
The Intrinsic Hierarchy of Self – Converging

Topography and Dynamics
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Abstract

The brain can be characterized by an intrinsic hierarchy in its to-
pography which, as recently shown for the uni-transmodal distinction of
core and periphery, converges with its dynamics. Does such intrinsic hi-
erarchical organization in both topography and dynamic also apply to
the brain’s inner core itself and its higher-order cognitive functions like
self? Applying multiple fMRI data sets, we show how the recently estab-
lished three-layer topography of self (internal, external, mental) is already
present during the resting state and carried over to task states includ-
ing both task-specific and -unspecific effects. Moreover, the topographic
hierarchy converges with corresponding dynamic changes (measured by
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power-law exponent, autocorrelation window, median frequency, sample
entropy, complexity) during both rest and task states. Finally, analo-
gous to the topographic hierarchy, we also demonstrate hierarchy among
the different dynamic measures themselves according to background and
foreground. Finally, we show task-specific- and un-specific effects in the
hierarchies of both dynamics and topography. Together, we demonstrate
the existence of an intrinsic topographic hierarchy of self and its conver-
gence with dynamics.
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1 Introduction

The brain’s intrinsic organization shows a complex topographic hierarchy. One
topographic key feature is the distinction of uni- and transmodal regions. Uni-
modal regions at the brain’s periphery include the sensory regions which can
be characterized by a hierarchical organization among themselves (like primary,
secondary, etc. sensory regions) [37, 62, 72]. In contrast, transmodal regions
like the default-mode network constitute the core [42, 48, 67, 71, 74]. What
remains unclear is whether, analogous to the periphery, there is hierarchical
organization among the regions within the inner core itself.

The transmodal core is associated with higher-order cognition like episodic
simulation [26, 28, 49], mind wandering which are closely related to our self [40,
68, 78, 79] featured by self-referential processing [13, 20, 21, 43, 54].

The self is a multifaceted higher-order cognitive feature of our mind which in-
cludes interoceptive, bodily, and mental features [13, 23, 36, 54]. Each of these
facets has been associated with different regions in the brain like insula [70],
temporoparietal junction (TPJ) [23, 32], and cortical midline structure (CMS)
[10, 13, 17, 54]. This raises the question of their relationship and ultimately
the topographic organization of these various regions. Is there an intrinsic hi-
erarchical organization of self within the brain’s topography of its inner core?
Addressing this yet unresolved question is the goal of our paper.

A recent meta-analysis of task-related studies on self-specificity yielded three
distinct layers of self: the internal (interoceptive) self is related to the insula,
dorsal anterior cingulate cortex, and thalamus; the external (exteroceptive-
proprioceptive) self is mediated by the premotor cortex, TPJ and the mental self
recruits with anterior and posterior CMS [59]. Importantly, these different re-
gions are embedded and thus nested within each other with the lower hierarchy
regions (like internal self regions e.g. insula and anterior cingulate) being reca-
pitulated in the next higher layer of the external self which recruits additional
regions (like TPJ) and so forth. Together, this amounts to a multi-layered topo-
graphic hierarchy of self. This leaves open whether hierarchical organization of
self is truly intrinsic. In that case, one would expect the three-layered hierarchi-
cal organization of self to be present already in the spontaneous activity itself
as measured during resting state, that is, during the absence of task-evoked
activity related to self-specific stimuli or other self-referential contents.

Complementing its topographic organization, various EEG and fMRI stud-
ies demonstrate specific dynamic features characterizing the self. These include
stronger power in slow frequencies measured by the power-law exponent (PLE)
as well as longer intrinsic neural timescales operationalized by the autocorre-
lation window (ACW) [41, 51, 56, 81]. Complementing the dynamics of brain
activity, one can also measure its degree of information processing by for in-
stance sample entropy [7, 30, 65, 69, 72] and Lempel-Ziv Complexity (LZC) [3,
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8, 11, 74]. How the dynamic of self (and its information processing) are related
to and possibly converge with the intrinsic three-layered topographic hierarchy
of self remains yet unclear, though.

The goal of our paper is to investigate whether the self exhibits an intrinsic
topographic hierarchy within the brain’s inner core itself and how that con-
verges with its dynamics. This is stipulated by recent studies showing that the
intrinsic core-periphery topography converges with dynamic resulting in a slow
core (with long timescales) and faster periphery (with short timescales) [55, 60,
67, 74]. Based on these studies we hypothesized that the three-layered topo-
graphic hierarchy of a the self is intrinsic e.g. holds during both rest and task
states, and is met by a more or less corresponding hierarchy in its dynamics.
Specifically, we hypothesized the longest autocorrelation (ACW) and strongest
slow frequency power (PLE) to hold in the mental layer of self (as related to
the CMS as the topographic core of the brain). While the internal layer of self,
being more distant from the core may show shorter autocorrelation (ACW) and
less power in slow frequencies (PLE).

The first specific aim consists in calculating the dynamic and information-
based measures (ACW, PLE, MF, LZC, SE) in the regions of the three-layer
topography of self during the resting state. Based on the assumed intrinsic
nature of the topographic hierarchy and its convergence with dynamics, we hy-
pothesized different degrees in these measures within the regions of the three
layers of self. More generally, following the data on core-periphery [67, 74], we
assumed that the three-layer topography of self converge with corresponding
differences in the measures that index dynamics (ACW, PLE, MF) and infor-
mation processing (SE, LZC).

The second specific aim consists in probing the convergence of dynamics and
topography of self during a variety of task states in order to reveal task-specific
and unspecific effects in dynamics. For that purpose, we calculated our various
dynamic measures in the regions of the three-layer topography during 7 different
task states from two datasets. We hypothesized that the three-layer hierarchical
organization of self is carried over from rest to task states thus further underlin-
ing its intrinsic nature – this accounts for largely task-unspecific effects. While
task-specific effects can be observed in case the task itself targets one particular
layer of self, e.g., internal, external, or mental.

The third specific aim consists in characterizing and operationalizing the hi-
erarchical organization of self by itself, that is, its degree of hierarchy in both its
topographic (relation among the three layers) and dynamic (relationship among
the different measures) terms. For that purpose, we calculated a gradient among
the three layers of self and hypothesized that that gradient changes during a
self-specific task (whereas that may not be the case if one applies tasks unrelated
to the self). Moreover, applying the graph-theoretic measures, we investigated
the relationship among the five dynamic measures. We hypothesized that the
dynamic measures like PLE, MF, and ACW are more stable during both rest
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and task states, operating in the background while information-related mea-
sures like SE and LZC are more flexible showing changes during task states
thus taking on the role as foreground measures [82].

Applying multiple fMRI rest and task data sets, we show an intrinsic to-
pography of a higher-order cognitive function like self within the brain’s core
as well as its convergence with dynamics during both rest and task states; the
topographic differences of internal, external, and mental self during the resting
state was accompanied by corresponding differences in dynamics, probed with
PLE, ACW, MF; and information processing measured by LZC and SE. This
was also apparent during the task state suggesting carry-over of the topographic
hierarchy from rest to the task that further supports the intrinsic nature of the
brain’s topography of self. When subtracting task from rest, we were able to
distinguish task-specific and -unspecific effects in both topography and dynam-
ics. Finally, applying graph-theoretic measures, we demonstrate that dynamic
measures (ACW, PLE, MF) constitute a hub of high centrality and closeness
during both rest and task states. In contrast, information processing measures
(SE, LZC) were more flexible showing higher changes in their centrality during
task states. Together, our findings show, for the first time, an intrinsic hierar-
chical topography for a higher-order cognitive function like the self within the
brain’s inner core and its convergence with a corresponging dynamic hierarchy.

2 Methods

The codes to replicate preprocessing, calculation of measures and doing the net-
work analysis with simulated signals can be found at https://github.com/duodenum96/Self-
Topography-Dynamics. All statistical tests were corrected for multiple com-
parisons using Bonferroni-Holmes method. asterisks denote significance; *:
p < 0.05, **: p < 0.01, ***: p < 0.001. Effect size estimates for all of the
Kruskal-Wallis and Wilcoxon tests were calculated in R [77] using rstatix [64]
package and can be found in supplementary material. Tables in supplementary
materials were generated with help of the packages gt [75], tidystats [80], broom
[73] and tibble [76].:

2.1 Data Acquisition and Task Designs

Two different fMRI datasets were used in this study. The first dataset (will
be referred to as the Shanghai dataset from now on), [53] included 50 age and
sex-matched subjects. fMRI images were acquired on a 3.0-T Siemens MAG-
NETOM Verio syngo MR B17 scanner equipped with a 12-channel head coil
(Siemens, Erlangen, Germany). T1-weighted images were as follows: repetition
time (TR), 1,900 ms; echo time (TE), 2.46 ms; inversion time (TI),900 ms; flip
angle (FA), 9°; field of view (FOV), 256 × 256 mm; matrix, 256 × 256; slice
thickness, 1 mm (no gap); and 192 sagittal slices. Four echo-planar imaging
(EPI) scans were obtained for task fMRI and one EPI scan was obtained for
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rest fMRI. The sequence parameters were as follows: TR, 2,000 ms; TE, 32
ms; FA, 70°; FOV, 240 × 240 mm; matrix, 64 × 64; slice thickness, 5 mm; 30
interleaved transverse slices; voxel size, 3.8 × 3.8 × 5 mm. Event-related task
design [9, 15, 22, 39] included 3 conditions: rest, interoceptive stimulus (listen-
ing to one’s own heartbeat) and exteroceptive stimulus (listening and counting
auditory tones), 9-13 seconds each. Each of the 4 runs lasted 9.6 minutes. The
measures calculated from different runs were averaged to get one measure per
subject in the task condition. For a general linear model analysis as well as
detailed information regarding subjects, we refer the readers to [53].

The second fMRI dataset (slice thickness = 4 mm, 34 slices, TR = 2 s, TE
= 30 ms, flip angle = 90◦,matrix 64 × 64, FOV = 192 mm,oblique slice orienta-
tion, will be referred as UCLA dataset from now on) was downloaded from open
access UCLA Consortium for Neuropsychiatric Phenomics LA5c study [44, 45].
Only raw data of 130 healthy controls were selected for analysis. Details about
sociodemographic characteristics of the sample, detailed MRI device informa-
tion, anatomical scan parameters and information on resting state and 6 tasks
can be found on [44, 45]. Briefly, these tasks consist of an eyes open resting
state (REST); balloon analog risk task (Bart), in which subjects were asked for
pumping experimental balloons that either resulted in an explosion or points and
control balloons which neither exploded nor rewarded; paired associate memory
encoding (Pamenc) and retrieval (Pamret), in which subjects were asked for
memorization and rate their confidence in recalling the memorized color; spa-
tial working memory task (Scap) in which subjects tried to remember places
of pseudo-randomly positioned circles; stop-signal task (Stopsignal), in which
subjects tried to not respond to the visual cue when they hear an auditory sig-
nal; and task-switching task (Taskswitch), in which participants were asked for
responses to either shapes or colors of the stimuli.

2.2 Preprocessing

Preprocessing steps were implemented in Analysis of Functional Neuroimages
software (AFNI; [5]). The procedure is following: 1) discarding the first two
frames in UCLA and 5 frames in each Shanghai dataset of each fMRI run to
ensure proper magnetization; 2) slice-timing correction; 3) despiking; 4) spa-
tial alignment of fMRI data to time frame with minimum estimated motion;
5) spatial alignment of fMRI data to skullstripped anatomical data that was
aligned to MNI152 stereotactic space; 6) resampling to 3 × 3 × 3 mm isometric
voxels; 7) scaling each voxel time series to have a mean of 100 to reflect percent
signal change; 8) temporal band-pass filtering (0.01 Hz ¡ f ¡ 0.2 Hz) to reduce
low-frequency drift and high-frequency respiratory/cardiac noise, while at the
same time undesired components were removed through regression of linear and
nonlinear drift: head motion and its temporal derivative, binarized Euclidean
norm time series of motion above the threshold of 2 mm, mean time series from
the white matter (WM) and cerebrospinal fluid (CSF) to control for non-neural
noise. The WM and CSF masks were eroded by one voxel to minimize partial
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voluming with gray matter [19]. Censored time points were linearly interpo-
lated to keep temporal continuity. Global signal regression was not performed
to avoid introducing non-existent correlations and losing correlations due to
global signal, which is shown to have physiological relevance [27, 52, 61, 63, 66].

After preprocessing, the quality control files generated by afni proc.py were
visually inspected and the specific runs from the subjects with excessive motion
and artifacts were discarded. This left us with the following number of subjects
for each task: for the Shanghai: 39 rest and 43 task scans; for the UCLA, 108
for Rest and Scap, 107 for Bart, Stopsignal and Taskswitch, 75 for Pamenc and
Pamret.

2.3 ROI Selection

The ROIs were selected from [59]. The three layers of self were operationalized
using ROIs from figure 7 in the paper (table 1). The BOLD signals inside
spheres with a diameter of 8 mm were averaged to get one signal per ROI and
the measures calculated for these ROIs were averaged to get one measure per
layer using AFNI’s 3dcalc and 3dmaskave.

Table 1: ROI selection

ROI x y z
Internal
LIns1 -40 -2 2
LIns2 -36 24 4
RIns 34 14 12

External
MPFC -6 60 22
TPJ -48 -38 36
PMC 50 8 26
Mental
PACC -6 48 0
PCC -4 -54 28

ROIs were selected from [59]. The BOLD signal inside spheres with 8 mm
diameter were averaged to get one BOLD signal per ROI. After the calculation
of measures, they were averaged across layers to get one measure per layer.
Moreover, we overlaid our ROIs and the transmodal networks (as determined
in [55]) of the atlas from [50]. This showed us that our self layers are inside the
core (transmodal) instead of periphery (unimodal) of the brain’s organization
of intrinsic neural timescales. This visualization can be seen in supplementary

figure 1.
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2.4 Calculation of measures

All the measures were calculated on MATLAB software (version R2020a). We
calculated power-law exponent (PLE), median frequency (MF), autocorrelation
window (ACW-0), sample entropy (SE) and Lempel-Ziv complexity (LZC) to
probe the dynamics of self layers.

2.4.1 Power-Law Exponent and Median Frequency

Power spectral density (PSD) of frequencies between 0.01 and 0.2 Hz were calcu-
lated using the periodogram method [4, 12]. The periodograms were smoothed
with a Hamming shaped sum-cosine function based on AFNI’s 3dTsmooth with
-hamming option. PLE was defined as the slope of the linear regression line
that fits the power versus frequency representation in logarithmic scale [18, 29]
to get the exponent β in P̂ = 1/fβ where P is power, f is frequency and β is
the power-law exponent.
A confirmatory measure in the frequency domain that doesn’t depend on the
assumption of scale-free activity was also used. MF was operationalized as the
frequency that divides smoothed PSD in two equal halves [Schwilden1985,
Schwender1996, Golesorkhi2020, 6, 31, 38, 47, 72, 74].

2.4.2 Autocorrelation Window

The autocorrelation function (ACF) calculates the correlation between a time
series and its lagged version using the following formula:

rτ =
cτ
c0

cτ =
1

T

T−τ∑
τ=1

(xt − x)(xt+τ − x)

Where rτ is autocorrelation at lag τ , x is time series, x is it’s mean, T is the
number of time points and c0 is the sample variance of time series. Since our
data did not contain any missing values, ACF was calculated by taking the
inverse Fourier transform of the power spectral density, leveraging the Wiener-
Khinchin theorem for faster calculations [1, 2]. Thus, ACW can be categorized
with PLE and MF, connecting all three to the frequency domain. ACW-0 is
defined as the first lag where autocorrelation function reaches zero [25, 60, 62,
67].

2.4.3 Sample Entropy

SE was introduced by [7] as a variant of approximate entropy with two important
advantages over it: independence with the length of the data and reduction of
the bias caused by self-matching [7, 30, 65, 69, 72]. Given a time series X of
length N , its SE for a pattern length m and similarity criterion r is computed
as the negative natural logarithm of the probability that if two simultaneous
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data points of a subset Xm of length m have distance d <= r from each other,
then two simultaneous data points of a subset Xm+1 of length m+ 1 also have
distance d <= r.

SE = −log(
P

Q
)

P = d(Xm+1(i), Xm+1(j)) <= r

Q = d(Xm(i), Xm(j)) <= r

where d(x, y) is Chebyshev distance between x and y. For this paper, we set m
as 2 and r as 0.5 following previous studies [30, 69].

2.4.4 Lempel-Ziv Complexity

To calculate the LZC, each signal was converted into a binary sequence. Follow-
ing [8, 11, 74], we used the median of the signal’s amplitude as the binarization
threshold. After binarizing each region’s signal and converting it to a string
sequence, the Lempel–Ziv algorithm[3] was used to compute LZC. As earlier
studies have pointed out, LZC is dependent on the length of the sequence, thus
a normalization factor (more info in [11]) was used to remove that effect. Briefly,
the sequence is scanned from left to right and the LZC value was increased every
time a new subsequence was encountered.

2.5 Gradient Index

To calculate the increase or decrease of measures in layers of self, we defined
a measure called the gradient index. After seeing the hierarchical change of
different measures across three layers of self, we calculated this rate of change
by applying linear regression between the hierarchical positions (Internal = 1,
External = 2, Mental = 3) and the measures at those positions. The slope of the
best-fit line was defined as the gradient index for that variable. This procedure
was applied to every measure for every scan, resulting in one gradient index
per subject per measure per scan. A demonstration of the method is in figure
4 for Shanghai data. The same format for the UCLA dataset can be found in
supplementary figure 4.

2.6 Network Analysis of Measures

To investigate the relationship between our different measures, we used mea-
sures from graph theory. Each measure was assigned to a node and connections
between nodes were regularized partial correlations using Extended Bayesian
Information Criterion and graphical least absolute shrinkage and selection op-
erator (EBICglasso) method [14, 24, 46, 70]. We used two measures to quantify
the position of each node in the network: strength of each node is the sum of
the absolute input weights of that node whereas closeness is the inverse of the
sum of all shortest paths from the node of interest to all other nodes. 10000
bootstraps were used to calculate confidence intervals of graph measures. The
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EBICglasso method relies on the assumption that the network is a sparse net-
work. We also used the partial correlation method (non-regularized Gaussian
Markov random field, pcor) that doesn’t depend on the assumption of sparsity.
The results for pcor method can be found in supplementary figure 6.

The calculation of the measures have the possibility of biasing the network
analysis. To explicate, both PLE and MF are calculated using the power-
spectrum, and the ACW calculated from the autocorrelation function, which
is the inverse Fourier transform of the power spectral density. High correlation
and consequently, strength and closeness is expected from these measures re-
gardless of physiological relevance. To exclude this possibility, we did the same
analyses on simulated time series. We generated 1000 instances of white and
pink noise of 250 time points and calculated the same measures via the same
way on these simulated signals. Consequently, we did the network analyses on
these simulated signals.
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3 Results

3.1 Resting state: Dynamics of Self converge with its to-
pographic hierarchy

Figure 1: A. Interoceptive, Exteroceptive and Mental ROIs taken from [59].
BOLD signal of voxels inside 8 mm diameter spheres were averaged to get one
time-series per one ROI (see table 1 for coordinates). After the calculation of
measures, they were averaged to get one measure per layer per subject. B.
Differences between layers calculated with pairwise Wilcoxon tests. Asterisks
denote significance.
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Our first question was to investigate the differential dynamics of three self layers
in the resting state. A non-parametric Kruskal-Wallis test was used to inves-
tigate the differences for each measure in both datasets. All tests were highly
significant in both datasets (p < 0.001). Detailed results can be seen in supple-
mentary results table S1 and S3 for Shanghai and UCLA respectively. Results
of pairwise comparisons using Wilcoxon tests can be seen in figure 1, and the
effect sizes are in supplementary tables S2 and S4.

Our results show that all our measures (PLE, MF, LZC, ACW, SE) showed
significant differences between the three layers of self. The mental layer shows
the highest PLE, longest ACW, slowest MF, lowest LZC and lowest SE. Whereas
the interoceptive layer exhibits the opposite pattern in all dynamic measures
while the external layer is intermediate between the two other layers.

Together, these results suggest differentiation of the different layers of self
according to their dynamics. Moreover, their topographical hierarchy converges
with their dynamic hierarchy which follows the former.
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3.2 Task-unspecific effects – carry-over of dynamic differ-
entiation from rest to task

Figure 2: Pairwise Wilcoxon tests between three self layers. Asterisks denote
significance.

Next, we looked at task data to see the effect of tasks on dynamics in self layers.
As can be seen in figure 2, this differentiation was carried over from rest to task.
All the Kruskal-Wallis tests were highly significant (p < 0.001), details can be
seen in supplementary results tables 5, 6, 7 and 8. Pairwise Wilcoxon tests of
Pamenc, Stopsignal and Taskswitch be seen in figure 2. Results for other tasks
can be found in supplementary figure 1. Of note, the χ2 values in the Shanghai
task are lower than tasks in the UCLA dataset, with more cognitive tasks.

Together, we observed similar topographic differentiation of the different
measures in all task states of both data sets similar to their resting state. Hence,
the convergence of topography and dynamics in the three layers of self is also
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manifested during the task. This suggests that the resting state topography is
carried over to task states in a task-unspecific way – the topography and its
dynamic are intrinsic to the brain as they are manifest in both rest and task
states.

3.3 Rest-Task Difference of Dynamics is Sensitive to Task

Figure 3: Comparison of measures in rest and task using Wilcoxon tests. As-
terisks denote significance.
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Table 2: Rest - Task Differences

Measures ROIs Bart Pamenc Pamret Scap Stopsignal Taskswitch Shanghai
INT -** +***
EXT -* +*PLE
MEN -** +**
INT -* -* -* +**
EXT -*** -* -**ACW-0
MEN -***
INT + +* -***
EXT +*** +**MF
MEN +***
INT -***
EXT -***SE
MEN -* -* -*** -***
INT -*** -*** -*** -*** -* -***
EXT -*** -** -*** -*** -***LZC
MEN -*** -** -*** -** -**

Table 2. Rest - Task differences of the measures in three self layers. Plus and
minus signs denote whether there is an increase or decrease from rest to task.
Asterisks denote significance. Only significant differences were shown in the
table.

Are there also task-specific effects during the transition from rest to task for
the dynamics of layers? For that, we compared rest-task differences in all three
layers across all our datasets using Wilcoxon tests. Results for PLE, ACW-0
and SE can be seen in figure 3, results for the remaining measures can be found
in supplementary figures 2 and 3. A summary of significant differences can be
found in table 2. Effect sizes for all the tests can be found in supplementary
tables 9 and 10.

The internal self layer is the most sensitive one for the Shanghai task with
the internally oriented listening-to-heartbeat task. Interestingly, the measures
probing long-range temporal correlations (PLE, ACW-0, MF) were specific to
the internal layer (increased PLE and ACW-0 and decreased MF from rest to
task) whereas information related measures (SE and LZC) were layer-unspecific
(decrease from rest to task in all layers).

On four of the seven UCLA tasks (Bart, Pamenc, Pamret, Scap), LZC
showed a rather layer-unspecific effect (decrease in internal and external lay-
ers, also decrease in mental layer except for Pamret). Surprisingly, SE didn’t
follow LZC, showing a decrease in only the mental layer in Bart, Pamenc and
Scap.

PLE, MF and ACW-0, on the other hand, showed more task-specificity. A

13

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2022.06.23.497287doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.23.497287
http://creativecommons.org/licenses/by-nd/4.0/


decrease in PLE and ACW-0 and corresponding increase in MF were observed
in Pamret, Stopsignal and Taskswitch. PLE increase was observed in only the
mental layer in Scap. PLE was decreased in the mental layer in Pamret; internal
and external layers in Stopsignal; ACW-0 was decreased in all three layers in
Pamret, and internal and external in Stopsignal and Taskswitch; MF was in-
creased in external and mental layers in Pamret and internal and external layers
in Taskswitch. Two things of note. Firstly, while they’re both memory-related
tasks, Pamret caused significant changes in our measures whereas Pamenc did
not cause any. The reasons for this will be discussed in the discussion. Secondly,
while information-related measures showed some change in at least one layer in
all tasks, temporal measures didn’t show any change in two of UCLA tasks.

3.4 Topographic hierarchy of self: Task-specific and un-
specific changes

Figure 4: A. Calculation of the gradient index. A best-fit linear regression
line between the measures calculated in three layers was calculated for each
measure in each subject in order to probe the hierarchic structure of self layers.
The gradient index was defined as the slope of the best-fit line. B. Comparison
of gradient indices in rest and task using Wilcoxon tests.

To measure the degree of hierarchy among the three self-layers, we devised
the new measure gradient index (see Methods). The main question here was
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whether the degree of hierarchy changed during the transition from rest to task
states and whether that occurred in a task-specific or -unspecific way. For that,
we measured the gradient index in all recordings for all subjects. The differ-
ences in gradient indices between rest and task were tested with Wilcoxon tests.
Results for comparisons can be seen in figure 4. Effect sizes can be found in
supplementary tables 11 and 12.

The results indicate that the degree of hierarchy changes in those measures
that reflect long-range temporal connections (PLE, MF and ACW-0) and re-
spond to the internal task of the Shanghai dataset. In contrast, that was not
the case in the measures based on information processing (SE and LZC) in the
case of the Shanghai dataset. In the UCLA dataset, once again Pamret seems
to be close to the Shanghai dataset showing decreased gradient indices of PLE,
MF and ACW; and also LZC. The gradient index based on MF also responded
to Scap and Stopsignal. Surprisingly gradient index of SE increased from rest
to task in Scap.

Together, albeit tentatively, the results indicate differential roles of information-
related and temporal measures. More importantly, we showed that different
tasks affect the dynamic topography of self in slightly distinct ways with the
most prominent example being the internal Shanghai task and the self-specific
Pamenc UCLA task. More generally, our results show the malleability of the
hierarchical topography of self with both task-specific and -unspecific effects.
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3.5 Hierarchy of dynamics and its malleability during task
states

Figure 5: Network analysis of dynamic measures. The network structure be-
tween different measures was calculated with the EBICglasso method. Strength
and closeness were calculated from the networks. In network plots, red lines
show negative relations whereas blue lines show positive ones. Line thickness
shows the degree of relation. In the line plots, gray areas indicate confidence
intervals using bootstrapping 10000 samples. Black lines show bootstrap esti-
mates of network measures whereas red ones show network estimates from the
original sample. A. Network analysis in rest. B. Same analyses in the task
states. C. Network analyses on simulated signals.
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We observed that the topographic three-layer hierarchy of self changes during
task states in both task-specific and-unspecific ways. We also observed changes
in different dynamic measures during task states. Does this mean that there is
a hierarchy among the dynamic measures? In order to probe such a dynamic
hierarchy, we calculated two graph-theory measures, strength and closeness in
the networks based on our 5 measures. Results for the Shanghai dataset and
Pamenc, Stopsignal and Taskswitch of UCLA can be seen in figure 5. Results
for other UCLA tasks are in supplementary figure 5. Additionally, we replicated
the analysis using the pcor method that doesn’t depend on the assumption of
sparsity that’s inherent to EBICglasso and found the same results. The results
for the pcor method can be found in supplementary figure 6.

In the resting state, PLE and MF showed the highest strength and closeness
in both datasets, followed by ACW-0, SE and LZC. However, this relation-
ship changed in favor of SE and LZC in the Shanghai task, whereas all UCLA
datasets kept the same relationship between the measures during the different
tasks. This suggests that the relationship between the different measures is by
itself prone to change e.g. being dynamic by itself showing a certain degree of
task-specificity.

To exclude the possibility of bias stemming from the calculation of these
measures, we did the same analyses on simulated signals (see methods). Network
analyses on 1000 instances of white noise and 1000 instances of pink noise which
has similar scale-free properties are presented in figure 5C. On pink noise, we
see a different structure of measures with low PLE and MF and high SE and
ACW-0 strength. On white noise, the structure between strength of measures is
preserved, however, the strength is considerably lower. Closeness is interestingly,
0. The same observations were made using the pcor method which is presented
on supplementary figure 7. These simulation results suggest that the network
results we found have a physiological basis in the brain signal rather than being
due to the intrinsic (e.g. mathematical) properties of these measures themselves.

4 Discussion

The aim of this paper is twofold: First, we investigate the dynamic features
of the intrinsic topography of a higher-order cognitive function like the self.
Second, we are interested in how these dynamics change with different tasks in-
cluding task-specific and -unspecific effects. We used two different fMRI datasets
with a total of two resting states and seven different tasks to probe these two
questions. We extracted five different measures: PLE, MF and ACW-0, prob-
ing dynamics through long-range temporal correlations and structure of power-
spectrum; SE and LZC for information complexity and predictability of the
BOLD signal.
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4.1 Dynamics follows the topographic hierarchy of the
three layers of self

A previous meta-analysis by [59] shows a nested structure of self regions with
the mental layer encompassing external and internal layers; and external layer
encompassing internal layer. We therefore hypothesize a hierarchy of dynamics
in self regions, following the hierarchy of intrinsic neural timescales in global
[42, 48, 67, 71, 74] and local (see [62, 72] for a case of sensory input regions)
levels (see supplementary figure 1 for an overlay of the ROIs in this paper and
transmodal networks as determined in [55]). We found increasing PLE and
ACW-0 from internal to mental layers and a corresponding decrease in MF in
the resting state. This was complemented by decreasing SE and LZC. These
results are in line with the hypotheses surrounding longer and shorter neural
timescales suitable for temporal integration and segregation, respectively. High
power in slow frequencies [67, 74, 83] provide longer temporal receptive win-
dows as a basis for summing and pooling of different stimuli and vica versa [16,
33–35, 42, 48, 67, 83]. The decreasing of LZC and SE is in accordance with a
previous study [74], though implications are tentative, this might be the result
of the aforementioned pooling. Temporally smoothed activity is more orderly
and predictable than the activity with higher complexity, which is suitable for
segregation [83].

Our findings extend the previous data. The hierarchical organization of self
is based on a meta-analysis of separate task studies on self [59]. We here demon-
strate that an analogous hierarchy can be observed in both the resting state and
task states. This strongly suggests the intrinsic nature of the hierarchical to-
pography of self as it is not affected as such in its basic organization but only
modulated (in small degrees, if at all) by the task states. In other terms, due
to its intrinsic nature, the topographic hierarchy of self with its three layers is
carried over from rest to task states.

Importantly, we observed the hierarchy of self in both our dynamic and in-
formation processing measures. The topographic hierarchy of self with its three
layers thus converges with a corresponding dynamic hierarchy. This strongly
suggests the intrinsic nature of the convergence of topography and hierarchy
for a higher-order cognitive function like the self that extends beyond previous
findings that show an intrinsic topographic organization of the brain itself like
core-periphery distinction [55, 60, 67]. Our findings extend the existence of
such intrinsic topographic organization from the brain to higher-order cognitive
functions like self: they are intrinsically ingrained within the brain’s topogra-
phy and dynamics even already in the brain’s spontaneous activity itself prior
to and independent of any external stimuli or specific cognition during task-
related activity. Hence, higher-order cognitive functions like self follow the ba-
sic organizational principles of the brain itself, in their topographic hierarchical
organization and its convergence with dynamics.
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4.2 Task-specific and -unspecific effects in both topogra-
phy and dynamics

In a further step, we compared dynamics in rest and task states. We found that
the change of dynamics shows task and layer specificity, the different layers do
not respond to each task in the same way nor do they respond the same in every
layer. As can be seen in table 2, the dynamic measures PLE, MF and ACW-0
showed more layer and task-specific effects compared to information measures
LZC and SE. This indicates that different regions are defined by their temporal
structure in the way they respond to external perturbations. LZC and SE on the
other hand are more task and layer unspecific, thus, more malleable measures for
external perturbation, further supporting their role as foreground measures [82].

The difference between Pamenc and Pamret is an intriguing case. While
both are memory-related tasks, there are some subtle psychological differences.
Pamret focuses on memory retrieval and episodic simulation thus involving a
high degree of self-specificity while this is distinct in the encoding task probed
in Pamenc. Only Pamret showed significant differences from rest to task with
seemingly task-specific effects in the dynamic measures of the three layers. On
the other hand, Pamenc, a memorization task focusing on external stimuli,
showed no difference in any of the temporal measures. The reason for this,
we claim, is the nature of the topography. We here probe the topography of
self; this let us assume that neural activity in these regions may be particularly
sensitive to self-specific tasks like the Pamret and our interoceptive awareness
task (with both tasks showing more or less similar task-related changes). Albeit
tentatively, we therefore suppose that task-specific effects in both topographic
layers and dynamic measures are more likely to be associated with self-specific
stimuli or tasks. While tasks or stimuli that involve to a lower degree the self,
i..e, non-self-specific, may rather show task-unspecific effects in the dynamics of
the topography of self.

To probe the relationship between task-related changes and topography fur-
ther, we devised a new measure called gradient index (see Methods). Gradient
index measures the hierarchical structure of dynamics i.e. how much change for
any measure do we see when we go from internal to external to mental. To see
the effect of different tasks on this gradient, we compared gradient indices at
task and rest. In the Shanghai task, we saw a significant decrease in gradient
index from rest to task. We saw the same effect on Pamret too, with also an
increase in LZC. The Pamenc - Pamret distinction can here too be as a further
confirmation of the findings we discussed in the above paragraph.

4.3 Relationship Between Different Measures is Hierar-
chical and Changes With Task

Changing our focus from topography to dynamics themselves, we investigated
the relationship between different measures using a graph-theoretic network ap-

19

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2022.06.23.497287doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.23.497287
http://creativecommons.org/licenses/by-nd/4.0/


proach. In both datasets, we, during the resting state, saw a hierarchy of mea-
sures with temporal-dynamic measures PLE and MF representing a hub with
high strength and closeness and ACW-0 being close while LZC and SE showed
the smallest values. Importantly, we controlled for the physiological (rather
than mathematical or otherwise) nature of these dynamic relationships by con-
ducting the network analysis on simulated data and finding incompatible results.

Together, these data suggest hierarchical organization among the dynamic
measures themselves. Dynamic measures like ACW and PLE operate as dy-
namic core while information processing (SE, LZC) takes on the role of dy-
namic periphery. Although preliminary, we therefore suppose that there may
be analogous forms of hierarchical organizations, e.g., core-periphery, in both
spatial-topographic and temporal-dynamic domains.

This is further supported by the task data. This relationship among the
different measures was more or less preserved during and thus carried over to
the task states in the UCLA data. In contrast, the dynamic relationship among
different measures changed in the self-specific task of the Shanghai data set.
This reveals the malleability of the relationship between the dynamic and infor-
mation processing measures. Specifically, the PLE, ACW and MF remained rel-
atively stable in their closeness and strength while SE and LZC showed stronger
changes. That does not only compare well with the core-periphery organization
on a dynamic level but also with the recently supposed distinction of stable
background dynamic measures and more flexible foreground dynamic measures
[82].

5 Conclusion

Using two datasets including rest and seven task states, we investigated whether
a higher-order cognitive function like self is characterized by an intrinsic topographic-
dynamic hierarchy within the brain’s inner core during both rest and task states.
We observed that various dynamic and information processing measures followed
the topographic hierarchy of self during both rest and task states. Subtracting
task from rest states yielded task-unspecific and -specific tasks in both topo-
graphic and dynamic measures. Finally, we also demonstrate a hierarchy among
the various measures themselves. Dynamic measures (like PLE) are stable dur-
ing both rest and task thus remaining in the background while information
measures (SE, LZC) are more flexible, operating in the foreground.

Together, we demonstrate an intrinsic topography and its convergence with
dynamics for a higher-order cognitive function like the self within the brain’s
core. This does not only support the intrinsic nature of topography and dy-
namic on the neural level of the brain but also its intrinsic nature for higher-
order cognitive functions like self. Higher-order cognitive functions may thus
by themselves be characterized in spatial-topographic and temporal-dynamic
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terms, just as postulated by the recently proposed concept of Spatiotemporal
Neuroscience [57, 58]. Topography and dynamic may then be shared by both
neural and cognitive/psychological levels as their “common currency”.
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