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Abstract 

Background 

The plant Acacia sieberiana (Fabaceae) is traditionally used to manage hepatitis. This research 

work aims to investigate the hepatoprotective effectiveness of root bark extract of Acacia 

sieberiana (ASE) against paracetamol (PCM) and bile duct ligation (BDL)-induced 

hepatotoxicity. The phytochemical and median lethal dose (LD50) investigations were 

conducted. The rats were pre-treated with the ASE (250, 750, 1,500 mg/kg) once daily via oral 

route for 7 consecutive days. On the 8th day, liver injury was initiated by PCM administration 

(2g/kg). Similarly, in the BDL-induced liver injury, the animals were administered ASE (125, 

250 and 380 mg/kg) intraperitoneally for 7 consecutive days. After 24 hours, blood samples 

and hepatic tissues were obtained for biochemical and histopathological investigations.  

Results  

Phytocomponents determination revealed glycosides, triterpenes, glycosides, saponins, 

tannins, flavonoids and alkaloids. The oral and intraperitoneal LD50 values of the ASE were 

>5,000 and 1,300 mg/kg, respectively. The ASE efficiently (p<0.05) decreased the alanine 

transaminase (ALT) and aspartate transaminase (AST) levels and elevated the albumin and 

total protein (TP) levels. The direct bilirubin effectively (p<0.05) decreased at 750 mg/kg. 

Besides, the extract efficiently elevated the glutathione peroxidase (GPx), superoxide 

dismutase (SOD), and catalase (CAT) in relation to the PCM hepatotoxic group. Also, the 

malondialdehyde (MDA) concentration was reduced by the ASE. Meanwhile, in the BDL–

induced liver injury, the ASE remarkably (p<0.05) declined the AST, ALP, bilirubin and MDA. 

Besides, there was effective (p<0.05) elevation in SOD, GPx and CAT in the ASE-treated 

groups. The morphology of liver tissue was preserved at 125 and 250 mg/kg ASE groups from 

BDL-induced necrosis and vascular congestion.  

Conclusion 

The study shows that the ASE has hepatoprotective actions against liver damage by possible 

modulation of biochemical and oxidative stress biomarkers 

Keywords: Acacia sieberiana; hepatoprotective effects; paracetamol-induced liver damages; 

bile duct ligation-induced hepatic injury; biochemical parameters; oxidative stress biomarkers
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1.0 Background 1 

The liver is the largest and one of the most essential organs in the human body, weighing 2 

approximately 2–3% of the average body weight (Pingili et al., 2019; Yue et al., 2020). It 3 

participates in a lot of physiological activities to keep the normal body system in healthy 4 

conditions, such as carbohydrate, lipids and protein metabolism; removal of toxic agents and 5 

pathogens; immunological, digestive, nutritional, and storage functions (Duncan et al., 2009; 6 

Elmasry, 2021; H. Khan et al., 2019; Protzer et al., 2012). Besides, the liver is the most 7 

important location for the biotransformation of exogenous and endogenous chemical 8 

compounds (H. Khan et al., 2019). It also participates in key biochemical processes in the body 9 

such as growth, energy production, reproduction, maintaining blood glucose level in the fasting 10 

stage by gluconeogenesis and glycogenolysis; supply of energy to muscle and brain during 11 

starvation; and synthesis of blood clotting factors  (A. Khan et al., 2011; Pingili et al., 2019).  12 

As a result of its diverse functions, the liver is frequently vulnerable to both direct and indirect 13 

toxic agents (Uzunhisarcikli & Aslanturk, 2019). Hepatic disorders, including cirrhosis, 14 

hepatitis, fibrosis and hepatocellular carcinoma, are among the main health care obstacles 15 

globally (Elufioye & Habtemariam, 2019). Some factors associated with the pathogenesis of 16 

liver disease include lipid peroxidation, reactive oxygen species (ROS), complement factors and 17 

pro-inflammatory mediators (chemokines and cytokines) (Elufioye & Habtemariam, 2019). 18 

Although the liver has a natural capability to regenerate its lost tissues, certain hepatic injuries 19 

or diseases sometimes tend to progress beyond this ability and may result in liver failure or 20 

death (Michalopoulos, 2017). Generally, the undiagnosed or unmanaged hepatic injury may 21 

progress from acute hepatitis of mere inflammatory reactions to chronic fibrosis, cirrhosis or 22 

liver failure (Tag et al., 2015). Besides, it eventually affects the biological functions of body 23 
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organs (Younossi et al., 2011). Acute or chronic liver disorders lead to high morbidity and cause 24 

about 2 million global deaths annually (Asrani et al., 2019). The development and progression 25 

of hepatic diseases could be implicated by viruses (hepatitis A, B and C), excessive alcohol 26 

intake, malnutrition, and metabolic disorders (Lin et al., 2017; Miltonprabu et al., 2016). 27 

Besides, drug-induced hepatic damage serves as the second leading cause of the acute hepatic 28 

disorder (Bernal et al., 2010). Some common drugs implicated in liver diseases include 29 

paracetamol (PCM), anti-infective agents, anticonvulsants and anti-inflammatory agents 30 

(Elufioye & Habtemariam, 2019). Despite the advancement in orthodox medical practice, no 31 

effective medications absolutely protect the liver against damage, stimulate its functions, or 32 

enhance its hepatic cell regeneration (Madrigal-santillán et al., 2014). Therefore, it is vital to 33 

investigate more effective and less toxic alternative therapies to manage liver diseases 34 

(Abenavoli et al., 2018; Ma et al., 2020).  35 

Herbal preparations have gained attention in traditional practice against many diseases 36 

(Usman et al., 2021). Approximately 75% of the global personalities use herbal preparations for 37 

their basic health needs (Muhammad et al., 2021). The biological screening of medicinal plants 38 

has motivated the discovery of noble and effective agents against various disorders (Ahmad et 39 

al., 2020). About one-third of the medicinal products used in modern medicine were obtained 40 

from medicinal plants (Usman et al., 2021). Besides, herbal preparations have gained 41 

popularity in traditional practice for their therapeutic uses against hepatic diseases, which 42 

stimulates interest in exploring complementary and alternative medicine to develop 43 

therapeutically effective compounds against hepatic disorders (Ali et al., 2019; Miltonprabu et 44 

al., 2016). Biological investigations have validated the liver protective effect of medicinal plants 45 

(Anyasor et al., 2020; Park et al., 2019). Similarly, natural antioxidant compounds have gained 46 
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attention for utilization against hepatic ailments by virtue of the role played by oxidative stress 47 

in the pathogenesis of hepatic disease (Rašković et al., 2014). 48 

The plant Acacia sieberiana var Woodii (Fabaceae) is a tree of 3-25 m in height and 0.6-1.8 m 49 

in diameter (Ngaffo et al., 2020). The bark is yellowish in colour and rough with gummy 50 

exudates. The leaves are sparse and hairy, while the flowers are cream, white or pale yellow 51 

(Dawurung et al., 2012). The plant possesses dehiscent shiny brown fruits of approximately 1.3 52 

cm in thickness, 9-21 cm in length and 1.7-3.5 cm in diameter (Dawurung et al., 2012). It is 53 

frost and drought resistant and grows in the savannah area with many botanical structures 54 

throughout the Sahel and other African nations (Ameh & Eddy, 2014). It is commonly 55 

distributed in Ethiopia, Benin, Chad, Gambia, Cameroon, Ghana, Kenya, Liberia, Zimbabwe, 56 

South Africa, Mozambique, Senegal, Mali, Mauritania, Namibia, Sierra Leone, Swaziland, 57 

Sudan, Nigeria, Portugal, Tanzania, Uganda, Zambia, Togo and India (Ameh & Eddy, 2014). In 58 

Nigeria, the plant is available as an economic tree in the Northern regions, including Yobe, 59 

Jigawa and Sokoto States (Ameh & Eddy, 2014). It is commonly referred to as umbrella 60 

thorn/white thorn/paperback thorn/flat-topped thorn or paperback in English, Farar kaya in 61 

Hausa, Aluki or Sie in Yoruba, Siyi in Igbo, Daneji in Fulfulde languages (Ameh & Eddy, 2014; 62 

Salisu et al., 2014). 63 

Previous studies on the phytochemical contents in the Acacia sieberiana resulted in isolation 64 

of gallic acid, kaempferol, ellagic acid, quercetin, isoferulic acid, kaempferol 3-α-L-arabinoside 65 

and quercetin 3-O-β-D-glucoside (Abdelhady, 2013). Other secondary metabolites including 66 

luteolin-7-O-rutinoside, chrysoeriol-7-O-rutinoside, apigenin-7-O-β-D-glucopyranoside, 67 

chrysoeriol-7-O-β-D-glucopyranoside, luteolin, luteolin-3′,4′-dimethoxylether-7-O-β-D-68 

glucoside and sitosterol-3-O-β-D-glucoside, were isolated from the leaves of the plant (Ngaffo 69 
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et al., 2020). The stem and leaves of Acacia sieberiana dihydroacacipetalin and acacipetalin 70 

(Seigler et al., 1975). 71 

The root decoction of Acacia sieberiana is utilized in Nigeria to treat hepatic diseases (Ohemu 72 

et al., 2014). The bark and stem of the Acacia sieberiana are also used to manage jaundice 73 

(Dawurung et al., 2012). Despite the ethnomedicinal applications of the Acacia sieberiana in 74 

folk medicine to manage liver diseases, no study in the literature scientifically documents its 75 

ameliorative actions against liver damage. Hence, the current study evaluates the effect of the 76 

methanol root bark extract of Acacia sieberiana on PCM- and bile duct ligation-induced liver 77 

injuries. 78 

2.0 Materials and Methods 79 

2.1 Plant collection  80 

The plant Acacia sieberiana was obtained from Samaru, Kaduna State, Nigeria. It was 81 

identified and validated by Mallam Namadi Sanusi at the herbarium unit of Biological Sciences 82 

Department, Ahmadu Bello University (ABU), Zaria, Nigeria (Specimen number= 16136). 83 

2.2 Animals 84 

Adult Wistar rats (males and females) ranging from 120g to 200g were sourced from the 85 

Animal Facility of the Department of Pharmacology and Therapeutics, ABU, Zaria, Nigeria. 86 

They were maintained in well-ventilated animal cages (temperature 22 ± 3 0C, relative 87 

humidity of 30-70%) and provided with sufficient animal feed (Vital feed, Jos, Nigeria). 88 

sufficient water was supplied to the animals ad libitum. The rats acclimatized to the laboratory 89 

environment for two weeks before the research work commenced. The study was conducted in 90 

accordance with the ABU Ethical Committee on Animal Use and Care Research Policy 91 

(ABUCAUC/2016/049) and ARRIVE (Animal Research: Reporting of In Vivo Experiments) 92 
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guidelines. On completing the experiment, the rats were anaesthetized, euthanized by cervical 93 

dislocation and buried as per the ABU's guideline for appropriate disposal of experimental 94 

animals remain. 95 

2.3 Extraction 96 

The fresh root barks of Acacia sieberiana were air-dried in a shaded environment to a uniform 97 

weight and size reduced with mortar and pestle. Then 2,500 g of the powdered material was 98 

soaked in 10 litres of 70%v/v methanol in a conical flask for 72-hours with frequent shaking. 99 

The mixture was filtered with Whatman filter paper (No. 1). The filtrate was concentrated on a 100 

water bath maintained at 50�C to obtain the extract, packaged and labeled as Acacia 101 

sieberiana extract (ASE). The mixture of the ASE was prepared freshly for each experiment 102 

with distilled water.  103 

Then the extractive value of the extract was obtained as follows: 104 

Extractive value 
%� �
������ �	 ��� 
��
� ��� ���

������ �	 ��� ���� ��
�
�
 ����� ���
 x 100 105 

2.4  Phytochemical determination 106 

Preliminary phytochemical determination of the ASE was conducted using an appropriate 107 

procedure (Sofowora, 1993). 108 

2.5 Acute toxicity evaluation  109 

The intraperitoneal (i.p) and oral acute toxicity determination on the ASE were determined in 110 

rats in two phases (Lorke, 1983). In the 1st stage, 9 animals were categorized into 3 different 111 

groups (n=3), administered the ASE via oral route at 10, 100 and 1,000 mg/kg and then 112 

observed for 24-hours for signs of harmful effects or loss of life.  In the 2nd stage, 3 rats were 113 

categorized into 3 groups (n=1 rat per group) administered with the higher doses of the extract 114 
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orally (600, 2900 and 5,000 mg/kg) and observed for possible signs of harmful effects and 115 

mortality. The same procedure was followed to determine the i.p acute toxicity. The estimated 116 

oral and i.p median lethal doses (LD50) were estimated by taking the geometric mean of the 117 

highest non-lethal and the lowest lethal doses as follows: 118 

LD50 � √(maximum non-lethal dose × minimum lethal dose) 119 

2.6 Hepatoprotective effects 120 

2.6.1 Paracetamol-induced hepatotoxicity in rats 121 

The procedure previously described by (Mahmood et al., 2014) was used. The rats were 122 

randomly categorised into 6 various groups (n=5) and treated as follows: 123 

Group 1: Distilled water (1 ml/kg, p.o) once daily for 7 days 124 

Group 2: Distilled water (1 ml/kg, p.o) once daily for 7 days  125 

Group 3: Silymarin (50 mg/kg, p.o) once daily for 7 days  126 

Group 4: ASE (250 mg/kg, p.o) once daily for 7 days  127 

Group 5: ASE (750 mg/kg, p.o) once daily for 7 days  128 

Group 6: ASE (1,500 mg/kg, p.o) once daily for 7 days  129 

Following the administration in the above groups (except group 1), liver damage was induced 130 

by the PCM (2g/kg) administration (8th day). The rats were anaesthetised with chloroform 131 

soaked in cotton, put into an inhalational chamber, and euthanized by cervical dislocation. The 132 

blood samples were obtained from the various groups in bottles and centrifuged at 3,000 133 

revolutions per minute (rpm) for 10 minutes. The obtained sera were assayed for biochemical 134 

biomarkers such as alanine transaminase (ALT), aspartate transaminase (AST), alkaline 135 

phosphatase (ALP), albumin, total protein (TP), total bilirubin (TB) and direct bilirubin (DB). 136 

The oxidative stress markers, namely; catalase (CAT), glutathione peroxidase (GPx), 137 
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superoxide dismutase (SOD), and malondialdehyde (MDA), were also analysed. The livers 138 

were excised and placed in 10% formalin for histopathological examination. 139 

2.6.2 Bile duct ligation (BDL)-induced liver injury  140 

The method reported by (Tag et al., 2015) was employed. A total of fifty (50) male animals were 141 

anaesthetized with thiopental sodium (40 mg/kg, i.p). The abdominal furs of the rats were 142 

shaved off, and a short incision of about 2 cm was made below the xiphoid process of the 143 

abdomen to expose the bile duct region. Double ligation was placed at the common bile duct of 144 

forty-four (44) of the rats such that the bile did not flow. The incisions were then sutured, and 145 

the animals were kept to recover (fully awake and active). Thirty (30) out of the 44 double 146 

ligated rats that were fully awake and active within 24-hours were selected and categorized into 147 

5 groups of 6 rats each, while the 6 non-ligated rats served as a negative control for the study 148 

and were treated as follows:  149 

Group 1 (non-ligated): Distilled water (1 ml/kg, p.o) once daily for 7 days 150 

Group 2: Distilled water (1 ml/kg, p.o) once daily for 7 days  151 

Group 3: Silymarin (50 mg/kg, p.o) once daily for 7 days  152 

Group 4: ASE (125 mg/kg, i.p) once daily for 7 days  153 

Group 5: ASE (250 mg/kg, i.p) once daily for 7 days  154 

Group 6: ASE (380 mg/kg, i.p) once daily for 7 days 155 

Then 24-hours post-treatment, the animals were anaesthetised with chloroform and 156 

euthanized. The blood samples were obtained from the various groups in bottles and 157 

centrifuged at 3,000 rpm. The obtained sera were assayed for biochemical biomarkers such as 158 

ALT, AST, ALP, TP, Albumin, TB and DB. The antioxidant markers namely; SOD, CAT, GPx, 159 

and MDA, were also assayed. The livers were obtained for histopathological examination. 160 

2.7 Data analysis 161 
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The values obtained were expressed as mean ± standard error of the mean (SEM) in tables. We 162 

used the one way analysis of variance (ANOVA) to analyse the parameters, followed by the 163 

Bonferonni post hoc test. The p≤0.05 was taken as significant.  164 

3.0 Results 165 

3.1 Extractive value  166 

A sticky dark-brown solid residue of 115.78g (4.63%w/w) with a mild sweet smell was obtained 167 

from the 2,500g powdered sample of the crude root bark of A. sieberiana. 168 

3.1 Phytocomponents  169 

The phytocomponents analysis on the ASE indicated cardiac glycosides, saponins, tannins, 170 

triterpenes, flavonoids and alkaloids. The steroids and anthraquinones were not present.  171 

3.2 Acute toxicity  172 

Acute oral administration of ASE showed no death and behavioural signs of toxicity at 173 

5,000mg/kg, and thus, the oral LD50 of the ASE was determined to be ≥5,000 mg/kg. For the 174 

i.p acute toxicity study, mortality was not recorded in the first phase of the ASE treatments. 175 

However, the rats at all the increased doses (1,600, 2,900 and 5,000 mg/kg) in the second 176 

phase died. Hence, the i.p LD50 was about 1,300 mg/kg. 177 

3.3 Paracetamol-elicited hepatic injury  178 

3.3.1 Effects of ASE on liver biomarkers of rats in Paracetamol-elicited hepatic 179 

injury 180 

The liver of the PCM intoxicated group reflected a remarkable (p<0.05) upsurge in ALT, AST 181 

and DB and an efficient decrease (p<0.05) in TP and albumin when related to the healthy 182 

group. The group treated with silymarin and ASE (250 and 750 mg/kg) remarkably reduced 183 

the PCM-induced elevated ALT and AST concentrations in relation to the hepatotoxic control 184 
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group. Besides, the silymarin and ASE at all doses abolished the significant (p<0.05) reduction 185 

in TP caused by the PCM intoxication. In addition, the extract at all doses efficiently (p<0.05) 186 

increased the albumin level, while the silymarin pre-treatment showcased a non-significant 187 

increase. There was a remarkable (p<0.05) decline in the PCM-caused DB elevation in the 188 

silymarin and ASE (750 mg/kg) treated groups. The effects of the ASE on the hepatic 189 

biomarkers of rats in PCM-elicited liver injury are presented in Table 1. 190 
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Table 1: Effects of ASE on liver biomarkers of rats in paracetamol-induced liver injury 191 

 
Liver biomarkers 

Treatment groups (per kg) 

D/W 
(1 ml) 

D/W (1 ml) 
+ PCM (2 g) 

Sily (50mg) 
+ PCM (2g) 

ASE (250mg) 
+ PCM (2g) 

ASE (750mg) 
+ PCM (2g) 

ASE (1,500mg) 
+ PCM (2g) 

ALT (IU/L) 11.33±0.88 30.33±2.03a 17.00±1.15a,b 16.33±1.45a,b 17.00±2.65a,b 26.33±3.76a 

AST (IU/L 38.67±3.48 45.33±0.40a 41.00±3.79b 37.33±1.45b 38.33±4.63b 41.35±4.61 

ALP (IU/L) 12.49±1.18 13.58±0.53 14.55±1.05 14.05±1.16 11.70±1.03a 12.64±1.05 

Total Protein 
(g/dL) 

9.37±0.53 8.05±0.09a 9.14±0.19b 8.86±0.17b 10.16±0.91b 10.14±0.95b 

Albumin (g/dL) 3.85±0.81 2.64±0.27a 3.03±0.56 3.25±0.18b 3.46±0.19b 3.00±0.12b 

Direct bilirubin 
(mmol/L) 

3.03±0.44 4.24±0.68a 3.23±0.21b 3.56±0.43 3.18±0.26b 4.07±1.19 

Total bilirubin 
(mmol/L) 

5.30±0.35 5.78±0.41 5.33±0.43 5.45±0.30 5.16±0.97 5.69±0.46 

n = 5; The parameters are expressed as mean ± SEM; One Way ANOVA followed by Bonferroni post hoc test; a p<0.05 192 

significant compared to the D/W; bp<0.05 significant compared to the D/W+PCM group. Sily = Silymarin; D/W= 193 

Distilled water; PCM=PCM; ALT=alanine aminotransferase; AST=aspartate aminotransferase; ALP=alkaline 194 

phosphatase; ASE = Acacia sieberiana extract  195 
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3.3.2 Effects of ASE on oxidative stress biomarkers in paracetamol-elicited liver 196 

injury  197 

This result showed that the PCM-elicited hepatic damage significantly reduced (p<0.05) the 198 

SOD level in relation to the healthy rats. However, the groups treated with the silymarin and 199 

ASE at all doses efficiently (p<0.05) and dose-dependently elevated SOD plasma concentration 200 

related to the PCM-hepatotoxic group. The concentration of the CAT was not affected by the 201 

PCM intoxication. However, the CAT level significantly increased (p<0.05) in the categories 202 

that received the ASE at 250 and 750 mg/kg compared to the distilled water healthy and 203 

hepatotoxic groups. The PCM intoxicated group elicited significant (p<0.05) elevation in the 204 

MDA concentration, which was reversed effectively (p<0.05) by the silymarin and ASE at all 205 

doses. The PCM-induced injury slightly and insignificantly reduced the GPx concentration. 206 

However, its serum concentration was increased in all the ASE pre-treated groups in relation 207 

to the distilled water healthy group. There was an effective (p<0.05) increase in the GPx in the 208 

silymarin pre-treated group in relation to the PCM-intoxicated category. The actions of the 209 

ASE on the oxidative stress biomarkers of rats in PCM-induced liver injury are presented in 210 

Table 2. 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 
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Table 2: Effects of the ASE on oxidative stress biomarkers of rats in paracetamol-221 

induced liver injury 222 

 

Treatment groups  
(per kg) 

Oxidative stress biomarkers 

SOD (ng/mL) CAT (ng/mL) MDA (nmol/mL) GPx (ng/mL) 

D/W (1 ml)  9.47 ±1.64 40.94 ±1.45 13.71 ±0.65 92.39 ±4.42 

D/W (1 ml) + PCM 6.58 ±0.74a 41.31 ±2.39 27.00 ±3.60a 89.62 ±5.80 

Sily (50 mg) + PCM  11.45 ±1.61b 48.90 ±6.64a 14.17 ±1.19b 99.92 ±1.61a,b 

ASE (250) + PCM 10.71 ±0.81b 45.58 ±1.26a,b 12.28 ±0.50b 99.88 ±9.81 

ASE (750) + PCM 12.55 ±0.81a,b 53.91 ±3.17a,b 11.93 ±0.96b 97.06 ±4.62 

ASE (1500) + PCM 13.22 ±0.97a,b 40.82 ±3.07 12.11 ±0.65b 94.59 ±9.77 

n = 5; parameters are expressed as mean ± SEM; One Way ANOVA followed by Bonferroni 223 

post hoc test; a p<0.05 significant compared to the D/W; b p<0.05 significant compared to the 224 

D/W+PCM. Sily = silymarin; D/W= Distilled water; PCM=PCM; SOD=Superoxide dismutase; 225 

CAT= Catalase; MDA=Malondialdehyde; GPx=glutathione peroxidise; ASE = Acacia 226 

sieberiana extract 227 

3.3.3 Effects of ASE on the liver histology in the paracetamol-elicited liver injury 228 

The histopathological results of the rats' livers after PCM-induced liver injuries showed that 229 

the PCM produced intense hepatocellular necrosis with sinusoid and vascular congestion. At 230 

the same time, the group pre-treated with the standard drug silymarin exhibited slight focal 231 

necrosis, lymphocyte hyperplasia and vascular congestion. There was slight kupffer cell 232 

hyperplasia and slight sinusoidal congestion in the group that received ASE at 250mg/kg, 233 

while the group pre-treated with the ASE at 750mg/kg showed vascular congestion and slight 234 

vacuolation and necrosis. However, the group pre-treated with 1,500mg/kg of ASE showed 235 

intense hepatocellular necrosis and lymphocyte hyperplasia. The actions of the ASE on the 236 

hepatic histology of rats in PCM-produced liver injury are shown in Figure 1. 237 
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Figure 1:  Photomicrographs of hepatic sections of rats after 7-days of ASE pre-treatment in 238 

the paracetamol-induced liver injury (Haematoxylin and eosin-stained at ×250 magnification) 239 

 240 

A) Distilled water (1 ml/kg), B) Distilled water (1 ml/kg) + PCM), C) Sily (50 mg/kg) + PCM), 241 

D) ASE (250 mg/kg) + PCM), E) ASE (750 mg/kg) + PCM), F) ASE (1,500 mg/kg) + PCM), 242 

NH= Normal hepatocytes, N= Necrosis, SC= Sinusoid congestion, VC= Vascular congestion, 243 

FN= Focal necrosis, LH= Lymphocytes hyperplasia, KH= Kupffer cell hyperplasia, SC= slight 244 

sinusoidal congestion, MN= Moderate necrosis, ASE = Acacia sieberiana extract  245 

 246 
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3.4 Bile duct ligation-elicited hepatic injury  250 

3.4.1 Effects of ASE on hepatic biomarkers of rats in bile duct ligation-induced 251 

liver injury 252 

All the liver biomarkers in the BDL-induced hepatic injured group were elevated, which were 253 

significant (p<0.05) for ALP, AST, and bilirubins in relation to the non-ligated control group. 254 

However, the BDL produced a non-significant reduction in the albumin level related to the 255 

non-ligated control group. The ASE non-significantly declined the ALT and total protein levels 256 

at all doses compared to the BDL-treated control group. The ASE also produced a remarkable 257 

(p<0.05) reduction in the AST (125 and 250 mg/kg), ALP (250 and 380 mg/kg), direct and 258 

total bilirubin levels at all doses. However, the ASE at higher doses (250 and 380 mg/kg) 259 

produced a non-significant increase in the plasma albumin concentration. The standard agent 260 

silymarin increased the ALT, total protein, and albumin related to the BDL-ligated control 261 

category. However, the ALP and AST declined insignificantly in the category pre-treated with 262 

the silymarin in relation to the BDL-ligated control group. Also, the direct and total bilirubin 263 

reduced (p<0.05) in the silymarin administered group. The effects of the ASE on the hepatic 264 

biomarkers of rats in BDL-induced liver injury are showcased in Table 3. 265 

 266 

 267 

 268 

 269 
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Table 3: Effects of ASE on liver biomarkers of rats in bile duct ligation-induced liver injury 270 

 
 

Liver biomarkers 

Treatment groups (per kg) 

Non-ligated 

+ D/W (1ml) 

BDL +  

D/W (1ml) 

BDL+ Sily 

 (50 mg) 

BDL+ASE  

(125 mg) 

BDL+ASE  

(250 mg) 

BDL+ASE 

(380 mg) 
ALT (IU/L) 7.67±0.88 8.33±1.45 9.02±1.00 6.67±0.33c 7.00 ±1.0 2 7.67±1.45 

AST (IU/L) 9.00 ±1.15 24.67±4.17a 20.00±3.58a 12.05±2.08b,c 10.50±0.50b,c 19.67±1.76a 

ALP (IU/L) 12.87± 2.04 16.23±0.84a 13.32±2.18 15.93±0.38a 12.57±0.26b 13.93±1.21b 

Total Protein (g/dL) 5.98±0.09 6.35±0.90 6.78±1.16 5.39±0.60 5.59±0.50 5.62±0.64 

Albumin (g/dL) 1.88±0.37 1.43±0.38 2.20±0.16b 1.42±0.31 1.64±0.30 1.91±0.13 

Direct bilirubin (mmol/L) 0.33±0.13 2.83±0.08a 0.39±0.08b 0.27±0.04b 0.23±0.10b 0.27±0.04b 

Total bilirubin (mmol/L) 0.56 ±0.17 2.86±0.08a 1.18±0.23a,b 0.82±0.27b 0.58±0.10b 1.53±0.10a,b 

n = 6; The parameters expressed as mean ± SEM; One Way ANOVA followed by Bonferroni post hoc test; a p<0.05 271 

significant compared to the Non-ligated + D/W; b p<0.05 significant compared to the BDL + D/W; c p<0.05 significant 272 

compared to the BDL + Sily; Sily = silymarin; D/W=Distilled water; BDL=Bile duct ligation; ALT=alanine 273 

aminotransferase; AST=aspartate aminotransferase; ALP=alkaline phosphatise; ASE = Acacia sieberiana extract 274 
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3.4.2 Effects of ASE on oxidative stress biomarkers in bile duct ligation-induced 276 

liver injury 277 

The SOD and CAT concentration effectively (p<0.05) reduced in the BDL-induced liver injured 278 

group related to the non-ligated control class. The MDA level was increased significantly 279 

(p<0.05) in the BDL-induced liver injured group. In addition, the GPx level was slightly 280 

elevated in the BDL-ligated group.  The standard drug (silymarin) and ASE (125 and 250 281 

mg/kg) showed a remarkable (p<0.05) upsurge in the serum SOD concentration in 282 

comparison to the BDL-treated control group. Similarly, the silymarin and extract elicited 283 

dose-dependent and significant elevation in the CAT level. Also, an efficient (p<0.05) increase 284 

in the GPx was observed in all the extract-treated groups. The standard agent (silymarin) and 285 

ASE (125 mg/kg) showed a remarkable (p<0.05) reduction in the MDA serum concentration 286 

related to the BDL-treated control group. The effects of the ASE on the oxidative stress 287 

biomarkers of rats in BDL-induced liver injury are presented in Table 4. 288 

 289 

  290 

 291 

 292 

 293 

 294 
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Table 4: Effects of ASE on oxidative stress biomarkers in bile duct ligation-296 

induced liver injury 297 

 
 
Treatment groups 
(per kg) 

Oxidative stress biomarkers 

SOD(ng/mL) CAT (ng/mL) MDA (nmol/mL) GPx (ng/mL) 

Non-ligated +D/W (1 
ml)  

5.47 ±0.65 40.94 ±1.45 36.71 ±1.54 95.06 ±4.05 

BDL + D/W (1 ml) 1.27 ±0.18a 32.48 ±8.27a 68.61 ±6.09a 99.61 ±1.02 

BDL + Sily (50 mg)  2.01 ±0.13a,b 61.38 ±5.30a,b 47.30 ±9.44b 105.28 ±7.40 

BDL + ASE (125 mg)  2.35 ±0.40a,b 45.06 ±3.24b,c 52.45 ±3.91a,b 112.62±8.31a,b 

BDL + ASE (250 mg)  2.61 ±0.31a,b 49.11±4.95a,b,c 67.45 ±7.45a 116.50±7.50a,b 

BDL + ASE (380 mg)  1.65 ±0.37a 53.70 ±3.75a,b 68.23 ±6.23a 113.54±7.54a,b 

n = 6; The values are expressed as mean ± SEM; One Way ANOVA followed by Bonferroni post 298 

hoc test; a p<0.05 compared to the Non-ligated + D/W; b p<0.05 compared to the BDL + D/W, c 299 

p<0.05 compared to the BDL + Sily group. Sily =Silymarin; D/W= Distilled water; BDL=Bile duct 300 

ligation; CAT=Catalase; SOD=Superoxide dismutase; GPx=Glutathione peroxidise; 301 

MDA=Malondialdehyde; ASE = Acacia sieberiana extract 302 

3.4.3 Effects of ASE on the liver histology in the bile duct ligation-induced liver 303 

injury 304 

The hepatocytes of the operated, non-ligated control group were intact with normal structures. 305 

However, the BDL-injured group showed moderate hepatic necrosis and vascular congestion, 306 

which was slightly reversed in the group that received the ASE at 125mg/kg. The group treated 307 

with the extract at 250mg/kg showed lymphocyte hyperplasia.  The ASE at the highest dose 308 

(380 mg/kg) revealed Kupffer cell hyperplasia and vascular congestion. The effects of the ASE 309 

on the liver histology are shown in Figure 2.  310 
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Figure 1:  Photomicrographs of hepatic sections of rats after 7-days of ASE treatments in the 311 

bile duct ligation-induced liver injury (Haematoxylin and eosin-stained at ×250 magnification) 312 

 313 

A) Distilled water (1 ml/kg), B) BDL + Distilled water (1 ml/kg), C) BDL + Sily (50 mg/kg), D) 314 

BDL + ASE (125 mg/kg), E) BDL + ASE (250 mg/kg), F) BDL + ASE (380 mg/kg), NH= 315 

Normal hepatocytes, VC= Vascular congestion, MN= Moderate necrosis, SN= Slight necrosis, 316 

LH= Lymphocytes hyperplasia, KH= Kupffer cell hyperplasia, ASE = Acacia sieberiana extract  317 
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4.0 Discussion 320 

The liver is often exposed to diverse endogenous and exogenous toxic xenobiotics, drugs, 321 

metabolic waste products, and viral or bacterial agents which traverse it for detoxification or 322 

excretion (Zhou et al., 2019). This predisposes the liver to the harmful effects of drugs and 323 

other toxicants (Ramirez et al., 2018). Therapeutic agents used against hepatic disorders 324 

possess limited therapeutic efficacy. Hence, it has become imperative to develop new, effective, 325 

safe drugs to manage liver disorders (Jin et al., 2021). The use of abundant medicinal plants 326 

and formulas with hepatoprotective efficacy to manage hepatic disorders has gained 327 

considerable attention (Ilyas et al., 2016; Jadeja et al., 2015). For example, the flavonoids 328 

extract of Silybum marianum plant, currently standardised as silymarin has been reported to 329 

be an effective hepatoprotective agent ((Mukhtar et al., 2021; Papackova et al., 2018; Vargas-330 

mendoza et al., 2014). This informed the rationale for the current experiment to evaluate the 331 

effectiveness of the methanol root bark of Acacia sieberiana in the PCM and BDL-induced rat 332 

models of liver injury with altered biochemical parameters, oxidative stress biomarkers and 333 

liver histopathological alterations to validate its folkloric use in liver diseases. 334 

The acute toxicity evaluation is important in checking the potentially noxious effects of 335 

chemical agents after acute administration. Besides, it helps in the LD50 determination of new 336 

bioactive compounds for biological screening (Kpemissi et al., 2020; Musila et al., 2017). The 337 

lack of toxic indications and death in animals following the acute administration of the 338 

compound at a dose of 5,000 mg/kg after a 14-days observation period showcases that the 339 

LD50 of the said compound could be higher than the 5 g/kg (Qin et al., 2009). Thus, the oral 340 

LD50 of the ASE in the current experiment might be greater than 5,000 mg/kg, and it could be 341 

safe at that dose via oral administration. However, mortality was observed following the i.p 342 
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administration of the ASE 1,600 mg/kg resulting in a calculated i.p LD50 of 1,300mg/kg, as an 343 

indication that it could be relatively safe at the dose after acute i.p. administration. 344 

Paracetamol is among the hepatotoxic therapeutic agents that cause acute hepatic failure at a 345 

high dose (Sinaga et al., 2021). Approximately one-fourth of the administered PCM binds to 346 

plasma protein and is partially biotransformed by the hepatic microsomal enzymes. It can also 347 

be metabolized by conjugation with glucuronic acid in the liver (Sinaga et al., 2021). The 348 

cytochrome P450 changes about 5-15% of PCM within the therapeutic range to a highly 349 

reactive product N-acetyl-p-benzoquinonymin (NAPQI), which is easily nullified by 350 

glutathione conjugation (Ohba et al., 2016). Following the PCM intoxication, the NAPQI 351 

targets the mitochondrial protein and interferes with the energy production, generating ROS, 352 

which leads to oxidative stresses and subsequently generates hepatotoxicity (Tsai et al., 2018; 353 

Yoon et al., 2016). 354 

The AST, ALT, and ALP are parameters that reveal the hepatic metabolic activities (El 355 

Kabbaoui et al., 2017). The AST and ALT have been particularly elevated in conditions that 356 

cause hepatocellular damage that eventually causes leakage of these enzymes into the blood in 357 

liver injuries (Ahmad et al., 2022; Y. Li et al., 2019). The ALP level increases in case of bile duct 358 

obstruction and indicates liver or bone disorder (Sinaga et al., 2021). The effective decline in 359 

the ALT and AST levels by the ASE after the PCM hepatotoxic injury in the current work at the 360 

250 and 750 mg/kg may be associated with its hepatoprotective efficacy. Sometimes, the toxic 361 

injury had been reported not to affect the ALP concentration, and this seemed to be confirmed 362 

in this study in that the PCM toxic injury did not significantly increase the ALP activity, unlike 363 

the ALT and AST.  364 
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The reduction in the total protein and albumin plasma concentration and the elevated levels of 365 

total and direct bilirubin in the hepatotoxic rats showcases interference of the hepatic cellular 366 

integrity and function as a result of paracetamol intoxication (Yoon et al., 2016). The ASE at all 367 

doses in this research increased the concentrations of the total protein and albumin efficiently, 368 

suggestive of its hepatoprotective activity. Besides, the ASE reduced the PCM-induced elevated 369 

bilirubin level, which was significant only in the 750 mg/kg ASE-treated group for the direct 370 

bilirubin.  371 

The pathogenesis of hepatotoxicity is mostly related to the metabolic changes of xenobiotics to 372 

ROS, which eventually result in oxidative stress and damage to the hepatic cellular contents 373 

(Zhang et al., 2018). The antioxidant enzymes (SOD, CAT, and GPx) produce defensive 374 

mechanisms against ROS. Therefore, the imbalance between the generated ROS and 375 

antioxidant enzyme activity is responsible for the mechanisms of hepatic diseases, including 376 

hepatitis, cirrhosis, necrotic hepatitis and hepatocellular carcinoma (Banerjee et al., 2020). 377 

The SOD enzyme converts superoxide radicals to an oxygen molecule and hydrogen peroxide 378 

to maintain a steady oxygen state (Palanivel et al., 2008). CAT and GPx often convert the 379 

hydrogen peroxide into water to complete the SOD's scavenging activity (Li et al., 2015). In this 380 

process, the toxic species (superoxide radical and hydrogen peroxide) are modified to the 381 

harmless water. Therefore, the reduction in the SOD level as seen in the PCM hepatotoxic 382 

group in this study suggests hepatocellular damage, which was efficiently attenuated in all the 383 

ASE-treated groups as an indication of protection against the PCM toxic injury. Although the 384 

PCM toxic injury did not affect the CAT concentration, ASE at 250 and 750 mg/kg as with 385 

silymarin elevated its level to indicate its hepatic boosting ability. The ASE ameliorated the 386 

injury from the PCM-induced reduction in GPx at all doses, almost to the same extent as the 387 
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standard agent.  It was also obvious that the PCM-induced hepatic damage results in lipid 388 

peroxidation, as evident with the enhanced MDA level in the current research. The MDA 389 

generated as a result of lipid peroxidation tend to amplify cellular damage, thus, are often used 390 

as biomarkers of oxidative liver damage (Wang et al., 2019). Hence, oxidative hepatic damage 391 

could be alleviated by inhibiting the lipid peroxidation and MDA production (Liu et al., 2015). 392 

The reduction in the MDA concentration in both the silymarin and ASE administered groups in 393 

the current work further explained the ameliorative effects of the extract against the hepatic 394 

lipid peroxidation, free radicals and cellular damage.  395 

The reduction in the PCM-induced intense necrosis and congestion in the silymarin and ASE 396 

treated groups further indicated the hepatoprotective activity resulting probably by increasing 397 

the activity of the antioxidant system in the body, thereby preventing liver damage. This 398 

protection seemed better with the lower ASE doses than 1,500 mg/kg. 399 

The BDL is an animal model used to induce extrahepatic cholestasis in rats accompanied by 400 

fibrosis and oxidative stress (Pereira et al., 2009). Cholestasis can result from abnormal bile 401 

secretion by the hepatic and bile duct cells or by the blockade of bile ducts (Moslemi et al., 402 

2021). The increased concentrations of ALT, ALP, AST, total protein and bilirubin serve as 403 

sensitive markers of cholestasis to indicate bile acid degradation (Qiao et al., 2019). Generally, 404 

AST, ALT and ALP elevations are associated with hepatic damage, necrosis, and bile salts 405 

accumulation, respectively (Aryal et al., 2019; Moslemi et al., 2021). The BDL-elicited liver 406 

damage in this study seemed to suggest milder toxicity than in the PCM-induced model. 407 

Similar to the PCM-induced model, the ASE in the current experiment demonstrated 408 

ameliorative effects in the BDL-induced hepatotoxicity. All the extract groups reduced the 409 

elevated ALT concentration. However, the reduced ALT level at the lowest extract dose, which 410 
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showed more of the reduction, was not significant to the BDL-injury. The BDL-injury elevated 411 

AST was also reduced in all the extract groups, but only the lower extract doses were 412 

significantly reduced. However, ALP which was also reduced in all the treatment groups, was 413 

only significant at the higher extract doses. The better result exhibited by the lower doses of the 414 

extract for ALT and AST seemed to suggest its liver protection. 415 

The effect of ligation was slight for both total protein (which increased) and albumin 416 

(decreased slightly). The ASE at the higher doses increased the albumin level, but total protein 417 

slightly decreased in all the ASE doses, which were insignificant. The direct and total bilirubin 418 

elevated with the BDL injury were significantly reduced in all the extract-treated groups, which 419 

could be related to the enhanced bilirubin uptake or its conjugation by the extract (Zhu et al., 420 

2018). Therefore, the ASE in the present work might have increased the bile formation as part 421 

of its hepatoprotective efficacy. 422 

Oxidative stress is the major pathogenesis in cholestasis, resulting from an imbalance between 423 

the antioxidant and oxidative systems (Moslemi et al., 2021). Some enzymes, such as CAT, 424 

SOD, and GPx, are antioxidants (Moslemi et al., 2021). The decrease in SOD from BDL-injury 425 

was prevented in the lower ASE doses (125 and 250 mg/kg) better than the silymarin. Although 426 

the SOD level was increased in all the treatment groups, the level was still significantly below 427 

that of the normal control.  A dose-dependent increase in the CAT concentration also occurred 428 

with all the ASE-treated groups, and in this case, the increase at the 380 mg/kg extract dose 429 

was more and was not significantly different from the silymarin group unlike the lower extract 430 

doses. In both the PCM- and BDL- induced injury, the GPx concentration was not significantly 431 

reduced, but it was increased in all the treatment groups of both the standard drug and ASE 432 

dose groups. GPx is an enzyme that protects haemoglobin from oxidative degradation in the 433 
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red blood cells (Yoshikawa & Naito, 2002). The enzyme has been reported to be over-expressed 434 

to protect cells against oxidative damage and apoptosis induced by hydrogen peroxide 435 

(Yoshikawa & Naito, 2002).  It was also evident that the lowest ASE dose reduced the BDL-436 

induced elevated MDA level, suggesting protection against the oxidative free radical, hepatic 437 

lipid peroxidation, and hepatocellular injury.  438 

The moderate necrosis and vascular congestion observed with the BDL-produced liver damage 439 

were reversed by the 125mg/kg extract group. Besides, milder effects were observed in the 440 

higher ASE dose groups (250 and 380 mg/kg). These effects could suggest some level of liver 441 

protection and regenerative potential of the extract.  442 

The therapeutic potentials of the medicinal plant are usually a direct function of the bioactive 443 

components in the plant, which could serve as a lead to develop hepatoprotective compounds 444 

(Girish et al., 2009). The present experiment showcased that glycosides, triterpenes, saponins, 445 

tannins, flavonoids and alkaloids could be available in the ASE. These compounds mostly act 446 

as antioxidants to abolish free radical generation and eventually prevent hepatic damage 447 

(Ramadan et al., 2013). For instance, flavonoids compounds such as catechin and kaempferol 448 

fight against free radicals and inhibit liver disease pathogenesis (Okaiyeto et al., 2018). Also, 449 

glycosides act as an antioxidant to provide hepatoprotective efficacy (Asaad et al., 2021; 450 

Siddiqui et al., 2018). Besides, (Huang et al., 2014) reported the hepatic protection of 451 

triterpenoids and saponins. A previous study by (Jan et al., 2017) has shown that alkaloids 452 

reduced biochemical biomarkers (ALT, AST, and ALP), attenuated hepatic inflammation, and 453 

elevated the antioxidant enzyme concentration in liver damage. Hence, the hepatic protective 454 

potentials of the ASE observed in the current research could be related to the presence of these 455 

phytocomponents. 456 
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5.0 Conclusion 457 

 458 

The research findings have shown that the root bark extract of Acacia sieberiana ameliorates 459 

chemically-induced and cholestatic liver damages, possibly via modulating the biochemical and 460 

oxidative stress biomarkers, which justifies its ethnomedicinal value against hepatic disorders.  461 
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