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Abstract  

A fundamental unresolved problem in neuroscience is how the brain associates in memory events 

that are separated in time. Here we propose that reactivation-induced synaptic plasticity can solve 

this problem. Previously, we reported that the reinforcement signal dopamine converts 

hippocampal spike timing-dependent depression into potentiation during continued synaptic 

activity (Brzosko et al., 2015). Here, we report that postsynaptic bursts in the presence of 

dopamine produces input-specific LTP in hippocampal synapses 10 minutes after they were  

primed with coincident pre- and postsynaptic activity. The priming activity sets an NMDAR-

dependent silent eligibility trace which, through the cAMP-PKA cascade, is rapidly converted into 

protein synthesis-dependent synaptic potentiation, mediated by a signaling pathway distinct from 

that of conventional LTP. Incorporated into a computational model, this synaptic learning rule 

adds specificity to reinforcement learning by controlling memory allocation and enabling both 

‘instructive’ and ‘supervised’ reinforcement learning. We predicted that this mechanism would 

make reactivated neurons activate more strongly and carry more spatial information than non-

reactivated cells, which was confirmed in freely moving mice performing a reward-based 

navigation task.  
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Introduction 

For an animal to successfully adjust its behavior to changing environmental demands, it needs to learn to 

associate a sequence of events or actions to a subsequent outcome, for example a reward, which may be 

experienced minutes or hours later. How this is achieved in the brain remains unknown. Even the longest 

time-scale synaptic plasticity event reported so far, behavioral timescale synaptic plasticity (BTSP; Bittner 

et al., 2017; Milstein et al., 2021), cannot bridge this temporal gap. In machine learning, reinforcement 

learning algorithms solve this problem by storing a temporary record of the occurrence of an event, known 

as an eligibility trace, which can later undergo learning changes once the outcome is known (Sutton and 

Barto, 2018). In biology, dopamine (DA) is thought to represent such a reinforcement learning signal, 

converting a temporary eligibility trace into a lasting synaptic change (Ljungberg et al., 1992; Schultz et al., 

1997; Fremaux and Gerstner, 2016; Gerstner et al., 2018). However, the use of a brief scalar signal to 

alter the relevant synaptic weights raises two fundamental problems, firstly, that of time scales, and 

secondly, that of specificity (or credit assignment). To our knowledge, the longest delay reported between 

a behavioral event and phasic dopamine to successfully reinforce a behavior is a few seconds at most. 

Yet, in behavioral learning, the time delay between cues and reward may be several minutes or even 

hours. Moreover, with a longer time delay, the relation between the preceding behavior and the outcome 

is less clear, questioning what events or actions before the reward should be associated with the outcome. 

One possible mechanism that could link previous activity with a specific outcome is neuronal reactivation, 

or replay activity, which in the hippocampus is enhanced by reward (Singer and Frank, 2009; Ambrose et 

al., 2016).  

The rodent hippocampus is important for spatial memories. Spatial representations are built during 

exploration of an environment, when the hippocampus shows theta activity, and later reactivated or 

replayed both during sleep (Wilson and McNaughton, 1994; Nadasdy et al., 1999; Lee and Wilson, 2002) 

and in the awake state (Kudrimoto et al., 1999; Foster and Wilson, 2006; Csicsvari et al., 2007; Diba and 

Buzsaki, 2007). Reactivation occurs during sharp wave ripples (SWRs), when neurons typically fire action 

potentials in brief bursts (Buzsaki et al., 1992; Diba and Buzsaki, 2007). It has been reported that 

stimulation of dopaminergic input promotes reactivation of hippocampal cell assemblies and memory 

persistence (McNamara et al., 2014).  
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We investigated the effect of action potential bursts on synaptic plasticity in individual postsynaptic 

hippocampal CA1 neurons (SWR-associated ‘reactivation’) during dopaminergic modulation (‘reward 

signal’) after they had undergone a Hebbian pairing protocol (prior exploration-based synaptic ‘priming’). 

We found that the pairing protocol set an NMDA receptor-dependent silent eligibility trace, which could be 

converted several minutes later by burst activity in the presence of DA into protein synthesis-dependent 

long-term potentiation (LTP) mediated by a signaling pathway distinct from that of conventional LTP. 

Using this synaptic learning rule in a computational model we show that reactivation-induced plasticity 

increases specificity to reinforcement learning, offering a new mechanism of credit assignment in neural 

networks.  To investigate how reactivation affects the functional properties of neurons in vivo, we used 

chronic calcium imaging of the dorsal CA1 region of the hippocampus in freely moving mice performing a 

reward-location learning task. We defined neuronal reactivation as activity during immobility at the reward-

location in neurons that were already previously active during the reward approach. Neurons that 

reactivated after finding the reward had increased calcium activity and place map peaks compared to non-

reactivated neurons, suggestive of changes in synaptic weights in reactivated neurons.   

 

Results 

Reactivation during dopaminergic modulation induces LTP   

To investigate the effect of burst reactivation of individual postsynaptic CA1 cells during dopaminergic 

modulation, we monitored the synaptic weights of afferent synapses that had previously undergone a 

spike timing-dependent synaptic priming protocol. For this we used whole-cell recording of CA1 pyramidal 

neurons in mouse hippocampal slices (Figure 1A). To be able to distinguish between conventional LTP 

and reactivation-induced LTP, we used a priming protocol that induces synaptic depression (Andrade-

Talavera et al., 2016). Single postsynaptic action potentials followed by presynaptic input (post-before-pre 

protocol, Δt= -20 ms) led to input-specific synaptic depression (t-LTD; 61% ± 11% vs 100%, t(9) = 3.7, p = 

0.005, n = 10; Figure 1B,F). Application of DA alone, without resuming synaptic stimulation after this 

pairing protocol, did not affect the depression (53% ± 7% vs 100%, t(5) = 7.0, p = 0.0009, n = 6; Figure 

1C,F blue trace). Strikingly, postsynaptic action potential bursts (5-6 APs) in the presence of DA, 10 

minutes after the pairing protocol, triggered an immediate induction of synaptic potentiation (139% ± 
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13.6% vs 100%, t(9) = 2.8, p = 0.0199, n = 10; Figure 1D,F red trace). Burst stimulation alone, in the 

absence of DA, did not prevent synaptic depression (73 ± 10% vs 100%, t(7) = 2.7, p = 0.0321, n = 8; 

Figure 1E,F black trace). This result suggests that the pairing protocol sets an eligibility trace allowing 

activated synapses to be selectively altered minutes later by reactivation of the postsynaptic neuron in the 

presence of DA. To our knowledge, these are the longest-lasting synaptic eligibility traces reported in the 

brain.  

We next investigated the requirements for setting the eligibility trace. First, we found that synaptic 

potentiation was indeed not observed without prior spike pairing (93% ± 8% vs 100%, t(6) = 0.84, p = 

0.43, n = 7; Figure 2A,C). Induction of hippocampal t-LTD requires metabotropic glutamate receptors 

(mGluRs; Andrade-Talavera et al., 2016). To investigate whether LTD or mGluR signaling is required for 

burst-induced potentiation, we applied the mGluR antagonist MPEP throughout the recording. This 

blocked t-LTD (94% ± 6% vs 100%, t(6) = 0.95, p = 0.38, n = 7; Figure 2B,C blue trace; vs control t-LTD 

69% ± 7%, n = 7; t(11.5) = 2.67, p = 0.02; Figure 2B,C black trace) but burst-induced potentiation was 

intact (132% ± 9% vs 100%, t(6) = 3.38, p = 0.015, n = 7 ; Figure 2B,C red trace), suggesting that setting 

the eligibility trace by Hebbian pairing is distinct from the signaling mechanism that mediates t-LTD.   

Many forms of hippocampal plasticity require NMDA receptors (NMDARs; Shipton and Paulsen, 2014). 

We therefore asked if activation of NMDARs during the pairing protocol is required for the synaptic 

eligibility trace to be set. We found that application of the NMDAR antagonist D-AP5 during pairing (Δt = -

20 ms) abolished both t-LTD and the subsequent burst-induced potentiation, resulting in no change of 

synaptic weights (100% ± 11% vs 100%, t(5) = 0.006, p = 0.96, n=6; Figure 2D,F). We then investigated 

whether specifically postsynaptic NMDARs are required for the eligibility trace. Loading the postsynaptic 

cell with the NMDAR channel blocker MK801 through the recording pipette did not affect t-LTD (61% ± 7% 

vs 100%, t(5) = 4.77, p = 0.005, n = 7; Figure 2E,F) but completely abolished burst-induced potentiation, 

leaving synaptic depression instead (61% ±  10% vs 100%, t(6) = 3.85, p = 0.0084, n = 6; Figure 2E,F). 

These results show a double dissociation of mGluR and non-postsynaptic NMDAR signaling mediating t-

LTD, and postsynaptic NMDARs setting an eligibility trace for reactivation-induced potentiation.   

We next investigated the mechanism that induces synaptic potentiation during burst stimulation. It was 

previously shown that activation of NMDARs after pairing is necessary to induce DA-dependent 

potentiation with subthreshold synaptic stimulation (Brzosko et al., 2015). However, the NMDAR 
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antagonist D-AP5, applied after the pairing protocol but before burst stimulation, did not affect burst-

induced potentiation (127% ± 9%, n = 6; t(5) = 2.94, p = 0.032; Figure 3A,C). In contrast, voltage-gated 

calcium channels (VGCCs) are required as application of nimodipine, an L-type VGCC blocker, before the 

burst completely abolished LTP and left synaptic depression instead (72% ± 5% vs 100%, t(5) = 5.6, p = 

0.0026, n = 6; Figure 3B,C) indicating that, as in some other forms of synaptic potentiation (Grover and 

Teyler, 1990), Ca2+ entry through VGCCs is required for  burst reactivation to induce LTP. 

 

Signaling pathway mediating reactivation-induced LTP 

These findings suggest that coincident DA signaling and postsynaptic Ca2+ increase enable the 

potentiation of previously activated synapses. Searching for a potential coincidence detector for DA and 

intracellular Ca2+, we focused on adenylyl cyclases (ACs). They are activated by Gs-coupled dopamine 

D1/D5 receptor stimulation (Neve et al., 2004), and subtypes AC1 and AC8 are additionally Ca2+- 

stimulated (Wayman et al., 1994; Watson et al., 2000; Ferguson and Storm, 2004). To investigate whether 

AC subtypes AC1 and/or AC8 are involved in the form of plasticity described here, we tested the induction 

protocol in AC1/AC8 double knockout (AC DKO) mice (Wong et al., 1999). When postsynaptic burst 

stimulation in the presence of DA was applied after a negative pairing protocol (Δt = -20 ms; Figure 4Ai) in 

slices from AC DKO mice, the conversion to potentiation was absent and significantly different from DA- 

and burst-induced potentiation in slices from wildtype mice (AC DKO, 90% ± 8%, n=6 vs WT, 132% ± 

11%, n = 8; t(12) = 2.8, p = 0.015; Figure 4Bi), revealing a role for AC1/AC8 as coincidence detector for 

DA- and Ca2+-induced potentiation. In contrast, conventional, DA-independent t-LTP induced by a pre-

before-post pairing protocol (Δt = +10 ms; Figure 4Aii) showed significant potentiation comparable to that 

seen in wildtype mice (AC DKO, 150% ± 19% vs 100%, t(5) = 2.6, p = 0.049, n = 6; WT, 166% ± 16% vs 

100%, t(9) = 4.2, p = 0.0023, n = 10; Figure 4Bii).  

AC activation produces an increase in cyclic adenosine monophosphate (cAMP) which activates protein 

kinase A (PKA; Sassone-Corsi, 2012). To test whether this signaling cascade is required for reactivation-

induced potentiation, we loaded the postsynaptic cell with a PKA blocker, protein kinase inhibitor-(6-22)-

amide, through the recording pipette. In this configuration burst stimulation in the presence of DA after the 

post-before-pre protocol failed to induce synaptic potentiation (69% ± 13% vs 100%, t(5) = 2.4, p = 0.064, 
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n = 6; Figure 4Ci). In contrast, conventional pre-before-post pairing induced significant potentiation, albeit 

of somewhat reduced magnitude (137% ± 14% vs 100%, t(5) = 2.63, p = 0.0463, n = 6; Figure 4Cii).  

The requirement of DA and PKA for burst-induced potentiation is shared with late-phase LTP (Frey et al., 

1990; Frey et al., 1993), which requires protein synthesis (Frey et al., 1988). We therefore investigated 

whether the burst-induced rapid potentiation also requires protein synthesis by delivering the protein 

synthesis inhibitor anisomycin (AM) to the postsynaptic cell through the recording pipette. We found that, 

with anisomycin, burst stimulation in the presence of DA no longer induced conversion to potentiation but 

left a synaptic depression instead, which was significantly different from vehicle control (AM, 52% ± 11% 

vs 100%, t(5) = 4.5, p = 0.0062, n=6; Figure 5Ai, red trace; vs vehicle, 128% ±  17%, n = 5; t(9) = 3.9, p = 

0.0033; Figure 5Ai, green trace). In contrast, conventional t-LTP induced by pre-before-post pairing was 

unaffected by anisomycin (161% ± 20% vs 100%, t(5) = 3.0, p = 0.029, n = 6; Fig 5Aii, black trace). 

Furthermore, the post-before-pre pairing protocol induced t-LTD under these conditions (65% ± 6% vs 

100%, t(5) = 5.9, p = 0.0019, n = 6; Figure 5Aii, gray trace).  

 

Burst-dependent plasticity increases specificity in reinforcement learning models 

These experimental results show that, after a priming event, burst reactivation in the presence of DA 

induces a rapid form of protein synthesis-dependent LTP. This mechanism would ensure that only salient 

neuronal activity induces long-term changes in the network. We implemented this synaptic learning rule in 

a computational model to explore how such plasticity would control learning in a feedforward artificial 

neural network resembling hippocampal CA1. The learning rule states that the change in synaptic weights 

w between input and output neurons ( ) depends on an eligibility trace e (set during the initial priming 

event), the reinforcement signal (dopamine d), and reactivation (bursting activity b).  

 

  (1) 

 

The parameter αLTP is the learning rate. When there is no DA or bursts during the trial, the rule is updated 

to result in depression with a learning rate αLTD (see Methods). When using a standard reinforcement 

learning (RL) rule, which does not depend on burst reactivation, all previously activated synapses are 
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potentiated after receiving the DA signal (Figure 6A). Thus, the global neuromodulatory signal in traditional 

RL models provides limited information. In contrast, when applying the burst-dependent learning rule 

(equation 1) to the network, in which potentiation of primed synapses depends on both the reward signal 

and reactivation, a selected subset of inputs becomes potentiated, while inputs on non-reactivated 

neurons remain depressed (gray) (Figure 6B). During DA, information is allocated to primed synapses 

without the need of further coincident pre- and postsynaptic activity, but by reactivation of the postsynaptic 

neuron alone.  

The broader computational implications of this learning rule depend on the control of postsynaptic 

neuronal bursting activity. First, it is possible that neurons are recruited to a new memory trace based on 

their relative neuronal excitability before the training session as suggested by the memory allocation 

hypothesis (Yiu et al., 2014). According to this scenario, the most excitable cells would be the most likely 

to show action potential bursts during reactivation and therefore show synaptic potentiation. Alternatively, 

there is evidence for replay of prioritized experience (Igata et al., 2021), suggesting that cells encoding the 

most salient events preceding the reward would reactivate, and thereby determine which set of cells would 

show potentiation during reward (Figure 6B). Assuming prioritized experience reflects experience relevant 

to the reward, this could help credit assignment in the network. In addition, because of the exclusive 

requirement of postsynaptic activity for potentiation to occur, this mechanism offers another intriguing 

possibility, namely that other inputs active at the reward location carries additional information about the 

nature of the reward, e.g. food, or the reward location, such as the presence of specific landmarks, which 

could elicit postsynaptic bursting activity. Under this hypothesis neuronal reactivation would serve to 

associate a specific outcome to the priming event. When different instructive inputs induce bursting each 

in distinct subsets of neurons during reward, selective increases in synaptic weights would not only enable 

the encoding of reward, but also distinguish between different rewards (Figure 7A). Finally, we explore 

how the learning rule performs in a network supervised by feedback synaptic input to strengthen synapses 

onto specific neurons encoding reward-related features. By allowing feedback input to assign which part of 

the network is responding, the burst-dependent learning rule enables the network to selectively learn 

relevant information (Figure 7B), resulting in potentiation of only those synaptic weights (magenta and 

cyan in Figure 7Biii) when they are active temporally separated, while simultaneous activity leads to less 

potentiation in those inputs (Figure 7Biv). This provides a mechanism to associate temporally separated, 
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reward-relevant information in a neuronal network. The burst-dependent learning rule provides the 

network with a gating mechanism for memory allocation to an engram. Thus, burst-induced plasticity 

reduces the number of neurons encoding the reward location and other reward-related information, 

increasing the specificity of synaptic memory in a neuronal network. 

 

Increased calcium responses and spatial information in reactivated CA1 place cells  

Based on these results we predicted that, when an animal navigates toward a reward, the previously 

reactivated hippocampal neurons would be more strongly activated than non-reactivated neurons. To test 

this prediction, we monitored calcium transients in hippocampal excitatory cells with a head-mounted 

microscope (Ghosh et al., 2011) while mice foraged on a ‘cheeseboard’ maze with two reward locations, 

one new to the animal and one previously learnt (Figure 8A). We defined neuronal reactivation as activity 

during immobility at the reward-location in neurons active during the reward approach. Thus, cells that 

were active when mice moved towards the reward locations were classified as reactivated if the cells were 

active again during immobility during and after reward consumption (Foster and Wilson, 2006; O’Neill et 

al., 2006; Csicsvari et al., 2007) and non-reactivated if no further calcium event was detected after they 

had reached the reward. Of the cells that were active on the maze in a given trial, 46 ± 1% were 

reactivated at either or both of the reward locations. There was no detectable difference between the 

number of cells reactivating at the previously learnt or new reward location (Figure 8B, n = 444 trials).  

To compare the strength of neuronal activation, we measured area-under-curve (AUC) of calcium events 

occurring before and after the reactivation (Figure 8C). Cells with the largest activity peaks during 

locomotion were the most likely to reactivate at the reward location. Following their first reactivation, they 

had larger activity peaks than the previously non-reactivated cells (Figure 8D). Similarly, of the two cell 

groups with matching event rates in a given trial, the one whose cells were reactivated, had larger peaks 

in the trial following the first reactivation than the one whose cells did not reactivate (Figure 8-S1A). 

Typically, the calcium activity peak during locomotion increased in the trial immediately before the first 

reactivation and remained higher than the activity peaks in cells that were not reactivated throughout the 

day (Figure 8E,F), suggesting that reactivated cells have undergone a lasting change. Photobleaching 

could affect the magnitude of the detected calcium signal. As the reactivated cells were more active than 
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non-reactivated cells (Figure 8-S1A), we would expect them to be more affected by photobleaching, but 

nevertheless, the magnitude of their calcium transients remained higher than in the non-reactivated cells. 

60% of the reactivated cells (n = 971 from 7 mice) and 42% of the non-reactivated cells (n = 284 from 7 

mice) showed activity at specific locations and were classified as place cells (see Methods). Both place 

cells and non-place cells showed higher calcium peaks following reactivation and the increase in place 

cells was not significantly different from that in non-place cells (Figure 8-S1B,C).  

To investigate any learning-induced changes in place maps we assessed how the location-averaged 

activity in place cells changed with reactivation from the first to the second half of the trials (Figure 8-S2A). 

The place map peaks increased significantly more in the place cells that reactivated in trial 4 or later than 

in the non-reactivated place cells (Figure 8-S2B, mean place map peak ratio 1.4 ± 0.1 vs 1.1 ± 0.1, n = 

194 reactivated and n = 284 non-reactivated place cells; permutation test for repeated measures ANOVA: 

p = 0.009). The change in spatial information also significantly differed between the two groups (Figure 8-

S2C, mean change by 0.014 ± 0.015 vs -0.046 ± 0.014 a.u.; permutation test for repeated measures 

ANOVA: p = 0.005), but there was no significant difference in place map stability (Figure 8-S2D, mean 

correlation of 0.45 ± 0.02 vs 0.47 ± 0.02; permutation test for repeated measures ANOVA: p = 0.59). 

Reactivated place cells conveyed more spatial information in late trials compared to place cells that did 

not reactivate (0.14 ± 0.01 vs 0.10 ± 0.01 a.u.; permutation test for repeated measures ANOVA: p = 0.07). 

This learning-associated increase in calcium response and spatial information supports a reactivation-

dependent LTP-like mechanism in vivo (Cacucci et al., 2007). 

 

Discussion 

In summary, we investigated the effects of postsynaptic neuronal reactivation on hippocampal synaptic 

plasticity, reinforcement learning, and spatial coding. We found that postsynaptic burst reactivation of CA1 

pyramidal cells in the presence of the reward signal DA rapidly potentiates synapses that have previously 

undergone a spike timing-dependent priming protocol, providing direct evidence for reactivation-induced 

synaptic plasticity. A computational model showed how this learning rule increases specificity in 

reinforcement learning models and recording from freely moving mice showed that neurons that 
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reactivated at reward locations had enhanced CA1 place cell calcium signals and carried more spatial 

information than cells that did not reactivate. 

The results suggest that reactivation-induced plasticity is mediated by two sequential coincidence 

detectors: postsynaptic NMDARs detecting coincident pre- and postsynaptic activity and AC1/AC8 as 

coincidence detector of DA and reactivation-evoked Ca2+ increase. Although we used a Hebbian protocol, 

we cannot exclude the possibility that activation of postsynaptic NMDA receptors without postsynaptic 

action potentials would be sufficient to set the eligibility trace. The signaling cascade leading to synaptic 

potentiation involves postsynaptic PKA and protein synthesis, which are not required for conventional 

early LTP (Park et al., 2014). Traditionally, LTP has been classified into early- and late-phase LTP (Frey et 

al., 1988; 1990), and it has been reported that dopaminergic signaling is required for maintenance of late-

phase LTP (Frey et al., 1990; Huang and Kandel, 1995; Matthies et al., 1997). The DA-dependent form of 

plasticity we describe here shares properties with ‘late-phase’ LTP, including a role of postsynaptic action 

potentials during induction (Dudek and Fields, 2002) and a requirement of protein synthesis for expression 

(Frey et al., 1988; Huang and Kandel, 1995). However, it is remarkably fast, suggesting a dissociation 

between different signaling pathways, rather than different temporal phases of LTP. The mechanistic basis 

for the surprising involvement of protein synthesis in this rapidly induced form of plasticity remains to be 

investigated.  

Our experimental findings uncover a synaptic learning rule that could support a two-stage model of 

hippocampal memory formation (Buzsaki, 1989), in which eligibility traces are laid down during 

hippocampal theta activity, with subsequent postsynaptic burst reactivation during sharp wave-ripples 

inducing LTP at those synapses. Exploring possible computational implications of this synaptic learning 

rule, we first tested it with a neural network in which the most excitable cells are reactivated. The memory 

allocation hypothesis suggests that learning triggers a temporary increase in neuronal excitability, 

enabling the linking of individual memories acquired close in time (Silva et al., 2009; Cai et al., 2016; 

Sehgal et al., 2018). We found that our learning rule selectively strengthens the reactivated synapses, 

linking together the memory allocation hypothesis with burst reactivation-dependent plasticity. 

Interestingly, it was recently reported that DA released by LC cells projecting to dCA1 have a key 

permissive role in contextual memory linking (Chowdhury et al., 2021). Moreover, the rule could also 

accommodate a temporally discontiguous instructive learning signal or a specific supervisory feedback 
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signal. Thus, it is possible that DA serves as a scalar reward signal which combines with a vectorial 

representation of the reward identity which triggers the reactivation of a specific subset of neurons. Thus, 

it was suggested that the direct pathway from the entorhinal cortex could provide an instructive signal to 

generate accumulation of CA1 place cells at the reward location (Grienberger and Magee, 2021). An 

attractive possibility is that a downstream subset of neurons active during navigation serves as an 

instructive input onto upstream neurons during reward. This would be consistent with a dual role of DA as 

reinforcement signal and enhancer of reverse replay (Ambrose et al., 2016), establishing a predictive 

chain of potentiated synapses towards the rewarded outcome reminiscent of the successor representation 

(Dayan, 1993; Stachenfeld et al., 2017). It was suggested in a computational study that feedback 

regulation of synaptic plasticity by bursts in higher hierarchical circuits can coordinate lower-level 

connections (Payeur et al., 2021). Our results reveal a possible biological substrate to support such a 

mechanism and re-emphasize the importance of bursting activity for synaptic plasticity (Lisman, 1997; 

Pike et al., 1999).   

The hippocampus receives dopaminergic input from two main sources, the ventral tegmental area 

(Scatton et al., 1980; Gasbarri et al., 1994), signaling reward, and the locus coeruleus (Smith and Greene, 

2012; Kempadoo et al., 2016), thought to signal novelty (Takeuchi et al., 2016; Wagatsuma et al., 2018), 

but more recently implicated also in spatial reward learning (Kaufman et al., 2020). In a reward location 

learning task, we found that calcium signals during locomotion were higher in CA1 principal cells that 

reactivated at reward location. The signal increased in the trial preceding the first reactivation, following 

which the signal remained higher in all subsequent trials. Moreover, place cells that reactivated showed 

higher spatial information than non-reactivating place cells. The overall stability of calcium signals and 

spatial information is broadly consistent with earlier reports using one-photon imaging in freely moving 

mice (Ziv et al., 2013). Although it was recently reported in head-fixed mice that reactivation increases 

long-term stability of place cells that have fields distant from the reward after several days (Grosmark et 

al., 2021), we did not see a significant increase in place cell stability after a single reactivation of the cell at 

the reward location. Irrespectively, the difference in both calcium signal and spatial information in 

reactivating vs non-reactivating cells is suggestive of plasticity related to reactivation events. More work 

will be required to establish under what conditions the novel burst-induced potentiation mechanism is 

engaged during hippocampus-dependent learning and memory.   
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FIGURE LEGENDS  

Figure 1 Postsynaptic burst reactivation induces LTP in the presence of dopamine (DA). (A), Schematic of 

the experimental paradigm (top) and setup (bottom).    = Action potential bursts; Whole cell recording in 

CA1 stratum pyramidale; electrical stimulation electrodes in stratum radiatum. Plasticity was induced in 

one pathway (Paired pathway), a second pathway was used for stability control and for confirmation of 

input specificity (Control pathway). Normalized EPSP slopes were averaged and plotted as a function of 

time. (B), Post-before pre-pairing protocol leads to input-specific synaptic depression. Pairing protocol (Δt 

= -20 ms) induces t-LTD (black trace) and does not affect synaptic weights in control pathway (gray trace). 

(C), DA application after a post-before-pre pairing protocol (Δt = -20 ms) does not prevent t-LTD (+DA –

Burst, blue trace) and does not affect synaptic weights in control pathway (gray trace). (D), Application of 

DA together with action potential bursts of the postsynaptic cell (indicated by black arrow) induces 

synaptic potentiation after a post-before-pre pairing protocol (Δt = -20 ms) (+DA +Burst, red trace) and 

does not affect synaptic weights in control pathway (gray trace). (E), The same protocol, without 

application of DA, leads to synaptic depression (-DA +Burst, black trace) and does not affect synaptic 

weights in control pathway (gray trace). (F), Summary of results. All traces show an EPSP before (1) and 

40 minutes after pairing (2). Plots show averages of normalized EPSP slopes ± s.e.m.  

 

Figure 2 Setting of the eligibility trace is independent of LTD but requires postsynaptic NMDARs. (A), 

Application of DA and burst stimulation, but without pairing protocol, does not induce potentiation. (B), 

Post-before-pre pairing protocol (Δt = -20 ms) leads to synaptic depression (t-LTD) (black trace), which is 

blocked by MPEP (blue trace). MPEP does not block DA- and burst-induced potentiation (red trace). (C), 

Summary of results. (D), Application of AP5 during pairing blocks DA- and burst-induced potentiation. (E), 

Postsynaptic intracellular MK801 (iMK801) does not block t-LTD (blue trace) but blocks DA- and burst-

induced potentiation (red trace). (F), Summary of results. All traces show an EPSP before (1) and 40 

minutes after pairing (2). Plots show averages of normalized EPSP slopes ± s.e.m. 
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Figure 3 Voltage gated calcium channels mediate DA and reactivation-induced plasticity during burst 

stimulation. Normalized EPSP slopes were averaged and plotted as a function of time. (A), Application of 

AP5 after pairing does not prevent DA- and burst-induced potentiation. (B), Application of nimodipine 

during the burst prevents DA- and burst-induced potentiation leaving synaptic depression. (C), Summary 

of results. All traces show an EPSP before (1) and 40 minutes after pairing (2). Plots show averages of 

normalized EPSP slopes ± s.e.m. 

 

Figure 4 DA and reactivation-induced potentiation requires AC1/AC8 and PKA. Schematics show the 

difference between the 3 induction protocols. Normalized EPSP slopes were averaged and plotted as a 

function of time. (Ai), DA and burst stimulation after a post-before-pre pairing protocol (Δt = -20 ms) 

induces potentiation. (Aii), A pre-before-post pairing protocol induces t-LTP (Δt = +10 ms). (B), AC DKO 

mice do not show DA-dependent plasticity with postsynaptic bursts (Bi) but shows conventional t-LTP 

(Bii). Summary of results (Biii). (C), Postsynaptic application of protein kinase inhibitor-(6-22)-amide (PKI) 

prevents DA-dependent plasticity with postsynaptic bursts (Ci) but leaves conventional t-LTP intact (Cii). 

Summary of results (Ciii). All traces show an EPSP before (1) and 40 minutes after pairing (2). Plots show 

averages of normalized EPSP slopes ± s.e.m. 

 

Figure 5 DA and reactivation-induced plasticity requires protein synthesis. (A), Postsynaptic anisomycin 

prevents DA-dependent plasticity with postsynaptic burst stimulation (Ai), but leaves conventional t-LTD 

(Aii, gray trace) and t-LTP (Aii, black trace). (Aiii) Summary of results. All traces show an EPSP before (1) 

and 40 min after (2) pairing. Plots show averages of normalized EPSP slopes ± s.e.m.   

 

Figure 6 Dopamine-dependent burst-induced plasticity rule reduces the number of neurons in the network 

encoding a memory. (Ai-iii), Standard reinforcement learning rule shows reward associating inputs 1-10 

(blue), leads to potentiation of all synaptic weights (blue). (Bi-iii), Burst-dependent potentiation reduces the 
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number of neurons encoding the memory, leading to potentiation of synapses exclusively onto the most 

excitable burst-firing neurons 3, 6 (blue). 

 

Figure 7 Dopamine-dependent burst-induced plasticity rule enables reinforcement learning (RL) models to 

encode a specific salient event. (Ai-iii), Instructive RL rule allows two inputs that code for different 

information to store the memory in separate sets of neurons, thus encoding not only the reward, but also 

other reward-relevant features 3, 6 (magenta, cyan). (Bi-ii), A supervised network enables burst-eliciting 

feedback synaptic input to assign credit to select synapses in the network to encode a desired reward 

identity. (Biii) Time-dependent lateral inhibition at the output neurons supress non-relevant information. 

When only one of the inputs is active, the animal can learn two different memories over time in neurons 3, 

6 (magenta, cyan). (Biv) When both inputs are active at the same time they compete with each other, and 

neurons 3, 6 (magenta, cyan) are less potentiated. 

 

Figure 8 Cells reactivated at reward location have higher activity peaks than non-reactivated cells. (A), 

Running path of a mouse (left) and calcium traces of example cells (right) in a representative single trial. 

Mice ran towards two reward locations: one previously learned (R1) and one new (R2). Calcium traces for 

two cells that reactivated at the reward location and two that did not. Arrows mark reactivations. Vertical 

line marks time of arrival at R2. (B), Percentage of cells that reactivated at either of the reward locations 

per trial. Points mark percentage in single trials. Box-and-whisker plots: median, 25 and 75th percentile, 

and extreme values. (C), Traces centered on activity peaks for two example cells: one that reactivated at 

the new reward location in trial 1 (top) and one that did not reactivate in any of the trials (bottom). 

Horizontal dashed lines mark activity peaks. (D), Histogram of activity peaks normalized to maximum AUC 

value compared between cells that reactivated for the first time in the preceding trial and cells that did not 

reactivate in any of the trials. Triangles mark mean values. Permutation tests for repeated measures 

ANOVA: significant effect of trial (F(6, 96) = 4.50, p < 0.001) and reactivation (F(1,16) = 8.55, p = 0.01). n = 

6,496 cell trials from 1,404 cells. (E), Density of normalized activity peaks in each trial. Cells are grouped 

by the trial of their first reactivation. Lines show mean values per trial. (F), Mean calcium peak in each trial 
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for cells that reactivated in trial 1 or trial 4 compared to cells that did not reactivate in any trial. Ribbons 

extend +/-1 SEM. Cells that reactivated in trial 1 had significantly higher normalized calcium peaks in all 

trials. Cells reactivated for the first time in trial 4 had significantly higher normalized calcium peaks in trials 

4, 5, 7 and 8. Permutation t-tests with Benjamini-Hochberg correction for multiple comparisons and 

between-animal random effects. n = 6,496 cell trials from 1,404 cells. *p < 0.05. 

 

Figure 8-S1 Similar effect of the reactivation on the activity peaks in different cell groups. (A), The activity 

peaks were larger in the reactivated than in the non-reactivated throughout the day cells regardless of cell 

event rates. The comparison was performed on four cell groups defined by the quartile ranges (Q1–4) of 

event rate distribution. The leftmost histogram plots the trial event rates per cell. The four histograms to 

the right compare within each quartile activity peaks of the same cells in the subsequent trial. Triangles 

mark mean values. Permutation test for repeated measures ANOVA: effect of reactivation: F(1, 16) = 6.33, p 

= 0.02; effect of quartile: F(3, 48) = 6.76 , p = 0.001. n = 6,447 cell trials from 1,404 cells. (B), Histogram of 

normalized activity peaks in place cells and other cells compared between the cells reactivated for the first 

time in the preceding trial and the cells not reactivated in any of the trials. Triangles mark mean values. 

Permutation test for repeated measures ANOVA: non-significant interaction between cell type (place cell 

vs other cell) and reactivation (F(1,16) = 0.16, p = 0.69, n = 6,496 cell trials from 1,404 cells). (C), Activity 

peaks as a function of trial compared between place cells and other cells. Cells whose first reactivation 

happened in the same trial are grouped together. Ribbons extend +-1 SEM. The difference in the activity 

peaks was not-significant between place cells in other cells (p = 0.88, n = 6,496 cell trials from 1,404 cells, 

permutation t-tests with Benjamini-Hochberg correction for multiple comparisons and between-animal 

random effects. *p < 0.05). 

Figure 8-S2 Place cells during learning in reactivated and non-reactivated neurons. (A), Examples of CA1 

place cells and changes in their activity from early (trials 1–4) to late learning trials (trials 5–8) after the 

cells were reactivated at the reward location in trial 4. Locations of calcium events marked with a red dot 

are overlaid over mouse movement paths; place maps are shown below. Reward locations are marked 

with grey circles. (B), Histogram of the ratios between place map peaks in the late over early learning 
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trials. The ratios are compared between the cells reactivated for the first time in the trial 4 or later and the 

cells not reactivated at any of the trials. Triangles mark mean values. (C), As in (B) but for change in 

spatial information of place cells from early to late trials. (D), As in (B) but for correlation between place 

maps for early and late trials. Permutation tests for repeated measures ANOVA. **p < 0.01. 
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METHODS  

Mice 
Experimental procedures and animal use were performed in accordance with UK Home Office regulations 

of the UK Animals (Scientific Procedures) Act 1986 and Amendment Regulations 2012, following ethical 

review by the University of Cambridge Animal Welfare and Ethical Review Body (AWERB). All animal 

procedures were authorized under Personal and Project licences held by the authors.  

Mice were housed on a 12-hr light/dark cycle at 19–23 °C and were provided with food and water ad 

libitum. Experiments were carried out on wild-type C57/BL6J mice (Harlan, Bicester, UK or Central Animal 

Facility, Physiological Laboratory, Cambridge University), and adenylate cyclase double knock-out (AC 

DKO) mice, which have the genes for both AC1 and AC8 deleted globally. This mouse line was generated 
as described previously25 and was imported from Michigan State University, MI, US. For in vivo 

experiments, 7 adult male Thy1 – GCaMP6f transgenic mice were used (Dana et al., 2014) (Jax: 024276). 

Mice were housed with 2-4 cage-mates in cages with running wheels. 

Electrophysiology  
Slice preparation  

Mice of both sexes at postnatal day (P) 12-19 were used in this study. Mice were anesthetized with 

isoflurane (4% isoflurane in oxygen) and decapitated. The brain was rapidly removed and immersed in 

ice-cold artificial cerebrospinal fluid (ACSF) containing (in mM): 126 NaCl, 3 KCl, 26.4 NaH2CO3, 1.25 

NaH2PO4, 2 MgSO4, 2 CaCl2, and 10 glucose (pH 7.2, 270–290 mOsm/L). The ACSF solution was 

continuously bubbled with carbogen gas (95% O2, 5% CO2). Horizontal slices (350 μm thick) were 

sectioned with a vibrating microtome (Leica VT 1200S, Leica Biosystems, Wetzlar, Germany). The slices 

were then incubated for at least 60 min in ACSF at room temperature in a submerged-style storage 

chamber before recording. Slices were used for 1–7 hr following sectioning. 

Whole-cell patch clamp recording 

For recordings, individual slices were transferred to an immersion-type recording chamber and perfused 

with ACSF (2 ml/min) at 24–26 °C. Neurons were visualized and selected using infrared differential 

interference contrast (DIC) microscopy using a 40X water-immersion objective. The hippocampal subfields 

were visually identified and whole-cell patch-clamp recordings were performed on CA1 pyramidal neurons. 
For stimulation of Schaffer collaterals, monopolar stimulation electrodes were placed in stratum radiatum. 

Patch pipettes (4–7 MΩ) were pulled from borosilicate glass capillaries (0.68 mm inner diameter, 1.2 mm 

outer diameter) using a P-97 Flaming/Brown micropipette puller (Sutter Instruments Co., Novato, 

California, USA). Pipettes were filled with a solution containing (mM): 110 potassium gluconate, 4 NaCl, 

40 HEPES, 2 ATP-Mg, 0.3 GTP (pH 7.2–7.3, 270–285 mOsm/L). The liquid junction potential was not 

corrected for.  
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All experiments were performed in current-clamp mode. Cells were accepted for the experiment if their 

resting membrane potential was between −55 and −70 mV. The membrane potential was held at −70 mV 

throughout the recording by direct current application via the recording electrode. Before the start of each 

recording, all cells were tested for regular spiking responses to positive current steps—characteristic of 

pyramidal neurons. 

 
Stimulation protocol 

Excitatory postsynaptic potentials (EPSPs) were evoked alternately in two input pathways (test and 

control) by direct current pulses at 0.2 Hz (stimulus duration 50 μs) through metal stimulation electrodes. 

The stimulation intensity was adjusted (100 μA– 500 µA) to evoke an EPSP with peak amplitude between 

3 and 8 mV.  After a stable EPSP baseline period of at least 10 min, STDP was induced in the test 

pathway by repeated pairings of single evoked EPSPs and single postsynaptic action potential elicited 

with the minimum somatic current pulse (1–1.8 nA, 3 ms) via the recording electrode. Pairings were 

repeated 100 times at 0.2 Hz. Spike-timing intervals (Δt in ms) were measured between the onset of the 
EPSP and the onset of the action potential.  

Alternate stimulation of EPSPs was resumed immediately after the pairing protocol and monitored for at 

least 40 min. For the burst stimulation protocol, stimulation of EPSPs was not resumed for an additional 

10 mins and at the end of that period, 5-6 bursts of action potentials were elicited with an inter-burst 

interval of 0.1 Hz, by somatic current pulses via the recording electrode (5x 1.8 nA, 10 ms each). 

Immediately after the bursts, stimulation of EPSPs was resumed and monitored for at least 30 min. 

Presynaptic stimulation frequency to evoke EPSPs remained constant throughout the experiment. The 
unpaired pathway served to verify input-specificity and as a stability control. The burst stimulation protocol 

is summarized in Figure 1a (top). 

 

Drugs  

Drugs were bath-applied to the whole slice through the perfusion system by dilution of concentrated stock 

solutions (prepared in water or DMSO) in ACSF, or by adding the drugs to the patch pipette solution when 

it was applied intracellularly to the postsynaptic cell only. If the drug was not water-soluble, vehicle control 

experiments were carried out. For each set of recordings, interleaved control and drug conditions were 
carried out and were pseudorandomly chosen.  The following drugs were used in this study: 100 μM 

dopamine hydrochloride (Sigma–Aldrich, Dorset, United Kingdom), 100 μM D-AP5 (Tocris Bioscience, 

Bristol, United Kingdom), 10 µM nimodipine (Tocris Bioscience), 50 μM forskolin (Tocris Bioscience), 1 µM 

PKA inhibitor fragment (6-22) amide (Tocris Bioscience), 0.5 mM anisomycin (stock solution in EtOH; 

Tocris Bioscience) and 20 µM NASPM (Tocris Bioscience), 1 mM MK801 (Tocris Bioscience).  

 

Data acquisition and data analysis of slice recordings 

Data were collected using an Axon Multiclamp 700B amplifier (Molecular Devices, Sunnyvale, California, 

USA), acquired and digitized at 5 kHz using an Instrutech ITC-18 A/D interface board (Instrutech, Port 
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Washington, New York, USA) and custom-made acquisition procedures in Igor Pro (WaveMetrics, Lake 

Oswego, Oregon, USA).  

All experiments were carried out in current clamp (‘bridge’) mode. Series resistance was monitored (10–15 

MΩ) and compensated for by adjusting the bridge balance. Data were discarded if series resistance 

changed by more than 30%. Offline analyses were done using custom-made procedures in Igor Pro. 

EPSP slopes were measured on the rising phase of the EPSP as a linear fit between the time points 
corresponding to 25–30% and 70–75% of the peak amplitude. For statistical analysis, the mean EPSP 

slope per minute of the recording was calculated from 12 consecutive sweeps and normalized to the 

baseline. Normalized ESPS slopes from the last 5 min of the baseline (immediately before pairing) and 

from the last 5 min of the recording were averaged. The magnitude of plasticity, as an indicator of change 

in synaptic weights, was defined as the average EPSP slope after pairing expressed as a percentage of 

the average EPSP slope during baseline. 

 

Statistical analysis of slice recordings 

Statistical comparisons were performed using one-sample two-tailed, paired two-tailed, or unpaired two-

tailed Student’s t-test, with a significance level of α = 0.05. Data are presented as mean ± s.e.m. 

Significance levels are indicated by *p < 0.05, **p < 0.01, ***p < 0.001. All datasets passed the test for 

normality using the Shapiro-Wilk test (α = 0.05).  

 
Computational Modeling  
We simulated a set of n = 10 output neurons, which each received input from 10 input neurons. When an 
instructive input was added, output neurons additionally received input from two out of 10 instructive 

neurons. Each output neuron projected uniquely onto one readout neuron which again projected back to 

the output neuron in a one-to-one mapping. Each output neuron was modelled as an Integrate-and-Fire 

neuron and 100 trials were simulated, where the voltage v is described by  

 

where  is the membrane time constant,  are the spike trains of the input neurons,  are 

the spike trains from the instructive neurons,  are the spike trains from the read-out neurons,  

are the weights from the input to the output neurons,  are the weights from the instructive 

neurons to the output neurons, and  are the weights from the readout to the output neurons. 

In addition, each neuron was receiving an intrinsic current , where  is simply a 

white noise drawn from a uniform distribution between 0 and 1 and  is the magnitude of the 

current (  is taken as 0 unless otherwise stated). When the voltage crosses the firing threshold = 

0.4, the neuron is reset to the resting potential v = 0. The read-out neurons were also modeled as an 

Integrate-and-Fire neuron 
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 where  are the spike-trains of the output neurons,  =  are the weights from the output to 

the readout neurons and  are the spike trains from the supervised neurons. Similarly, if the voltage 

crossed the firing threshold = 0.4, the neurons emit a spike and the voltage is reset to 0.   were 

plastic under the following rule. Every time the input neurons are firing (at ), they are leaving a trace 

  where  is the trace time constant. Similarly, 

every time the output neuron spikes (at ), it is leaving a trace   

.  

The eligibility trace e is described as 

  

where min is the eligibility time constant. The  are potentiated if there is an eligibility trace 

together with dopamine and a postsynaptic burst: 

   

where  is the learning rate, d = 0 if there is no dopamine, and d = 1 if there is dopamine. 

The postsynaptic burst b is detected as follows. We first computed a trace   as 

, 

where  is the burst time constant. We set b = 1 if , to 0 otherwise, 

with  = 1.1. If there was no dopamine nor bursts during the whole trial, then the updated 

rule resulted in a depression 

 

where /500 is the learning rate for the depression. Weights are bound to stay positive. The 

weights   are initialized to 1/N. We simulated the network for 2s in Figure 6 and 2.5s in Figure 7. 

The input neurons were firing Poisson statistics at 20 Hz for the first 500 ms of the trial (pairing phase). 

Dopamine was present during the last 500 ms of the trials in Figure 6 and the last 1 s in Figure 7. The 
network was simulated for 100 trials (error bars are standard deviations).  
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In Figure 6A, a standard reinforcement learning rule was used: ), where 

/50. In Figure 6B, a burst dependent rule was used. Output neurons 3 and 6 had an increased 

excitability. We modeled that by decreasing the firing threshold to 0.25. All neurons also received an 

intrinsic current with  during the last 500 ms of the trail. In Figure 7A, the instructive 

neuron 3 fired Poisson statistics at 500 Hz from time 1.5-2 s and the instructive neuron 6 fired Poisson 

statistics at 500 Hz from time 2-2.5 s. In Figure 7B ii/iii, the read-out neuron 3 received additional Poisson 

inputs at 60 Hz from time 1.5-2 s and the read-out neuron 6 from time 2-2.5 s. For Figure 7B iv however, 

the read-out neurons 3 and 6 received their additional Poisson inputs at the same time, from 1.5-2.5 s. In 

Figure 7B, we added lateral inhibition, where each read-out neuron received an inhibitory filtered version 

(with a time constant of 50 ms) of the spike trains of other read-out neurons, with weights of -1/N (without 

self-connection). 

Behavior 
Surgery 

Mice underwent two surgeries: the first one to implant a GRIN lens directly above the cells of interest, and 

the other to fix an aluminum baseplate above the GRIN lens for later attachment of the miniature 

microscope. The procedures followed the protocol described before by Resendez et al. (2016). Surgeries 

were carried out following minimal standard for aseptic surgery. Analgesic (Meloxicam, 2 mg.kg-1 
intraperitoneal) was administered 30 min prior to surgery. Mice were anesthetized with isoflurane (5% 

induction, 1-2% maintenance, Abbott Ltd, Maidenhead, UK) mixed with oxygen as carrier gas (flow rate 

1.0-2.0 L.min-1) and placed in a stereotaxic frame (David Kopf Instruments, Tujunga, CA, USA). The skull 

was exposed by making skin incision and Bregma and Lambda were aligned horizontally. A 1.5–2 mm-

wide craniotomy was drilled above the implantation site. The cortical tissue and 2 layers of corpus 

callosum fibers above the implantation site were aspirated. Buffered ACSF was applied throughout the 

aspiration to prevent desiccation of the tissue. A GRIN lens (1 mm diameter, 4.3 mm length, 0.4 pitch, 0.50 
numerical aperture, Grintech) was stereotaxically lowered at coordinates -1.75 AP, 1.75 ML, 1.35–1.40 DV 

(in mm from Bregma) and fixed to the skull surface with ultraviolet-light curable glue (Loctite 4305) and 

further fixed with dental adhesive (Metabond, Sun Medical) and dental acrylic cement (Simplex Rapid, 

Kemdent). A metal head bar was attached to the cranium using dental acrylic cement for head-fixing the 

animal during the microscope mounting. 

If the GcaMP6f expression was visible in the implanted mouse, 4 weeks later the animals were 
anesthetized for the purpose of attaching a baseplate for the microscope above the top of the GRIN lens. 

The baseplate was cemented into place and the miniscope was unlocked and detached from the 

baseplate. 

Behavioral learning task 
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The mice performed a rewarded spatial navigation task on a round-shaped maze (cheeseboard maze; 

Dupret et al., 2010 ). The 120 cm diameter cheeseboard had a total of 177 evenly spaced wells. The 

rewarded wells were baited with ~100 μL of condensed milk mixed 1:1 with water. 

For the first three days, the mice foraged for rewards baited in randomly selected wells. A different, 

random set of wells was baited in each trial. Next, we performed a spatial learning task. The mice had to 

learn two locations with baited wells. The baited wells had fixed locations that were at least 40 cm apart, 

chosen pseudo randomly for each mouse. Mice started the trial in one of the three locations on the maze: 

south, east or west. The maze was rotated and wiped with a disinfectant (Dettol) in-between the trials to 

discourage the use of intra-maze cues. Landmarks of black and white cues were installed on the walls 
surrounding the maze. The trials were terminated once the mice ate both rewards or after 300 s. Each 

learning day consisted of 8 trials with 2–4-minute-long breaks between the trials. To minimize the effects 

of the novel environment and task structure, we analyzed the neural activity on the first learning day after 

one of the previous reward locations was moved. After the 5-day-long learning, the memory retention was 

tested on the next day in a 4 to 5-minute-long unbaited trial. Following the learning and testing of the 

memory for the first set of locations, we translocated one of the reward locations. The new location was a 

pseudo-randomly chosen to be at least 40 cm away from the current and previous reward locations. The 

learning of the new set of locations was performed over two days and tested in an unbaited trial as 
described above. 

 The trials were recorded with an overhead webcam video camera. The video was recorded at 24 

Hz frame rate. The mice body location was tracked with DeepLabCut software (Mathis et al., 2018), a 

custom-written software was written to map the mouse coordinates to relative location on the maze. The 

extracted tracks were smoothed with a Gaussian kernel. Periods of running were identified when velocity 
of the mouse smoothed with a moving average 0.5 s window exceeded 4 cm/s.  

 

Calcium imaging  

CaImAn software was used to motion-correct any movements between the calcium imaging frames, 

identify the cells and extract their fluorescence signal from the video recordings (Giovannucci et al., 2019). 

The method for the cell and signal detection is based on constrained non-negative matrix factorization 

(CNMF-E; Pnevmatikakis et al., 2016). CaImAn extracted background-subtracted calcium fluorescence 

values and the deconvolved the signal. The deconvolved signal can be interpreted as a scaled probability 

of a neuron being active. The calcium imaging videos recorded in the same-day trials were concatenated 

and motion-corrected to a common template frame. Signal extraction and further processing was 
performed on the resulting long video, allowing to detect the cells and signal present across the trials. To 

improve the computational performance, the video frames were cropped to a rectangle containing the 

regions of interest and the video width and height was downsampled by a factor of 2.  
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 The identified putative cells were automatically filtered using CaImAn. The results were visually 

inspected and the filtering parameters adjusted to exclude non-cell like shapes and traces from the filtered 

components. The criteria used for the filtering included a threshold for signal to noise ratio of the trace, the 

minimum and maximum size of the component‘s spatial footprint, threshold for consistency of the spatial 

footprint at different times of the component‘s activation, and a threshold for component‘s resemblance to 

a neuronal soma as evaluated by a convolutional neural network provided with CaImAn software.  

 The deconvolved trace was time binned, averaging the values in 200 ms bins. A calcium event 

was detected whenever the cell‘s deconvolved signal crossed 20% of its day-maximum value. A cell was 

classified as reactivated if it had at least one calcium event when the mouse was at the reward location 

and it had a calcium event during running preceding the reward. Activity peaks were quantified by their 

area-under-curve (AUC) which was calculated as a convolution of the preprocessed calcium signal with a 
2-s-long flat kernel. The preprocessing of calcium signal subtracted the cell’s median value and truncated 

the values below 0, so that only the above-median calcium signal is integrated in the AUC calculation. 

Place cell detection and analysis 

To assess how spatial locations modulated activity of a cell, we considered periods of running as 
described in the ‚Behavioural learning task‘ section and calculated place maps — mean neural activity per 

spatial bin. The total activity inside 6 x 6 cm bins was summed from the smoothed deconvolved signal. 

The mean neural activity in the spatial bin was then calculated as a ratio of the total activity to the total 

occupancy in the bin after both maps were smoothed across the space using a 2D Gaussian kernel with σ 

= 12 cm. The place map was filtered to include spatial bins with total occupancy that exceeded 1 s (5 time 

bins, thresholded on unsmoothed total occupancy). 

 Spatial information of a cell‘s activity was calculated using the place map values. Spatial 
information (Markus et al., 1994) was defined as: 

(1) 

where  represents the mean value of the neural signal,  represents probability of the occupancy of the 

i-th bin, and  represents its mean neural activity. Dividing by  ensures the metric is independent of the 

cell‘s average activity. The units of spatial information calculated on calcium fluorescence can be reported 

as bits per action potential (Climer and Dombeck, 2021). However, because the actual action potentials 

were not measured, we report them as arbitrary units. 

 Spatial information was compared to the value expected by chance. The chance level was 
calculated by circularly shifting the activity with regards to the actual location. For each cell, the activity 

was circularly shifted within the trial by a time offset chosen randomly (minimum offset 10 s for baited and 
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20 s for unbaited trials). If the cell‘s spatial information exceeded 95% values calculated on 1000 random 

shifts of its activity, it was defined as a place cell.  

 A limited number of neuronal responses sampled per spatial bin can lead to an upward bias in the 

estimated spatial information (Treves and Panzeri, 1995). To correct for this bias, we subtracted its 

estimated value from the estimated spatial information. The bias was estimated as the mean spatial 
information from the time-shifting procedure used for place cells detection. This procedure does not 

require binning the neuronal responses from the calcium imaging as required by analytical estimation 

(Panzeri et al., 2007), and has been used previously to estimate mutual information bias (Akrami et al., 

2018). 

 

Statistical testing of in vivo results 

To compare the activity peaks between the reactivated and non-reactivated cells throughout the day, we 

used permutation tests for repeated measures ANOVA (Figure 8E, Figure 8-S1A,B, Figure 8-S2). The 

ANOVA modelled fixed effects of trial ordinal and reactivation and random effects of within animal-session 

factors. To compare cells grouped by their first activation trial, we used permutation t-tests (Figure 8F, 

Figure 8-S1C). Multiple comparisons were corrected with Benjamini-Hochberg method, and the 

permutations were restricted to within animal-session permutations. Both effects were computed using 

‘permuco‘ R package. Statistical analysis was performed in R version 3.6.3. 

 

Data availability  

Experimental data and code are available at https://github.com/ … [To be completed].  
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