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Abstract 24 

The severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) antigenic profile evolves in response to 25 

the vaccine and natural infection-derived immune pressure, resulting in immune escape and threatening public 26 

health. Exploring the possible antigenic evolutionary potentials improves public health preparedness, but it is 27 

limited by the lack of experimental assays as the sequence space is exponentially large. Here we introduce the 28 

Machine Learning-guided Antigenic Evolution Prediction (MLAEP), which combines structure modeling, multi-29 

task learning, and genetic algorithm to model the viral fitness landscape and explore the antigenic evolution via 30 

in silico directed evolution. As demonstrated by existing SARS-COV-2 variants, MLAEP can infer the order of 31 

variants along antigenic evolutionary trajectories, which is also strongly correlated with their sampling time. The 32 

novel mutations predicted by MLAEP are also found in immunocompromised covid patients and newly emerging 33 

variants, like XBB1.5. The predictions of MLAEP were validated by conducting in vitro neutralizing antibody 34 

binding assay, which demonstrated that the model-generated variants displayed significantly increased immune 35 

evasion ability compared with the controls. In sum, our approach enables profiling existing variants and 36 

forecasting prospective antigenic variants, thus may help guide the development of vaccines and increase 37 

preparedness against future variants. Our model is available at https://mlaep.cbrc.kaust.edu.sa. 38 

  39 
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Introduction 40 

As the number of infection cases increased and the virus spread globally, novel mutations in the virus genome 41 

emerged1-4. At the time of April 2022, there are more than one million variants in the virus genome identified 42 

and uploaded to the Global Initiative on Sharing Avian Influenza Database (GISAID). The mutations often 43 

implicate the changes to the SARS-COV-2 properties3. Although most mutations decrease the virulence and 44 

transmissibility of the virus5, some individual or combinatorial mutations substantially improve the 45 

transmissibility with enhanced cell entry efficacy6, or ablate the neutralizing antibodies response elicited by 46 

infection or vaccine1, 7, resulting in high-risk variants. For example, the Alpha (B.1.1.7) variant of concern (VOC) 47 

spread worldwide through a higher human ACE2 binding affinity and transmissibility than the original Wuhan 48 

strain8. The Beta and the Gamma lineage abolished the neutralizing antibodies elicited by approved COVID-19 49 

vaccines9. The Delta variant became a dominant strain worldwide with the increased transmissibility and 50 

morality10, 11. Recently, the heavily mutated Omicron variant caused new waves due to the extremely high rate 51 

of spread and the ability to evade the double-vaccinated person12. 52 

A substantial fraction of neutralizing antibodies, including monoclonal antibodies and those induced by the 53 

vaccines, target the spike receptor-binding domain (RBD)13-15. Antibodies targeting the RBD have been divided 54 

into four categories according to their binding epitopes16. Class 1 and class 2 antibodies bind the surface of the 55 

receptor-binding motif (RBM) and thus compete with ACE2 for RBD binding. Mutations in the RBM region, in 56 

turn, decreased neutralization by these antibodies. Class 3 antibodies bind the opposite side of the receptor-57 

binding motif, contain less overlap with the ACE2-binding footprint, provide the potential for synergistic effects 58 

when combined with Class 1 and 2 antibodies for intercepting ACE2 binding17. Class 4 antibodies target a highly 59 

conserved region among sarbecoviruses and thus are generally more resistant to the variants18. However, the 60 

emerging viral lineages such as Omicron and BA.2 can still lead to a substantial loss of neutralization19. 61 

Understanding the role of the mutations and how they are linked to transmissibility and immune escape are thus 62 

of great importance. There have been an expanding set of analyses characterizing these problems5, 18, 20-23. Starr 63 

et al.5 and Greaney et al.18 performed deep mutational scanning (DMS) on the entire Spike RBD sequences of 64 

SARS-COV-2 on the yeast surface to determine the impact of single-position substitutions on the binding ability 65 

to ACE2 and monoclonal antibodies. These assayed experiments provide a unique resource for understanding 66 
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the properties of variants. However, the wet-lab experiments are resource and time-consuming, and cannot be 67 

scaled to the large protein sequence space. Maher et al.23 characterized the potential risks of the single-position 68 

substitutions with a computational model and forecasted the driver mutations that may appear in emerging VOCs. 69 

Despite their effectiveness in modeling the risks at the single-mutant level, the newly emerging VOCs (e.g., 70 

Delta, Omicron) often possess multiple mutations in the RBD region, which directly influences the ACE2 71 

binding and antibody escape. For example, the Omicron variant contains 15 mutations in the RBD region and 72 

obtains considerable antigenic escape ability24. Moreover, the effects of mutations are context-dependent, such 73 

that the epistatic interactions among the mutations limit the application scenario of the single-mutant-based 74 

methods25. 75 

The sequence space of protein variants grows exponentially when multiple mutations are considered, while 76 

measuring the functionality of the variant sequences far exceeding the capacity of wet-lab experiments. Machine 77 

learning methods have been proposed for solving the problem26-28. Alexander et al.29 trained a large-scale 78 

transformer model with the self-supervised protein language modeling objective, while the model can infer the 79 

effects of mutations without supervision. Chloe et al.30 combined linear regression with the Potts model, resulting 80 

in a data-efficient variant fitness inference model. These models have been proven to be effective in the protein 81 

engineering field for inferring the fitness landscape of proteins.  82 

Inspired by these tools, Hie et al.20 showed that language models trained on a set of evolutionarily related 83 

sequences are capable of predicting the potential risks of COVID variants with multiple mutations, and Karim 84 

et al.22 further combined the language model score with structural modeling to monitor the risks of existing 85 

variants. These computational tools can work as high-risk variant monitors and help us predict the risks of the 86 

emerging variants. However, as these methods focus on prediction and rely on existing data, they do not provide 87 

detailed views for ‘perspective’ variants and antigenic evolutionary potential. Taft et al.21 performed deep 88 

learning on the RBM sequences and built a predictive profile for the COVID variants in ACE2 binding and 89 

antibody escape for class 1, 2, and 3 antibodies. The proposed framework works quite well in finding prospective 90 

mutations, but they still have limitations: the mutations are found by brute-force search, so they only focused on 91 

a small subset of the RBD region, missed a large part of the Class 3 antibody epitopes and did not take the class 92 

4 antibodies into consideration.  93 
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In this work, we presented the MLAEP, built upon the existing data and approaches to forecast the combinatorial 94 

mutations in the entire RBD region that contains high antigenic evolutionary potential and may occur in the 95 

future. We hypothesized that under high immune pressure, the virus would tend to escape the antibody 96 

neuralization over a short-term time scale, and therefore the forecasting problem transforms into a search 97 

problem: starting from an initial sequence, it searches for a variant sequence within some edit distance range that 98 

has an improved antibody escape potential without losing much ACE2 binding ability. With the DMS datasets 99 

that directly measure the binding affinity of RBD variants towards ACE2 and eight antibodies from four classes, 100 

we built a multi-task deep learning model that could simultaneously predict the binding/escaping specificity of 101 

the variants towards the ACE2 and eight antibodies. Furthermore, we used existing variants with their sampling 102 

date from the GISAID database to validate our hypothesis: we found a surprisingly high correlation between our 103 

model scores and the variants’ sampling time (Spearman r=0.65, p<1e-308). Next, with our model as the scoring 104 

function, we used the genetic algorithm31, 32 to generate synthetic RBD variants with high ACE2 binding and 105 

antibody escape potential. Interestingly, the in silico directed evolution shares similar mutations with the adaptive 106 

evolution in immunocompromised COVID-19 patients33-35 and newly emerging variants like XBB.1.5. Finally, 107 

we conducted in vitro neutralizing antibody binding assay to verify the ability of MLAEP to accurately forecast 108 

variants with high immune evasion potential. 109 

 110 

Results 111 

Overview of MLAEP 112 

We first developed and trained a multi-task deep neural network model capable of predicting the variant RBD 113 

binding specificity towards the ACE2 and antibodies from four classes, as shown in Figure 1. The model receives 114 

two inputs: the variant RBD sequences and the ACE2/antibody 3D structures, and outputs the binding 115 

specificities of the two inputs. The model is then trained with a multi-task objective function to predict the 116 

binding specificities of the variant sequences towards all targets simultaneously.  117 

We fine-tuned the ESM-1b (evolutionary scale modeling) language model29 for the sequence feature extraction. 118 

The model is pre-trained on ~27 million nature protein sequences in the UniRef50 database36. Fine-tuning the 119 

model has been proven to be effective for a broad range of downstream tasks, including biophysical properties 120 
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prediction, structure prediction, and mutation effects prediction. With the ESM-1b model, the amino acid 121 

sequences are converted into a dense vector representation. For the ACE2/antibodies structures, we first 122 

transformed the 3D structures into graphs based on their contact maps and biophysical properties, then used the 123 

structured transformer37 for the structural feature extraction. With the two models as feature extraction modules, 124 

we added nine parallel linear classification layers to learn the sequence to function mapping conditioned on the 125 

binding target structures (Fig. 1a). As we have multiple binding targets for the variants, we used a hard-parameter 126 

sharing scheme to perform multi-task learning, where all modules share the same parameters across all nine 127 

tasks. Then, we trained the entire framework in an end-to-end manner. Finally, the model learns how to predict 128 

binding specificity for ACE2 and eight antibodies. Given an input RBD variant sequence, our model outputs 129 

nine scores corresponding to the ACE2 and eight antibodies. We defined the average of eight antibody scores as 130 

the predicted antibody escaping potential. 131 

Our key hypothesis is based on the antigenic evolution: the future viral variants tend to have a higher antibody 132 

escaping potential without losing much ACE2 binding ability under high immune pressure. Thus, the 133 

antibody/ACE2 binding specificity learned by our model can be used to provide a meaningful direction in 134 

searching for novel variants that may cause future concern. Inspired by the progress in the machine learning-135 

guided protein engineering field26, 27, we used the trained multi-task model as the scoring function (Fig. 1a), took 136 

the average prediction scores from all nine tasks as the fitness score, and used a modified genetic algorithm for 137 

searching for novel variants with improved fitness (Fig. 1b). The genetic algorithm is inspired by the process of 138 

natural selection, which iteratively evolves a group of candidates towards better fitness. The population of each 139 

iteration is called a generation. In each generation, the fitness of the candidate sequences is evaluated with the 140 

trained model. Then we filtered the populations by selecting the ones with higher fitness with higher probabilities 141 

for breeding the next generation (Fig. 1c). Random mutations and crossover are also introduced to better explore 142 

the search space. Genetic algorithm is known for performing well in solving combinatorial optimization 143 

problems, thus fitting our needs in searching for novel variants. More details can be found in Methods. 144 

 145 

 146 

The effectiveness of the multi-task learning model 147 
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MLAEP follows the machine learning-guided directed evolution paradigm, while the quality of generated 148 

sequences largely depends on the sequence to function model. First, we validated the generalization ability of 149 

the models to newly seen variants with 5-fold cross-validation. We collected and cleaned nine deep mutational 150 

datasets containing 19132 variant sequences and their corresponding binding specificities towards ACE2 and 151 

eight antibodies from four functional classes. (Methods) We then compared a range of models specifically 152 

designed for protein engineering and assessed their classification performance in classifying the binders and 153 

non-binders (Methods, Extended Data Fig. 1) from the variant sequences, including the augmented Potts30 model, 154 

the global UniRep38 model, the eUniRep26 model, the convolutional neural network (CNN), the long short 155 

memory neural network (LSTM), the recurrent neutral network (RNN), the linear regression model, the support 156 

vector machine (SVM), the random forest and our model. We used 5-fold cross-validation to evaluate the 157 

performance of all models. The dataset is imbalanced regarding the number of positive and negative samples for 158 

all nine tasks. Thus, we reported the macro precision, macro recall, and macro F1 score to add more weights to 159 

the minor classes. Combined with the structure features, our model outperforms the other advanced methods in 160 

predicting the effects of mutations in all nine tasks (Fig. 2a, Supplementary Fig. 1, 2, Supp Table 1). As a result, 161 

we focused on our model in the downstream analysis. We also performed ablation study for our model to show 162 

the importance of each module. We found that both the fine-tuning step and the structure representations 163 

improves the overall model performance (Extended Data Fig. 2). We also conducted external validation 164 

experiments using several deep mutational scanning datasets39, 40 in addition to variant RBDs, and found that our 165 

model performed comparably and consistently well across all tasks (Supp Table 2).  166 

To further validate the model's predictions for immune escape, we used the in vitro pseudovirus neutralization 167 

test (pVNT) datasets41 that measured the cross-neutralizing effect of 17 RBD monoclonal antibodies against 168 

pseudoviruses expressing the Spike protein of selected variants of concern (VOCs). The pVNT assay reported 169 

the observed fold change in the IC50 of the antibody response for these VOC-derived pseudoviruses, with lower 170 

fold change score indicating greater immune evasion compared to the wild type (Wuhu-1) reference pseudovirus. 171 

Across all pseudoviruses and antibodies tested, we found surprisingly high positive correlations (Fig. 2b, 172 

Supplementary Fig. 3, Supp Table 3) between the predicted antibody escape potential and the log fold change in 173 

the IC50. 174 
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The Evo-velocity42 enables the inference of evolutionary dynamics for proteins with a deep learning model. It 175 

was built upon the premise that global evolution occurs through local amino acid changes and leveraged protein 176 

language models to model the local rules of evolution (Methods). We next assessed our model’s ability in 177 

inferring the evolutionary trajectory of the existing RBD sequences using the Evo-velocity. We used the existing 178 

SARS-COV-2 RBD sequences from the GISAID database across a timescale of around 27 months, from Dec. 179 

2019 to Mar. 2022. The existing GISAID variant sequences were first transformed into embeddings with our 180 

multi-task model. On top of the embeddings, we assigned directions among them based on the changes in the 181 

average score predicted by our model, which forms the evolutionary “vector field”. We visualized the 182 

embeddings in the two-dimensional space with the Uniform Manifold Approximation and Projection (UMAP)43 183 

(Methods). The variants of concern, including Alpha, Beta, Delta, and Omicron, were mapped into different 184 

clusters, and the velocities among these variants matched well with the known evolutionary trajectory (Fig. 3a). 185 

Despite the model being trained only with the RBD sequences, the pseudo time inferred with our model had a 186 

Spearman correlation of 0.55 (p<1e-308) with the known variant sampling time (Extended Data Fig. 3a, 187 

Supplementary Fig. 4). While using the ESM-1b (the Evo-velocity default setting) model, the score dropped to 188 

-0.38(p=1.05e-243) quickly (Extended Data Fig. 3b, c). We noted that a large set of mutations occur outside the 189 

RBD region; this may explain the weak correlation between the ESM-1b model pseudo time and the sampling 190 

time. Longer sequence length (e.g., using the entire Spike protein region) would lead to better performance for 191 

the ESM-1b model42. We attempted to explain our model’s unique ability to infer pseudo time with only the RBD 192 

region. We explored the effectiveness of labels in our supervised learning, as it provides alternative directions 193 

rather than the language model preference42, 44. Interestingly, we found that the model prediction scores alone 194 

have an even higher Spearman correlation score of 0.65 (p<1e-308) with the sampling time (Fig. 3b) compared 195 

with that of the inferred pseudo time, while for the predicted antibody escape potential, the Spearman correlation 196 

is 0.67 (p<1e-308). These findings verify our assumptions: under the immune selection pressure, the virus 197 

evolves in the direction of immune escape, and our model can capture the antibody escape potential of the viral 198 

variants.  199 

We next assessed the antigenic evolution on a short time scale by comparing the model predictions against the 200 

sampling time (Fig. 3c, Extended Data Fig. 4). We evaluated three types of scores, the ACE2 binding score, the 201 
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antibody escape potential, and the weighted average of the two scores. The predictiveness of the antibody escapes 202 

score increases from nearly noninformative early in the pandemic to a stronger correlation during the Omicron 203 

wave. It also gains predictiveness with the emergence and spread of Alpha variants in Early 2021 but 204 

subsequently loses the predictiveness along with the emergence of other variants. We noted that the antigenic 205 

evolution For the ACE2 binding probability score, it tends to become more informative during the first year, 206 

while soon it becomes non-informative when the new VOC like Delta and Omicron emerged. These results 207 

suggests that the antigenic evolution happens along with the infection waves. 208 

We then examined the model sequence representations against the binding specificities. We found that after the 209 

training, there are strong correlations between embeddings’ primary and secondary axis of variation and the 210 

binding specificities for all nine targets (Fig. 3d, Supplementary Fig. 5). The correlations are observed for both 211 

ACE2 binding and antibody escape, suggesting that our multi-task learning strategies enable the model to learn 212 

the functional properties simultaneously. Given that the variant sequence embeddings are shared across tasks, 213 

this suggests that our model split the sequences based on an antigenic meaningful sense of binding preference.  214 

In summary, our model effectively infers the immune escape potential and the ACE2 binding specificity, while 215 

the predicted scores correlate positively with the real-world sampling time, especially for the newly emerging 216 

Omicron wave. Taken together, we hypothesize that our model can work as a good scoring function for searching 217 

for high-risk mutations and the corresponding variants.  218 

In silico directed evolution as a predictive tool 219 

With our model as the scoring function, we used the genetic algorithm to search for novel RBD variant sequences 220 

with high antigenic evolutionary potential. The search process consists of selecting an initial sequence from the 221 

GISAID database, generating and selecting “better-than-initial” sequences with the genetic algorithm to produce 222 

38870 putatively high-risk variants within a 15-mutations “trust radius” of the initial sequence (Methods). We 223 

performed the search process for the sequences in the GISAID database from January 1, 2022 to March 8, 2022, 224 

yielding a total of 971 distinct sequences. We then visualized the generated sequences together with the existing 225 

sequences using the distance-preserving multidimensional scaling plot45 (Fig. 4a). While the sequences from the 226 

deep mutational scanning experiments only occupy a small region around the wild type sequences, the prevalent 227 

variants (e.g., Omicron) locate in different regions, far from the wild type. The sequences searched with our 228 
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model shown are diverse, largely expanding the sequence space.  229 

Compared with the seed sequences, the synthetic sequences generated by our model include key mutations for 230 

ACE2 binding and antibody escape. To visualize the difference and further explore the patterns of the generated 231 

mutations, we constructed the position frequency matrix (PFM) for the two sequence sets and calculated the 232 

Kullback-Leibler divergence (KL divergence) for each position based on the two PFMs (Methods). Fig. 4b and 233 

Supplementary Fig. 6 provides structure-based visualizations and projects the Kullback-Leibler divergence per 234 

site onto a crystal structure of the RBD (PDB id: 6m0j). As an alternative representation, Fig. 4c provides a 235 

probability-weighted Kullback-Leibler logo plot46 for the top 50 most divergence sites, where the total height of 236 

the letters depicts the KL divergence of the site, while the size of the letters is proportional to the relative log-237 

odds score and observed probability (see Methods). The logo plot for all positions can be found in Extended 238 

Data Fig. 5. Enriched amino acids locate at the positive side of the y-axis and depleted amino acids locate at the 239 

negative side.  240 

The logo plot shows that the mutations searched by our model largely overlap with the antibody escape maps. 241 

For example, Y453, F456, and A475 are key sites for class 1 antibody escape18, while they are also present in 242 

many synthetic variant sequences. Mutations escaped class 2 antibodies at sites E484, F490, and P49118. The 243 

logo plot shows that these sites ranked high as “active sites”. Class 3 antibodies, which bind the opposite side of 244 

the receptor-binding motif, tend to be escaped by sites like N437, N448, and Q49818, which are also vulnerable 245 

sites suggested by the model. Class 4 antibodies bind to a conserved motif among the sarbecorviues, far away 246 

from the RBM. Our model still captures the conservation and assigns mutations to the motif.  However, some 247 

sites with a large KL divergence do not locate in the epitope regions. This has several explanations. Firstly, it is 248 

clear that some top sites (e.g., L368, C480) are not the direct binding sites but the proximal contact sites in the 249 

structures, which may influence the binding as well. Secondly, as there are epistasis relationships among the 250 

mutations, some combinatorial mutations may influence the RBD function nonlinearly and then modify the 251 

antibody escape, which is not directly revealed by the epitope map. Moreover, these non-epitope sites with high 252 

KL divergence need to be taken into consideration as they may perform an important role in future variants. 253 

Another concern is that some sites in the epitope region have a low KL-divergence, one possible explanation is 254 

that these sites have no tolerate mutations, for example, G416 and R457. Another explanation is that some 255 
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mutations at antibody-contact sites do not directly influence antibody binding. 256 

The synthetic variant sequences share similar mutations with the chronic SARS-COV-2 infections. A reverse 257 

mutation, R493Q, for example, was found in a persistently infected, immunocompromised individual47. Other 258 

mutations found by our model, like E340K48, E484T33, G485R49, and F490L/E484G50, are also found in 259 

immunocompromised patients treated with monoclonal antibodies. Moreover, the unique mutations found in the 260 

emerging variants, BA.4/5, the L452R, F486V, and the reverse mutation R493Q, are captured by our model. For 261 

the newly emerging variants like XBB.1.5, the key mutation, F486P51, is also captured by our model (Extended 262 

Data Fig. 5, Supplementary Fig. 7). This suggests that our model could be used for finding novel mutations that 263 

may occur naturally. A detailed list of the found mutations in compromised patients is available in Supp Table 264 

41. We next evaluated the immune evasion potential posed by the variant sequences using Evo-velocity analysis 265 

and viral language model risk inference, followed by structure modeling and antibody-antigen docking. The 266 

computational validation experiments suggests that the generated variants have high immune escape potential. 267 

Further details can be found in the Supplementary Data 1-2. 268 

 269 

In vitro validation of novel mutations found by MLAEP 270 

Having generated the synthetic sequences and found interesting single mutations, it is thus crucial to validate the 271 

risk and the immune evasion ability of combinatorial novel mutations using in vitro neutralizing antibody 272 

binding assay, especially for those that cannot be predicted with a linear additive model. Though the Omicron 273 

and its sub lineage are desired targets, they already exhibit high antibody escape abilities on the eight antibodies 274 

we selected for training our model, making it difficult to distinguish the effectiveness of novel mutations induced 275 

by MLAEP. To envision the differences, we used the RBD sequence of the Delta variant as the initial state and 276 

ran the entire framework again to generate and select “better-than-Delta” sequences. Our goal was to find 277 

possible antigenic evolutionary pathways for Delta that lead to high immune evasion. 278 

We generated 3876 putatively high-risk variants using MLAEP and selected eight variants (Figure 5, Extended 279 

Data Fig. 6) with unique immune evasion properties, including epistatic and non-epitope mutations. For example, 280 

the RBD3 contains seven mutations compared to the wild type, but all the single mutations are experimentally 281 

validated18 to be ineffective at evading the eight antibodies we used. However, our model predicted that the 282 
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RBD3 would have high immune evasion. The RBD4 does not contain mutations on the Class 4 antibody epitope, 283 

but our model predicted that it would escape Class 4 antibodies. The selection criteria are detailed in 284 

Supplementary Table 5.  285 

We first expressed and purified the eight neutralizing monoclonal antibodies and ten RBDs (including wild type, 286 

Delta, and eight synthetic RBD we generated) bearing different mutations. We tested different combinations of 287 

neutralizing antibodies and RBD variants in a Homogeneous Time-Resolved Fluorescence (HTRF) based 288 

antigen-antibody binding assay. In our HTRF-based binding assay, the wild type and Delta variant RBDs 289 

exhibited high binding efficacy against different neutralizing monoclonal antibodies, with the IC50 falling in 290 

between 0.2 nM and 1 nM (Fig. 5). Notably, the Delta variant RBD showed no binding interaction to COV2-291 

2096 (Fig. 5), consistent with the literature that the L452R18 mutation on Delta variant confers evasion ability 292 

against this neutralizing antibody. Intriguingly, all our predicted synthetic variants exhibited reduced or 293 

diminished binding efficacy against all four classes of neutralizing antibodies targeting different epitope regions 294 

(Fig. 5). Specifically, RBD4, RBD7, RBD8, and RBD9 exhibited evasion or reduced binding to COV2-2094 and 295 

COV2-2677, two representative class 4 neutralizing monoclonal antibodies, even without bearing any mutations 296 

in the class 4 epitope region. We also found that RBD8 could completely escape class 3 antibodies (COV2-2096 297 

and COV2-2499) without bearing mutations in the class 3 epitope region, suggesting that epistasis relationship 298 

play significant roles in the immune evasion, and such relationships could be captured by our deep learning 299 

model. The RBD5, RBD7, and RBD8 variants retained sensitivity to class 1 (COV2-2832, COV2-2165) and 300 

class 4 (COV2-2094, COV2-2677) antibodies with similar IC50 values compared to wild type RBD, but their 301 

binding efficacy to these neutralizing antibodies were reduced by large degrees. Overall, the synthetic variants 302 

and the novel combinatorial mutations generated from MLEAP exhibited a high potency for immune evasion, 303 

suggesting MLAEP captures the antigenic evolutionary potential.  304 

 305 

Discussion 306 

In this paper, we proposed a machine learning-guided antigenic evolution prediction paradigm for forecasting 307 

the antigenic evolution of SARS-COV-2. We trained a multi-task deep learning model to predict ACE2/antibody 308 

binding specificity using variant sequences and binding target structures. Predicting ACE2 binding specificity is 309 
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a relatively easy task, as one can capture the binding specificity using the unsupervised learning-based models29. 310 

However, predicting antibody binding specificity is much more challenging and less explored in the literature. 311 

Through various validation experiments, we showed that our model can predict the antigenic evolutionary 312 

potential resulting of high immune pressure. Combined with the genetic algorithm, we conducted in silico 313 

directed evolution using the model scores. The resulting synthetic sequences displayed high immune evasion 314 

potential, which we further validated using in silico computational tools and in vitro neutralizing antibody 315 

binding assay. MLAEP captures mutations that also happen in chronic SARS-COV-2 infections and emerging 316 

variants like BA.4/5 and XBB.1.5. In addition, MLAEP forecasts novel combinatorial mutations that affect 317 

antibody binding beyond epitope regions. While we used the genetic algorithm to search for novel variants, other 318 

search algorithms like hill-climbing52, simulated annealing53, and reinforcement learning54 could also be 319 

combined with MLAEP. The multi-task learning model could be also replaced with other mutation effects 320 

prediction models30.  321 

Deep learning models can learn high-order epistasis relationships among the multiple mutations28, 29. Our multi-322 

task model, meanwhile, can capture such relationships and work as a monitor for predicting the escaping 323 

potential of newly emerging variants, particularly heavily mutated variants. Our in vitro HTRF-based high 324 

throughput assay verified that MLAEP is able to forecast epistatic and non-epitope mutations, thus expanding 325 

our understanding and ability to predict the virus evolution. When combined with the Evo-velocity analysis, our 326 

model helps to reveal the evolution trajectory of existing sequences and enables the discovery of high-risk 327 

variants that may appear in the future. The results suggest that the in silico directed evolution can lead to the 328 

prediction of in vivo virus evolution. Consequently, MLAEP may enable the support of public health decision-329 

making and guide the development of new vaccines. Besides, our approach could also be applied to the rapidly 330 

evolving viruses and other potential outbreaks, such as antibiotic resistance55. 331 

An important property of MLAEP is that we focused on predicting the directionality of the mutation effect (i.e., 332 

whether a mutation increases or decreases binding affinity) rather than the magnitude of the effect. We plan to 333 

further develop our model to capture the quantitative effect of mutations in the future. Besides, one limitation of 334 

our model is that we only focused on the RBD sequences, while many mutations occur outside the region. We 335 

noted that the mutagenesis assayed data provides semantically meaningful directions for finding “better-than-336 
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natural” sequences. An increasing number of experiments characterize the functionality of mutations in other 337 

regions, and we plan to explore these datasets in the future. Another concern is that we only optimized two 338 

targets, the ACE2 binding and antibodies escape, while the directionality of evolution is also driven by many 339 

other properties, like the epidemiology features and T cell responses. In addition, the limited availability of 340 

variant ACE2 datasets prevented our model from capturing the fitness landscape of ACE2. Furthermore, the 341 

virus evolves continuously, making the set of effective neutralization antibodies change over time. Fortunately, 342 

the increasing availability of deep mutational scanning datasets19, 56 makes it convenient to track and update our 343 

model regularly. In the future, we will use these datasets and incorporate more in vivo and in vitro experimental 344 

data. Specifically, we will combine the in vivo antibody-antigen co-evolution data from patients and the 345 

assessment of other immune responses to better understand and predict the evolution of SARS-COV-2. 346 

 347 

 348 

Method 349 

Dataset 350 

We collected and cleaned nine deep mutational scanning datasets, which measure the binding affinity of the 351 

SARS-COV-2 RBD variants towards the ACE2 and eight antibodies from four classes. We built a dataset 352 

consisting of 19132 RBD sequences, where each sequence has nine labels, corresponding to their binding ability 353 

to the nine targets. Most sequences have one or two mutations compared to the wild type RBD sequence. 354 

However, considering the possible batch effect and the physical meaning differences among the measured scores, 355 

we normalized each score independently by transforming the continuous variables into semantically meaningful 356 

binary labels. For the ACE2 task, we directly compared the binding score of the mutated sequences to the wild 357 

type and set the label to “enhanced binding” if the score is larger than the wild type and vice versa. There is no 358 

information about the wild type for the eight antibodies tasks, so we cannot set the threshold as described earlier. 359 

Instead, we found that the distributions of the binding score's logarithm clearly show two clusters; therefore, for 360 

all antibody datasets, we took it as a mixture-of-Gaussian model respectively, defining the one with smaller 361 

binding scores as escaped and vice versa. This preprocessing step is consistent with the subsequent work57.  362 

In summary, there were 1540 (8%) mutated RBD sequences identified as enhanced binding to ACE2, 3482 (18%) 363 
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mutated RBD sequences identified as escaped to COV2-2096, 1220 (6%) mutated RBD sequences identified as 364 

escaped to COV2-2832, 2000 (10%) mutated RBD sequences identified as escaped to COV2-2094, 1473 (8%) 365 

mutated RBD sequences identified as escaped to COV2-2050, 1859 (10%) mutated RBD sequences identified 366 

as escaped to COV2-2677, 929 (5%) mutated RBD sequences identified as escaped to COV2-2479, 780 (4%) 367 

mutated RBD sequences identified as escaped to COV2-2165 and 3347 (17%) mutated RBD sequences 368 

identified as escaped to COV2-2499. 369 

We used the pseudovirus neutralization test assay data from Liu et al.41 to validate our model performance. The 370 

dataset measures the immune escaping of 10 high risk variants pseudoviruses by comparing the fold change in 371 

IC50 of 17 monoclonal neutralizing antibody response against wild type pseudovirus. 372 

 373 

 374 

Overview of the multi-task model  375 

A central feature of SARS-COV-2 is antigenic evolution, that is, under high immune pressure, the newly 376 

emerging variants will tend to escape the antibody while do not lose much binding ability to the ACE2.  377 

To accomplish the goal of predicting the antigenic evolution, we need to construct the virtual fitness landscape 378 

of the antigenic regions, especially for the RBD protein. We aimed to infer the fitness landscape of the RBD by 379 

learning the effects of mutations on ACE2 binding and antibody escape. Specifically, given RBD variant 380 

sequences and their labels, together with the binding partner (ACE2/antibody) structures, our model learned the 381 

nonlinear mapping function𝑓𝑓that can simultaneously predict the binding specificity for ACE2 and antibody. The 382 

function 𝑓𝑓 is parameterized by learnable mapping parameters 𝜃𝜃 composed of three modules: the sequence 383 

feature extractor 𝒮𝒮, the structure feature extractor 𝒢𝒢 and the sets of nine classification heads 𝐻𝐻 = {ℋ𝑐𝑐}𝑐𝑐=19 , 384 

where all ℋ𝑐𝑐 share the same group of parameters. All three modules are neural networks. The parameters of 385 

the three modules are optimized in an end-to-end manner.  386 

1. Sequence feature extractor. The sequence feature extractor takes as input of amino acid sequences 387 

of RBD variants 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑙𝑙)  of length 𝐿𝐿 , where 𝐿𝐿  denotes the length of the RBD 388 

sequence and elements 𝑥𝑥𝑖𝑖  belongs to 𝐴𝐴 = { all amino acids } . Input is mapped to a dense 389 

representation vector (sequence representation). The backbone of the sequences feature extractor 390 
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is the ESM-1b transformer, which is pretrained on UniRef50 representative sequences with the 391 

masked language modeling objective. We chose the ESM-1b as the sequence feature extractor 392 

because it outperforms other baselines on a range of downstream tasks. The pretrained weights 393 

were used for initializing the neural network, and we fine-tuned the model parameters during 394 

training.  395 

2. Representing structure as graph. We first represented the 3D structure as a k-nearest neighbor graph 396 

𝑔𝑔 = (𝑉𝑉,𝐸𝐸) with the node set 𝑉𝑉 = {𝑣𝑣𝑗𝑗}𝑗𝑗=1𝑁𝑁  of size 𝑁𝑁, where each element 𝑣𝑣𝑗𝑗  denotes for the 397 

features of representative atoms (we chose N, C, and O atom in the experiment) in the protein 3D 398 

structure, 𝑁𝑁 denotes the total number of atoms. For each atom, we got its two nearest neighbors 399 

with the following constraints: the ones with the same atom type but belong to different amino 400 

acids. We then measured the dihedral angles of the atom and its neighbors to as node features. The 401 

edge features 𝐸𝐸 =  {𝑒𝑒𝑖𝑖𝑗𝑗}𝑖𝑖≠𝑗𝑗 describes the relationship between the nodes, including the relative 402 

distance, direction, and orientation between the two nodes in the three-dimensional space. We set 403 

k as 30. 404 

3. Structure feature extractor. The structure feature extractor tasks as input of graphs 𝑔𝑔 = (𝑉𝑉,𝐸𝐸)  405 

describing the spatial feature of the protein structure. The transformed graph is further mapped into 406 

a dense representation vector (structure representation). The backbone of the structure feature 407 

extractor is a Structured Transformer37, where the attention for each node is restricted to its k-408 

nearest neighbors in 3D space. We chose the Structured Transformer for the structure feature 409 

extraction as it is computationally efficient and performs well in the protein design task. The 410 

structure representation works as conditional tags in our multi-task learning. 411 

4. Classification heads. After getting the sequence representation and the structure representation, we 412 

concatenated the two vectors into the joint representation, and fed it into the classification heads. 413 

The classification heads map the joint representation to the labels. We used nine parallel 414 
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classification heads for the nine classification tasks, while the neural network parameters are shared. 415 

During training, the sequence feature extractor, the structure feature extractor and the classification 416 

heads are trained in an end-to-end manner to minimize the average classification loss among the 417 

nine tasks.  418 

5. Loss function. Let 𝒙𝒙 = {𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑁𝑁   be the set of RBD variant amino acid sequences, and  𝒚𝒚 =419 

{𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑁𝑁  be the set of labels of all sequences, and 𝒚𝒚 = {𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑁𝑁  denotes for the set of labels of 420 

the 𝑖𝑖-th RBD variant. Furthermore, let 𝐺𝐺 = {𝑔𝑔𝑐𝑐(𝑉𝑉,𝐸𝐸)}𝑐𝑐=1𝑀𝑀 consists of M graphs derived from the 421 

ACE/antibody structures. We seek to learn a joint embedding for all downstream classification 422 

tasks to better model the fitness landscape of RBD. Therefore, the sequence feature extractor and 423 

the structure feature extractor are shared among all tasks. Considering that all the tasks are 424 

imbalanced in terms of the positive and negative samples, we added a rescaling weight 𝑝𝑝𝑐𝑐 to all 425 

tasks and optimized the following loss function:  426 

𝐿𝐿 =  
1
𝑀𝑀𝑁𝑁

��−[𝑝𝑝𝑐𝑐𝑦𝑦𝑖𝑖𝑐𝑐 ∙ log 𝜎𝜎 �ℋ𝑐𝑐�𝒮𝒮(𝑥𝑥𝑖𝑖);𝒢𝒢(𝑔𝑔𝑐𝑐)�� + (1 − 𝑦𝑦𝑖𝑖𝑐𝑐) ∙ log(1
𝑁𝑁

𝑖𝑖=1

𝑀𝑀

𝑐𝑐=1

427 

− 𝜎𝜎 �ℋ𝑐𝑐�𝒮𝒮(𝑥𝑥𝑖𝑖);𝒢𝒢(𝑔𝑔𝑐𝑐)��)] 428 

 429 

Where 𝑝𝑝𝑐𝑐 equals to the number of positive samples divided by the number of negative samples, 430 

M equals to nine, 𝜎𝜎 is the sigmoid function. The equation measures the binary cross entropy 431 

between the targets and predicted probabilities.   432 

 433 

Architecture and hyperparameters 434 

The architecture of the sequences feature extractor is based on the ESM-1b transformer, which consists of 34 435 

layers, we used the outputs of the 33rd layer as the sequence feature representations. For the structured 436 

transformer, we only kept the transformer encoder, and used three layers of self-attention and position-wise 437 
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feedforward modules with a hidden dimension of 128. Finally, we got a 1280-d vector for each sequence as the 438 

sequence representation and a 1300-d vector for each 3D structure as the structure representation. For each 439 

classification head, we used 1024 neurons in the first layer and two neurons in the second layer. The RELU 440 

function is used between the layers as nonlinear activations. We also passed a dropout rate p=0.5 and added 441 

weight decay to prevent overfitting. We trained the entire model with the AdamW optimizer and used a linear 442 

schedule with warmup to adjust the learning rate. We set the batch size as 16 and gradient accumulation steps as 443 

10, which means that the total train batch size is 160, and the validation is the same. We used a weighted random 444 

sampler function for our training batches, which oversamples the minority class to ensure that the number of 445 

samples in each class are equal or close to equal. The model was trained for 9500 updates with the initial learning 446 

rate of 1e-5 and warmup steps 120, during which the model with the best marco F1 score among all the tasks 447 

was kept. The hyperparameters described above were decided through several trials of experiments and selected 448 

the one with the best performance. 449 

 450 

Choice of baselines  451 

Our framework follows the machine learning-guided directed evolution paradigm, while the quality of generated 452 

sequences largely depends on the sequence-function model. Thus, we validated the generalization ability of the 453 

models to newly seen variants with cross-validation. Our multi-task deep learning model was designed as a 454 

supervised technique to infer the fitness of variant sequences, while there is no existing method designed for 455 

multi-task learning or multi-label learning on this task. So instead, we evaluated the performance of the existing 456 

methods separately for all nine tasks. We chose the state-of-the-art supervised-learning-based methods for 457 

inferring the effect of mutations, including the augmented Potts model30, the eUniRep model26 and the gUniRep 458 

model38. We also benchmarked several baseline machine learning methods including CNN, LSTM, RNN, Linear 459 

Regression, SVM, and Random Forest.  460 

The augmented Potts model combines the evolutionary information with the one-hot encoded amino acid 461 

sequences as input features and trains a linear regression model on top of the features. It outperforms most 462 

existing methods in inferring the effects of mutations. We first generated the multiple sequence alignments 463 

profile of RBD using the profile HMM homology search tool Jackhmmer. We set the bit score threshold as 0.5 464 
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and the number of iterations to 1. We then calculated the evolutionary Potts potential of the RBD variant 465 

sequences using the plmc. We replaced the Ridge regression with a Logistic regression head for the classification 466 

objective while keeping the rest procedures the same as the original settings.  467 

The gUniRep model was trained on 24 million UniRef50 amino acid sequences with the next amino-acid 468 

prediction objective, and the representations extracted from the pretrained model acts as a featurization of the 469 

sequences, benefits the downstream protein informatics tasks. With the RBD variant sequences as input, we got 470 

the fixed-length vector representations from the pretrained model as sequence embeddings. We added a Logistic 471 

regression head for downstream classification. 472 

The eUniRep model was built on top of the gUniRep model. An unsupervised fine-tuning step with sequences 473 

related to the target protein (evotuning) was introduced to learn the distinct features of the target family. Previous 474 

in vitro studies on the GFP and beta-lactamase proved its effectiveness for efficiently modeling the protein fitness 475 

landscape. We performed evotuning with the same MSA profile we generated in the augmented Potts model. 476 

After that, we characterized the sequence embeddings with the eUniRep model and train a Logistic regression 477 

model for downstream classification. All methods were trained and tested on the same training data and 478 

validation data for all five folds. The  479 

The CNN model consisted of a feature module and a classification module, where the feature module was 480 

composed of two 1D convolution layers, max-pooling layers, and ReLU layers. A 128-dimensional feature vector 481 

generated by the feature module was used to predict the label by the classification layer. 482 

The LSTM model consisted of a feature module and a classification module, where the feature module was 483 

composed of one 1D LSTM layers and two linear layers, followed a ReLU layer and a sigmoid layer. A 128-484 

dimensional feature vector generated by the feature module was used to predict the label by the classification 485 

layer. The RNN model is similar to LSTM model, except replace the LSTM module with the RNN module. The 486 

Linear regression, SVM and Random Forest were implemented using Scikit-learn v1.1.058. 487 

 488 

 489 

 490 

Ablation study 491 
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We performed ablation studies to show the effectiveness of each module. We first explored the effectiveness of 492 

the graphical representations. We replaced the structure features with the random Uniform noise 𝑋𝑋 ~ 𝑈𝑈(0, 1) 493 

and performed the multi-task learning with the same training details and procedures. Besides, we also explored 494 

the importance of fine tuning by freezing the parameters of the ESM-1b model and only optimized the parameters 495 

of the classification head.  496 

 497 

Performance evaluation 498 

We evaluated the multi-task learning model with the 5-fold cross-validation. We randomly split the dataset into 499 

five folds. Each time, we used four folds as the training data and held out the remaining fold for validation. We 500 

used the Accuracy, Precision, Recall, and F1 score to evaluate the classification performance across all models. 501 

As all the nine classification tasks are imbalanced, we used the Marco-precision, Marco-recall, and Macro-F1-502 

score to get an unbiased evaluation. True positive (TP), true negatives (TN), false positives (FP), and false 503 

negatives (FN) were measured by comparison between the prediction results produced by the model and the 504 

ground truth in the validation set. 505 

 506 

𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑦𝑦 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁
 507 

𝑅𝑅𝑒𝑒𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁
,   𝑅𝑅𝑒𝑒𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚 =  

𝑅𝑅𝑒𝑒𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐1 + 𝑅𝑅𝑒𝑒𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐2
2

 508 

𝑇𝑇𝐴𝐴𝑒𝑒𝑐𝑐𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑐𝑐 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
,   𝑇𝑇𝐴𝐴𝑒𝑒𝑐𝑐𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚 =  

𝑇𝑇𝐴𝐴𝑒𝑒𝑐𝑐𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃1 + 𝑇𝑇𝐴𝐴𝑒𝑒𝑐𝑐𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃2
2

 509 

𝐹𝐹1𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚 = 2 ×
𝑇𝑇𝐴𝐴𝑒𝑒𝑐𝑐𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚 × 𝑅𝑅𝑒𝑒𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚

𝑇𝑇𝐴𝐴𝑒𝑒𝑐𝑐𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚 + 𝑅𝑅𝑒𝑒𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚
 510 

 511 

 512 

Generate virtual RBD variant sequences with the genetic algorithm 513 

To forecast the variants that follows the antigenic evolutionary potential, we applied the genetic algorithm for 514 

searching the peaks of the fitness landscape described by our model. Inspired by Darwin’s theory of natural 515 

evolution, the genetic algorithm mimics the evolutionary process in the genome, where mutations, crossover and 516 
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selection happen, letting candidate solutions of a population with higher fitness scores have a higher probability 517 

of surviving and producing the next generation of offspring. For SARS-CoV-2, it has been proven that similar 518 

progress happens in immunocompromised infected patients who got treated with the monocle antibodies33. 519 

Hence, we used the genetic algorithm to model the antigenic evolution process and search for the potential risky 520 

variants that might appear in the future. The genetic algorithm we used consists of the following steps: 521 

1. Selection of initial sequences. For the Omicron related experiments, the initial input sequences 522 

were obtained from the March 8, 2022 GISAID release9. We selected the RBD sequences from the 523 

recent two months (i.e. from January 1, 2022 to March 8, 2022), resulting in 957 distinct RBD 524 

sequences. For the Delta experiments, the initial RBD sequence is the Delta variant RBD sequence. 525 

For each sequence, we created a generation 𝑇𝑇0 of size 𝑆𝑆 by perturbing the sequences  times to 526 

generate a set of distinct modifications to the original sequence.  527 

2. Perturb operation. For a given sequence 𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), we first randomly selected an amino 528 

acid 𝑥𝑥𝑖𝑖, and got the K nearest neighbors of the selected amino acid according to the BLUSUM62 529 

matrix. Secondly, we computed the fitness value when 𝑥𝑥𝑖𝑖 is replaced with its neighbors, while 530 

keeping the remaining set of words unchanged. We then picked the mutation with a probability 531 

proportional to its fitness value. Finally, the selected mutated amino acid replaced the original one, 532 

we got a new sequence. We set K=20 in our experiments.  533 

3. Estimation of the fitness. The fitness score is defined as the average value of target label prediction 534 

probabilities for all nine tasks. For ACE2 binding task, the target label is binding, while for the 535 

antibody task, the target label is escape. The probabilities were found by querying the trained multi-536 

task model.  537 

4. Crossover. After getting the perturbed population and the fitness values for each individual 538 

sequence, we performed the crossover operation. Pairs of sequences are randomly selected with the 539 

probabilities proportional to its fitness value. A child sequence is then generated by independently 540 

sampling from the two parents. The newly generated sequences form the new generation. If the 541 
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fitness value of a population member in the generation is higher than the high-risk threshold, the 542 

optimization is done. Otherwise, the perturbation, selection and crossover operation will be applied 543 

on the new generation. 544 

We performed in silico evolution for each initial sequence from GISAID subset for 100 times independently, and 545 

finally got 38870 unique RBD variant sequences for the Omicron experiments. We got 3876 unique RBD variant 546 

sequences for the Delta experiments. We selected eight RBDs for the HTRF-based neutralizing antibody binding 547 

assay (Supp Table 5).  548 

 549 

Evo-velocity analysis 550 

The Evo-velocity analysis follows the study of Hie et al42. They used the pretrained protein language model (e.g. 551 

ESM-1b) to predict the local evolution within protein families and used a dynamic “vector field” to visualize it. 552 

It involves embedding the sequences of interest as vectors in a high-dimensional latent space, where the 553 

geometric distance between the representation of proteins correlates with their actual structural, functional, and 554 

evolutionary relatedness. The evo-velocity between two sequences is calculated by considering the log-555 

pseudolikelihood of observing a mutation from one sequence to another, providing a local mutational likelihood 556 

gradient around a particular protein. When looked at globally, this vector field gives insight into the directionality 557 

of the evolutionary process and can model global evolution. We first computed the embeddings for each sequence 558 

with the ESM-1b model, and then constructed the K-nearest-neighbor graph based on the embeddings, in which 559 

node represents the sequences and edges connected similar sequences. Further, the edges were assigned with 560 

directions based on the language model pseudolikelihoods, with flow-in node meaning evolutionarily favorable. 561 

Here, we performed the Evo-velocity analysis with their settings and ours. In our setting, we used the joint 562 

embeddings extracted from the fine-tuned protein language model and the Structured Transformer model to 563 

represent the sequences and set the direction of the edge by comparing the average predicted score among the 564 

nine tasks, where vertex with a large value is defined as the tail. We collected 7594 unique RBD sequences from 565 

the March 8, 2022 GISAID release. The date of the sequence is defined as the first reported date. After 566 

constructing the directed KNN neighborhood graph, we further performed network diffusion analysis to infer 567 
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the pseudo time. We manually set the root as the wild type RBD sequences. 568 

 569 

Visualization 570 

We visualized the model embeddings using UMAP. The K-nearest-neighbor network was built with the k set to 571 

30, while the resolution is set to 1. We calculated the KNN graph and performed UMAP for both the GISAID 572 

sequences and the generated sequences. We further projected the predicted KL-divergence maps onto a RBD 573 

structure (PDB id: 6m0j) and visualized the structure with PyMol. We collected the binding epitopes for class 1, 574 

2, and 3 antibodies from Greaney et al.18 , while for the class 4 antibodies, we used the contact sites of antibody 575 

CR3022 to represent the class 4 binding epitope.  576 

We used probability weighted Kullback-Leibler Logo plot for visualizing the generated mutations. Let 𝑀𝑀1 =577 

 (𝒇𝒇𝟏𝟏,𝒇𝒇𝟐𝟐,𝒇𝒇𝟑𝟑, … ,𝒇𝒇𝒏𝒏 ) denote the position frequency matrix (PFM) of the initial sequences, where the length of 578 

the initial sequences are 𝑃𝑃 and each 𝒇𝒇𝒊𝒊 =  (𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴20)𝑇𝑇, represents the frequency of each amino acid at 579 

position 𝑖𝑖. Further, let  denotes for the PFM of the generated sequences, each 𝒇𝒇𝒊𝒊′ =580 

 (𝐴𝐴1′ ,𝐴𝐴2′ , … ,𝐴𝐴20′ )𝑇𝑇. We computed the KL divergence for each position: 581 

𝐷𝐷𝐾𝐾𝐾𝐾(𝒇𝒇𝒊𝒊′||𝒇𝒇𝒊𝒊) = �𝐴𝐴𝑖𝑖′  ∙ ln (𝐴𝐴𝑖𝑖′ 𝐴𝐴𝑖𝑖⁄ )
20

𝑖𝑖=1

 582 

 583 

The KL divergence denotes for the total heights at each position in the logo plot. We further set the height and 584 

the direction of a letter with a probability weighted normalization46, where the relative height of each individual 585 

amino acid is proportional to 𝐴𝐴𝑖𝑖′  ∙ ln (𝐴𝐴𝑖𝑖′ 𝐴𝐴𝑖𝑖⁄ ) : 586 

ℎ(𝐴𝐴𝑖𝑖′) =  
𝐴𝐴𝑖𝑖′  ∙ ln (𝐴𝐴𝑖𝑖′ 𝐴𝐴𝑖𝑖⁄ )

∑ 𝐴𝐴𝑖𝑖′ ∙ |ln (𝐴𝐴𝑖𝑖′ 𝐴𝐴𝑖𝑖⁄ )|20
𝑖𝑖=1

𝐷𝐷𝐾𝐾𝐾𝐾(𝒇𝒇𝒊𝒊′||𝒇𝒇𝒊𝒊) 587 

 588 

Recombinant monoclonal antibody and RBD variants purification 589 

The sequences coding SARS-COV-2 monoclonal antibodies were kindly provided by Prof. James E. Crowe from 590 

Vanderbilt University Medical Center. The LH and HC sequences were codon optimized and submitted to 591 

Genescript for custom human IgG1 antibody expression. Sequences of wild type, deltavariant, and synthetic 592 
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variant RBD proteins were codon optimized and submitted to Twist for vector construction. All RBD constructs 593 

contain a secretion signal on the N-terminal, and a 6× his tag followed by a strep-tag II on the C-terminal. In 594 

brief, Expi293 cells were transfected in 40 mL Expi293 Expression Medium (Thermo Fisher A1435101) at 37°C, 595 

8% CO2 on an orbital shaker at 120 rpm. After five days, cells were removed by spinning at 500 ×g for 5 mins 596 

at 4 °C, and the medium was further centrifuged at 16000 ×g for 5 mins at 4 °C. The supernatant was then mixed 597 

with his-tag purification resin (Beyotime P2221) on a shaker at 4°C. After 1 hour of incubation, the mixture was 598 

loaded on a gravity chromatography column and washed for 15 mL of washing buffer [25 mM Tris, pH 8, 300 599 

mM NaCl, and 1 mM DTT]. The elution was collected in 5 mL and loaded on another 2 mL column pre-packed 600 

with 0.5 mL Strep-Tactin XT 4Flow high-capacity resin (IBA Lifesciences 2-5030-025). The RBD proteins were 601 

eluted in 5 mL of washing buffer supplemented with 50 mM Biotin. For some mutant RBD proteins that have 602 

reduced secretion into the medium, cell lysates were prepared in lysis buffer [25 mM Tris, pH 8, 300 mM NaCl, 603 

0.5 % Triton X-100, 1 mM DTT, 1× protease inhibitor cocktail (PIC)] for 30 min on a shaker at 4°C. Clarified 604 

lysates were subject to two affinity columns following the same purification protocols. All purified RBD proteins 605 

were buffer exchanged and concentrated to 1 μM in 1× PBS using Amicon, flash-frozen in liquid nitrogen, and 606 

stored at -80 °C. 607 

 608 

Homogeneous Time Resolved Fluorescence (HTRF) antigen-antibody binding assay 609 

The binding intensity between purified SARS-COV-2 RBDs and neutralizing antibodies was measured as HTRF 610 

signals in the antigen-antibody binding assay. The HTRF donor and acceptor pair was chosen to target the his-611 

tagged RBD proteins and human IgG1 antibodies, respectively. Briefly, a total of 10 μL reaction was set up on 612 

each well of the black, round-bottom, low-volume 384-well plates (Corning 4511) containing 5 nM purified wild 613 

type or mutant RBDs, 3 nM goat anti-human IgG conjugated with Alex Fluor 647 (Thermo Fisher A-21445), 614 

0.33nM monoclonal antibody anti-6His-Tb-cryptate Gold (Cisbio 61HI2TLA) and two-fold dilutions of 615 

neutralizing mAbs from 2 nM to 0.0156 nM in 1× PBS supplemented with 0.1 % BSA, and 0.1 % Tween-20. 616 

The plate was sealed with plastic film and incubated at room temperature for 1 hour. The HTRF signals were 617 

measured in CLARIOstar Plus (BMG LABTECH) with the excitation filter at 340 nm and the emission filters 618 

at 620 nm and 665 nm. The reading lag time and integration time were set to 60 μs and 200 μs, respectively. The 619 
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HTRF ratios from samples and negative controls were calculated by dividing the intensity readouts from the 665 620 

nm channel over the 620 nm channel. All ratios were background subtracted and normalized in ∆F %: 621 

 622 

∆F% =  
HTRF ratio(sample)  −  HTRF ratio(negative control)

HTRF ratio(negative control)
 ×  100 623 

 624 

The IC50 value was calculated by fitting the data into a dose-response curve in Prism 9. Data points with the 625 

‘hook’ effect were removed from the fitting. 626 

 627 

 628 

Data availability 629 

The deep mutational scanning datasets is publicly available at https://jbloomlab.github.io/SARS-CoV-2-630 

RBD_DMS/  and https://github.com/jbloomlab/SARS-CoV-2-RBD_MAP_Crowe_antibodies. The 631 

pseudovirus neutralization test assay data is publicly available in its original publications. The GISAID data is 632 

publicly available at https://www.gisaid.org/. We retrieved data from the website on 8 March 2022.  633 
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 769 

 770 

Fig. 1 | Overview of the MLAEP framework. a, The multi-task learning model. We collected and cleaned the 771 

RBD variant sequences and their corresponding binding/escaping specificity to the ACE2 and eight antibodies. 772 

Then, the sequences and the structures of their binding partners were fed into the deep learning model with the 773 

multi-task learning objective. b, The genetic algorithm. In silico directed evolution was performed to navigate 774 

the virtual fitness landscape defined by the nine scores from the multi-task model. The generation loop was 775 

repeated multiple times until the desired functionality was reached. c, These generated sequences were then 776 

subjected to validation experiments for evaluating their functional attributes.  777 
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 779 

 780 

Fig. 2 | Performance evaluation and in vitro pVNT experimental data validation. a, Model performance 781 

comparison for the classification of ACE2 and antibody binding specificity across different algorithms. Including 782 

our model, augmented Potts model, eUniRep model, gUniRep model, CNN, RNN, LSTM, linear regression, 783 

SVM and random forest. The details of model implementation are given in Methods and performance metrics 784 

were calculated according to the equations provided in the Methods. b, Validation of the predicted immune 785 

escape potential using the class4 monoclonal antibody-based pVNT assay data (Antibody 10-40). The x-axis 786 

indicates the model predicted variant escape potential, while the y-axis is the log fold change of the VOCs 787 

compared with the wild type. 788 
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 790 

Fig. 3 | Multi-task model captures the antigenic evolutionary potential. a, The landscape of SARS-COV-2 791 

RBD variant sequences (obtained from GISAID), represented as a KNN-similarity graph (with the darker blue 792 

region represents less recent date, e.g., 2019, and yellow represents more recent date, e.g., 2022). The gray lines 793 

indicate graph edges, while the colored points are sequences with the known sampling time. The streamlines 794 

among the points show a visual correlation between model predicted scores and the known sampling time. b, 795 

Use the average score of our model to visualize the landscape. The landscape is colored by the model prediction 796 

score with darker colors represent lower scores and lighter colors represent higher scores. c, Spearman 797 

correlation overtime for the model predictions, including the ACE2 binding score, immune escape potential, and 798 

the weighted average of the two in a time window of previous three months for each sampled date. (From 799 

February 2020 to February 2022) d, Principal component analyses of the sequence’s representations from our 800 

model, colored by the escaping/binding ability towards COV2-2832, COV2-2165(class 1 antibody), COV2-2479, 801 

COV2-2500 (class 2 antibody), COV2-2096, COV2-2499 (class 3 antibody), COV2-2677, COV2-2094 (class 4 802 

antibody) and ACE2.   803 
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 804 

 805 

Fig. 4 | Overview of the synthetic sequences. a, Distance-preserving multidimensional scaling plot illustrates 806 

synthetic sequences' diversity compared to existing variants and deep mutagenesis sequences. A scale bar of 807 

three mutations is shown. b and c, the differences between the initial sequences and the synthetic sequences. b, 808 

The surface of the RBD protein, colored by the KL divergence between the initial sequences and the synthetic 809 

sequences. Colored outlines indicate the epitope structural footprint. c, The top 50 sites with the highest KL-810 

divergence value are selected for visualizing the difference between the generated sequences and the existing 811 

sequences. Enriched amino acids locate at the positive side of the y-axis and depleted amino acids locate at the 812 

negative side. 813 
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 815 
Figure 5. | Epitope mutations confer RBD resistance to the binding of neutralizing mAbs. 816 
HTRF-based binding assay of wild type and mutant RBD proteins against two representative anti-RBD 817 
monoclonal antibodies from four classes, including COV2-2832 and COV2-2165 (class 1 antibody), COV2-818 
2479 and COV2-2050 (class 2 antibody), COV2-2096 and COV2-2499 (class 3 antibody), as well as COV2-819 
2094 and COV2-2677 (class 4 antibody). ∆F % values were calculated from raw data and fit into dose-response 820 
curves, and the IC50 values were listed side by side. Error bars represent standard deviation (n = 3). 821 
 822 
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 824 

 825 
Extended Data Fig. 1 | The distribution of the DMS scores of eight antibodies. We log-transformed the deep 826 

mutational scanning scores, and got clearly two clusters for all antibodies. We then used the Gaussian mixture 827 

model to split the score into two clusters. Red cluster is defined as non-escape, while the blue clusters is defined 828 

as escape.  829 
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 832 

 833 
Extended Data Fig. 2 | Ablation studies. Justification of using the fine-tuning, the structure representations in 834 

the multi-task learning framework, in terms of Accuracy, macro-Precision, macro-Recall and macro-F1 score. 835 

ESM-1b shows the results of the fine-tuning steps’ ablation. ESM-1b finetuning shows the results of replacing 836 

the Structured Transformer’s ablation. 837 
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 846 
Extended Data Fig. 3 | Pseudo time and ESM-1b model inference. a, The landscape of RBD sequences, 847 

represented as a KNN network and visualized use the UMAP, colored with the inferred pseudo time using our 848 

model embeddings and scores. Gray lines indicate network edges. b and c, The landscape of the RBD sequences 849 

from GISAID, represented as a KNN similarity network and visualized with the UMAP. The sequences 850 

embeddings and directions among time are from the ESM-1b model. b, colored with the real-world sampling 851 

time. Streamlines show the visual correlation between the ESM-1b inferred velocity and sampling time. c, 852 

colored by the inferred pseudo time. 853 
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 856 

Extended Data Fig. 4 | Correlation between the model scores and sampling date. a, Spearman correlation 857 

overtime for the model predictions, including the ACE2 binding score, immune escape potential, and the 858 

weighted average of the two in a time window of previous six months for each sampled date. b, In a time window 859 

of previous 12 months for each sampled date.  860 

 861 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2023. ; https://doi.org/10.1101/2022.06.23.497375doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.23.497375
http://creativecommons.org/licenses/by-nc-nd/4.0/


 862 
Extended Data Fig. 5 | KL logo plot for the entire RBD region.  Sequence logos generated from the 863 

differences of the generated sequences and the initial sequences, spanning the entire RBD region. The logos 864 

were calculated with probability weighted Kullback-Leibler divergence with a pseudo count of 0.1.  865 
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 870 

Extended Data Fig. 6 | Eight RBD mutants bearing different mutations on the surface were selected for 871 

binding assay against mAbs. Surface modeling of mutant RBD proteins was illustrated in grey. Mutations sites 872 

were marked in red and listed beside the models. 873 

 874 

 875 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2023. ; https://doi.org/10.1101/2022.06.23.497375doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.23.497375
http://creativecommons.org/licenses/by-nc-nd/4.0/

