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ABSTRACT 

Epigenetic characterization of cell-free DNA (cfDNA) is an emerging approach for 

characterizing diseases.  We developed a strategy using nanopore-based single-molecule 

sequencing to measure cfDNA methylomes.  This approach generated up to hundreds of 

millions of reads per cfDNA sample from cancer patients, an order of magnitude improvement 

over existing nanopore methods.  Leveraging methylomes of matched tumors and immune 

cells, we characterized cfDNA methylomes of cancer patients for longitudinal monitoring during 

treatment. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2022.06.22.497080doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.22.497080
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1 

MAIN 

Malignant tumor cells shed their DNA into the bloodstream of cancer patients in the form of cell-

free DNA (cfDNA). Sequencing cfDNA can identify cancer-associated biomarkers and is useful 

for disease monitoring.  This approach is commonly referred to as a liquid biopsy1-3.  Epigenetic 

modifications of tumor DNA are of particular interest because of their contribution to cancer 

development and progression4.  Characterizing cancer-specific methylation changes has proven 

to be a highly sensitive and specific modality for liquid biopsies5-7.  For detecting methylation, 

cfDNA is typically processed with bisulfite or enzymatic conversion of unmodified cytosines into 

uracils.  Short-read sequencing detects the presence of methylated bases.  However, this 

approach introduces biases such as significant GC skews, oxidative DNA damage, PCR 

amplification bias, and alignment artifacts8,9.  Compounding these issues, extracted cfDNA from 

plasma has low yields.  Characterizing cfDNA methylomes from patients remains challenging, 

particularly with conventional sequencing approaches. 

 

Addressing these challenges, we developed a single-molecule sequencing approach for 

efficiently characterizing methylation profiles from the cfDNA of cancer patients (Fig. 1A).  This 

PCR-free process generates sequencing libraries from nanogram amounts or less of cfDNA per 

sample.  We leveraged the Oxford Nanopore platform to identify cfDNA methylation without 

cytosine conversion.  The passage of methylated DNA through the nanopore generates a 

unique electrical signal compared to unmodified DNA; currently, 5-methylcytosine (5mC) CpG 

methylation is detected with machine learning algorithms at high accuracy10,11.  By eliminating 

PCR, we avoided GC-biased amplification skews from bisulfite conversion and enabled direct 

single-molecule counting of cfDNA.  The nanopore-based methylation profiles thus directly 

reflect the native single-molecule state of the cfDNA. 
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Nanopore sequencing typically requires hundreds of nanograms of DNA for library preparation. 

However, extracted cfDNA yields range from single nanograms or less per ml of plasma.  PCR 

amplification erases DNA methylation and cannot be used for nanopore-based methylation 

analysis.  To enable PCR-free library preparation from nanogram DNA amounts of cfDNA, we 

identified a series of steps to efficiently incorporate sample barcodes and nanopore sequencing 

adapters to cfDNA (Supplementary Figure 1).  We systematically optimized reaction conditions 

to maximize cfDNA library yield.  The method also incorporated a second end-repair and a-

tailing step to add newer sequencing adapters for multiplexing cfDNA samples (Methods). 

 

To validate our approach, we developed a model DNA analyte that replicates some of the 

fragmentation patterns of cfDNA.  We performed DNAse digestion on nuclei from isolated 

peripheral blood mononuclear cells (PBMCs), where digestion of open chromatin yields DNA 

fragmentation patterns with a mononucleosome peak as seen in cfDNA (Supplementary 

Figure 2).  With this DNA, we used our library preparation method to generate libraries that 

were sequenced on the Oxford Nanopore PromethION system.  We used the ‘megalodon’ 

software package, previously benchmarked to provide high-quality methylation calls from 

nanopore sequence data10,11, for sequence alignment and methylation calling (Supplementary 

Figure 3).  We sequenced libraries made from different amounts of PBMC nucleosomal DNA.  

At 5 ng of input DNA, the yield was approximately 6 million aligned reads inclusive of quality 

score filtering.  With 100pg of input DNA, the yield was approximately 140,000 aligned reads 

(Supplementary Table 1).  We also prepared sequencing libraries of the same DNA with a 

standard protocol from Oxford Nanopore Technologies.  Our method improved the aligned read 

yield by approximately an order of magnitude, even with input amounts as low as 100pg (Fig. 

1B). 
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Next, we sequenced cfDNA from 20 patients with colorectal cancer (Supplementary Table 1, 

2).  Sequence yields ranged from one to 180 million reads per sample.  We used a fluorometric 

assay to quantify the cfDNA of each sample (Fig. 1C); the measurements were highly 

correlated with the total sequencing yield (Spearman’s rho = 0.86, p < 2.2e-16).  As a control, 

we sequenced cfDNA from healthy individuals.  There were several significant differences when 

comparing healthy and cancer patient cfDNA.  First, the overall variance in genome-wide 

methylation in cancer patient cfDNA samples was higher at 7% compared to less than 2% in 

healthy cfDNA (Fig. 1D).  The variation may be indicative of aggregate methylation shifts due to 

an increase in tumor-specific cfDNA in plasma. 

 

We distinguished mono- and di-nucleosome fragments using a size cutoff of 250bp (Fig. 1E, F, 

Supplementary Figure 4).  We observed that cancer patient cfDNA was enriched in 

mononucleosomes by approximately a factor of two (p=8.814e-05) compared to healthy 

controls.  A similar result was also reported in another study12. 

 

We determined the extent of gene-level methylation (Methods).  We observed many significant 

differences in gene-level methylation (q < 0.01) when comparing healthy versus patient cfDNA 

(Fig. 1G, H, Supplementary Table 3).  For example, there was an increase in the methylation 

of an immunologic marker gene CD79A13, a decrease in methylation of a tumorigenic 

modulation gene DICER114, and a decrease in methylation of SLC25A1, a critical gene in 

mitochondrial homeostasis that is highly upregulated in cancer15,16. 

 

We further examined the genes with statistically significant methylation differences between 

healthy controls and patient cfDNA.  We calculated that such differences were not strongly 
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correlated (Spearman’s rho = -0.188, p=7.392e-16) with the number of CpG sites covered per 

gene (Supplementary Fig. 5).  This result indicated that read yields were not a major 

confounding factor in our analysis.  We also observed that the overall variation in gene-level 

methylation for these statistically significant genes was comparatively smaller in healthy cfDNA 

samples.  This result indicated a relatively uniform cfDNA methylome across these samples 

(p=4.57e-4, Supplementary Fig. 6).  Finally, enrichment analysis of genes with statistically 

significant methylation differences using EnrichR17,18 yielded hits in the Myc pathway 

(Supplementary Figure 7), suggesting that the changes in gene-level methylation were cancer-

specific. 

 

We determined whether individual reads from cfDNA sequence data can be classified as 

originating from tumor or immune cells.  We leveraged patient-matched samples, which 

included resected tumors, peripheral leukocytes, and blood samples taken during treatment 

(Fig. 2A).  DNA was extracted from these matched samples and underwent nanopore 

sequencing with methylation profiling.  To classify each read, we calculated the proportion of 

matching methylation sites based on genomic coordinate and methylation states when 

compared to the matched tumor or immune cell methylation profile.  The result is a classification 

score for each read (Supplementary Figure 8).  After normalization, thresholds were used to 

classify reads as immune cell- or tumor-derived (Methods, Supplementary Figure 9). 

 

We validated this approach using in silico admixtures between digested PBMC nucleosomes 

from a healthy donor and the GP2D cancer cell line.  Nucleosomal DNA was subject to high-

depth nanopore sequencing and methylation calling.  Admixtures were computationally 

generated, and their proportions were estimated using our classification approach (Methods).  

We measured the classification accuracy against the ground truth based on the source of any 
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given read (Fig. 2B).  Performance was up to 97% sensitivity and specificity of 93% with an 

AUC of 0.951 when using stringent threshold cutoffs (immune threshold: <0.1, cancer 

threshold: >0.9, Supplementary Figure 10).  There was a corresponding trade-off with a 

declining proportion of classified reads (Supplementary Figure 11); reads that could not be 

confidently classified as either type would be excluded from further analysis.  We also simulated 

varying number of reads and did not observe declines in quantification performance when using 

stringent cutoffs (Fig. 2C). 

 

We also generated experimental admixtures where GP2D nucleosome DNA was added to 

donor nucleosome DNA while also varying the total quantity of DNA in the reaction. We 

observed a corresponding increase in cancer-derived reads at higher GP2D admixture fractions 

with Pearson correlation coefficients, ranging from 0.85 to 0.96 depending on the input amount 

(Supplementary Figure 12). 

 

For three patients (P4822, P6199, P6527) with different gastrointestinal cancers, we analyzed 

cfDNA from a longitudinal series of blood samples. The methylation profiles revealed responses 

to specific treatments and the emergence of treatment-resistant metastatic cancer.  We 

performed nanopore sequencing on the set of patient-matched tumor, peripheral blood, and 

longitudinal plasma samples and determined their methylation profiles (Fig. 2A, 

Supplementary Table 1,2).  Matched tumor and immune cells were sequenced up to 28x 

coverage. Their methylomes, intersected by genomic position and filtered by coverage, yielded 

tens of millions of CpG sites per patient. 
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We observed longitudinal trends that correlated with specific clinical events based on our 

analysis.  For one patient (P6199) receiving treatment for metastatic colorectal cancer, we 

sampled blood over approximately 600 days (Fig. 2D).  After having undergone chemotherapy 

and surgery, the patient had a period of stable disease.  However, starting after day 400, the 

fraction of reads with tumor-specific methylation changes dramatically increased.  This change 

correlated with CT imaging which showed substantial metastatic progression in multiple organs.  

Gene-level methylation analysis of this patient’s longitudinal cfDNA also showed gene-level 

methylation changes also found in the matched tumor, such as the Wnt/β-catenin regulator 

TCIM19 (Supplementary Fig. 13). 

 

We performed similar analyses on two other patients with metastatic cancer.  One patient 

(P4822) had metastatic pancreatic neuroendocrine carcinoma and received multiple treatments, 

including targeted therapy, radiation, and peptide receptor radionuclide therapy (PRRT) 

spanning over 1,000 days (Supplementary Fig. 14).  After each treatment, there was a 

correlation between treatment effect and a drop in tumor-specific reads.  The emergence of new 

metastases was reflected in a rise in reads with tumor-specific methylation changes.  For 

another patient (P6527) with metastatic cholangiocarcinoma, resistance to the initial 

chemotherapy with gemcitabine was evident, but disease was reduced under a dual 

chemotherapy treatment (Supplementary Fig. 15).  The patient underwent extensive surgical 

resection of the primary tumor and liver metastases, as reflected in the immediate drop in 

tumor-specific reads.  However, a subsequent rise in tumor-specific reads coincided with 

metastatic cancer recurrence. 

 

We demonstrated a single-molecule approach for efficiently analyzing methylomes from cfDNA 

at scale. Improving on existing approaches by approximately an order of magnitude, our method 
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yielded over 1 billion aligned reads across our cancer cohort when using small amounts of 

cfDNA.  We detected cancer-associated methylation profiles with distinguishing epigenetic 

characteristics and provided a measurement of tumor burden that corresponded to clinical 

events.  Our work demonstrated streamlined methylation analysis of cfDNA with significantly 

fewer experimental procedures and bottlenecks than short-read sequencing (Supplementary 

Table 4).  Newer machine learning models that incorporate the detection of other modified 

bases such as 5-hydroxymethylcytosine (5hmC) methylation can be applied to archived raw 

data.  In summary, we describe a single-molecule sequencing method that enables the analysis 

of cfDNA methylation.  This approach has the potential to impact liquid biopsy diagnostics for 

cancer detection and characterization. 
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METHODS 

Samples 

We obtained informed consent from all patients based on a protocol approved by Stanford 

University’s Institutional Review Board.  Blood and tissue samples came from the Stanford 

Cancer Center, the Stanford Tissue Bank, and the Stanford Blood Center. For a subset of 

patients enrolled at the Stanford Cancer Center, we obtained whole blood samples in Streck or 

EDTA tubes which were later centrifuged into plasma and PBMC fractions. For these patients, 

matched tumor tissue was also obtained.  Plasma from the Stanford Tissue Bank was obtained 

as single aliquots in 1ml cryovials.  Tumor tissue was archived by flash freezing in liquid 

nitrogen and stored at -80C.  From the Stanford Blood Center, we obtained whole blood from 

anonymous donors to serve as healthy controls; these samples were centrifuged into plasma 

and buffy coat fractions.  All samples were stored at -80C before processing. 

 

Nucleosome DNA controls 

To generate DNA fragments modeling the qualities of cell-free DNA, we used the EZ 

Nucleosomal DNA Prep Kit (Zymo Research).  This method uses DNAse to digest open 

chromatin positions and yields a fragment pattern characteristic of cell-free DNA instead of 

random fragmentation.  Briefly, nuclei were processed from whole cells by adding a nuclei prep 

buffer that lyses the cell membrane but leaves the nuclei membrane intact.  Enzymatic DNAse 

digestion then fragments DNA at unprotected locations, after which DNA is purified with the kit’s 

included components.  For nucleosomes from cancer lines, we used cells treated with trypsin. 

 

The Stanford Blood Center provided anonymous donor blood as healthy controls. We used 

peripheral blood mononuclear cells (PBMCs) for nucleosome preparation.  Whole blood was 
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diluted with an equal volume of PBS and added to a SepMate PBMC isolation tube (STEMCELL 

Technologies) containing Ficoll.  The tube was spun at 1200g for 10 minutes before decanting 

into a new tube.  Cells were spun again at 400g for 5 minutes and were washed with PBS. Cells 

were resuspended in freezing medium (90% FBS/10% DMSO).  Isolated PBMCs were then 

used as input for the nucleosome preparation kit.  For the experimental admixtures, the PBMC 

and cell line nucleosomes were diluted to a target concentration (e.g. 1ng/ul) and mixed to 

known ratios.  Serial dilutions of this mixture are then performed to simulate lower input 

amounts. 

 

Sample processing 

Extracted DNA was obtained from tissue biopsies using the Maxwell 16 DNA extraction kit 

(Promega).  Briefly, a small tissue fragment was excised from the tissue sample with a scalpel 

and deposited into the input well of the DNA purification cartridge.  The cartridge was placed 

into the Maxwell 16 instrument (Promega), and the associated protocol was run.  For extracting 

cell-free DNA, plasma was separated from whole blood by centrifugation.  The plasma fraction 

was pipetted into a Maxwell 16 ccfDNA Plasma kit cartridge (Promega) using the standard 

instrument protocol.  The cellular blood portion was extracted using a Maxwell 16 LEV Blood 

DNA Kit. Yields were measured by Qubit (Thermo Fisher Scientific).  Cell-free DNA was 

quantified using the AccuBlue NextGen DNA Quantification Kit (Biotium). 

 

Sequencing library preparation 

We developed a protocol for generating sequencing libraries that accommodate the low input 

amounts of cfDNA and maximize sample barcode adapters' incorporation rate.  Briefly, 25ul of 

extracted cfDNA (out of a typical 50ul extracted volume; thus corresponding to ~0.5ml of 
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plasma) was diluted with 25ul of water.  The sample DNA underwent end-repair and A-tailing 

with conditions of 20C for 30 minutes and 65C for 30 minutes (Roche KAPA HyperPrep kit).  We 

ligated native barcodes using 5ul of each barcoded adapter (EXP-NBD196, Oxford Nanopore 

Technologies) following the standard reaction volumes in the KAPA HyperPrep workflow.  We 

used a thermocycler for the ligation step for 4.5 hour incubation at 20C before holding at 4C 

overnight to maximize the ligation yield.  These steps provided a higher ligation rate of cell-free 

DNA molecules to a native barcode adapter than the standard protocol’s shorter end-repair/A-

tailing and ligation time (10 minutes per the standard Oxford Nanopore protocol). 

 

After the ligation step, 88ul of Mag-Bind Total NGS beads (Omega Bio-Tek; an alternative to 

Ampure XP beads) were added and mixed to each reaction.  After incubation for 5 minutes, the 

mixtures were pooled together into a 50ul centrifuge tube.  The beads were magnetized and 

washed with 80% ethanol using a DynaMag separation rack (Thermo Fisher Scientific) before 

eluting in 600ul of 10mM Tris-HCl pH 8.0 buffer.  We performed a second bead cleanup step 

with 900ul Mag-Bind Total NGS beads (1.5X ratio) and the same magnetic rack procedure.  The 

elution solution was 50ul 10mM Tris-HCl pH 8.0 buffer. 

 

We improved the preparation of multiplex sequencing libraries.  For the Oxford Nanopore 

platform, multiplexing is restricted to the AMII adapter, which has the same motor protein family 

as the LSK109 sequencing chemistry.  This adapter has a significant disadvantage for short 

fragment libraries because it incurs active consumption of on-chip “fuel” of idle sequencing 

molecules, leading to rapid flow cell exhaustion.  To address this issue, we modified the library 

preparation process to incorporate the updated “fuel-fix” adapter (LSK110 kit, Oxford Nanopore 

Technologies), which at the time when these experiments were conducted, did not have 

multiplexing capabilities.  We developed a protocol to enable multiplexing with this adapter.  We 
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performed a second end-repair and A-tailing reaction using the Kapa HyperPrep library 

preparation kit.  This step removed the sticky end from the barcode multiplexing adapter and 

produced a compatible A-tail for sequencing adapter ligation.  We used an increased amount 

(10ul) of the AMX-F sequencing adapter (LSK110, Oxford Nanopore Technologies) for the 

ligation step to maximize the yield of sequencing adapters to barcoded fragments.  This second 

ligation reaction occurred for 1.5 hours.  Subsequently, we mixed in 88ul of Mag-Bind Total 

NGS beads and incubated for 5 minutes.  As in the standard protocol, we washed the beads 

with 200ul SFB buffer (Oxford Nanopore Technologies) with gentle tube flicking to resuspend 

the beads during the wash steps.  The beads were resuspended in EB buffer (Oxford Nanopore 

Technologies).  We used 1ul for quantification with Qubit (Oxford Nanopore Technologies) and 

1ul for determining the DNA size with an E-gel EX cartridge (Thermo Fisher Scientific). 

 

We generated sequencing libraries for tumor tissue and PBMCs with 1-2ug of extracted 

genomic DNA.  For some tissue and buffy coat samples with low extraction yields (less than 

1ug), we used the entire amount of extracted DNA for library preparation.  We followed the 

standard Kapa HyperPrep library preparation kit protocol using 5ul of AMX-F adapter (LSK110) 

without barcoding.   Each sample was loaded into its own PromethION flow cell for sequencing. 

For comparison with the standard library preparation protocol, we followed the standard protocol 

for Native Barcoding (EXP-NBD196) coupled with the SQK-LSK109 library preparation kit using 

the AMII adapter.  The standard protocol is available on the Oxford Nanopore Technologies 

website. 

 

Nanopore sequencing and data processing 

We performed sequencing on the Oxford Nanopore Technologies’ PromethION 24 instrument.  

Approximately 150fmol of the library was loaded for each flow cell, loading up to four flow cells 
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in a single batch.  The remainder of the library was stored at -80C. For tissue samples, we used 

one entire flow cell per sample.  Sequencing runs had a duration of 72 hours.  Barcode 

demultiplexing was performed on the sequencer using onboard basecalling in MinKNOW with 

the “high accuracy” model and then transferred to a separate storage device.  Raw 

demultiplexed fast5 sequencing data were processed using Megalodon v2.4.0 (Oxford 

Nanopore Technologies, https://github.com/nanoporetech/megalodon) and Guppy v5.0.16 

(Oxford Nanopore Technologies, available closed source at https://nanoporetech.com/) with the 

“dna_r9.4.1_450bps_modbases_5mc_hac_prom.cfg” model for each demultiplexed barcode 

folder with standard settings.  The quality score cutoff was 7.  The GRCh38 reference was used 

for alignment.  The output consists of a file in BedMethyl format for each sample.  The files 

included modified base calls, a sequencing alignment bam file with modified base calls for each 

read, and a per-read text file containing modified base call probabilities.  Before further 

processing, the BedMethyl and sequence-alignment bam files were sorted and indexed with 

samtools20.  For larger sequencing runs involving multiple samples (e.g., from multiple flow cells 

and many barcodes), data was transferred to the Sherlock High-Performance Computing cluster 

at Stanford University for multi-node GPU-based data processing. 

 

The overall methylation status of sequenced cfDNA was determined by taking the average of all 

methylation values across all sequenced sites that had at least one read (coverage > 0).  To 

determine nucleosome enrichment, we subsampled each library’s sequence aligned bam file to 

50,000 reads, tabulated the estimated fragment size as inferred by the alignment length, and set 

a cutoff of 250.5 base pairs separating mono- and di-nucleosome states, with a maximum 

length filter of 600bp.  This data was then compiled for all reads and all samples sequenced. 
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We determined gene-level methylation for all sequenced cfDNA samples by calculating the 

average per-site methylation for each CpG site with non-zero coverage, and then searched for 

statistically significant differences in gene-level methylation.  This procedure is similar to that of 

another study7, with the main difference being that our data enables site-level detection of 

methylation percentage.  We utilized “gene”-level annotations in GENCODE v38, which includes 

all coding exons and introns.  First, we filtered on genes which were covered by at least one 

sample and where the standard deviation of average gene methylation is greater than zero. 

Then, grouping by gene-level annotations, we calculated the average methylation.  Based on 

genomic coordinates, we then excluded annotations that were pseudogenes, unprocessed, “to 

be experimentally confirmed genes,” lncRNAs, and miRNAs.  Finally, we used a t-test to 

compare methylation between the healthy donor-derived cfDNA and cancer patient-derived 

cfDNA.  An FDR-based multiple testing correction was applied to determine statistically 

significant differences in gene-level methylation.  We used a cutoff of q < 0.01. 

 

In silico admixture analysis 

To simulate circulating tumor DNA (ctDNA) data of varying fractions in cfDNA, we generated in 

silico admixtures of sequence data from the GP2D cancer cell line-derived and PBMC-derived 

nucleosomes.  Using a Python script, we mixed two sequence-aligned bam files using a known 

random seed to ensure reproducibility.  We also controlled for the number of reads to simulate 

different read depths. Methylation profiles were compiled from the Mm and Ml tags using the 

modbampy library as part of the modbam2bed package (https://github.com/epi2me-

labs/modbam2bed). We used only reads that mapped to the reference and used the 

subsequent bam file for downstream analysis.  The remainders of the reads were not used, 

including unmapped reads and those with secondary or supplementary alignments.  As another 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2022.06.22.497080doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.22.497080
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

output, we included the metadata about the sample origins, namely whether it originated from 

PBMC-derived nucleosomes or a cancer cell line. 

 

Reference methylation profile processing of tumors and immune cells 

For a subset of the patient samples, we had matched tumor tissue and PBMCs. These matched 

samples underwent nanopore sequencing to generate reference methylomes; methylation calls 

were also performed with megalodon. The reference methylomes consist of megalodon’s output 

BedMethyl files, which contain genomic positions of CpG sites, coverage (> 0), and the 

associated percent methylation for that position. 

 

To process these reference profiles for read-level classification, we used an R script to read 

both the tumor and PBMC methylation profiles. We intersected these profiles on genomic 

coordinate positions, with a coverage filter of greater than four in both samples21. We 

considered a site to be methylated if the percentage methylation per a given genomic segment 

was greater than zero. The resultant intersected table was used for read-level classification 

(below).  

 

To determine gene-level methylation for primary tumor and blood samples, average methylation 

profiles were determined for each “gene”-level annotation in GENCODE v38. These were then 

filtered to exclude annotations that were pseudogenes, unprocessed, “to be experimentally 

confirmed genes,” lncRNAs, miRNAs, miscRNAs, snRNAs, snoRNAs, scaRNAs, sRNAs, and 

rRNAs. We calculated the difference in methylation between the primary tumor and immune 

cells, and selected the top and bottom 25 genes. Using this gene list, we extracted the 

methylation values from the patient cohort that underwent longitudinal sampling. 
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Single-molecule read classification to reference profiles 

We built a computational workflow to classify whether an individual read is associated with an 

associated reference methylation profile.  It consists of two steps: 

 

1. Read-level methylation processing: This process utilizes sequence-aligned bam files 

containing read modifications (from megalodon). We used a python script to emit a table with 

columns consisting of the read name, genomic coordinate, and called methylation status. Thus 

this is a flat data table whereby genomic coordinates and their methylation states can be 

grouped by individual reads. 

 

2a. Scoring against reference profiles: We classified each read alongside a reference 

methylome containing informative methylation sites. Reference methylomes consist of matched 

tumor and immune cell methylation profiles that were nanopore sequenced and processed as 

above. Informative sites are CpG sites where the methylation values differed between sample 

types. This process generated a value 𝑓!"!##$% where i is the read number from 1 to the total 

number of aligned reads.  

 

Specifically, 𝑓!"!##$% = ∑ 𝑝𝑟𝑜𝑏(𝑚& = 𝑚&'*
(!"#$!
& /𝑁#!"%# = -

𝑚&'	𝑖𝑓	𝑚& = 1
100 −𝑚&'	𝑖𝑓	𝑚& = 0 where i is the read 

number, tissue is the candidate reference profile to match against, mj is the methylation of read i 

at site j (either 0 or 1), mj’ is the methylation of tissue at site j (ranging from 0 to 100), and Nsites 

is the number of methylated sites to consider for read i.   
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In other words, 𝑓!"!##$% is the mean probability that read i matches to a specific tissue 

methylation reference profile. To implement this scheme, we obtained the methylation status (mi 

… mn) of each CpG site for each read from a given sample and its reference coordinate.  Then 

we intersected these coordinates of the CpG sites to the corresponding locations of a candidate 

tissue reference methylation profile (e.g., from PBMCs or matched primary tumor, with 

methylation profile mi’ … mn’).  Subsequently, we calculated a matching score, where each site 

is scored mi’ if the mi is methylated; otherwise, it is scored 100 - mi’. In other words, the score is 

the probability that the methylation site and value mi is the same as the reference profile site mi’, 

which is equivalent to the reference profile’s methylation level at that site. It is then divided by 

the total number of candidate CpG sites on the read to derive 𝑓!"!##$%.  Reads with no candidate 

CpG sites or matching locations in a reference methylome were not considered.   

 

2b. Score normalization and thresholding: A normalized per-read tumor score was then 

assigned by the ratio of scores 𝑝! = 𝑓!"$)*+/(𝑓!"$)*+ + 𝑓!!))$,%), with scores close to zero 

indicating likely matches to PBMCs, and scores close to one indicating likely matches to tumor 

tissue. A final classification is determined by setting thresholds for matching to PBMC and 

cancer methylation profiles. By using a dual threshold system, a subset of reads in between the 

thresholds do not have a confident/stringent classification and were not called to be either type 

(and thus can be neglected from the final analysis). We varied the two thresholds to determine 

ROC curves and AUC performance metrics. 

 

3. Processing all reads. We process and aggregate classification calls from all reads in order 

to calculate the fraction of reads with methylation changes that were classified as specific to the 

tumor. 
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DATA AVAILABILITY 

Aggregated methylation calls and sequence aligned BAM files are deposited in NCBI’s dbGaP 

under accession phs002950. Code is available at https://github.com/billytcl/nanopore_cfDNA. 
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FIGURES 

 

Figure 1. Nanopore sequencing of cfDNA.  (A) An optimized protocol for generating cfDNA 

sequencing libraries enables high-throughput methylation characterization.  (B) Cell free DNA 

library comparison.  An optimized workflow enables approximately an order of magnitude 

increase in sequencing yield versus the conventional protocol. (C) Sequencing yield 

correlation with input cfDNA.  Fluorometric quantification was performed on cancer patient-

derived cfDNA samples and compared to the aligned sequencing yield.  Correlation and 
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significance value are annotated on the plot.  (D) Genome-wide methylation quantification. 

The degree of methylation across the genome was computed for healthy and patient-derived 

cfDNA.  (E) Nucleosome enrichment analysis. The ratio of mono-nucleosomes to di-

nucleosomes was quantified for each tissue type, using a cutoff of 250bp between mono- and 

di-nucleosomes.  (F) Distribution of fragment sizes. Example fragment sizes are shown for 

healthy and patient-derived cfDNA. Mono- and di-nucleosome size peaks are annotated with 

dotted lines to be 167bp and 334bp.  (G) Methylation profiles of healthy- and patient-derived 

cfDNA. Gene-level methylation values for each sample were determined, and statistically 

significant ones (q<0.01) are plotted as a heatmap with the gene-level methylation percentage 

as the intensities.  The heatmap was clustered by gene-level methylation.  (H) Differential 

methylation.  Statistically significant differences in methylation between sample types are 

shown for several selected genes. 
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Figure 2. Single-molecule methylated sequence classification. (A) Overview of method.  

For a given patient, matched primary tumor tissue and peripheral leukocytes were obtained as 

reference samples alongside longitudinal plasma samples.  Methylation data from the cfDNA is 
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then classified leveraging the methylation profile of the reference samples.  (B) Classification 

accuracy.  We used GP2D and healthy donor-derived nucleosome mixtures to validate the 

classification procedure.  ROC curves are plotted, where each curve represents a distinct 

immune threshold score.  The curve is plotted by varying the cancer threshold score. (C) 

Admixture validation.  The proportion of reads classified as belonging to cell line reference is 

plotted as a function of the actual admixture ratio and sequencing depth.  (D) Longitudinal 

methylation profiles of patient-derived cfDNA in colorectal cancer.  The overall cfDNA 

sequencing yield (upper panel) is plotted against the number of reads with methylation profiles 

matching that of the matched tumor with a calculated score of >0.9 (lower panel).  Clinically 

relevant events are annotated.  CT refers to computed tomography imaging. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2022.06.22.497080doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.22.497080
http://creativecommons.org/licenses/by-nc-nd/4.0/

