA-Seq Library Preparation and Sequencing: Site 2 

Total RNA integrity was determined using Agilent Bioanalyzer or 4200 Tapestation. ERCC 

synthetic spike-in 1 or 2 (Thermo Fisher Scientific Inc., Waltham, Massachusetts) was added to 

each total RNA sample and processed in parallel. Library preparation was performed with 1 ug,of 

total RNA with a Bioanalyzer RIN score greater than 8.0. Ribosomal RNA was removed by poly-

A selection using Oligo-dT beads (mRNA Direct kit, Life Technologies. In cases, where samples 

had less than 1ug of total RNA, the entire available amount was used.  mRNA was then fragmented 
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in buffer containing 40 mM Tris Acetate pH 8.2, 100 mM Potassium Acetate and 30 mM 

Magnesium Acetate and heating to 94 degrees for 150 seconds. mRNA was reverse transcribed to 

yield cDNA using SuperScript III RT enzyme (Life Technologies, per manufacturer’s instructions) 

and random hexamers. A second strand reaction was performed to yield ds-cDNA. cDNA was 

blunt ended, had an A base added to the 3’ ends, and then had Illumina sequencing adapters ligated 

to the ends. Ligated fragments were then amplified for 14 cycles using primers incorporating 

unique index tags. Fragments were sequenced on an Illumina HiSeq 3000 using single end reads 

extending 100 bases to an average of 35 M reads per sample.  

 

RNA-Seq Data Processing and Detection of DEGs 

The latest version of the human reference genome (GRCh38), gene models, and associated gene 

annotation information at the time of study start were obtained from the ENSEMBL database 

(Version 84, March 2016). The genomic reference was built by merging all human chromosomes 

except X and Y chromosomes to avoid gender-specific effects. Reads were mapped against the 

human reference genome using the STAR splice-aware read aligner (Version 2.5.2a) (35). Gene 

expression quantification was carried out using the featureCounts function as implemented in the 

Subread software (Version 1.5.0-p2)(36). TMM normalization was executed as implemented in 

edgeR (37).  

 

Genes with expression levels ≤ 8 CPM for all 50 samples within site were filtered out and were 

excluded in the differential gene analysis. To identify genes that were significantly differentially 

expressed (DE) from baseline for each post-vaccination day (Days 1, 2, 7, 14), a negative binomial 

model was fit to read counts using the implementation provided by the edgeR software(37). Each 

model included fixed effects for subject to account for paired samples and study visit day (baseline 

or post-vaccination day). For each gene, the statistical significance of the study visit day effect was 

evaluated using a likelihood ratio test. To control for testing multiple genes, the false-discovery 

rate (FDR) based on the Benjamini-Hochberg procedure as implemented in the p.adjust R function 

was applied for each model (38). Genes with a fold change from baseline ≥ 1.5 and FDR-adjusted 

p-value < 0.05 were considered DEGs. 

 

Simulation of datasets to assess impact of read coverage, read length, and simulate power  
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The original 50 FASTQ files from Site 1 with a read length of 151 nt were right-truncated to obtain 

three additional FASTQ files per sample with 50 nt, 75 nt, and 100 nt long reads. Truncation of 

reads was carried out using the fastx_trimmer tool of the FASTX Toolkit. A set of four FASTQ 

files per sample to simulate different coverage levels were obtained by randomly down-sampling 

original reads to 25 million (25 M), 20 million (20 M), 15 million (15 M), and 10 million (10 M) 

reads. Random subsampling of reads was carried out using the sample tool of the seqtk Toolkit 

(Version 1.2-r95-dirty). An additional four FASTQ files were simulated for the power analysis 

using the same approach, which contained 30 M, 40 M, 50 M, and 60 M reads, respectively.  

 

Empirical determination of a cutoff for filtering lowly-expressed genes using ERCC controls 

The 92 ERCC 1 mix transcripts were added to pre -vaccination samples, and the ERCC 2 mix was 

added to each post-vaccination sample. ERCC spike ins cover a range of concentrations from 0.014 

to 30,000 CPM for both mixes, and the expected LFCs from mix 2 to mix 1 range from 0.25 to 2. 

For paired samples, the empirical fold change (based on fold change in CPM from the RNA-Seq 

experiment) and expected fold changes were determined for each of the 92 ERCC transcripts. 

Likewise, the mean LCPM of each ERCC transcript was determined by first calculating the 

average LCPM value for each paired sample, and then taking the mean of those averages. This 

results in a weighted average for each ERCC transcript across the pre- and post-vaccination 

samples. Based on the distribution of the mean ERCC LCPM, the 92 spike-ins were allocated into 

7 bins of increasing abundance from low to high (≥13 transcripts per bin).  

 

Next, for each paired sample, the Spearman correlation between the empirical and the expected 

fold changes was calculated for the subset of ERCC transcripts within each bin. The mean LCPM 

of the transcripts within each bin was also computed for each paired sample. This produces a pair 

of values – the Spearman correlation and mean LCPM – for each paired sample within each bin of 

ERCC transcripts.  A 3rd order polynomial was fitted to these correlation data to estimate a trend 

line that captured the non-linear relationship between the correlation and average LCPM. To make 

this step more robust, outliers within each bin (points with correlation values exceeding Q3 + 1.5 

IQR or less than Q1 – 1.5 IQR) were exclude from this step. The LCPM cutoff value was then 

chosen as the value at which the fitted polynomial gave a correlation of 0.9. Bootstrapping 

(sampling with replacement of paired samples) was used to determine the 95% confidence interval 
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of the cutoff point; the lower and upper bound of the confidence interval represented the 2.5 and 

97.5 percentiles, respectively, of the bootstrap cutoff values. 

 

Calculation of Statistical Power 

Statistical power was assessed using a modified version of the PROPER (39, 40) R package. The 

simulation strategy was designed to assess the effect of (i) the coverage level of the RNA-Seq 

experiment, (ii) the log fold-change cutoff used to filter genes, (iii) the sample size, and iv) the 

varying strength of the biological signal post-vaccination (Day 1, 2, 7, and 14).  

 

For each post-vaccination day, we defined a gold standard set of genes that were “truly 

differentially expressed genes” (TDEG) as those genes with maximum expression level of at least 

8 CPM for all 50 samples within a site and an FDR-adjusted p-value below 0.05, independently 

detected in the data from both sites by both the edgeR (37) and DESeq2 R packages (41), using 

the original coverage data (Table 1). Using these criteria, these analyses yielded 444, 357, 2,300, 

and 3,284 TDEGs for post-vaccination Days 1, 2, 7 and 14 respectively. Each TDEG was 

associated with an effect size based on the estimated average fold change (FC) for that gene in the 

original dataset from Site 1. All non-TDEGs were associated with a null effect size (FC=1). 

 

We used the most complete set (Site 2) that did not have any outliers for the power assessment. To 

estimate statistical power to detect TDEGs, different coverage levels were simulated by down-

sampling the FASTQ files from Site 2 to 30 M, 20 M, 10 M reads and over-sampling them to sizes 

of 40 M, 50 M, and 60 M reads. We simulated FASTQ files for each of these different coverage 

levels for each subject and each of the five time points (pre-vaccination and each post-vaccination 

day). The simulated FASTQ files were aligned against the reference and processed to obtain 

corresponding gene count datasets as described for the original data. The same genes that were 

filtered out in the original analysis were also removed from these datasets. Finally, the average 

gene expression levels (normalized average LCPM) and dispersion estimates (trended dispersion) 

were calculated based on the pre-vaccination day data, resulting in paired mean and dispersion 

estimates for each gene and for each coverage level.  
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These estimates were then used to simulate gene count datasets for the power assessment: for each 

coverage level, post-vaccination day, and sample size (𝑛), 500 datasets were simulated using 

independent negative binomial models for each gene parameterized by its estimated mean 

expression, dispersion, and effect-size level. In each dataset, 𝑛 samples were simulated for both 

the pre- and post-vaccination day. The TDEGs were simulated so that the average difference in 

expression between the pre- and post-vaccination days was equal to its estimated effect size. The 

model did not include a dependence between paired samples. The simulated dataset was then 

analyzed with edgeR to identify differentially expressed genes. The estimated FC and p-value for 

each gene were calculated and recorded.  

 

The statistical power for each combination of parameters was determined as the average proportion 

of TDEGs that were identified in the simulated datasets with an FDR-adjusted p-value <0.05. Four 

levels of fold-change cutoffs were considered: 1.25, 1.5, 1.75, and 2.0. The power calculation was 

conditioned on the given fold-change criteria, which means the TDEGs considered had an effect 

size above the cutoff value. 

 

Data and materials availability: 

The RNA-Seq data has been deposited in NCBI GEO (GSE149809). 
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Table 1: Summary of human reference alignment statistics. 

  Site 1 (N=50) Site 2 (N=50) 

 Sequencing Parameter* Min Q1 Median Q3 Max Min Q1 Median Q3 Max 

Total Reads [106] 26.69 30.39 31.81 34.25 42.69 21.16 30.32 34.85 43.95 63.76 

Total Mapped Reads [106] 25.37 28.71 30.27 32.54 40.65 20.34 29.27 33.8 42.43 61.65 

Unmapped Reads [106] 1.0 1.5 1.61 1.71 2.05 0.66 1.05 1.19 1.49 2.11 

Uniquely Mapped Reads [106] 16.06 26.69 28.06 30.19 37.47 18.22 25.92 28.76 36.79 55.74 

Uniquely Mapped Reads [%] 42.7** 92.8 93.75 94.2 95.3 83.7 86.3 88.1 90 91.1 

Counted Reads [106]*** 11.65 21.51 22.36 24.35 30.24 12.32 17.57 20.1 25.16 37.13 

Median GC [%] 47.83 49.01 49.33 49.67 55.63 49.5 50.5 50.5 50.5 51.49 

Exon Tags [%] 64.33 85.57 86.6 87.42 91.44 71.95 75 76.61 77.99 82.63 

Intron Tags [%] 8.04 11.64 12.6 13.55 33.45 16.38 20.9 22.16 23.74 26.82 

Intergenic Tags [%] 0.52 0.79 0.85 0.89 2.21 0.99 1.11 1.2 1.25 1.34 
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SUPPLEMENTAL TABLES 

 

Supplemental Table 1: Impact of fold change and FDR-adjusted p-value cutoff on DEG agreement. Total represents reference DEGs. 

All other columns to the right refer to the comparison group. FC = fold change ≥1.5; FDR = FDR-adjusted p-value <0.05. 

 

Reference 

Laboratory 

Comparison 

Laboratory Day 

DE 

Total 

Missing  

(% Total) DE (% Total) 

Not DE  

(% Total) 

Fail FC and 

FDR  

(% Not DE) 

Pass FC and 

Fail FDR 

(% Not DE) 

Fail FC and 

Pass FDR  

(% Not DE) 

Site 1 Site 2 Day 1 165 8 (4.8%) 90 (54.5%) 67 (40.6%) 24 (35.8%) 2 (3%) 41 (61.2%) 

Site 1 Site 2 Day 2 213 10 (4.7%) 145 (68.1%) 58 (27.2%) 23 (39.7%) 1 (1.7%) 34 (58.6%) 

Site 1 Site 2 Day 7 607 41 (6.8%) 407 (67.1%) 159 (26.2%) 20 (12.6%) 2 (1.3%) 137 (86.2%) 

Site 1 Site 2 Day 14 1086 72 (6.6%) 794 (73.1%) 220 (20.3%) 14 (6.4%) 7 (3.2%) 199 (90.5%) 

Site 2 Site 1 Day 1 155 26 (16.8%) 90 (58.1%) 39 (25.2%) 14 (35.9%) 9 (23.1%) 16 (41%) 

Site 2 Site 1 Day 2 240 25 (10.4%) 145 (60.4%) 70 (29.2%) 32 (45.7%) 6 (8.6%) 32 (45.7%) 

Site 2 Site 1 Day 7 576 68 (11.8%) 407 (70.7%) 101 (17.5%) 21 (20.8%) 6 (5.9%) 74 (73.3%) 

Site 2 Site 1 Day 14 1087 119 (10.9%) 794 (73%) 174 (16%) 23 (13.2%) 4 (2.3%) 147 (84.5%) 
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Figure 1: Experimental design of RNA-Seq benchmarking for the clinical vaccine study. 

(A) The samples utilized in this benchmarking experiment were obtained from parent study 

DMID 08-006 (ClinicalTrials.gov NCT01150695), of which 42 patients had RNA samples 

collected for microarray analysis. (B) RNA from five time points taken from 10 volunteers, for a 

total of 50 samples, at both Site 1 and Site 2. Each biological sample was spiked with either ERCC 

mix 1 or mix 2, for 25 replicate spike-ins of each mix. Samples were sequenced as single-ended 

151 or 100 bp reads on an Illumina HiSeq3000 at each Site, with multiplexing targeting a depth of 

30 M reads. At each site, an additional set of three RNA samples from UHRR controls were 

included for an independent reference. (C) Median sequencing metrics for all samples at each site. 

The yellow bar indicates the median total read depth obtained for all samples for each site; the top 

of the green bar indicates the total reads that are uniquely mapping to the GRCh38 reference, and 

the grey bar indicates the reads mapping to annotated features (i.e., genes) in the reference. 
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Figure 2: Inter-site agreement of RNA-Seq log2 counts per million and fold-change estimates 

improves after filtering out lowly-expressed genes. LCPM: log2 counts per million. LFC: log2 

fold change. (A) Violin plot depicting the distribution of adjusted Euclidean distance between Site 

1 and Site 2 of the LCPM gene expression profile for each subject. Each distribution consists of a 

total of 49 observations. Red dots mark the mean of the distribution, and black diamonds mark the 

median. Each column shows the distribution after filtering genes at the CPM thresholds indicated 

on the x-axis. (B) The same analysis and plotting design as described in (A), but for the Pearson 

correlation between Site 1 and Site 2 of the LCPM gene expression profile for each subject. (C) 

and (D) show the same results but calculated on the LFCs. For these, each distribution consists of 

a total of 36 observations. 
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Figure 3A: Fold change and DEGs over time. MA plots shown to left contrast average log2 

fold changes from pre-vaccination (y-axis) by average gene expression levels (log2 CPM as 

shown on the x-axis) for each site and post-vaccination time point. Blue lines indicate the pre-

specified minimum fold-change cutoff of ±1.5 fold. DEGs (edgeR FDR <0.05, fold change ≥ 

±1.5 in either direction, and maximum read count of >8 CPM across all samples) are colored in 

red. Stacked bar plots to the right summarize the overlap between the two sites. The first bar plot 

for each post-vaccination day represents DEGs identified for Site 1 color-coded by the overlap 

class for genes identified for Site 2 (combination of FDR and fold change criteria or CPM gene 

filtering criterion that were met/not met). The second barplot shows the reverse presenting a 

characterization of Site 2 DEGs based on the overlap with Site 1 genes.  
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Figure 3B: Scatterplots of ranks of log2 fold changes based on a union of DEGs identified 

for each site by post-vaccination day. A rank of 1 corresponds to the lowest log2 fold change. 

Dashed lines represent the upper and lower rank boundaries of the ≥1.5 fold-change cutoff for 

each site. 
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Figure 4: The impact of read depth on gene representation by establishment of a deep 

“compendium” transcriptome of PBMCs. The x-axis represents simulated datasets (n=50) 

with coverage x, the y-axis shows the percentage of genes that we considered truly expressed in 

the PBMC compartment for genes that met the filtering cutoff. Bar plots summarizing the mean 

percentage of the detected PBMC compartment genes by coverage and read filter criterion. 
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Figure 5: Impact of read length and coverage on DEG detection. Impact of read length and 

coverage on Jaccard index between DEGs (Site 1). Jaccard index represents the proportion of 

intersecting DEGs compared to the union of DEGs identified for a subsampled/truncated dataset 

and the original dataset. 
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Figure 6: Determination of empirical minimum expression cutoffs using ERCC spike-ins. 

Each dot represents a subset of the 92 ERCC1 and ERCC2 transcripts for one paired sample 

grouped by average ERCC1 and ERCC2 abundance (on average 13 per abundance bin). The y-

axis summarizes the Spearman correlation between the empirical log2 fold change and expected 

log2 fold change across these transcripts. The x-axis represents the average log2 abundance per 

paired sample for a subset of the ERCCs. Overall, 40 pre- and post-treatment pairs were created 

for each experiment. Each pair is shown multiple times (once in each abundance bin). The purple 

line represents the fitted 3rd order polynomial function. Red dots represent paired samples with 

outlying correlation results relative to their abundance bin (exceeding ±1.5 times the interquartile 

range) which were excluded from curve fitting. The vertical blue solid line indicates the log2 

counts per million value at which the fitted curve is equal to a correlation value of 0.9, and the 

vertical light-blue dashed lines show the 95% bootstrap confidence interval for this log2 counts 

per million value. The values in the lower right correspond to these vertical lines: the point 

estimate and 95% bootstrap confidence interval of the log2 counts per million at which the fitted 

polynomial was equal to 0.9. 
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Figure 7: Relative power by samples size, effect size, and coverage at each post-vaccination 

day as simulated using the modified PROPER R package. Days were sorted by decreasing 

vaccination effect based on overall fold changes and DEG responses observed for this study (see 

Figure 3A). Power was assessed for different fold-change cutoffs (indicated by color-coded 

lines), coverage (as indicated by the line type), and sample size (x-axis). 
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SUPPLEMENTAL FIGURES 

 

Supplemental Figure 1: Inter-site agreement of RNA-Seq log2 counts per million and fold-

change estimates improves after filtering out lowly-expressed genes. LCPM: log2 counts per 

million. LFC: log2 fold change. (A) Violin plot depicting the distribution of adjusted Euclidean 

distance between Site 1 and Site 2 of the LCPM for each gene. A total of 49 paired observations 

were available for each gene. Red dots mark the mean of the distribution, and black diamonds 

mark the median. Each column shows the distribution after filtering genes at the CPM thresholds 

indicated on the X axis. (B) The same analysis and plotting design as described in (A), but of 

Pearson correlation between Site 1 and Site 2 of the LCPM for each gene. (C) and (D) show the 

same results but calculated on the LFCs. A total of 36 paired observations of LFC values were 

available for each gene.   
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Supplemental Figure 2: Impact of read length and coverage on DEG detection. Impact of 

read length and coverage on the number of DEGs (Site 1). Values for the original dataset, with a 

median coverage of 31.8 M and a read length of 151 nt, for comparison. 
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Supplemental Figure 3: Relative false discovery rate by samples size, effect size, and 

coverage at each post-vaccination day as simulated using the modified PROPER R 

package. Days were sorted by decreasing vaccination effect based on overall fold changes and 

DEG responses observed for this study (see Figure 3A). False discovery rate was assessed for 

different fold-change cutoffs (indicated by color-coded lines), coverage (as indicated by the line 

type), and sample size (x-axis). 
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Supplemental Figure 4: Relative type-I-error rate by samples size, effect size, and coverage 

at each post-vaccination day as simulated using the modified PROPER R package. Days 

were sorted by decreasing vaccination effect based on overall fold changes and DEG responses 

observed for this study (see Figure 3A). Type-I-error rate was assessed for different fold-change 

cutoffs (indicated by color-coded lines), coverage (as indicated by the line type), and sample size 

(x-axis). 
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Supplemental Figure 5: Mean-dispersion trend for each simulated coverage dataset (left) 

and scatterplot of mean log2 CPM of genes in original dataset compared to each simulated 

coverage dataset (right). For each gene in the simulated coverage datasets, the estimated log2 

mean expression and log2 over-dispersion values were calculated; from these points, a loess 

curve is fit show the mean-dispersion trend at each simulated coverage level (A). The average 

TMM-normalized log2 CPM values are also calculated for each gene across baseline samples in 

each simulated dataset and compared to the corresponding values from the original dataset (B). 
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Supplemental Figure 6: Principal component analysis of log2 counts per million across sites 

before and after normalization within and between sites. 
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Supplemental Figure 7: Heatmap summarizing fold change responses of the union of DEGs 

by subject and Site. Subjects and genes were clustered using Uncentered Pearson Correlation 

distance in combination with complete linkage clustering. 
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