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Abstract

The number of published metagenome assemblies is rapidly growing due to advances in
sequencing technologies. However, sequencing errors, variable coverage, repetitive
genomic regions, and other factors can produce misassemblies, which are challenging to
detect for taxonomically novel genomic data. Assembly errors can affect all downstream
analyses of the assemblies. Accuracy for the state of the art in reference-free
misassembly prediction does not exceed an AUPRC of 0.57, and it is not clear how well
these models generalize to real-world data. Here, we present the Residual neural
network for Misassembled Contig identification (ResMiCo), a deep learning approach
for reference-free identification of misassembled contigs. To develop ResMiCo, we first
generated a training dataset of unprecedented size and complexity that can be used for
further benchmarking and developments in the field. Through rigorous validation, we
show that ResMiCo is substantially more accurate than the state of the art, and the
model is robust to novel taxonomic diversity and varying assembly methods. ResMiCo
estimated 4.7% misassembled contigs per metagenome across multiple real-world
datasets. We demonstrate how ResMiCo can be used to optimize metagenome assembly
hyperparameters to improve accuracy, instead of optimizing solely for contiguity. The
accuracy, robustness, and ease-of-use of ResMiCo make the tool suitable for general
quality control of metagenome assemblies and assembly methodology optimization.

Author summary

Metagenome assembly quality is fundamental to all downstream analyses of such data.
The number of metagenome assemblies, especially metagenome-assembled genomes
(MAGs), is rapidly increasing, but tools to assess the quality of these assemblies lack the
accuracy needed for robust quality control. Moreover, existing models have been trained
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on datasets lacking complexity and realism, which may limit their generalization to
novel data. Due to the limitations of existing models, most studies forgo such
approaches and instead rely on CheckM to assess assembly quality, an approach that
only utilizes a small portion of all genomic information and does not identify specific
misassemblies. We harnessed existing large genomic datasets and high-performance
computing to produce a training dataset of unprecedented size and complexity and
thereby trained a deep learning model for predicting misassemblies that can robustly
generalize to novel taxonomy and varying assembly methodologies.

Introduction 1

Metagenome sequencing is rapidly increasing in popularity due to the lowering costs of 2

sequencing and simplified library construction methods [1, 2]. At the same time, 3

improvements in metagenome assembly tools [3, 4] and high-performance computing 4

resources have increased the feasibility of large-scale metagenome assemblies on 1000s of 5

samples [5–7]. The contiguous sequences (contigs) generated via metagenome assembly 6

can be analyzed directly for such tasks as creating gene catalogs [8, 9], or binning 7

approaches can be used to cluster the contigs into metagenome-assembled genomes 8

(MAGs) that can be used for various comparative genomics applications [10]. 9

These advances have given rise to vast genome assembly databases, such as the 10

Unified Human Gastrointestinal Genome (UHGG) [11], in which MAGs account for 70% 11

of the species. As another example, the Genome Taxonomy Database (GTDB) 12

expanded from 32,000 species to nearly 50,000 in less than one year [12,13], largely due 13

to the proliferation of MAGs. Given the low-throughput nature of isolating Bacteria 14

and Archaea for independent genome sequencing [11], metagenome assembly approaches 15

will likely continue to dominate. 16

The correct assembly of metagenomes is challenging due to several factors, including 17

sequencing errors, high taxonomic diversity often comprising 1000s of species, uneven 18

coverage, and repetitive genomic regions [14]. All of these factors contribute to 19

misassemblies, with the most common being structural variations, relocations, 20

translocations, and inversions [15]. Long read sequence data can mitigate some of these 21

issues [14,16], but the expense relative to short read sequencing generally prevents one 22

from obtaining sufficient sequence coverage for complex communities [17]. While 23

assembly contiguity can be assessed easily by calculating such metrics as N50, assessing 24

assembly accuracy is considerably more challenging due to a few major causes. First, 25

due to a lack of very closely related taxa with genome regions (nearly) identical to the 26

query, contigs cannot simply be mapped to references in order to assess accuracy. 27

Second, reference-free tools that predict misassemblies have generally been trained and 28

validated on small, homogeneous datasets in the past, which raises the question of their 29

robustness to novel data (e.g., novel taxa or assembly methods). Indeed, Mineeva and 30

colleagues showed that existing tools generally performed poorly on a large, 31

heterogeneous dataset [18]. The authors’ novel deep learning approach, DeepMAsED, 32

amply outperformed the state of the art and was relatively robust to taxonomic novelty, 33

achieving an AUPRC score of 0.57 on a novel genome dataset; still, there remained 34

substantial room for improvement in model accuracy and also a robust validation on 35

complex datasets spanning the heterogeneity of existing metagenomes from complex 36

communities. Indeed, Lei and colleagues developed metaMIC, a reference-free machine 37

learning (ML) model for predicting misassemblies in metagenome assemblies [19], and 38

showed that DeepMAsED’s performance was inferior to metaMIC’s; however, only few 39

methodological details were provided on the validation approach. 40

We present Residual Neural Network for Misassembled Contigs Identification 41

(ResMiCo), a novel approach for reference-free identification of misassembled contigs in 42
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metagenome assemblies. ResMiCo is a deep convolutional neural network with skip 43

connections between non-adjacent layers. Similar architectures have proven to be highly 44

successful when trained on large datasets from various fields [20, 21]. We utilize a novel 45

high throughput pipeline to generate complex and realistic training data covering much 46

of the possible parameter space (e.g., varying data richness, sequencing depth, 47

sequencing error rate, community diversities, and metagenome assembly methods). 48

Through extensive evaluation, we show that the model outperforms the existing state of 49

the art and is robust to metagenome data heterogeneity, including taxonomic novelty 50

and metagenome assembly parameters. ResMiCo is also robust to alternative data 51

simulation approaches, as shown when applied to the Critical Assessment Metagenome 52

Interpretation (CAMI) datasets. We show that using ResMiCo to filter putative 53

genomes reduces the number of misassembled contigs by a factor of four. We also apply 54

ResMiCo to a large collection gut metagenomes from published studies and show that 55

4.7% ± 4.2 (s.d.) of contigs per metagenome are misassembled. Lastly, we show that 56

ResMiCo can be used to optimize metagenome assembler parameters for accuracy 57

without the need for simulated or mock-community metagenome datasets. 58

Materials and methods 59

Simulated data 60

We used synthetic datasets for initial model training and testing. The data simulation 61

methodology, depicted in Fig 1, builds on, and significantly expands on our previous 62

work [18]. Reference bacterial and archaeal genomes were selected from Release 202 of 63

the Genome Taxonomy Database (GTDB) [22]. Metagenomes were simulated from 64

publicly available reference genomes via MGSIM 65

(https://github.com/nick-youngblut/MGSIM). Simulation parameters varied in all 66

combinations of i) community richness, ii) community abundance distribution, iii) 67

reference genomes selected from the total pool, iv) read length, v) insert size 68

distribution, vi) sequencer error profile, vii) sequencing depth, and viii) metagenome 69

assembler (Table 1). The abundance distribution of each community was modeled as a 70

log-normal distribution. We varied parameter σ to produce differing levels of evenness 71

of relative abundances. Community richness was altered by random sub-sampling from 72

the pool of reference genomes available in the training or test split. The ART [23] read 73

simulator was used to generate paired-end Illumina reads of length 100 or 150 using 74

either the default ”Illumina HiSeq 2500” error profile or the ”HiSeq2500L150R1/2” 75

error profile used in CAMISIM [24]. Two paired-end read insert size distributions were 76

simulated via the ART parameter settings: ”–art-mflen 270 –art-sdev 50” and 77

”–art-mflen 350 –art-sdev 75”. We included multiple simulation replicates, in which the 78

community and read simulation parameters were held constant, but each replicate 79

differed via randomization of the genome sub-sampling within each simulation. The 80

reads from each community were assembled independently with metaSPAdes [3] and 81

MEGAHIT [4]. 82

MetaQUAST [15] was used to identify truly misassembled contigs based on mapping 83

all contigs to the reference genomes used for the simulations. The 84

MetaQUAST-identified contig misassembly labels were used as ground truth. We also 85

extracted MetaQUAST-identified breakpoint positions in the misassembled contigs. 86

For initial model training and testing, we utilized a pool of 18,000 reference genomes 87

selected from Release 202 of the Genome Taxonomy Database (GTDB). The pool was 88

split at the family taxonomic level so that all genomes in the test dataset belonged to 89

families not present in the training dataset. The resulting split was even, with 9000 90

genomes used for both training and testing. To reduce bias toward particular species, at 91
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Fig 1. The ResMiCo simulation and training pipeline. a. Select reference genomes from the Genome Taxonomy
Database (GTDB) at various abundances; b. Simulate reads for the selected genomes using ART-Illumina; c. Assemble reads
into contigs using MEGAHIT and metaSPAdes; d. Align reads back to the assembled contigs using Bowtie2, then extract
features such as coverage, number of single-nucleotide variants (SNVs), mean alignment score, etc., for each contig using the
given alignments; e. Compute labels for each contig by aligning against the reference genomes using MetaQUAST; f. For
each contig, select a random section (that contains a breakpoint if the contig is misassembled), pad to the network’s input
length if necessary, and feed the data into the ResMiCo model. Steps d. and e. are independent and can be parallelized.

Parameter Values
Community richness 50, 1000, 2000, 3000 genomes
Genome abundance Lognormal with µ = 10 and σ ∈ {0.5, 1, 2}
Replicates 3 random selections of reference genomes
Read length 100, 150 bps
Insert size mean=270 & sd=50, mean=350 & sd=75
Error profile HiSeq 2500, HiSeq 2500 L150R1/2 [24]
Sequencing depth 0.5m, 2m, 8m, 12m, 20m
Assembler MEGAHIT, MetaSPAdes

Table 1. Parameter values used in the simulation pipeline. The training
dataset n9k-train was generated using all 1440 parameter combinations for the first
insert size: mean=270, sd=50. For the second insert size (mean=350, sd=75), 3
replicates for the ”HiSeq 2500 L150R1/2” error profile and one replicate for the ”HiSeq
2500 error” profile were generated (960 parameter combinations). The test dataset
n9k-novel contains one simulation replicate with the ”HiSeq 2500” error profile, and
using the first (mean=270, sd=50) insert size (240 parameter combinations).

most 50 genomes per species were included in the reference genome pool, with genomes 92

selected at random. The pool was also filtered by CheckM-estimated completeness 93

(≥ 90%) and contamination (≤ 5%). Other filtering criteria included: i) only ”high” 94

MIMAG quality, ii) no single-cell genome assemblies, iii) ≤ 500 contigs, iv) a genome 95

size of ≤ 15 mbp, and v) a mean contig length of ≥ 10 kbp. We randomly subsampled 96

reads mapped to each contig to a maximum mean contig coverage of 20. At this 97

coverage level, assemblies of reasonable quality can be produced, and subsampling helps 98

prevent out-of-distribution issues when applying ResMiCo to datasets with substantially 99

higher sequencing depth than in our training dataset. 100

To create features for model training and testing, we mapped reads to the contigs 101

from the corresponding synthetic metagenome via Bowtie2 [25], and the resulting 102

alignment data was used to generate per contig position features, as listed in Table S1. 103

We refer to the training dataset as n9k-train and to the test dataset, which consists 104
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of genomes novel at a family taxonomic level, as n9k-novel. All 2,400 combinations of 105

simulation parameters were used to generate the training set. The test set was generated 106

using the subset of parameters and one replicate to save computational time (Table 1). 107

n9k-train n9k-novel CAMI Gut CAMI Skin CAMI Oral

Contigs 41.6M 6.8M 0.44M 0.32M .41M
Bases 123B 19.7B 1.5B 890M 1.5B
Average Coverage 12.8 10.2 16.9 15.7 16.3
Misassemblies 3.04% 4.0% 1.2% 1.72% 1.74%
Median Contig length 1513 1510 1473 1394 1455

Table 2. A summary of the five synthetic datasets used for training and evaluating ResMiCo.
The n9k-train dataset was used for training and validation, while all other datasets were used for testing.

CAMI simulated metagenomes 108

To benchmark ResMiCo’s performance in a new setting, we downloaded the paired-end 109

reads of the Critical Assessment of Metagenome Interpretation (CAMI) human skin, 110

oral, and gut assembly challenges [26]. As with the n9k-train dataset, we assembled the 111

reads via metaSPAdes and MEGAHIT, and identified true misassemblies via 112

MetaQUAST based on the reference genomes in each of the three datasets, then 113

compared the results predicted by ResMiCo with the MetaQUAST output. As shown in 114

Table 2, the number of misassembled contigs in the CAMI datasets is ∼50% lower, 115

while coverage is ∼50% higher relative to the n9k-train dataset. The breakpoint 116

locations for misassembled contigs follow a nearly identical distribution for all datasets, 117

with more breakpoints clustered towards the ends (Fig S1). 118

Published, real-world metagenomes 119

We evaluated ResMiCo on three published metagenome datasets: UHGG [11], 120

TwinsUK [27], and Animal-gut [28]. UHGG consisted of randomly selected 121

metagenomes associated with the UHGG MAG collection. The following filtering 122

criteria were applied prior to metagenome selection: i) ≥ 5e6 and ≤ 80e6 reads, ii) ≥ 10 123

and ≤ 300 MAGs associated with the metagenome in the UHGG, iii) maximum read 124

lengths of ≤ 150bp, and iv) ≥ 10 samples in the study. TwinsUK consisted of human 125

gut metagenomes from adults in the TwinsUK cohort [27], while the Animal-gut 126

comprised gut metagenomes from a broad taxonomic diversity of vertebrates [28]. 127

Metagenome read data processing was done as described in Youngblut and 128

colleagues [28]. Briefly, reads were validated with fqtools [29]. Adapters were trimmed 129

with Skewer [30]. The ”bbduk” command from bbtools 130

(https://sourceforge.net/projects/bbmap/) was used to trim and filter reads 131

based on Phred scores. The ”bbmap” command from bbtools was used to filter reads 132

mapping to the hg19 human genome assembly. Read quality reports for each step of the 133

pipeline were generated and visualised with FastQC and MultiQC, respectively 134

(https://www.bioinformatics.babraham.ac.uk/, [31]). Metagenomes were 135

assembled via metaSPAdes with default parameters, and contigs < 1000bp were 136

removed. Read mapping and ResMiCo feature generation were conducted as done for 137

the simulation datasets. 138

Data preprocessing 139

Count features were normalized by coverage (the number of reads mapped to the 140

position) such that they are in the zero to one range. For numerical features, we 141
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pre-computed mean and standard deviations using all contigs in the n9k-train dataset 142

and saved these values. For all datasetes, we standardized numerical features to set the 143

mean to zero and the variance to one using values computed on the training set. 144

Missing values were replaced by zero (the new mean). We summarize the preprocessing 145

applied to each feature in Table S1. 146

Since we observed that ResMiCo does not generalize well to insert size distributions 147

substantially deviating from the training dataset (Table S5), we excluded metagenomes 148

for which the 0.06 and 0.94 quantiles of the mean insert size distribution lay outside the 149

0.05 and 0.95 quantiles of the mean insert size distribution of the n9k-train dataset, 150

which are equal to 178 and 372, respectively. 151

Model and training 152

Architecture 153

The ResMiCo neural network architecture is shown in Fig 2. It belongs to a class of 154

deep convolutional residual neural networks. The main building unit, depicted at the 155

bottom of the figure, is the residual block, consisting of two 156

batch-normalized-convolutions [32] with a ReLu activation. The input of the residual 157

block is connected with the output by simple element-wise addition [20]. Since 158

convolutions are not padded, the last 2 ∗ (K − 1) positions in the residual input, where 159

K is the convolution kernel size, are cut off to match the output size. When the residual 160

block is downsampling the data (by using a stride of S = 2 in the first convolution), the 161

residual input is downsampled with a K = 1 convolution of an identical stride. 162

Residual blocks with the same number of filters and identical output shapes are 163

grouped into residual groups. ResMiCo has 4 residual groups, with the center groups 164

consisting of 5 residual blocks each, while the outside groups contain 2 residual blocks. 165

Each of the last three residual groups starts with a convolution that doubles the number 166

of filters and halves the input size using a stride S = 2. All layers use a ReLU 167

activation, except for the last fully connected layer, which uses a sigmoid activation. 168

The output of the convolutional layers is summarized along the spatial axis via global 169

average pooling, resulting in an output shape that depends only on the number of filters 170

in the last convolutional layer (128 in our case) rather than on the contig length, thus 171

allowing ResMiCo to handle contigs of variable length. Contigs in a batch are padded 172

to the longest length, and the effects of padding are neutralized by creating a mask that 173

is fed to the global average pooling layer. The resulting 128 features of the global 174

average pooling are fed into the final two layers: a fully connected layer with 50 neurons 175

and a one-neuron output layer with a sigmoid activation function. 176

Training 177

The model was trained on the n9k-train training dataset for 60 epochs. One epoch is 178

one pass of the entire training dataset through the algorithm. All misassembled contigs 179

were used as positive training examples. In contrast, we randomly selected a 10% subset 180

at every training epoch for the over-represented class of correctly assembled contigs, 181

thus artificially increasing the positive sample rate to 23.6%. This helped to balance the 182

dataset and reduce the computational load during training. For contigs shorter than 183

20,000 base-pairs, the entire contig is selected and zero-padded to the maximum batch 184

length. For misassembled contigs longer than 20,000 base-pairs, a random 20,000 185

base-pair interval around each breakpoint (as identified by MetaQUAST) was selected. 186

For long contigs with no misassemblies, a random 20,000 base-pair interval is selected. 187

During model training, the binary cross-entropy loss between the target and 188

predicted output was minimized by an Adam optimizer [33]. We used a batch size of 189
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Fig 2. ResMiCo architecture. The input is first passed through multiple
convolutional layers; then the convolved result is masked to eliminate the effect of
padding and passed through an average pooling layer, followed by two fully connected
layers of sizes 128× 50 and 50× 1. The convolutional part consists of a simple
convolution, followed by four residual groups (RG) with 2, 5, 5, and 2 residual blocks,
respectively. The bottom of the figure depicts the structure of a residual block with a
given number of features (F), kernel size (K), and stride (S). The first convolution in
RG2, RG3, and RG4 halves the input size (using a stride of S=2) and doubles the
number of filters, gradually from 16 to 128. B denotes the batch size, and M represents
the maximum contig length. Overall, ResMiCo has 562,573 parameters, of which
559,441 are trainable.

200 and an initial learning rate of 0.0001 with exponential decay of 0.8 when plateauing 190

at evaluation. Gradients were clipped to a norm of 1 and a value of 0.5. 191

Model selection 192

We used 10% of the n9k-train dataset as a validation set for model selection (n9k-valid). 193

AUPRC on the validation set was computed every second epoch; if the score improved, 194

a corresponding model was saved. The ResMiCo model described in this section 195

achieved the highest AUPRC on the n9k-valid dataset at epoch 44. The list of 196

optimized hyperparameters and the attempted values are provided in Table S2. 197

Feature selection 198

Since ResMiCo uses a larger number of features than both DeepMAsED and metaMIC, 199

it is important to understand the amount that each feature, particularly features unique 200

to ResMiCo, contributes to model predictions. Borrowed from game theory, Shapley 201

values provide a principled way of explaining the predictions of machine learning models. 202

We approximated the Shapley values using the Deep Shap algorithm [34], a refined 203

version of DeepLIFT [35]. 204
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In order to be able to compute Deep Shap coefficients, we had to make some 205

adjustments to ResMiCo’s architecture: the input size was fixed, the padding was not 206

masked, and the global average pooling layer was replaced by local pooling with a 207

window covering the whole length. Deep Shap requires as input background samples as 208

well as samples for which the predictions will be explained. We randomly sampled 200 209

contigs for the background and 200 contigs for explanations (100 correctly assembled 210

and 100 misassembled) from the n9k-novel dataset. 211

Figure 3 shows features ranked by their importance. For comparison, we also marked 212

features present in the ResMiCo pipeline that were used by metaMIC and DeepMAsED. 213

Feature names are explained in Table S1. The top 14 features were selected as input to 214

the ResMiCo model. We included at least one feature of each kind: mapping quality, 215

alignment score, etc. Limiting the number of features resulted in significantly reduced 216

training time. 217

Fig 3. Feature ranked by their importance. The lighter color marks features
used by the ResMiCo model. We denote features used by DeepMAsED and metaMIC
with a star outline and filled star, respectively. mapq and al score are mapping quality
and alignment score, as defined by Bowtie2. num snp is the number of SNVs among
aligned reads relative to the reference. num query [ATGC] is the base composition of
aligned reads at the target position. num orphan is the number of aligned reads in
which only one of the pairs aligns properly. num proper is the number of read pairs that
align properly, as defined by Bowtie2. num proper snp is properly aligned reads with a
SNV relative to the reference at the target position. ref base is the reference base
[ATGC] at the target position.

Predictions 218

To predict the misassembly probability for contigs longer than 20,000 base pairs, we 219

split the contig into chunks of 20,000 base pairs, with a stride (overlap) of 500 bases. 220

The prediction for the contig was obtained by selecting the maximum score across all 221

chunks. For contigs shorter than 20,000 base pairs, the entire contig is given as input. 222

Comparison to the state of the art 223

We analyzed the performance of our proposed model in relation to the following existing 224

methods: 225
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• metaMIC [36] – applied with default parameters, except the minimum contig 226

length was reduced from 5 kbp to 1 kbp, in order to test on the same data as the 227

other methods; 228

• DeepMAsED [18] – we followed the feature generation scheme and the trained 229

model provided by the authors; 230

• ALE [37] – we aggregated four positional sub-scores that ALE outputs (depth, 231

place, insert, and k-mer log-likelihoods) with the same thresholds defined in [18]. 232

The contig misassembly probability is computed as the number of positions with 233

the sub-score below the threshold divided by contig length; 234

• Random – we assigned a random misassembly probability to each contig. This 235

results in a horizontal line on a precision-recall curve plot with a precision equal 236

to the prevalence of misassemblies in the dataset. 237

Since all datasets suffer from a class imbalance in the detriment of positive samples 238

(misassembled contigs, Table 2), we selected the area under the precision-recall curve 239

(AUPRC) as a metric to measure performance, rather than the area under the receiver 240

operator curve (AUROC) [38]. However, AUPRC is not invariant to the prevalence of 241

positive samples, so we used AUROC to compare the model’s performance across 242

datasets with different percentages of positive samples. 243

Code and data availability 244

ResMiCo is publicly available at (https://github.com/leylabmpi/ResMiCo). The 245

computationally intensive feature extraction library was written in C++, and the data 246

simulation pipeline was implemented using Snakemake [39]. The deep learning model 247

was built using Tensorflow [40]. 248

The n9k-train and n9k-novel datasets are publicly available at 249

http://ftp.tue.mpg.de/ebio/projects/ResMiCo/. 250

Results 251

ResMiCo outperforms existing models and is robust to 252

metagenome novelty 253

We first tested all models against the n9k-novel dataset, which consisted of family-level 254

taxonomically novel genomes relative to any in the training dataset. ResMiCo 255

outperformed DeepMAsED, ALE, and metaMIC by a large margin, with an AUPRC of 256

0.76 versus 0.25 for DeepMAsED, the second-best performing model (Fig 4a.). Note 257

that DeepMAsED’s AUPRC score dropped from 0.57 (reported in [18]) to 0.25 due to a 258

higher variability within the n9k-novel test set. Importantly, ResMiCo’s AUPRC did 259

not substantially differ between the training validation (0.73) and the n9k-novel dataset 260

(0.76), thereby demonstrating that the model is robust to taxonomic novelty. 261

ResMiCo’s AUPRC score typically varied from 0.6 to 0.8 across the various simulation 262

parameter combinations (Fig S6). The most challenging settings for ResMiCo were a 263

low community richness and a low sequencing depth. We also found that the contig 264

length distribution explained much of the variability in ResMiCo model performance. 265

For the simulations with a median contig length longer than 2000bp, the AUPRC was 266

between 0.4 and 0.6 (Fig S5). 267

We next evaluated ResMiCo on the CAMI gut, oral, and skin metagenome datasets, 268

which are commonly used simulation datasets for the evaluation metagenomics analysis 269
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tools. The CAMI datasets differed substantially from n9k-train and n9k-novel in 270

regards to coverage (sequencing depth) and class imbalance (percent misassemblies) 271

(Table 2). Moreover, reference genomes used for the n9k-train and n9k-novel datasets 272

were selected from the entire GTDB, while the CAMI datasets consisted of 273

biome-specific reference genomes [24]. Regardless of these differences, ResMiCo’s 274

performance remained largely unaffected, and the model still clearly outperformed all 275

competitors (Fig 4b.–d.). Given that the 5 synthetic datasets differ substantially in 276

true positive rates (Table 2), we computed the AUROC score, which is unaffected by 277

such differences. Fig 4e. shows that the AUROC remains relatively constant across the 278

n9k-train validation, n9k-novel, and the CAMI datasets. 279
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Fig 4. ResMiCo performance evaluation. Precision-recall curves and the
corresponding AUPRC scores for ResMiCo and four baseline methods (metaMIC,
DeepMAsED, ALE, Random) applied on the a. nk9-novel, b. CAMI gut, c. CAMI
oral, and d. CAMI skin datasets. e. Receiver operating characteristic curve and the
corresponding AUROC scores for ResMiCo applied on five datasets: n9k-train
(validation set only), nk9-novel, and three CAMI datasets

Improvement of assembly quality after filtering 280

ResMiCo-identified misassemblies 281

A primary function of ResMiCo is to identify misassembled contigs so that they can be 282

removed from the assembly. To illustrate the effects of such filtering, we discarded 283

contigs in n9k-novel with a ResMiCo score of > 0.8, which corresponds to a recall and 284

precision of 0.72 and 0.65, respectively. This filtering resulted in a reduction of the true 285

error rate from 4% to 1% while keeping the contiguity metrics virtually unmodified 286

(Table 3). 287
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Dataset True error rate N contigs N50 Mean length Median length

Original 0.040 6779977 3919 2911 1510
ResMiCo 0.012 6478409 3886 2904 1521

Table 3. Low-quality contig filtering. Statistics before and after filtering
low-quality contigs with the ResMiCo model applied on the n9k-novel test set. The
ResMiCo score threshold was set to > 0.8.

Assembly optimization based on ResMiCo-identified error rates 288

Since ResMiCo generates a score for each contig, we could use the number of contigs 289

with a score above a certain threshold (we used > 0.8 in our experiments) to estimate 290

the misassembly rate of a given contig set. The estimated misassembly rate could then 291

be used to optimize metagenome assembler parameters (e.g., k-mer lengths) for real 292

metagenomes, which lack ground-truth data. Assembler hyperparameters are generally 293

optimized simply based on total continuity (e.g., N50) or possibly via CheckM after 294

binning contigs into MAGs. However, such methods do not directly assess contig 295

assembly accuracy. In order to use ResMiCo for this application, model performance 296

must be robust to assembler hyperparameter settings outside of the training 297

distribution. We tested ResMiCo’s performance as an oracle for assembler performance 298

by simulating datasets in a similar fashion as n9k-novel, but with 6 different k-mer 299

length hyperparameter settings for both MEGAHIT and metaSPAdes (see Methods). 300

For each of the 6 k-mer length combinations, we generated akin to n9k-novel but 301

utilized only 2 community richness (50 and 3000) and 2 sequencing depth (8m and 20m) 302

settings. The rest of the simulation parameters were fixed: genome abundance 303

distribution with σ = 1, read lengths of 150 bps, insert size distribution of mean=270 & 304

sd=50, and the ”HiSeq 2500 error” error profile. The percentage of actual misassembled 305

contigs differed from < 1% to 30% depending on the assembler and the chosen k-mer set 306

(Fig 5). We then compared the percentage of misassembled contigs with the percentage 307

estimated by ResMiCo for each of the four community richness/sequencing depth 308

combinations (6 k-mer sets per combination). 309

ResMiCo was able to accurately rank the assemblies for all four simulation 310

parameter combinations, achieving a Pearson correlation of 0.9. (Fig 5 a.). In contrast, 311

the N50 value does not correlate with the error rate and is a complementary measure of 312

assembly quality. (Fig 5 b.). Consequently, we propose that ResMiCo can be used to 313

rank assembler parameters for real-world metagenome data and identify parameters 314

leading to the lowest misassembly rate. 315

Latent space visualization 316

To get an intuition on how ResMiCo internally represents data, we studied the output 317

of the global average pooling layer. At that point, the input data is mapped into a 318

128-dimensional space. We used UMAP [41] with default parameters to project the 319

embeddings into a two-dimensional space. UMAP was fitted on the n9k-train, n9k-novel, 320

and CAMI-gut datasets. We used 10,000 randomly sampled contigs from each of the 321

three datasets. 322

The latent space visualization indicates that n9k-train has more variability (due to 323

the extensive set of parameters used in the simulations) than CAMI-gut, which is 324

concentrated in a small subspace, while misassembled contigs from both datasets are 325

generally clustered together (Fig 6a.,b.). Note that since ResMiCo has two fully 326

connected layers following the visualized global average pooling, the two classes are not 327

expected to be completely separable at this stage. Both community richness and 328

average contig coverage strongly partition the latent space (Fig 6c.,d.). 329
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Fig 5. Misassembly (error) rate produced by MEGAHIT and metaSPAdes assemblers with six different
k-mer sets. k-mer set names denote the k-mer lengths used for the assembly. a. ResMiCo-identified error rate (y-axis)
correlates with the true error rate. b. N50 size and the true error rate are orthogonal measures of the metagenome quality.
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Fig 6. Contig embeddings learned by ResMiCo, projected using UMAP.
The first row shows a. all contig embeddings and b. misassembled contig embeddings
for the n9k-train, the n9k-novel, and the CAMI. gut datasets. In the second row, contigs
from the n9k-train dataset are colored c. by the richness of the simulated community
they originated from and d. by their average coverage.

ResMiCo detects a 3-7% misassembly rate in real-world 330

metagenomes 331

We applied ResMiCo to published gut metagenome datasets from multiple studies in 332

order to assess the prevalence of misassembled contigs in publicly available metagenomic 333

data. We utilized three datasets: UHGG, TwinsUK, and Animal-gut. UHGG consisted 334

of a random subset of gut metagenomes associated with MAGs in the UHGG database, 335

while TwinsUK and Animal-gut consisted of gut metagenomes from westernized adults 336
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and a broad taxonomic diversity of vertebrates, respectively (see Methods). 337

ResMiCo detected an average of 3%, 3%, and 7% misassembled contigs across all 338

metagenome assemblies in the TwinsUK, and Animal-gut, and UHGG datasets, 339

respectively. Overall, we evaluated 4,955,309 contigs, of which 4% are misassembled 340

according to ResMiCo’s predictions (≥ 0.8). 341

At the per-metagenome level, ResMiCo detected 3.1%± 0.5, 4.9%± 6.5, and 342

7.9%± 4.8 (s.d.) missassembled contigs in the TwinsUK, and Animal-gut, and UHGG 343

datasets, respectively (Table S7). Averaged across all metagenomes, the misasssembly 344

rate was 4.7%± 4.2 (s.d.). The high variability among samples and datasets suggests 345

that sample-specific factors (e.g., community taxonomic complexity or variability among 346

NGS library preparations) can substantially influence misassembly rates. 347

Discussion 348

We addressed the problem of reference-free metagenome quality evaluation by 349

developing ResMiCo, a deep residual neural network that enables accurate 350

misassembled contig identification. ResMiCo provides an efficient data generation 351

pipeline (see Supplementary Methods), which transforms raw reads and contigs into 352

positional features that are utilized by a residual neural network to predict if a given 353

contig was misassembled. The ResMiCo model was trained and tested on datasets of 354

unprecedented size and complexity (n9k-train and n9k-novel contain 143 Gbps of 355

assembled contigs), which we have made freely available as a resource for further model 356

development and benchmarking (see Methods). These datasets can be expanded, or new 357

datasets can be generated with ResMiCo’s dataset simulation pipeline, which allows for 358

straightforward, efficient data generation on high-performance computing systems. 359

ResMiCo achieved a 0.76 AUPRC score on the taxonomically novel holdout test set 360

(n9k-novel), which is an exceptional improvement over the state of the art (Fig 4a.). 361

The robustness of ResMiCo to family-level taxonomic novelty clearly demonstrates that 362

it can be applied to metagenomes that include substantial taxonomic novelty, such as 363

gut microbiomes from poorly studied animal species [28]. 364

When tested on the CAMI gut, oral, and skin datasets, ResMiCo showed similarly 365

high performance and again substantially outperformed the state of the art (Fig 366

4b.-d.). These results show that ResMiCo can generalize to third-party, biome-specific 367

datasets, despite our use of a biome-agnostic training dataset consisting of genomes 368

randomly selected from the entire GTDB. 369

ResMiCo is primarily designed to increase the quality of existing assemblies, and we 370

demonstrated that filtering out contigs with high scores from the holdout test set 371

resulted in a fourfold decrease in the true error rate without a substantial decline in 372

contiguity (Table 3). 373

When applied to the real-world metagenome datasets, ResMiCo detected 4.7% ± 4.2 374

(s.d.) misassembled contigs per metagenome. This estimate is substantially higher than 375

the 1% misassembly rate previously estimated via DeepMAsED [18], which may be due 376

to differences in model accuracy and the increased number and variety of real-world 377

metagenomes used for our estimation. 378

We also show that ResMiCo can be applied to select assembler parameters 379

corresponding to the best assembly accuracy for a given unlabeled dataset (Fig 5). 380

Researchers can thus optimize assembler parameters for obtaining high accuracy on 381

their specific real-world metagenomes without relying on benchmarks from simulated 382

datasets [24]. 383

ResMiCo’s vastly improved performance relative to other reference-free misassembly 384

detection methods is likely due to three main factors. First, ResMiCo was trained on a 385

very large and varied dataset. Even after re-implementing the samtools pileup algorithm 386
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to gain a 10x speed improvement, generating the n9k-train dataset required nearly 387

20,000 CPU hours to produce all 2,400 simulation parameter combinations (Table 1), 388

resulting in 41.6M contigs that total 123 Gbps. In contrast, the DeepMAsED training 389

dataset is 80x smaller, while no such dataset information is available for metaMIC. The 390

UMAP projections of the contig embeddings for the n9k-train, the n9k-novel, and the 391

CAMI-gut datasets (Fig6a) show that ResMiCo’s training data comprises a substantial 392

portion of the input space. Second, ResMiCo was trained on a larger number of 393

carefully selected features; although ResMiCo uses only the top 14 features in Fig 3, we 394

generated and tested a total of 23 features (Table S1) before selecting the 14 best 395

performing ones. In comparison, DeepMAsED used 8 features for training, while 396

metaMIC used 4 types of features, and as we have shown, both models failed to identify 397

the features most relevant to misassembly detection. Third, introducing residual blocks, 398

combined with the larger dataset, allowed us to train a deeper convolutional model, 399

which has been shown to have better performance relative to traditional, shallower 400

CNNs [20]. Long range (up to 20,000 bp) signal from raw positional features is 401

transformed by the residual blocks, such that ResMiCo is able to internally detect a 402

breakpoint (Fig S2) and identify misassembled contigs based on the strength of this 403

signal. 404

While our extensive evaluations showed that ResMiCo is robust to many sources of 405

dataset novelty, we did find that the model is sensitive to the mean insert size 406

distribution (Table S5). Therefore, prior to evaluation, we removed all metagenomes 407

falling substantially outside of the n9k-train insert size distribution. While filtering by 408

insert size may lead to a biased selection of real-world metagenomes, Illumina 409

sequencing libraries often vary substantially in fragment length and subsequently insert 410

size distribution, even within the same sequencing run. Such variation can result from 411

inaccuracies in DNA quantification and reagent aliquoting. ResMiCo automatically 412

detects if the insert size distributions of the evaluated data differ substantially from 413

those during training and warns users that results may be less accurate. 414

Improving performance robustness across changing distributions, sometimes termed 415

out-of-distribution (o.o.d.) generalization [42–44], could be an interesting direction for 416

follow-up work. While deep learning has produced impressive results in a range of 417

domains, its reliance on independent and identically distributed (i.i.d.) training data 418

can be a problem [45–47]. Although a range of attempts exist to improve o.o.d. 419

generalization, empirical risk minimization still is the method of choice in 420

practice [48,49], especially when used with a dataset of maximal diversity, as done in 421

our study. 422

Besides improving o.o.d., there are some other areas for further improvement. First, 423

more research is needed to evaluate the quality of contigs assembled from error-prone 424

long reads (e.g., Oxford Nanopore). Second, it is worth investigating if ResMiCo can be 425

adapted to indicate the location of breakpoints in misassembled contigs. Third, rather 426

than using binary labels, ResMiCo could be trained on misassembly type (e.g., inversion 427

or translocation) to provide more detailed predictions. 428

In summary, ResMiCo is a major advancement in the challenge of reference-free 429

metagenome quality assessment. Existing methods addressing this problem have not 430

been widely used, likely due to concerns regarding whether such approaches can 431

generalize to real-world datasets. Our extensive testing shows that ResMiCo generalizes 432

well across a large parameter space that includes taxonomy, community abundances, 433

and many sequencing parameters. Wide adoption of ResMiCo could substantially 434

improve metagenome assembly quality for individual studies and databases, which is 435

critical for obtaining accurate biological insights from metagenomic data. 436
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