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Abstract 34 

 35 

Biogeographic variations in the gut microbiota reflect host and environmental factors 36 

delineating human populations, and are pivotal to understand global patterns of host-37 

microbiota interactions in health and prevalent lifestyle-related diseases, such as type 2 38 

diabetes mellitus (T2D). Pakistani adults, having an exceptionally high prevalence of T2D, 39 

are one of the most understudied populations in microbiota research to date. The aim of the 40 

present study is to examine the gut microbiota across individuals from Pakistan and other 41 

populations of non-industrialized and industrialized lifestyles with a focus on T2D. The fecal 42 

samples from 94 urban-dwelling Pakistani adults with and without T2D were profiled by 16S 43 

ribosomal RNA gene amplicon sequencing and qPCR, and plasma samples quantified for 44 

circulating levels of lipopolysaccharide binding protein (LBP) and the activation ability of 45 

Toll-like receptor (TLR)-signaling. Publicly available datasets generated with comparable 46 

molecular methods were retrieved for comparative analysis. Overall, urbanized Pakistanis’ 47 

gut microbiota was similar to that of transitional or non-industrialized populations, depleted 48 

in Akkermansiaceae and enriched in Prevotellaceae (dominated by the non-Westernized 49 

clades of Prevotella copri). The relatively high proportion of Atopobiaceae appeared to be a 50 

unique characteristic of the Pakistani gut microbiota. The Pakistanis with T2D had elevated 51 

levels of LBP and TLR-signaling in circulation as well as gut microbial signatures atypical of 52 

other populations e.g., increased relative abundance of Libanicoccus/Parolsenella, limiting 53 

the inter-population extrapolation of gut microbiota-based classifiers for T2D. Taken 54 

together, our findings call for more global representation of understudied populations to 55 

extend the applicability of microbiota-based diagnostics and therapeutics. 56 

 57 
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Introduction 68 

 69 

The human gut microbiota (i.e., collection of microbes living in the gut) has been associated 70 

with various intestinal and extraintestinal diseases due to its considerable contribution to 71 

immune and metabolic homeostasis.1 Substantial biogeographic variations have been 72 

documented in the human gut microbiota, reflecting differences in lifestyle practices, hygiene 73 

and pathogen load, diet, medication as well as host genetics that altogether influence the 74 

assembly and composition of the gut microbiota.2 Studies have begun to unravel the impact 75 

of these biogeographic variations on health, potentially linking the evolution of the gut 76 

microbiota to the varying burden of non-communicable diseases and the prevalence of 77 

infectious diseases in different populations.2 Currently, more than two thirds of public human 78 

microbiota datasets originate from Europe and North America,3 whereas a large number of 79 

uncultured bacterial species that may have ramifications in health and disease exists in the 80 

understudied populations.4, 5 On the other hand, population studies indicate that the gut 81 

microbiota varies between individuals of similar6, 7 or different ethnicities8-10 residing in 82 

geographical proximity. Altogether, these intra- and inter-population differences limit the 83 

applications of microbiota-based diagnostics and treatments,7 which can be exemplified by 84 

the debate on microbiota signatures of type 2 diabetes mellitus (T2D). The pathophysiology 85 

of T2D, characterized by dysregulated glucose metabolism and insulin resistance, has been 86 

suggested to have a microbiota component via low-grade inflammation initiated by pathogen-87 

associated molecular patterns (PAMPs; e.g., lipopolysaccharide (LPS)) and altered levels of 88 

short-chain fatty acids (SCFAs; primary saccharolytically-derived microbial fermentation 89 

products);1 both mechanisms were predominately inferred from preclinical animal models 90 

and associative studies from a few extensively-studied populations. However, recent studies 91 

have found little convergence of the microbiota characteristics of T2D across geographical 92 

regions11 or across cohorts of colocalized individuals of the same ethnicity.12 93 

 94 

Pakistan as the world's fifth-most populous country had the highest age-adjusted comparative 95 

diabetes prevalence in 2021;13 Pakistan is experiencing rapid urbanization with increasing 96 

consumption of the Western diet and lifestyle changes especially in the urban areas,14 which 97 

all have implications for the gut microbiota. However, virtually nothing is known about the 98 

gut microbiota of Pakistanis in a global context, as the population of 220 million is 99 

represented by < 100 samples from few pilot studies.14, 15 In general, Southern and central 100 

Asia is the most underrepresented region for microbiota research.3 To bridge the knowledge 101 
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gap, we aimed to profile the gut microbiota of Pakistani adults with and without T2D, and to 102 

assess the generalizability of the gut bacterial signature of T2D across different cohorts. We 103 

systematically compared the healthy Pakistani microbiota to that of industrialized 104 

(represented by China, Japan and Finland) and transitional or non-industrialized (represented 105 

by Indonesia, Sudan and rural India) populations as well as that of Pakistani adults with T2D. 106 

Potential differences in the butyrate production capacity of the gut microbiota, circulating 107 

levels of lipopolysaccharide binding protein (LBP) and Toll-like receptor (TLR)-signaling in 108 

circulation between Pakistani participants with and without T2D were analyzed to gain 109 

mechanistic insights. We then evaluated whether a classification model of T2D based on the 110 

Pakistani gut microbiota can be extrapolated to other populations. Only publicly available 111 

datasets targeting the V3-V4 region of the 16S rRNA gene and employing the Illumina 112 

sequencing technology were included in the present study to minimize methodological 113 

artifacts, as previous studies suggest that using matching variable regions of the 16S rRNA 114 

gene represents one of the most essential factors for cross-study comparability.16, 17 115 

 116 

Results 117 

 118 

Taxonomic characteristics of the Pakistani gut microbiota in a global context  119 

Our Pakistani cohort included 94 urban-dwelling adults living in and around the capital 120 

regions with and without confirmed T2D. Their gut microbiota was profiled using 16S rRNA 121 

gene amplicon sequencing targeting the V3-V4 region, which resulted in 17,160 ± 910 122 

quality-controlled and chimera-checked reads per sample. Overall, Firmicutes and 123 

Actinobacteria were the most abundant phyla in the Pakistani population accounting for 124 

63.7% and 25.2% of the total read counts on average, respectively, and they were observed in 125 

all the samples. Bacteroidetes and Proteobacteria constituted 5.3% and 4% of the total read 126 

counts, respectively, yet these microbes were found in 87% and 88% of the study 127 

participants, respectively. Verrucomicrobia (genus Akkermansia) made up less than 1% of the 128 

gut bacterial community and was detectable in only 16% of the individuals. Spirochaetes 129 

(dominated by Spirochaetaceae/Treponema 2), a phylum observed mainly in ancient and 130 

non-industrialized societies but absent in industrialized populations,18 was detected in 10 131 

Pakistani participants with an average abundance of 0.13%.  132 

 133 

Besides a  pilot study showing a few phylum-level differences when comparing urban 134 

Pakistani adults’ gut microbiota to the now defunct uBiome database of unspecified origin,14 135 
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the urban Pakistanis’ gut microbiota has not been evaluated on a global scale. Therefore, we 136 

compared the healthy participants’ microbiota to their counterparts from publicly available 137 

datasets generated with comparable molecular methods for profiling the fecal microbiota, 138 

including an external cohort of Pakistanis sampled from the same area (Table S1). 139 

Visualization of the Bray-Curtis dissimilarity measure using Principal Coordinates Analysis 140 

(PCoA) revealed a separation of industrialized populations (China, Japan and Finland) from 141 

the rest along the primary axis (P = 0.001, PERMANOVA; Fig. 1A). Moreover, the East 142 

Asian populations clustered tightly, slightly separated from the Finnish cohort, mirroring a 143 

recent study showing the impact of East Asian ethnicity on the gut microbiota.10 The overall 144 

structure of the Pakistani gut microbiota in our cohort (Pakistan1/PAK1) overlapped with that 145 

of the Indonesian gut microbiota, but somewhat differed from the other Pakistani cohort 146 

(Pakistan2/PAK2). The rural Indian population occupied a separate corner in the ordination 147 

space. The two Pakistani cohorts showed no difference in microbiota α-diversity metrics, and 148 

generally were on the similar levels of that of Chinese and Japanese populations that had the 149 

lowest α-diversity (Fig. 1B). The Indian cohort had the highest microbiota α-diversity as 150 

previously reported for other non-industrialized populations.2 In terms of taxonomic 151 

composition of the gut microbiota on the family level, stark differences between the 152 

industrialized and transitional/non-industrialized populations existed in Prevotellaceae and 153 

Akkermansiaceae; Prevotellaceae was relatively dominant in both Pakistani cohorts and 154 

Akkermansiaceae represented as an absentee, similar to other non-industrialized populations 155 

(Fig. 1C). High prevalence of Atopobiaceae (dominated by Olsenella and Libanicoccus) was 156 

uniquely observed in the Pakistani gut microbiota. Other taxonomic features commonly 157 

found in both Pakistani cohorts included highly abundant Bifidobacteriaceae (dominated by 158 

Bifidobacterium) and Erysipelotrichaceae (dominated by Catenibacterium and 159 

Holdemanella) as well as exceptionally high proportions of Enterobacteriaceae and 160 

Streptococcaceae in some individuals (Fig. 1C). Spirochaetaceae (belonging to Spirochaetes) 161 

could be detected only in the Pakistanis (11% prevalence in PAK1 and 15% in PAK2), 162 

Sudanese (31% prevalence), and Indians (7% prevalence).  163 

 164 

Prevotella copri of the Prevotellaceae family can be grouped into four clades (A, B, C, and 165 

D) depending on their genetic structure; clade A was ubiquitously found among both the 166 

Westernized and non-Westernized populations, while clades B, C, and D were predominantly 167 

found in non-Westernized populations.19 As the urban Pakistanis’ gut microbiota appears to 168 

exhibit features of the non-industrialized gut microbiota, we evaluated whether the urban 169 
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Pakistani population has P. copri clades typical of non-Westernized populations. 170 

Consequently, we found that P. copri ASVs in both Pakistani cohorts belonged to clades B 171 

and C (Table S2). 172 

 173 

Taxonomic, functional and molecular signatures in the gut microbiota of Pakistanis with 174 

T2D 175 

Focusing on our PAK1 cohort, age and sex were similarly distributed for the T2D patients 176 

and healthy controls, and for the patients prescribed with metformin and non-metformin 177 

hypoglycemic treatment. BMI, total cholesterol (TC), triglycerides (TG) and HbA1c were 178 

significantly higher in those with T2D or the non-metformin users (P < 0.05, Table 1). The 179 

individuals with and without T2D had significant differences in self-reported diets. Among 180 

the variables mentioned above, triglycerides and HbA1c significantly explained the variation 181 

in the gut microbiota in the model as determined by EnvFit (P < 0.01, Table 1).  182 

 183 

Principal coordinate analysis (PCoA) showed a clear separation between the gut microbiota 184 

of patients and controls (Fig. 2A), demonstrating that T2D status was associated with the gut 185 

microbiota composition, explaining 9% of the total variation (P < 0.001, PERMANOVA).  186 

To identify taxa and functional modules driving the differences, we compared the abundance 187 

of individual bacterial families, genera, species and imputed KEGG pathways between the 188 

patients and controls using a negative binomial generalized linear model, as implemented in 189 

differential expression analysis for sequence count data version 2 (DESeq2). The analyses 190 

were additionally controlled for BMI and diet to disentangle their potential confounding 191 

effects. Striking differences (all FDR-P < 0.05) between the groups were found on all 192 

taxonomic ranks as well as in the functional modules with and without controlling for 193 

covariates. On the family level (Fig. 2B), Lactobacillaceae and Coriobacteriaceae were 194 

enriched and Ruminococcaceae depleted in T2D patients, which remained significant after 195 

adjusting for BMI and diet. Moreover, a marked decrease in Prevotellaceae (mainly 196 

attributable to Prevotella 9/Prevotella copri) was noted, which lost significance after 197 

controlling for BMI. On the genus level (Fig. 2C), T2D patients had consistently increased 198 

proportions of Libanicoccus, Lactobacillus, Collinsella, Senegalimassilia, Bifidobacterium 199 

and Slackia, and reduced relative abundances of Faecalibacterium and Oribacterium. The 200 

relative abundance of Collinsella has been shown to correlate with elevated circulating 201 

insulin,20 increased gut permeability21 and altered bile acid metabolism22 that contribute to 202 

the pathophysiology of T2D. Lactobacillus represents one of the most discrepant signatures 203 
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of the T2D gut microbiota, likely due to its high genomic diversity.23 Species were assigned 204 

to the ASVs that perfectly matched reference sequences, among which Collinsella 205 

bouchesdurhonensis and Collinsella aerofaciens were consistently enriched and 206 

Faecalibacterium prausnitzii depleted in T2D patients (Fig. 2D). The alternations in the 207 

bacterial taxa were expected to result in extensive changes in the metabolic potential of the 208 

gut microbiota, with 20 out of 27 KEGG pathways categorized as “metabolism” (Fig. 2F). 209 

Notably, the modules related to carbohydrate metabolism (i.e., inositol phosphate 210 

metabolism, galactose metabolism, glycolysis/gluconeogenesis, amino sugar and nucleotide 211 

sugar metabolism), amino acid-related metabolism (i.e., phosphonate and phosphinate 212 

metabolism, tyrosine metabolism, glutathione metabolism and selenocompound metabolism) 213 

and lipid metabolism (i.e., secondary bile acid biosynthesis and glycerolipid metabolism) 214 

were significantly more abundant in T2D patients (Fig. 2F). The bacterial phosphotransferase 215 

system (PTS), which mediates uptake of multiple sugars from the environment,24 was 216 

predicted to be higher in its capacity appreciably in the T2D gut microbiota (Fig. 2F). This, 217 

and perturbations in the functional modules related to amino acid metabolism, concord with 218 

the findings from the previous studies in Indian-Danish prediabetic and T2D patients.11, 25 We 219 

next investigated ecological measures of the gut microbiota in the control and case group. 220 

There was no difference in observed richness, but Shannon’s diversity and eubacterial density 221 

were drastically reduced in T2D patients, suggesting a strongly aberrant community (P < 222 

0.001, Fig. 2G).  223 

 224 

We additionally profiled the fungal communities using ITS1 sequencing, generating 7560 ± 225 

785 quality-filtered ITS1 sequences per sample. Nevertheless, the majority of the pre-226 

processed sequences failed to be taxonomically annotated, leaving only 28 participants with 227 

gut fungal profiles (control = 11, T2D = 17). The large fraction of unannotated reads suggests 228 

the existence of novel species from the Pakistanis not yet in sequence repositories. No 229 

difference in fungal β-diversity was found between the 28 participants with and without T2D 230 

(Fig. S1A). While the taxonomic composition was highly variable (Fig. S1B), Candida sake, 231 

Teunomyces, and Candida akabanensis were identified as significantly enriched in the 232 

patients with T2D (all FDR-P < 0.05, Fig. S1C). 233 

 234 

We next assessed the molecular links between the gut microbiota and T2D, specifically 235 

butyrate as a major SCFA and PAMPs that have been suggested to be the cardinal microbial 236 

mediators in metabolic disorders.1 Butyrate production capacity estimated by quantifying the 237 
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butyryl-CoA:acetate CoA-transferase gene (responsible for a major route for butyrate 238 

production in bacteria) was unexpectedly higher in T2D patients (P < 0.001, Fig. 2G). An 239 

increased influx of PAMPs in circulation, especially LPS (a component of the Gram-negative 240 

bacterial outer membrane), has been linked to inflammation and impaired glucose 241 

metabolism through activation of TLR4 or TLR2-dependent signaling.26 Thus, we measured 242 

the potential of plasma samples to activate innate immunity receptors TLR4 (receptor for 243 

LPS) and TLR2 (receptor for a variety of Gram-negative and Gram-positive bacterial 244 

products). The plasma samples from T2D patients induced significantly higher levels of 245 

TLR4 activation (P < 0.001, Fig. 2G), and elevated levels of TLR2 activation by trend (P = 246 

0.061, Fig. 2G). For LPS-TLR4 signaling, LPS-binding protein (LBP) attaches LPS and 247 

presents it to CD14 to initiate TLR4 activation; we subsequently quantified the 248 

concentrations of plasma LBP and found increased levels of LBP in T2D patients (P < 0.001, 249 

Fig. 2G), mirroring the findings on TLR4 activation. Taken together, these findings suggest 250 

that Pakistani T2D patients possess an increased potential for butyrate production in the gut 251 

microbiota and engage in elevated TLR-signaling in circulation. 252 

 253 

Since approximately half of the patients with T2D were prescribed with metformin in our 254 

cohort (Table 1), we conducted sub-group analysis for the patients to identify potential effects 255 

of metformin on the gut microbiota. Consequently, no significant differences in the 256 

abovementioned taxa and measurements were identified between the groups (Fig. S2), except 257 

lower levels of plasma LBP in those treated with metformin (P = 0.02, Fig. S2B).   258 

 259 

Correlations between metabolic parameters, bacterial taxonomic features and microbial 260 

mediators  261 

We assessed all triplets of pairwise interactions between host metabolic phenotypes, bacterial 262 

genera and microbial mediators using Spearman correlations (requiring FDR < 0.05 in each 263 

comparison of two data spaces). Figure 3 shows a chord diagram constructed from these data, 264 

where the network largely reflects our observations mentioned previously (Fig. 2B-G). In 265 

general, the genera identified as enriched in T2D were positively associated with plasma LBP 266 

and HbA1c, whereas the genera belonging to the Prevotellaceae family were negatively 267 

associated with LBP, HbA1c and TG. Only two correlations were identified between TLR4 268 

activation and bacterial taxa i.e., Faecalibacterium (reduced in T2D patients) that was 269 

negatively associated and Libanicoccus (enriched in T2D patients) positively associated with 270 

TLR4 activation (Fig. 5).  271 
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 272 

Classification models of T2D based on bacterial taxonomic signatures and their cross-273 

study portability 274 

Varying and sometimes contrasting microbiota signatures of T2D have been documented in 275 

different cohorts and populations,23, 27 and their cross-study portability as biomarkers has 276 

been questioned.11 Given that we observed considerable taxonomic differences in the 277 

microbiota between the controls and T2D patients, many of which unreported previously e.g., 278 

Libanicoccus and Slackia, a random forest (RF) classifier model was constructed using the 279 

bacterial genera detected in our cohort (Table S3) that could specifically identify T2D 280 

patients with high overall accuracy (area under curve; AUC = 0.8684, Fig. 4A). This RF 281 

classifier was trained excluding the patients prescribed with metformin to avoid any 282 

unobserved effects of metformin.28 Next, we performed study-to-study model transfer (model 283 

trained for each study independently and their predictive performance evaluated on the other 284 

datasets) to systematically assess cross-study generalization of T2D microbiota signatures. 285 

The RF models in other cohorts were trained without excluding those treated with metformin, 286 

as the records of medication were unavailable on the individual level. Nevertheless, 287 

population-specific effects were evident, where the extrapolation of T2D classifiers 288 

performed satisfactorily among the Pakistanis, and to a lesser extent, the Sudanese (median 289 

AUC = 0.71, range = 0.62 – 1.0; Fig. 4B); relatively poor discriminatory power was 290 

pervasive for other populations (AUC < 0.7, Fig. 4B). To understand the population-specific 291 

discrimination accuracy, we applied DESeq2 across different studies/cohorts to top 10 292 

predictive microbial features extracted from the RF model trained on our cohort (Fig. 4C). 293 

The distribution of these features between controls and T2D patients was largely congruent 294 

among the two Pakistani and the Sudanese cohorts, but inconsistent or discordant at times in 295 

other cohorts (Fig. 4C). Of note, Prevotella 9, a highly discordant signature between the 296 

Pakistani and Chinese cohorts, was dominated by different clades of Prevotella copri; clade 297 

A was predominately present in the Chinese, while clades B and C were exclusively found in 298 

the Pakistanis (Table S2). Interestingly, Libanicoccus and Slackia appear to be the taxonomic 299 

signatures of T2D specific to Pakistanis, and the two taxa were prevalent in Pakistanis (Fig. 300 

S3). Dialister as a contrasting signature between the two Pakistani cohorts belongs to the few 301 

bistable taxa that differ in bimodal distribution patterns across cohorts, potentially indicating 302 

underlying alternative states associated with host factors.29 This cohort-specific bimodality of 303 

Dialister was observed between the two Pakistani cohorts (Fig. S4), suggesting the presence 304 

of cohort-specific characteristics (e.g., medical conditions unaccounted for in the two studies) 305 
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in the same population that contributed to the contrasting signature. Of note, some difference 306 

between the two Pakistani cohorts of healthy controls was evident in the β-diversity analysis 307 

(Fig. 1A). 308 

 309 

Discussion 310 

 311 

The widespread changes in lifestyle and diet due to rapid urbanization in Pakistan over the 312 

last two decades have been linked to increased incidence of non-communicable diseases.30, 31 313 

Urbanization and industrialization may remodel a population’s gut microbiota via multiple 314 

exposures, such as Westernization of diet, increased antibiotic use, pollution, improved or 315 

deteriorated hygiene status and early-life microbial exposure.32, 33 These selective forces 316 

could deviate the gut microbiota further from its ancestral state via intergenerational 317 

transmission.34 In some studies, the microbiota associated with humans in the industrialized 318 

world has been characterized by progressive disappearance of the Prevotellaceae, 319 

Spirochaetaceae and Succinivibrionaceae families, and increased abundance and prevalence 320 

of Akkermansia and Bacteroides.2, 18 Our results recapitulate these observations and place the 321 

urban Pakistani gut microbiota into the transitional or non-industrialized category. The 322 

persistence of non-industrialized microbiota signatures is in agreement with previous reports 323 

on transitioning populations or communities, such as first-generation migrants in the 324 

Netherlands,8 Irish Travellers enforced to abandon nomadism,35 and  urban Nigerians.36 In 325 

contrast, a study about Thai migrants moving to the United States claimed that the microbiota 326 

rapidly assumes the structure of the new place of residence.37 While the degree and 327 

timeframe to which the microbiota signatures persist following lifestyle modernization 328 

remains an open question, transitioning from the non-industrialized to industrialized gut 329 

microbiota has been suggested to negatively affect metabolic health.35, 37 It remains unclear 330 

what caused the lack of detectable levels of Akkermansia in our Pakistani cohort and other 331 

non-industrialized populations. Nevertheless, it is possible that the absence of Akkermansia in 332 

the urban Pakistani adults is maladaptive, as this bacterium provides ecosystem services 333 

needed to maintain metabolic homeostasis especially in humans on the Western diet.1 Further 334 

research therefore is warranted to establish the causality between the transitioning gut 335 

microbiota and worsening metabolic health in developing countries. 336 

 337 

Regarding the population-specific features of the Pakistani gut microbiota, our results are in 338 

agreement with a pilot study in a cohort of 32 urban Pakistani adults targeting the V4 region 339 
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of the 16S rRNA gene.14 For example, the enrichment of Bifidobacterium and Lactobacillus 340 

is likely attributable to the frequent consumption of fermented foods in Pakistan;14 the 341 

occasionally high loads of Enterobacteriaceae and Streptococcaceae that contain several 342 

opportunistic pathogens likely result from deteriorated water and hygiene conditions during 343 

galloping urbanization. Data from our comparative analysis also reveals the high prevalence 344 

and abundance of Prevotella 9 in Pakistanis dominated by the non-Westernized clades of 345 

Prevotella copri, commonly thought to associate with plant-rich diets that are abundant in 346 

carbohydrates and fibers. The Pakistani diet is particularly low in intakes of fiber-rich fruits, 347 

vegetables, nuts and whole grains on the global scale.38 Also, there was no difference in the 348 

relative abundance of Prevotella between the Pakistani participants who consumed plant-349 

based or meat-based diets (Fig. S5). Thus, the dominance of Prevotella in Pakistanis may 350 

have been promoted by non-dietary factors. This is supported by the study in Irish Travellers, 351 

a historically nomadic ethnic group of European ancestry, who consume a Western-like diet 352 

rich in fat and protein with little fiber intake.35 P. copri was found to be enriched to the same 353 

levels of other non-industrialized populations in a subgroup of Irish Travellers who 354 

maintained traditional lifestyles and living conditions, while no difference in diet was found 355 

between the subgroups of Irish Travellers.35 A recent study in rural Gambian infants found 356 

that P. copri rises to dominance rapidly in the first year of birth and remains the most 357 

abundant species during the remainder of early childhood,39  suggesting its establishment is 358 

strongly affected by early-life factors in Prevotella-rich populations. In addition to longer and 359 

more common exclusively breastfeeding, most weaning infants in Pakistan are initially given 360 

unprocessed foods as opposed to convenience baby foods given to infants in the Western 361 

world;40 solid foods introduced to most Pakistani infants are predominantly plant-based and 362 

family foods,40 particularly those made from roots and tubers that constitute a rich source of 363 

resistant starch.41 Taken together, future work should address the kinetics of colonization and 364 

development of Prevotella in relation to various dietary and non-dietary exposures in 365 

Pakistani infants.  366 

 367 

As expected, both discrepancies and commonalities are noted regarding the taxonomic 368 

signatures of T2D between our findings and previous studies in various populations. The 369 

depletion of anti-inflammatory Faecalibacterium prausnitzii in T2D has been relatively 370 

consistent across studies.23, 25 Here we show a negative correlation between the abundance of 371 

Faecalibacterium in the fecal microbiota and TLR4 activation by the plasma, recently also 372 

reported for gut epithelium in an in vitro study.42 The enrichment of several members of the 373 
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Coriobacteriia class (i.e., Libanicoccus, Senegalimassilia, Slackia) in Pakistani T2D patients, 374 

uncommon in the Western populations, appears to be novel population-specific signatures. 375 

Libanicoccus massiliensis was isolated from feces of a healthy Congolese pygmy woman in 376 

2018,43 but has since been proposed to be reclassified as a member of the Parolsenella 377 

genus.44 Slackia has been sparsely described in the industrialized world, but relatively 378 

abundant in traditional societies e.g., rural Papua New Guineans.45 Little is known about 379 

Libanicoccus/Parolsenella as a newly isolated bacterium. A recent re-analysis of the studies 380 

in experimental autoimmune encephalomyelitis (EAE), the animal model of multiple 381 

sclerosis, associated Parolsenella catena with the development of pathology in marmosets;46 382 

a metagenomic study in rural China reported that Libanicoccus was associated with arterial 383 

plaque buildup.47 The positive relationship between Libanicoccus/Parolsenella and TLR4 384 

activation shown in the present study suggests a pro-inflammatory state in T2D potentially 385 

mediated by this bacterium. 386 

 387 

Importantly, the abovementioned taxa belonging to Coriobacteriia are closely related, since 388 

the genome-based boundaries between its members are tenuous.4, 44 Almeida et al. reported 389 

that a large number of unclassified near-complete metagenomic species (i.e., potential new 390 

families and/or genera), most frequently assigned to the Coriobacteriaceae family, can be 391 

found in the gut microbiota data outside North America and Europe.4 Thus, our study 392 

highlights the importance of sampling underrepresented populations and regions to uncover 393 

novel microbes relevant for human health and improve the applicability of microbiota-based 394 

diagnostic strategies. The latter is further underscored by our findings on T2D classification 395 

models, where the discriminative power fell short when extrapolating a classification model 396 

to other populations. As the discriminative power of machine learning-based classification 397 

models is heavily influenced by the presence/absence of specific microbial taxa,48 additional 398 

variability from a greater pool of heterogeneous samples from various populations could 399 

enable classifiers to capture specific signatures while minimizing overfitting on 400 

idiosyncrasies of a single population. The potential of this strategy in improving microbiota-401 

based disease classification has been demonstrated in recent proof-of-concept studies.27, 49 402 

 403 

The patterns of Prevotella and Bifidobacterium in prediabetes and T2D are highly 404 

inconsistent across cohorts as shown in our and other studies.25, 50, 51 Higher abundance of P. 405 

copri in the gut microbiota has been suggested to be both conducive and detrimental to 406 

glucose homeostasis and host metabolism in different studies, and its role in human health is 407 
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still under investigation.52 Tett et al. found no association between the prevalence and 408 

abundance of the four P. copri clades and the etiology of several diseases, including T2D.19 409 

However, the two cohorts of T2D included in the Tett study are from the Chinese and 410 

European populations that generally have low prevalence of P. copri dominated by clade A. 411 

Therefore, the potential clade-specific effects of P. copri in T2D require further investigation 412 

in Prevotella-rich populations with non-Westernized P. copri clades using metagenomic 413 

sequencing. Additionally, we propose a scenario where some of the observed microbiota 414 

signatures in Pakistani T2D patients, namely the reduction in Prevotella and expansion in 415 

Bifidobacterium and butyrate production capacity, are reflective of their transitioning gut 416 

microbial ecosystem toward the industrialized one. Supporting this, the microbiota profiling 417 

of non-industrialized/non-urbanized African communities suggests a different ecological 418 

layout supporting SCFA production with little or no contribution from Bifidobacterium and 419 

typical butyrate producers,36, 53 corresponding to their “high-propionate and low-butyrate” 420 

SCFA profile.53 In general, the effects of Bifidobacterium and butyrate in promoting human 421 

health have been understudied in non-Western populations, where human-microbe 422 

associations may need to be interpreted in an entirely different context.36    423 

 424 

A growing body of studies claims to have identified increased microbial components (e.g., 425 

LPS) in T2D, potentially contributing to its pathogenesis.54 These studies have nonetheless 426 

been challenged by various issues, including high technical variability and inability to 427 

differentiate stimulatory and inhibitory forms of LPS.55, 56 By directly quantifying the ability 428 

of plasma samples to elicit TLR-signaling, here we corroborated the elevated levels of 429 

circulating pro-inflammatory mediators in T2D patients. To our knowledge, this approach has 430 

not been applied to human blood samples. It is worth noting that other non-microbially 431 

derived molecules can also contribute to the inflammatory response by activating TLR4 432 

signaling,57 which may partly explain few associations between the gut microbiota and TLR4 433 

activation. Importantly, the gut microbial signatures do not necessarily translate to pro-434 

inflammatory potential, which can be conceived as a net effect of pro-inflammatory microbial 435 

mediators, translocation rate of the mediators and host’s ability to handle them. 436 

 437 

Our comparative analysis is limited by sample size owing to missing metadata or restricted 438 

data availability in many published studies;58 the available metadata for all the 944 samples 439 

used in the present study has been included in Table S4. We were nonetheless able to 440 

recapitulate critical observations made by previous studies e.g., the traits of the non-441 
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industrialized gut microbiota.18 Moreover, the unique characteristics of the Pakistani gut 442 

microbiota were further validated in an independent cohort. On the other hand, our study 443 

focusing on urbanized Pakistanis of a similar social background was unable to fully capture 444 

the full diversity of Pakistan. To substantiate our findings and hypothesis on the transitioning 445 

gut microbiota, future large studies should expand to peri-urban and rural communities. 446 

Although we did not observe the effects of metformin on the gut microbiota previously 447 

reported in Chinese, Japanese and European cohorts of T2D patients,59 the beneficial effects 448 

of metformin have been suggested to be partially mediated by the gut microbes, such as  P. 449 

copri60 and Akkermansia muciniphila61 that have different abundance and prevalence 450 

distributions in Pakistanis. Therefore, further research is warranted to assess the potential 451 

contribution of the gut microbiota to the variability in the therapeutic response of metformin 452 

in the Pakistani population. 453 

 454 

In conclusion, we show that the urbanized Pakistanis’ gut microbiota retains non-455 

industrialized features with several distinctive traits. These unique microbiota characteristics 456 

extend to T2D-associated signatures, potentially reflecting transitioning gut microbial 457 

ecosystems and contributing to pro-inflammatory states, which hold significance for 458 

diagnostic and therapeutic applications.   459 

 460 

Methods  461 

          462 

Study participants and sample collection 463 

The present case-control study was performed during the last quarter of 2021 at the National 464 

Institute of Health, Islamabad, Pakistan. Adults (> 18 years old) with confirmed type 2 465 

diabetes according to the American Diabetes Association (ADA) criteria62 (n = 48) and age- 466 

and sex-matched healthy controls (n = 46) were recruited via primary and occupational health 467 

care providers to the present study. All the participants are currently residing in Islamabad 468 

and Rawalpindi that originally belong to rural regions of Punjab and Khyber Pakhtunkhwa 469 

provinces. Exclusion criteria included type 1 diabetes, significant diseases including 470 

cardiovascular, liver, or kidney disease, malignancy, bariatric or any major surgical 471 

procedure in the previous 3 months, gastrointestinal diseases or symptoms of constipation or 472 

diarrhea, pregnancy or breastfeeding, use of antibiotics in the previous 3 months, being 473 

underweight (BMI < 18.5 kg/m2), and alcohol consumption. 474 

 475 
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All participants underwent anthropometric measurements at the clinic, and medical/drug 476 

history was documented for individuals with T2D. All participants also completed simplified 477 

food frequency questionnaires. The questionnaires were further converted to four types of 478 

diet for microbiota analysis (Table S5); this reductionist approach was mainly for 479 

convenience, but also recent studies suggest that dietary patterns and food groups associate 480 

more strongly with microbiota composition than conventional nutrients.63 Participants were 481 

informed of the need for fresh samples, and thus stool samples were collected in sterile 482 

containers provided to the participants and immediately transferred to -80°C freezer within 1 483 

hour of defecation. Blood samples were analyzed for HbA1c and for lipid profiles (total 484 

cholesterol, triglycerides, LDL and HDL) by an automated analyzer (Cobas Integra 700; 485 

Hoffman-La Roche, Basel, Switzerland). The rest of the plasma samples were stored at -20°C 486 

until further analysis. 487 

 488 

The healthy Finnish controls were previously recruited as part of a dietary intervention trial 489 

investigating the effects of partly replacing animal proteins with plant proteins on health; the 490 

inclusion and exclusion criteria have been described elsewhere.64 The fecal samples collected 491 

at baseline from 50 Finnish adults that were age-, sex- and BMI-matched with the Pakistani 492 

controls were included in the present study. 493 

 494 

The study was carried out in accordance with the Declaration of Helsinki. The protocols were 495 

approved by the Ethics Review Committee (ERC) of the National Institute of Health, 496 

Islamabad, and the Medical Ethical Committees of the Hospital District of Helsinki and 497 

Uusimaa and HUCH. All subjects gave written informed consents.  498 

 499 

Publicly available datasets from other cohorts 500 

To compare the Pakistan gut microbiota with that of other cohorts or populations, we 501 

systemically searched for publicly available 16S rRNA gene amplicon (targeting the V3-V4 502 

region) datasets of T2D case-control studies with available metadata or identification of T2D 503 

status. Sequences from five published studies were subsequently downloaded from the 504 

National Center for Biotechnology Information and the DNA Data Bank of Japan: 505 

PRJNA661673 (China),65 PRJNA766337 (Japan),66 PRJDB9293 (Indonesia),67 506 

PRJNA588353 (Sudan),68 and PRJNA554535 (Pakistan; an independent cohort consisting of 507 

participants residing in Islamabad).15 An endogamous agriculturist Indian cohort of healthy 508 

adults (PRJNA399246) was also included,69 representative of a non-industrialized population 509 
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from the same geographic region. The characteristics of the included cohorts are summarized 510 

in Table S1. 511 

 512 

DNA extraction and sequencing of 16S rRNA gene and internal transcribed spacer-1 (ITS-513 

1) amplicons 514 

DNA was extracted from the Pakistani and Finnish participants’ fecal samples using the same 515 

procedure, Repeated Bead Beating (RBB) method,70 with the following modifications for 516 

automated DNA purification: Approximately 0.25 grams of fecal samples and 340 µL and 517 

145 µL of lysis buffer was used  on  the first and second round of bead beating, respectively. 518 

Then, 200 µL of the clarified supernatant collected from the two bead beating rounds was 519 

used for DNA extraction with the Ambion Magmax™ -96 DNA Multi-Sample Kit (4413022, 520 

Thermo Fisher Scientific, USA) using the KingFisherTM Flex automated purification system 521 

(ThermoFisher Scientific, USA). DNA was quantified using Quanti-iT™ Pico Green dsDNA 522 

Assay (Invitrogen, San Diego, CA, USA). Library preparation and Illumina MiSeq 523 

sequencing of the hypervariable V3-V4 regions of the 16S rRNA gene using primers 524 

341F/785R were performed as previously described.71 To characterize the gut fungal 525 

community, we performed ITS-1 sequencing for the Pakistani samples using a two-step PCR 526 

protocol described in detail elsewhere.72 PCR-amplicons of the ITS-1 region were generated 527 

using ITS1F and ITS2 primers.72, 73 528 

 529 

Quantification of butyrate production capacity and eubacterial quantitative PCR (qPCR) 530 

The butyryl-CoA:acetate CoA-transferase gene and total bacterial abundance were quantified 531 

using fecal DNA with the degenerate primers BCoATscrF/R and the universal primers 532 

331F/797R by qPCR, respectively. The qPCR assays have been described in detail 533 

previously71, 74 and were performed in triplicate on a BioRad C1000 Touch thermal cycler 534 

(BioRad, Hercules, CA) with HOT FIREPol® EvaGreen® qPCR Mix Plus (Solis BioDyne, 535 

Tartu, Estonia). For quantification of the butyryl-CoA:acetate CoA-transferase gene, the 536 

mean threshold cycle (Ct) per sample (after excluding triplicates with Ct values that differed 537 

> 0.5) was used as a proxy for the abundance of the target gene. For quantification of total 538 

eubacteria, the 10-log-fold standard curves ranging from 102 to 107 copies were produced 539 

using full-length amplicons of 16S rRNA gene of Bifidobacterium longum to convert the 540 

threshold cycle (Ct) values into the average estimates of target bacterial genomes present in 1 541 

g of feces (copy numbers/g of wet feces) in the assays.71  542 

 543 
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Data processing and statistical analysis  544 

For the bacterial microbiota, demultiplexed reads after adaptor removal were processed using 545 

DADA275 to generate amplicon sequence variants (ASVs). Taxonomic classification was 546 

performed using a naive Bayes classifier against the SILVA 132 reference database76 for all 547 

the included cohorts. Species assignment was performed using DADA2 by exact string 548 

matching against the SILVA species assignment training database.75 The 16S rRNA gene 549 

sequences for the Pakistani and Finnish samples from this study have been deposited in the 550 

European Nucleotide Archive (https://www.ebi.ac.uk/ena) under accession numbers 551 

PRJEB53017 and PRJEB53018, respectively. For the fungal microbiota, the ITS-1 sequences 552 

were pre-processed following the DADA2 ITS Pipeline Workflow (1.8) available on the 553 

official DADA2 homepage, and taxonomically annotated using UNIITE ver. 7.2 Dynamic 554 

Classifier as the reference database with the similarity threshold at 0.97.77 The ITS-1 555 

sequences have been deposited in the European Nucleotide Archive 556 

(https://www.ebi.ac.uk/ena) under accession number PRJEB53019. 557 

 558 

To infer the functional contribution of bacterial communities from 16S rRNA gene 559 

sequencing data, metagenome prediction was carried out using PICRUSt2 (Phylogenetic 560 

Investigation of Communities by Reconstruction of Unobserved States)78 evaluating KEGG 561 

(Kyoto Encyclopedia of Genes and Genomes) pathways.79  562 

 563 

Differential abundance for bacterial and fungal taxa or KEGG pathways between case and 564 

control participants was identified with the DESeq2 package.80 DESeq2 employs a 565 

generalized linear model of counts based on a negative binomial distribution, scaled by a 566 

normalization factor that accounts for differences in sequencing depth between samples. 567 

Significance testing was then assessed using the Wald test. Non-count variables 568 

(anthropometric, biochemical and other measurements) were analyzed with the Wilcoxon 569 

signed-rank test, t-test or chi-square test depending on the data distribution.  570 

 571 

Microbiota α-diversity (observed richness and Shannon diversity index) was estimated using 572 

the vegan package.81 Overall microbiota structure was assessed by principal coordinate 573 

analysis (PCoA) based on β-diversity computed using the Bray-Curtis dissimilarity matrix, 574 

representing the compositional dissimilarity between samples or groups. Significant 575 

differences between groups were tested using nonparametric multivariate analysis of variance 576 

(PERMANOVA).81 The associations between continuous or categorical variables and β-577 
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diversity were calculated using the envfit function in the vegan package,81 and P values were 578 

determined using 999 permutations. Associations between relative abundances of bacterial 579 

taxa and other measurements were assessed using Spearman’s correlation and visualized by 580 

the R packages circilize.82 581 

 582 

For microbiota-based T2D classification, a random forest model (number of trees = 1000; R 583 

package randomForest) was built based on a list of bacterial genera detected in our Pakistani 584 

cohort (Table S3). The model performance was evaluated using repeated k-fold cross-585 

validation (5-fold, 10 repetitions) implemented in the caret package83 and scored the 586 

predictive power in a receiver operating characteristic (ROC) analysis. The top 10 important 587 

input genera were subsequently ranked according to mean decrease in Gini. To assess how 588 

well the classifier trained on one cohort can be generalized to the other cohorts, study-to-589 

study model transfer was performed as described previously.27 Briefly, one random forest 590 

model was built based on the abovementioned list of input genera for each study/cohort and 591 

then applied to the other studies using the same parameters to generate area under curves 592 

(AUCs) for cross-applications. 593 

 594 

Statistical analyses were performed with the statistical program R version 3.5.0 and RStudio 595 

version 0.99.903. P values were corrected for multiple comparisons by using the Benjamini-596 

Hochberg procedure (FDR). P values and FDR-adjusted P-values < 0.05 were considered 597 

significant.   598 

 599 

Inference of clade of Prevotella copri ASVs 600 

The reconstructed genome sequences of Prevotella copri by Tett et al.19 were collected and 601 

converted into a BLAST database using the BLAST+ package.84 The sequence of each ASV 602 

annotated as Prevotella copri was queried to the database using the blastn command, and the 603 

reconstructed genomes containing the ASV sequence (100% identify) were retrieved. The 604 

clades of these genomes were assigned as the clade of the ASV. 605 

 606 

Measurement of Toll-like receptor (TLR) activation and lipopolysaccharide binding 607 

protein (LBP) 608 

To quantify potential microbial products in circulation, TLR activation capacity and levels of 609 

LBP in plasma samples were used as a proxy. The protocol using HEK-Blue™-hTLR2 and 610 

HEK-Blue™-hTLR4 reporter cell lines expressing human TLR2 and TLR4 (InvivoGen, San 611 
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Diego, CA) was employed according to the manufacturer’s instructions. The HEK-Blue™ 612 

hTLR cells were grown for two passages with medium supplemented without selective 613 

antibiotics provided by the manufacturer, and then passaged in medium with selective 614 

antibiotics that was also used for the experiment. The assay was performed when cells were 615 

in passage 10-15 by adding approximately 105 HEK-Blue™-hTLR2 cells and 1.4x 105 HEK-616 

Blue™-hTLR4 cells in 96-well plates containing 20 µl of plasma samples and incubated for 617 

24 hours at 37 °C under an atmosphere of 5% CO2/95% air. Twenty microliters of the cell 618 

culture supernatants were added to 180 μl of the QUANTI-Blue substrate in a 96-well plate. 619 

The mixtures were then incubated at 37°C for 3 hours and secreted embryonic alkaline 620 

phosphatase levels were determined using a spectrophotometer at 630 nm. Lipoteichoic acid 621 

(Invivogen, LTA-BS; 1 µg/ml, 500 ng/ml, and 100 ng/ml), peptidoglycan (Invivogen, PGN-622 

BS; 0.1 µg/ml, 5 µg/ml, 10 µg/ml,), and lipopolysaccharide (Sigma Aldrich, LPS, 1000 623 

ng/ml, 100 ng/ml, 10 ng/ml) were used as positive controls, and cell culture medium served 624 

as a negative control. Due to reagent availability, the TLR2 experiment was performed for the 625 

samples derived from 50% participants whose age, sex, and BMI matched the entire cohort 626 

(control = 23, T2D = 24). Plasma LBP was measured by quantitative ELISA using human 627 

LBP DuoSet kits (R&D Systems, Minneapolis, MN) according to the manufacturer’s 628 

instructions. 629 

 630 

Figure legends 631 

Figure 1. (A) Principal coordinate analysis (PCoA) plot of microbiota variation from 632 

different cohorts of healthy adults based on the Bray-Curtis dissimilarity matrix. Cohort 633 

explained 18% of the microbiota variation (P = 0.001, PERMANOVA). (B) Box plots 634 

showing microbiota α-diversity (observed richness and Shannon’s diversity) per each cohort. 635 

The center line denotes the median, the boxes cover the 25th and 75th percentiles, and the 636 

whiskers extend to the most extreme data point, which is no more than 1.5 times the length of 637 

the box away from the box. Points outside the whiskers represent outlier samples. 638 

Significance is calculated using the Wilcoxon rank-sum test. **** P < 0.0001; *** P < 0.001; 639 

** P < 0.01; * P < 0.05; "ns" P > 0.05. (C) Heat map showing the relative abundance of the 640 

20 most dominant bacterial families per cohort.  641 

 642 

Figure 2. (A) Principal coordinates analysis (PCoA) plot based on the Bray-Curtis 643 

dissimilarity matrix showing the difference in the gut microbiota between Pakistanis without 644 

(blue) and with (red) T2D (P = 0.001, PERMANOVA). Differentially abundant bacterial (B) 645 
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families (C) genera (D) species (F) KEGG pathways (level 3) are visualized by divergent bar 646 

plots. Only statistically significant results are shown (FDR-P < 0.05). Log2 fold change was 647 

calculated using controls as the reference group. Bacterial taxa are colored according to their 648 

respective phyla (Bacteroidetes in grey, Actinobacteria in blue, and Firmicutes in yellow). 649 

KEGG pathways are colored at level 1 (Environmental Information Processing in red, 650 

Metabolism in purple, Genetic Information Processing in teal, and Cellular Processes in 651 

orange). The differential bacterial taxa and KEGG pathways that remain significant after 652 

controlling for BMI or diet type are marked with ‡ and †, respectively. (G) Violin plots (a 653 

combination of the box plot with a kernel density plot) showing various measurements 654 

pertaining to gut microbiota ecology and microbial mediators. The center line denotes the 655 

median, the boxes cover the 25th and 75th percentiles, and the whiskers extend to the most 656 

extreme data point, which is no more than 1.5 times the length of the box away from the box. 657 

Points outside the whiskers represent outlier samples. Significance is calculated using the 658 

Wilcoxon rank-sum test. **** P < 0.0001; *** P < 0.001; ** P < 0.01; * P < 0.05; "ns" P > 659 

0.05. 660 

 661 

Figure 3. A Chord diagram visualizes the significant interrelation between host metabolic 662 

characteristics (cells in orange) and microbiota taxonomic features (cells in burgundy), and 663 

microbial mediators (cells in purple). Features are shown that form triplets of phenotype, 664 

microbial and microbial molecule-related variables where at least two of three correlations 665 

are significant (Spearman FDR-P < 0.05). Color of the connectors indicates positive (in red) 666 

or negative (in blue) Spearman’s rho values. BMI, body mass index; TC, total cholesterol; 667 

TG, triglycerides; HbA1c, hemoglobin A1c; LBP, lipopolysaccharide binding protein; TLR4, 668 

Toll-like receptor 4. 669 

 670 

Figure 4. (A) A receiver operating characteristic (ROC) curve evaluating the ability to 671 

distinguish T2D cases from controls using a random forest classifier trained on bacterial 672 

genus-level abundances, achieving an area under ROC curve (AUC) value of 86.84% with 673 

95%�CI of 80.02% to 93.67%. (B) T2D classification accuracy resulting from cross-674 

validation within each study i.e., the test and training set are the same study (the boxed along 675 

the diagonal) and study-to-study model transfer (external validations off the diagonal) as 676 

measured by the AUC for the classification models trained on genus-level abundances. The 677 

color of the scale bar on the right represents the AUC value. (C) Abundance distribution of 678 

top 10 taxonomic features with the highest discriminatory power extracted from the random 679 
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forest model trained on the present cohort (PAK1/Pakistan1). Log2 fold change was 680 

calculated using controls as the reference group and significance was determined by DESeq2. 681 

**** P < 0.0001; *** P < 0.001; ** P < 0.01; * P < 0.05. 682 

 683 

Tables 684 

Table 1. Anthropometric, biochemical parameters and dietary characteristics of participants, 685 

and their associations with the gut microbiota based on β-diversity.  686 

 687 

BMI, body mass index; TC, total cholesterol; TG, triglycerides; HbA1c, hemoglobin A1c; 688 

T2D, type 2 diabetes mellitus; Met−, T2D patients prescribed with non-metformin 689 

hypoglycemic treatment; Met+, T2D patients prescribed with metformin. 690 
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Table 1. Anthropometric, biochemical parameters and dietary characteristics of participants, 
and their associations with the gut microbiota based on β-diversity.  
 

 Control  
(N = 46) 

T2D  
(N = 48) 

 Association 
with β-diversity 

Met−  
(N = 21) 

Met+  
(N = 27) 

 

 Mean/ 
Median 

Mean/ 
Median 

P R2 P Mean/ 
Median 

Mean/ 
Median 

P 

Basic 
characteristics 
 

        

Age (years) 49.0 51.1 >0.05 0.008 >0.05 54.0 48.9 >0.05 

Sex (%female) 50 50 >0.05 0.012 >0.05 43 56 >0.05 

BMI (kg/m2) 25.0 27.5 <0.01 0.047 >0.05 30.2 25.5 <0.01 

TC (mg/dL) 170.0 177.5 <0.01 0.018 >0.05 190.0 167.0 <0.05 

TG (mg/dL) 132.5 245.0 <0.01 0.11 <0.01 370.0 185.0 <0.01 

HbA1c (%) 5.3 7.5 <0.01 0.3 <0.01 7.8 7.3 <0.01 

Diet  
 

        

Type 1 (N) 5 33 <0.01   -   - 18 15 <0.05 

Type 2 (N) 22 12 <0.05   -   - 2 10 <0.05 

Type 3 (N) 17 3 <0.01   -   - 1 2 >0.05 

Type 4 (N) 2 0 >0.05   -   - 0 0 >0.05 

BMI, body mass index; TC, total cholesterol; TG, triglycerides; HbA1c, hemoglobin A1c; T2D, type 2 diabetes 
mellitus; Met−, T2D patients prescribed with non-metformin hypoglycemic treatment; Met+, T2D patients 
prescribed with metformin. 
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