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Abstract 

Cell–cell communication events (CEs) mediated by multiple ligand–receptor pairs construct a complex 

intercellular signaling network. Usually only a subset of CEs directly works for a specific downstream 

response in certain microenvironments. We call them functional communication events (FCEs). Spatial 

transcriptomic methods can profile the spatial distribution of gene expression levels of ligands, receptors, and 

their downstream genes. This provides a new possibility for revealing the holographic network of cell–cell 

communication. We developed HoloNet, a computational method for decoding FCEs using spatial 

transcriptomic data. We modeled CEs as a multi-view network, developed an attention-based graph learning 

model on the network to predict the target gene expression, and decoded the FCEs for specific downstream 

genes by interpreting the trained model. We applied HoloNet on two breast cancer Visium datasets to reveal 

the communication landscapes in breast cancer microenvironments. It detected ligand–receptor signals 

triggering the expression changes of invasion-related genes in stromal cells surrounding tumors. The 

experiments showed that HoloNet is a powerful tool on spatial transcriptomic data to help understand the 

shaping of cellular phenotypes through cell–cell communication in a microenvironment.  

 

Introduction 

Cell–cell communication is of vital importance to the organization and maintenance of multicellular organisms 

as well as the occurrence of diseases1–3. A cell–cell communication event (CE) occurs when sender cells 

release ligand molecules to the microenvironment and receiver cells sense the ligands by receptors. CEs form a 

complex intercellular signaling network that participates in the regulation of various genes. Abnormal CEs can 

trigger abnormal cellular phenotypes and may lead to the occurrence of many diseases4,5.  
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A full picture of a CE should include the sender cell, the receiver cell, the ligand–receptor pair,  and its 

downstream responses (Fig. 1a). It is worth noting that specific downstream responses are usually induced by 

only subsets of all possible CEs. We call such CE subsets functional communication events (FCEs) for their 

downstream targets. Decoding FCEs can help understand how specific microenvironments shape cellular 

phenotypes6,7 and therefore is informative for studying possible disease interventions8,9. 

Current molecular profiling technologies provide bulk or single-cell gene expression profiles which include 

major ligand and receptor genes, cell-type-specific marker genes and possible downstream response genes. 

Recent spatial molecular profiling technologies such as spatial transcriptomic sequencing10,11 and SeqFISH12 

can provide additional information about cell positions. Some data-driven methods have been developed to 

study CEs based on these technologies. For example, NicheNet13 and MESSI14 were built to characterize the 

relationship between ligand–receptor pairs and downstream responses, while NCEM15 focused on the sender–

receiver cell dependencies as well as the related phenotypes. A comprehensive understanding of FCEs should 

contain answers to the following questions: which cell types act as senders and receivers, where they are, and 

which ligand–receptor pairs they employ to induce what kind of downstream responses. However, a method 

for building such a holographic network of FCEs is still lacking.  

In this work, we developed a computational method named HoloNet to reveal the holographic network of 

FCEs using spatial transcriptomic data. In HoloNet, we modeled CEs in spatial data as a multi-view network 

using the ligand and receptor expression profiles, developed a graph neural network model to predict the 

expressions of specific genes, and then interpreted the trained neural networks to decode FCEs. With spatial 

transcriptomic data and cell-type labels as the inputs, HoloNet provides a general workflow to characterize the 

communication landscapes in spatial data based on the multi-view CE network, and can identify cell types 

serving as major senders and ligand–receptor pairs serving as core mediators in FCEs for specific downstream 

genes. We applied HoloNet on two breast cancer datasets obtained with the 10x Visium technology16. The 

detected FCEs for specific gene expressions provided new insights into for how the microenvironment shapes 

cellular phenotypes in the corresponding tissues. HoloNet is available as a Python package at 
https://github.com/lhc17/HoloNet. 

 

Results 

Overview of HoloNet 

HoloNet is a computational method for decoding FCEs using spatial transcriptome data. It requires spatial 

data, cell-type labels and paired ligand–receptor gene lists as inputs. The required spatial data should contain 

high-dimensional gene expression profiles and spatial positions of cells (Fig. 1b). Users can provide either 

continuous cell-type percentages derived from deconvolution methods such as Seurat17 for spot-based datasets 
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or categorical cell-type labels for datasets with single-cell resolution. We used the paired ligand–receptor gene 

lists from connectomeDB202018 as the default setting, but users can also provide gene lists from other 

databases.  

HoloNet first constructs a multi-view CE network using the spatial data and paired ligand–receptor gene lists. 

As shown in Fig. 1a, in a CE, ligand molecules are released by the sender cell, diffuse over a distance within 

the tissue, and then bind to receptors expressed by the receiver cell. As cells communicate with others via 

multiple ligand–receptor pairs, CEs can be naturally modeled as a multi-view network. Each view in this 

network is a directed graph representing CEs mediated by one ligand–receptor pair with their own weighted 

edges. Each node represents a single cell or a spot in the measured tissue, and nodes across the multiple views 

are aligned. A directed edge in any view connects a sender cell to its corresponding receiver cell. An edge 

weight represents the strength of a CE mediated by the ligand–receptor pair between the sender and receiver 

cell. For each view, HoloNet calculates the weight of each edge by a function of three factors: the expression 

of the ligand in the sender cell, the expression of the receptor in the receiver cell, and the physical distance 

between the sender and receiver cell (Fig. 1b, see “Methods” section). HoloNet only retains edges with high 

confidence evaluated via a permutation test (Supplementary Fig. 1a, see “Methods” section).  

HoloNet provides multiple approaches to analyze and visualize the multi-view CE network (Fig. 1c). For any 

ligand–receptor pair, HoloNet performs network-centrality analysis in the corresponding view to detect cells 

(or spots) with high communication activation as CE hotspots. HoloNet also constructs a cell-type-level CE 

network for each view which represents the general CE strengths from one cell type to another cell type. To 

explore the relationship between different ligand–receptor pairs, HoloNet quantifies similarities between 

different network views based on their local features and performs the hierarchical clustering method to cluster 

ligand–receptor pairs (see “Methods” section).  

HoloNet can reveal a holographic network of FCEs based on the constructed multi-view CE network. We 

regard a CE as an FCE if the CE alters the expression of the gene of interest in the receiver cell. To decode 

FCEs, we decomposed the expression E of the target gene in all single cells or spots into its baseline 

expression E0 determined by its cell type and the expression change ΔE caused by CEs triggered by multiple 

cell types and mediated by multiple ligand–receptor pairs (Fig. 1a). We employ multi-view graph neural 

networks (GNNs) to predict the expression profile of the target genes, and interpret the trained model to 

decode FCEs. Fig. 1d illustrates the procedure. We first obtained a matrix representing the cell type of each 

cell by one-hot encoding or the cell type percentages in each spot. Then, a GNN is constructed for each view 

by adopting the CE network of this view as the adjacency matrix and assigning each column of the cell-type 

matrix to the corresponding node in each graph as features. Embeddings of nodes of each view are integrated 

with the attention mechanism19,20. The integrated results are further fed into a fully connected layer to estimate 

ΔE. On the other hand, another fully connected layer is constructed to estimate E0 from the cell-type matrix. 
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The whole model is trained to minimize the difference between E and the sum of E0 and ΔE (Fig. 1d, see 

“Methods” section). 

After training, we interpret the attention weights of HoloNet to indicate which views in the multi-view network 

contribute more to the expression of a target gene. The ligand–receptor pairs corresponding to these views are 

regarded as the core mediators of FCEs regulating the target gene expression. All attention weights as well as 

their mean values across all trained models are visualized as the FCE mediator plot. We can further identify the 

major sender and receiver cell types in FCEs based on the graph convolutional layer to construct cell-type-

level FCE connectivity networks (Fig. 1e, Supplementary Fig. 1b, see “Methods” section). To ensure the 

reliability of the findings, we repeated the training procedure for each target gene and integrated all the model-

predicted gene expressions and model interpretation results. 

In this article, we applied HoloNet on two human breast cancer spatial transcriptomic datasets. Both of them 

are based on 10x Visium technology. The dataset A is publicly available on the 10x Genomics website (see 

“Methods” section for details), and the dataset B is derived from a publication16.   
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Fig. 1 The overall workflow of HoloNet. 

a Definition of CEs and FCEs. b Constructing multi-view CE networks using spatial transcriptomic data. c As CE visualization, 

HoloNet provides CE hotspots and cell-type-level CE networks. d Predicting specific gene expressions via multi-view graph 

learning on the constructed multi-view CE network. e As FCE visualization, HoloNet identifies the core mediators and core 

senders of FCEs for specific genes.  

 

Characterizing the cell–cell communication landscape in breast cancer Visium dataset A 

We first showcased the functionalities of HoloNet on dataset A. The dataset is derived from an invasive ductal 

carcinoma breast tissue sample and profiled the expression of 24,923 genes in 3,798 spots. We calculated the 

cell-type percentage of each spot using the deconvolution method in Seurat17 (see “Methods” section). The 

cell types include stromal cells, immunocytes, and tumor cells which are further divided into four cell types: 

basal-like-1 cells, basal-like-2 cells, luminal-AR cells and mesenchymal cells21,22 (Fig. 2a, b). 

We first constructed the multi-view CE network in the dataset by HoloNet. Here we took the ligand gene 

COL1A1 and the corresponding receptor gene DDR1 as an example (Supplementary Fig. 2). This ligand–

receptor pair participates in diverse pathways related to tumor progression and metastases23–25. By visualizing 

the view corresponding to the COL1A1:DDR1 pair in the multi-view CE network, we found that there is active 

COL1A1:DDR1 communication in a protruding region between parenchyma (mainly including tumor cells) 

and stroma (mainly including stromal cells and immunocytes). In this region, the COL1A1 signals from 

stromal cells and immunocytes are effectively received by tumor cells with highly expressed DDR1, causing 

some stromal cells and immunocytes to display prominent sender characteristics (Fig. 2c, see “Methods” 

section). The CE hotspots identified by degree centralities also revealed the protruding region with active 

COL1A1:DDR1 communication (Fig. 2d). We visualized CE hotspots by eigenvector centralities and found 

this approach could detect core CE hotspots more efficiently (Supplementary Fig. 2d). The cell-type-level CE 

network also indicated there are significant COL1A1:DDR1 signals sent from stromal cells and macrophages 

and received by basal-like-1 cells (Fig. 2e).  

We quantified the similarities between network views according to their node eigenvector centrality vectors26 

and clustered ligand–receptor pairs into four groups (Fig. 2f; Supplementary Fig. 3a, b; see “Methods” 

section). We extracted Notch-related ligand–receptor pairs from the Hallmark gene sets of the molecular 

signatures database (MSigDB)27, and found that these ligand–receptor pairs were assigned to two groups. The 

CE hotspots of the two groups of Notch-related ligand–receptor pairs covered different regions 

(Supplementary Fig. 3c). JAG2:NOTCH3 and MDK:NOTCH2 are the representatives of these two groups, 

respectively (Supplementary Fig. 3d). This result indicated that the Notch-related ligand–receptor pairs of 

two distinct groups could collaborate to control the Notch signaling in different regions.  
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Fig. 2 Characterizing the cell–cell communication landscape of a breast cancer Visium dataset by HoloNet. 

a The cell type with the highest percentage in each spot. Each dot printed on the slide represents a single invisible capture spot 

with a diameter of 55 µm. b The percentages of basal-like-1 and stromal cells in each spot. c The constructed single-view CE 

network based on the COL1A1:DDR1 pair. The size of a node indicates the degree centralities of the node in the network, and 

the color indicates the sender-receiver attribute of the node. The sender-receiver attribute is the result of subtracting the in-degree 

of a node from its out-degree. The redder the color of nodes, the more inclined the nodes are to act as a sender, and the bluer on 

the contrary. The thickness of an edge indicates the strength of CEs between cells linked by it. Nodes with too small size and 

edges with too low thickness are not displayed. Nodes are mapped to the spatial positions of their corresponding spots in the 

hematoxylin and eosin (H&E) stained histology image. d CE hotspot plot describes regions with active COL1A1:DDR1 signals. 

For (C), (D) and (E), the protruding region between parenchyma and stroma is highlighted. e Cell-type-level CE network plot 
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describes the COL1A1:DDR1 communication landscape between cell types. The thickness of an edge reflects the summed 

weight of all edges in the CE network between the pair of cell types. f Low-dimensional representation of the eigenvector 

centrality vectors of each view plotted by UMAP. All ligand–receptors were hierarchically clustered into four groups based on 

the eigenvector centrality vectors. 

 

The holographic network of FCEs related to MMP11 expression pattern 

Based on the multi-view CE network constructed from the breast cancer Visium dataset, we further applied 

HoloNet to decode FCEs. In breast cancer, cell–cell communication plays an important role in multiple 

biological processes such as tumor growth, invasion and migration, and leads various neoplastic and non-

neoplastic cells in tumors to form complex heterogeneity28,29. However, there still lacks a systematic 

understanding of how the spatial expression patterns of functional genes are affected by cell–cell 

communication. For example, MMP11 encodes matrix metallopeptidase 11 and is associated with worse 

overall survival through involving the degradation of the extracellular matrix30,31. Previous research found 

MMP11 is expressed in stromal cells surrounding neoplastic cells31,32, but it is unclear how neoplastic cells 

trigger the spatial expression patterns of MMP11. 

We trained HoloNet to predict the expression of MMP11. As shown in Fig. 3a, the expression profile of 

MMP11 predicted by HoloNet is quite similar to the pattern observed in the true spatial transcriptomic data. 

We noticed that MMP11 is highly expressed in the lower-left part of the slide, where some stromal cells mix 

into tumor cells (Fig. 3a). To identify FCEs related to MMP11 expression, we interpreted the multi-view graph 

neural network of the trained HoloNet by decomposing MMP11 expression into baseline expression (E0) and 

expression change caused by CEs (ΔE). From Fig. 3b, we can see that the expressions of MMP11 in stromal 

cells and macrophages are dominated by E0 while its expressions in the other cell types such as luminal-AR 

and basal-like-1 cells are largely determined by ΔE. 

We found that the ligand–receptor pair POSTN:PTK7 always has the highest view attention weight in the 

multi-view network across multiple training replicates (Fig. 3c). This indicated that POSTN:PTK7 could be 

one of the core ligand–receptor pairs affecting MMP11 expression. Besides, the CE hotspots of POSTN:PTK7 

showed to highly coincide with the high-MMP11 region (Fig. 3d). Based on the cell-type-level POSTN:PTK7 

FCE network, we found that among all the edges linked to stroma, the one from basal-like-1 has the highest 

strengths, revealing that the basal-like-1 serves as the major senders of POSTN signals for triggering the 

change of MMP11 expression level in stromal cells (Fig. 3e). The spatial plots of the POSTN:PTK7 FCE 

strengths for every cell types (Supplementary Fig. 4) show that the general FCEs from basal-like-1 cells form 

a spatial pattern similar to the actual expression pattern of MMP11. We also predicted the MMP11 expression 

using several single-view CE networks and discovered that the CE with POSTN:PTK7 pair contributes more 

to determining the MMP11 expression patterns than cell types or niches (Fig. 3f).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2022.06.22.496105doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.22.496105
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

All the above results suggested that POSTN may regulate the expression of MMP11 via PTK7, which is 

consistent with previous studies. POSTN has been found to be related to aggressive tumor behaviors via 

inducing angiogenesis or maintaining cancer stem cells in many cancer types including breast cancer33–35. It 

has been reported that POSTN is highly expressed in breast tumors, and higher expression of POSTN is 

associated with poorer clinical outcomes35,36. Meanwhile, PTK7 participates in the EGFR/Akt signaling 

pathway and upregulates MMP11 expression in breast cancers37. In a study on head and neck squamous cell 

carcinoma, the POSTN:PTK7 axis has been found playing an important role in tumor progression and 

metastasis38. Some studies have employed the combination of PTK7 and POSTN as an indicator of malignant 

progression38,39. We also verified that the expression level of MMP11 has a positive correlation with the 

expression levels of POSTN and PTK7 in breast cancer samples from TCGA data (Supplementary Fig. 5a, b; 

see “Methods” section).  

We also identified some other ligand–receptor pairs that have been reported to be related to MMP11 in 

previous studies. For example, we found that THBS1:ITGB1 and THBS1:PTPRJ serve as core ligand–receptor 

pairs affecting MMP11 expression (Fig. 3c, f), and THBS1 that can alter MMP11 expression in stromal cells is 

mainly contributed by basal-like-1 cells (Supplementary Fig. 5c-f). In previous studies, THBS1 has been 

shown to be able to stimulate MMP11 expression in stromal cells and enhance oral squamous cell carcinoma 

invasion40. Researchers have reported that THBS1, THBS2, POSTN, MMP11 can reflect the invasion 

phenotypes of breast tumors41,42. All those reported results supported the MMP11-related FCEs identified by 

HoloNet. In summary, HoloNet suggested a putative mechanism of how cell–cell communication affects 

MMP11 expression: basal-like-1 cells serve as a major source of MMP11-level alteration in stromal cells via 

many ligand–receptor pairs such as POSTN:PTK7, THBS1:ITGB1 and THBS1:PTPRJ, which may be related 

to the alteration of stromal cells surrounding tumors into invasion-associated phenotypes (Fig. 3g). 
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Fig. 3 Multi-view graph learning reveals the holographic network of how cell–cell communication affects gene expression 

patterns.  

a The true (left) and HoloNet-predicted (right) expression profile of MMP11, preprocessed by log-normalization. b The ratio of 

the expression change caused by CEs (ΔE) to the sum of 𝚫𝑬 and the baseline MMP11 expression (𝑬𝟎) in each cell type. c Top 15 

ligand–receptor pairs (286 pairs in total) with the highest view attention weights in the model predicting MMP11 expression 

profile. The heatmap displays the attention weights of each view obtained from repeated the training procedure 50 times. The bar 

plot represents the mean values of the attention weights of each view. d The CE hotspot plot of POSTN:PTK7, showing the 

degree centrality of each spot in the POSTN:PTK7 CE network. e Cell-type-level POSTN:PTK7 FCE network for MMP11. The 

thickness of an edge represents the strength of Δ𝐸 contributed by POSTN:PTK7 between the two cell types connected by the 

edge. f Model performance in predicting MMP11 expression using each single-view network (blue dots). The horizontal lines 

indicate the performances of the models only using cell-type labels (red), using cell-type labels and spatial proximity network 

(yellow), and using HoloNet (green). g The mechanism of multiple factors affecting MMP11 expression revealed by HoloNet. 
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Identifying genes more affected by cell–cell communication 

Besides MMP11, we applied HoloNet to other 566 highly variable genes to study how these genes are affected 

by cell–cell communication (see “Methods” section). Overall, by comparing the accuracy of gene expression 

prediction between models only using cell-type information (see “Methods” section) and those considering 

CEs, we found the prediction accuracy on almost all genes improved by considering CEs (Fig. 4a). Some 

genes, such as MMP11, showed higher improvements, indicating that they are more affected by CEs. The top 

50 genes out of 567 genes with the highest improvements are enriched in gene ontology (GO) terms such as 

“cell–cell signaling” and “regulation of growth” (Fig. 4b, see “Methods” section). On the contrary, the 

bottom 50 genes with lower improvements are enriched in biological processes that are less sensitive to the 

external environment, such as “mRNA metabolic process” and “positive regulation of protein metabolic 

process” (Supplementary Fig. 6a).  

Furthermore, similar to the case study on MMP11, for more than 90% of the used target genes, the ligand–

receptor network brought better performances than the spatial proximity network, indicating ligand–receptor 

networks depicted the tissue microenvironments better than spatial proximity (Supplementary Fig. 6b). 

Meanwhile, HoloNet achieved a better performance than the Lasso regression model using both ligand–

receptor communication and cell-type information (Supplementary Fig. 6c). 

 

 

 

Fig. 4 HoloNet detects genes more affected by cell–cell communication. 

a Performance comparison between HoloNet and models only using cell-type. The comparison is based on tasks for predicting 

the expression level of each gene. b Gene ontology (GO) enrichment for the top 50 genes with relatively higher performance 

improvements after considering CEs. 

 

Application of HoloNet on the breast cancer Visium dataset B 
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We also applied HoloNet on the breast cancer Visium dataset B from a publication of Wu et al.16. We obtained 

the cell-type information of this dataset in the same way as the previous dataset (Fig. 5a, see “Methods” 

section), and trained HoloNet to predict the expression profiles of 285 highly variable genes. Similar to the 

results derived from the first dataset, we found that nearly all target genes are better predicted when 

considering the CEs (Supplementary Fig. 7a), and the top 50 genes out of 285 with the highest accuracy 

improvements are also enriched in communication-related GO terms such as “cellular response to stimulus” 

and “membrane organization” (Fig. 5b). 

We chose IGFBP7 as a case study in this dataset. This gene, IGFBP7, is a transporter of the insulin-like 

growth factor (IGFs)43 and involves in angiogenesis, cell metabolism, and the progression of breast 

cancers44,45. We observed that IGFBP7 is highly expressed in endothelial cells and stromal cells around 

endothelial cells in the spatial data (Fig. 5c). This indicates that stromal cells around blood vessels have high 

expression of IGFBP7, as endothelial cells cover the inner surface of blood vessels. To explore how cell–cell 

communication triggers the IGFBP7 expression in stromal cells around blood vessels, we trained HoloNet to 

predict the expression of IGFBP7 using HoloNet (Fig. 5c). After decomposing IGFBP7 expression into 

baseline expression E0 and expression change ΔE caused by CEs, we found the expressions of IGFBP7 in 

endothelial and stromal cells are dominantly determined by ΔE (Fig. 5d). We also found that some collagen-

related ligand–receptor pairs such as TIMP1:CD63 and COL4A1:ITGB1 are always given the highest view 

attention weights (Fig. 5e, f), indicating they could be the core ligand–receptor pairs affecting IGFBP7 

expression. Based on the cell-type-level COL4A1:ITGB1 FCE network, we found that the macrophage, basal-

like-1, and T cells serve as the major senders of COL4A1 signals that trigger the IGFBP7 expression level 

change in stromal cells (Fig. 5g). The putative mechanism of how communication affects the IGFBP7 

expression in stromal cells around blood vessels is summarized in Fig. 5h. Previous research also reported that 

IGFBP7 is upregulated in the angiogenic vasculature46, and collagens are also involved in angiogenesis47,48. 

Hooper et al. also found that IGFBP7 protein was localized to the vasculature or collagen type IV-rich 

compartments46. We also verified that the expression level of IGFBP7 has a positive correlation with the 

expression levels of COL4A1 and ITGB1 in breast cancer samples from TCGA data (Supplementary Fig. 7b, 

see “Methods” section). 

To confirm the results in dataset A, we predicted the expression profile of MMP11 in dataset B 

(Supplementary Fig. 7c). Similar to the findings on dataset A, we also detected the layer corresponding to 

POSTN:PTK7 with the highest attention weight, and basal-like-1 cells serve as core senders in FCEs for 

MMP11 (Supplementary Fig. 7d-f).  
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Fig. 5  HoloNet reveals the holographic network of how cell–cell communication affects IGFBP7 expression pattern.  

a The cell type with the highest percentage in each spot. b Gene ontology (GO) enrichment for the top 50 genes with relatively 

higher performance improvements after considering CEs, with all 285 genes as the background genes. c The true (left) and 

HoloNet-predicted (right) expression profiles of IGFBP7, preprocessed by log-normalization. d The ratio of the expression 

change caused by CEs (ΔE) to the sum of 𝚫𝑬 and the baseline IGFBP7 expression (𝑬𝟎) in each cell type. e Top 15 ligand–

receptor pairs (138 pairs in total) with the highest view attention weights in the model predicting IGFBP7 expression profile. The 

heatmap displays the attention weights of each view obtained from repeating the training procedure 50 times. The bar plot 

represents the mean values of the attention weights of each view. f The CE hotspot plot of COL4A1:ITGB1. g Cell-type-level 

COL4A1:ITGB1 FCE network for IGFBP7. h The mechanism of multiple factors affecting IGFBP7 expression revealed by 

HoloNet. 

 

Discussion 
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We developed a machine-learning method HoloNet to reveal the holographic network of cell–cell 

communication with spatial transcriptomic data. In HoloNet, we designed a multi-view network to model cell–

cell communication events (CEs), built an attention-based graph learning model on the network to predict the 

target gene expression, and then interpreted the model to decode the functional CEs (FCEs). HoloNet provides 

the putative holographic network of how communication affects specific gene expression patterns, and answers 

a series of questions: which cell types act as senders and receivers, where they are, and which ligand–receptor 

pairs they employ to induce what kind of downstream responses. We applied HoloNet on two breast cancer 

Visium spatial transcriptomic datasets to verify its ability to offer new biological understandings. HoloNet 

revealed the cell–cell communication landscape in the breast tumor and detected ligand–receptor signals 

triggering the expression changes of some invasion-related genes in stromal cells surrounding tumors. We also 

identified a subtype of neoplastic cells serving as the primary senders of these signals.   

Revealing a panorama of the communication, cooperation, and mutual influence among various cells in tissues 

is very important for understanding the operation of multicellular organisms and the development of diseases. 

We adopted the concept of CEs and FCEs as the core elements of the panorama. CEs describe the cell–cell 

communication with ligand–receptor pairs between any two single cells. FCEs are a subset of CEs, the CEs 

that affect specific downstream gene expression changes. The introduction of CEs and FCEs allows us to better 

characterize the whole process of intercellular communication from the sender cell to the receiver cell via the 

ligand–receptor pairs leading to specific downstream responses. Through the CE-centric approach, HoloNet 

can draw holographic cell–cell communication networks which could help to find specific cells and ligand–

receptor pairs that affect the alteration of gene expression and phenotypes. 

We have developed HoloNet as a user-friendly computational tool. It is developed as a Python package that 

can be easily installed and customized to facilitate the systematic exploration of CEs and FCEs in user-

provided datasets. Users can follow our workflow: constructing the CE network among single cells, visualizing 

the communication landscape based on the network, predicting the expression patterns of genes of interest, 

identifying the major ligand–receptor pairs and sender cell-types in FCEs, and detecting the genes more 

affected by cell–cell communication. The main results in the article can be generated by our public python 

package.  

HoloNet can help users solve many biological problems by revealing a holographic network of FCEs that 

affect the expression of genes of interest. For example, similar to the analysis presented in this article, users 

can use HoloNet to analyze how the expression profiles of cells are affected by other cell types in the 

microenvironment. Provided with pre- and post-treatment spatial transcriptomic data, users can also analyze 

how the treatment affects the full landscape of cell–cell communication within the tissue, understand 

unexpected treatment outcomes, and develop new disease interventions. With the widespread use of spatial 

transcriptomic techniques, HoloNet can be employed in an increasing number of biological scenarios to 
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understand the holographic network of cell–cell communication in tissues and to analyze how cellular 

phenotypes are affected by FCEs. 

In the future, we can incorporate prior knowledge embedding into the model, such as the intracellular signaling 

networks or known biological functions of some ligands, to better reveal how FCEs affect downstream gene 

expressions. In addition, with the development of spatial sequencing technologies, more subdivided cell types 

or positions on pseudotime trajectories can be used here to implement multi-scale models of FCEs and gain 

deeper biological understandings.  

The core structure of HoloNet makes it possible to analyze various kinds of spatial transcriptomic data. For 

example, both single-cell-based spatial transcriptomic technologies such as SeqFISH and spot-based 

technologies such as 10x Visium can be easily used as the input of HoloNet. However, the current version of 

HoloNet acquires an adequate amount of cells or spots to train the GNN model, while the number of cells 

detected by SeqFISH12 is too small to be well analyzed in HoloNet. Meanwhile, the number of genes profiled 

by MERFISH49 is too small, so that HoloNet cannot construct CE networks using ligand and receptor gene 

expressions. We will continue to update HoloNet along with the development of spatial transcriptome 

technologies. 

 

Methods 

Datasets and data pre-processing 

We applied HoloNet on two breast cancer 10x Visium datasets. The dataset A is from the 10x Genomics 

website (https://www.10xgenomics.com/resources/datasets, Visium Demonstration, Human Breast Cancer, 

Block A Section 1) and profiled the expression of 24,923 genes in 3,798 spots on a fresh frozen invasive ductal 

carcinoma breast tissue sample. The dataset B is obtained from the publication of Wu et al.16. They performed 

spatial transcriptomics on six samples, and we selected the 1160920F sample considering the cell-type richness 

and the number of spots. The dataset includes the expression profiles of 28,402 genes in 4,895 spots. 

We excluded spots with less than 500 UMIs and genes expressed in less than 3 spots for both datasets and then 

normalized the expression matrix with the LogNormalize method in Seurat17. We annotated the cell types by 

label transfer (the TransferData function in Seurat) using a well-annotated single-cell breast cancer dataset 

(accession code is GSE118390)21 as reference. The reference dataset contains four cell-types 

of malignant components (basal-like-1, basal-like-2, luminal-AR, and mesenchymal) and five cell-types 

of stromal and immune components (macrophage, B cell, T cell, stromal, and endothelial cell). 

 

Multi-view CE network 
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Inspired by the concept of multi-view social networks26,50,51, we used a node-aligned directed weighted multi-

view network to represent CEs in spatial transcriptomics. Formally, a multi-view CE network 𝐺 with a set 𝑉 of 

views is defined on the aligned node set 𝑈. The node set 𝑈 represents single cells (or spots) in the measured 

tissue. Each view 𝑣 ∈ 𝑉 is a directed graph 𝐺(") = (𝑈, 𝐸("))	, in which 𝐸(") consists of edges between nodes, 

and each edge 𝑒$,&
(") ∈ 𝐸(") has a weight 𝜔$,&

(") for 𝑖, 𝑗 ∈ 𝑈. The edge weight 𝜔$,&
(") is calculated by a designed 

edge weighting strategy, representing the strength of CEs from cell 𝑖 to cell 𝑗 mediated by a specific ligand–

receptor pair corresponding to the view 𝑣. The multi-view CE network can be represented by a 3-dimension 

CE tensor (cell by cell by ligand–receptor pair) as a set of adjacency matrices 𝐴("). The edge weight 𝜔$,&
(") is the 

(𝑖, 𝑗, 𝑣) element in the CE tensor. To optimize the computational efficiency, we used Pytorch52 to implement 

the multi-view network in the following steps. 

 

Edge weighting strategy     

To calculate the edge weight 𝜔$,&
("), we designed a new edge weighting strategy according to the law of 

molecular diffusion53 and the law of mass action in chemistry. According to Fick’s second law, considering a 

one-dimensional diffusion, the ligand concentration at 𝑥 position and in time 𝑡 is: 

𝑐(𝑥, 𝑡) =
𝑁

√4𝜋𝐷𝑡
𝑒'

(!
)*+ 

where 𝑁 is the number of “source” atoms per unit area initially placed at 𝑥 = 0, and 𝐷 is the coefficient of 

diffusion. This inspired us to model cell–cell communication in the spatial transcriptomic data using Gaussian 

functions. In spatial data, considering the ligand molecules (encoded by gene 𝐿") released by cell 𝑖 (sender 

cell), the concentration of these ligand molecules at the position of cell 𝑗 (receiver cell) is determined by the 

ligand expression in cell 𝑖 and the distance parameter of cell 𝑖 and 𝑗: 

𝐶$,&
," ∝ 𝑒$

," ⋅ exp	[−C
𝑑𝑖𝑠𝑡$,&
𝑤,"

G
-

] 

where cell 𝑖 and cell 𝑗 can be any cells in the spatial data, 𝑒$
," is the expression level of the ligand gene (𝐿") in 

the sender cell 𝑖, 𝑑𝑖𝑠𝑡$,& 	is the Euclidean distance between the spatial coordinates of the sender cell 𝑖 and the 

receiver cell 𝑗, and 𝑤," describes the diffusion ability of the ligand encoded by 𝐿" which controls the covering 

region of ligands from one sender cell. 

Here we set the proportionality coefficient as 1. Thus, for sender cell 𝑖, receiver cell 𝑗, and ligand–receptor pair 

𝑣, the edge weight (𝜔$,&
(")) is calculated as: 
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𝜔$,&
(") = 𝐶$,&

," ⋅ 𝑒&
." = 𝑒$

," ⋅ 𝑒&
." ⋅ exp	[−C

𝑑𝑖𝑠𝑡$,&
𝑤,"

G
-

] 

where 𝑒&
." is the expression level of the receptor gene (𝑅") in the receiver cell 𝑗.  

We also built up a relationship between our edge weighting strategy and the traditional strategy which only 

considers the cell–cell communication between neighboring cells within a fixed region. We selected 𝑤,# to 

make the amount of ligand molecules diffusing throughout the whole tissue equivalent to covering a region 

with a diameter (𝑑) at a fixed concentration (𝑑 = 255µm as the default setting in Visium datasets, where the 

sender spot diameter is 55µm	and	ligands	diffuse	100µm)14,15. Specifically, we let 

X (𝐶$,&
,"

/0

'0
/𝑒$

,")	𝑑(𝑑𝑖𝑠𝑡$,&) = 𝑑 

Considering 

X exp	[−C
𝑑𝑖𝑠𝑡$,&
𝑤,"

G
-

]
/0

'0
𝑑(𝑑𝑖𝑠𝑡$,&) = √𝜋 ⋅ 𝑤," 

we can get 

𝑤," = 𝑑/√𝜋 

The specific value of 𝑤," can be selected visibly by the select_w function in HoloNet (Supplementary Fig. 

1a).  

We obtained the information on ligands and receptors from connectomeDB202018. The database categorizes 

ligands into plasma-membrane-binding and secreted ligands. We calculated the 𝑤," of plasma-membrane-

binding ligands by the aforementioned method, and set the 𝑤," of secreted ligands twice as large as 𝑤," of 

plasma-membrane-binding ligands by default. We filtered out ligand–receptor pairs in which either the ligand 

or the receptor expressed in less than 30% of the cells. 

 

Filtering out edges with low specificities within a multi-view CE network 

Both the effects of non-specifically widely expressed ligands (or receptors) and sequencing technology errors 

could introduce unspecific edges into the multi-view CE network. To identify which cell pairs are actively 

communicating, we proposed a strategy to calculate the edge specificity within each CE network view. 

Developed from the stLearn permutation test strategy54, we selected 𝑛 background gene pairs (𝑛 = 200 by 

default) for each ligand–receptor pair. The two genes of each background gene pair have similar average 

expression levels to the ligand and receptor, respectively. Then we used the background gene pairs to generate 
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the null distribution of each edge and filtered out edges whose weights are not significantly larger than the null 

distribution (Supplementary Fig. 1b). 

Specifically, 𝐿′
1

(")
 and 𝑅′

1

(")
 is the 𝑎-th pair of background genes for ligand–receptor pair 𝑣, which respectively 

exhibit close average expression levels with 𝐿" and 𝑅" in the dataset. We calculated the background edge 

weight between cell 𝑖 and cell 𝑗 based on the background gene pair: 

𝜔′
$,&

("$) 	= 𝑒$
,%$
(")

⋅ 𝑒&
.%$

(")

⋅ exp	[− C
𝑑𝑖𝑠𝑡$,&
𝑤,"

G
-

] 

The edge weights of 𝑛 background gene pairs {𝜔′
$,&

("(), 𝜔′
$,&

("!), … , 𝜔2$,&
("))}	form the null distribution of 𝜔$,&

("). We 

would filter out the edge if 𝜔$,&
(") isn’t larger than enough background edge weights (threshold is set as 0.95 by 

default). We regarded the proportion of background edge weights that are lower than 𝜔$,&
(") as the specificity of 

the edges. In the first breast cancer dataset, removing edges with low specificities reduced the network density 

in each view of the network, and the mean of connectivity is reduced from 0.173 to 0.046 (Supplementary 

Fig. 2b). Taking COL1A1:DDR1 pair as an example, the detected CE hotspots cover a diffuse region before 

filtering as both COL1A1 and DDR1 are wildly and highly expressed. The hotspots are more clearly defined at 

the protruding region between parenchyma and stroma after filtering out low-specificity edges 

(Supplementary Fig. 2c, d). 

 

Visualizing CEs based on the multi-view network 

CE hotspot 

We introduced centrality metrics from social network analysis to visualize the spots with high activities of 

specific ligand–receptor communication. For the view 𝐺(")	in the network 𝐺, which represents the CEs via 

ligand–receptor pair 𝑣, we calculated the degree centrality 𝑑𝑐$," and the eigenvector centrality 𝑒𝑐$," for the cell 

(or spot) 𝑖. We used the CE hotspot plot to visualize the centralities of spots. 

We obtained the degree centrality 𝑑𝑐$," for cell 𝑖 and ligand–receptor pair 𝑣 by summing the indegrees and 

outdegrees of cell 𝑖 in 𝐺("): 

𝑑𝑐$," =_𝜔$,&
(")

&

+_𝜔&,$
(")

&

 

where 𝜔$,&
(") is the edge weight from cell 𝑖 to cell 𝑗 in 𝐺("). The indegrees and outdegrees reflect the receiving 

and sending activities respectively for the corresponding cells. We regarded the in-degree minus out-degree as 

the sender-receiver attributes, and plotted the attributes in Fig. 2c. 
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As for the eigenvector centrality, we denoted 𝑒𝑐$," as 𝑥$
(") and calculated 𝑒𝑐$," by solving the equation: 

𝑥$
(") = 𝑐_(𝜔$,&

(") +𝜔&,$
("))𝑥&

(")

&

 

where 𝑐 is a constant of proportionality and is set as 1 by default. To obtain a stable 𝒙(𝒗), where 𝒙(𝒗) =

b𝑥4
("), 𝑥-

("), … , 𝑥5
(")c

6
, each iteration updates 𝒙(𝒗)(𝑡) according to: 

𝒙(𝒗)(𝑡) = 𝑐𝑨 × 𝒙(𝒗)(𝑡 − 1) 

until 𝒙(𝒌)(𝑡) = 𝒙(𝒌)(𝑡 − 1).  

 

Cell-type-level CE network 

We calculated the cell-type-level CE network to represent the general strengths of CEs from one cell type to 

another cell type. For ligand–receptor pair 𝑣, the edge weight 𝜔8,9
(") between sender cell type 𝐴 and receiver cell 

type 𝐵 is calculated by summing up the edge weights between cells belonging to cell types 𝐴, 𝐵 in the CE 

network view 𝐺("): 

𝜔8,9
(") =__𝜔$,&

(")

&∈9$∈8

 

where 𝜔$,&
(") is the edge weight from cell 𝑖 to cell 𝑗 in 𝐺(").  

 

Ligand–receptor pair clustering 

Based on the multi-view CE network, we calculated the dissimilarities between pairwise ligand–receptor pairs 

and identified the ligand–receptor pairs with similar spatial active regions. For two ligand–receptor pairs 𝑢 and 

𝑣, we calculated the dissimilarities between them: 

𝑑;," = hi𝑒𝑐4,; − 𝑒𝑐4,"j
- + i𝑒𝑐-,; − 𝑒𝑐-,"j

- +⋯+ i𝑒𝑐5,; − 𝑒𝑐5,"j
- 

where 𝑒𝑐$," is the eigenvector centrality for cell 𝑖 and ligand–receptor pair 𝑣, and we used the hierarchical 

clustering method in sklearn package55 to cluster ligand–receptor pairs according to the dissimilarities. Then, 

we summed up the CE hotspots of ligand–receptor pairs in the same cluster, and obtained the cumulated spatial 

centrality of LR pair clusters. We also performed UMAP dimension reduction for ligand–receptor pairs using 

the eigenvector centrality matrix and the dissimilarity measurement. 
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Predicting specific gene expressions via multi-view graph learning  

We proposed a graph neural network on the multi-view CE network 𝑮 to predict the expression profile of 

specific target genes and interpreted the predicting process to reveal how CEs affect these genes. One of the 

inputs of the model is the cell-type matrix 𝑿 ∈ 𝑅<×> , where 𝑁 is the number of cells, 𝐶 is the number of cell 

types and 𝑿 is the cell-type percentage of each spot or one-hot encoded cell-type labels. Besides, the multi-

view CE network 𝐺 adjacency matrices 𝑨 = n𝑨(4), 𝑨(-), … , 𝑨(𝑽)o	is another input, where 𝑨(") ∈ 𝑅<×<, 𝑁 is the 

number of cells and 𝑉 is the number of views (same as the number of ligand–receptor pairs). The output of the 

model is the generated gene expression profile 𝑬q. For a target gene 𝑡, the model can be described as: 

𝑬q = 𝐻𝑜𝑙𝑜𝐺𝑁𝑁+(𝑿, 𝑨) 

 
Selecting target genes to be predicted 

We selected genes to be predicted by our model according to the following rules: (1) the genes should be 

highly variable genes (identified by the highly_variable_genes function in Scanpy package56 using parameters 

min_mean = 0.05 and min_disp = 0.5); (2) the genes should be expressed in more than 50% cells; (3) the genes 

should not be mitochondrion genes, ligand or receptor genes. We scaled the expression levels of these genes to 

0~1.  

 

Preprocessing adjacency matrices 

Cells of the same type that have a close spatial location may have unexpected similarities, for example they 

may originate from the same progenitor cell. This similarity is dependent on spatial location, but not affected 

by cell–cell communication, and can interfere with model results as confounding factors. We removed the 

edges between cells of the same type to remove the confounding factors. We calculated the cell-type similarity 

(𝑠$,&) between cell 𝑖, 𝑗 and the adjusted adjacency matrix (𝐴2$&
(")) as: 

𝑠$,& =_𝑐$8𝑐&8

8

 

𝐴2$&
(") = (1 − 𝑠$,&)𝐴$&

(") 

where 𝑐$8 represents whether cell 𝑖 belongs to cell type	𝐴, or in spot-based datasets, represents the proportion 

of cell type 𝐴 in spot 𝑖.  

Next, we calculated the normalized adjacency matrix 𝐴u(")	for each network view as: 

𝐴u(") = 𝐼 + 𝐷(")
4
-𝐴2(")𝐷(")

4
- 
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where 𝐷$$
(") = ∑ 𝐴2$&

(")
& .  

 

Graph model architecture 

With the cell-type matrix 𝑿 and preprocessed adjacency matrices 𝑨q = {𝐴u(4), 𝐴u(-), … , 𝐴u(5)} as inputs, graph 

models were constructed to generate the baseline expression E0 determined by its cell type and the expression 

change ΔE caused by CEs, and then these two components were summed up to get the expression profile 

prediction 𝑬q (Fig. 1c).  

To estimate ΔE, we used each matrix in 𝑨q as the adjacency matrix and 𝑿 as the feature matrix to construct a 

GNN for each view, and then obtained the embeddings of nodes in each view. Then the embeddings of nodes 

from each view were integrated with the attention mechanism (learnable weights 𝑐𝒗 for each view) to generate 

the final embeddings 𝒁𝚫:	

𝒁𝚫 = 𝑅𝑒𝐿𝑈(_𝑐"(𝐴u(")𝑋𝑊(") + 𝐵("))
"

) 

where 𝐴u(")𝑋 ∈ 𝑅<×>  (𝑁 is the number of cells and 𝐶 is the number of cell types) represents the general CE 

strengths from each sender cell type to each cell via the ligand–receptor pair 𝑣, 𝑊(") ∈ 𝑅>×A (𝐻 is the hidden 

layer dimension and is set as 𝐶 by default) incorporates the effects from each sender cell type, 𝐵(") ∈ 𝑅<×A 

serves as the bias matrix, 𝑐" incorporates effects from each ligand–receptor pair, and ReLU is an activation 

function: 

𝑅𝑒𝐿𝑈(𝑥) = {	𝑥			𝑖𝑓	𝑥 ≥ 0
	0			𝑖𝑓	𝑥 < 0 

Next, we used a fully connected layer to estimate ΔE (𝚫𝑬 ∈ 𝑅<): 

𝚫𝑬� = 𝐿𝑖𝑛𝑒𝑎𝑟(𝒁𝚫) 

Besides, we constructed another fully connected layer to estimate E0 by the cell-type matrix	𝑿: 

𝑬𝟎� = 𝐿𝑖𝑛𝑒𝑎𝑟(𝑿) 

And the expression profile prediction 𝑬q is calculated as: 

𝑬q = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝚫𝑬� + 𝑬𝟎�) 

where Sigmoid is an activation function: 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒'( 

We used the mean squared error (MSE) between 𝑬q and true expression profile 𝑬 as the loss function: 
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𝐿𝑜𝑠𝑠 = 𝑀𝑆𝐸i𝑬, 𝑬qj =
1
𝑛_

(𝑒$ − 𝑒̂$)𝟐
$

 

 

Training strategy 

We split cells (or spots) in any dataset into train and validation sets. By default, we used 85% cells as training 

sets and 15% as validation sets. We trained the model for 500 epochs in the training sets and select the model 

with the lowest MSE in the validation sets as the final model for the following interpretation. We optimized 

parameters using the Adam optimizer (initial learning rate is 0.1, and weight decay is 5 × 10')) and the 

StepLR learning rate decay strategy (step size is 10, and gamma is 0.9) by default. 

To verify the robustness of the model and improve the reliability of interpretation, we repeatedly trained our 

graph model for certain times (50 times by default when decoding FCEs and 5 times by default when 

identifying target genes more affected by cell–cell communication). The final expression profile predictions 

displayed in the article are the mean value of expression profiles derived from each repetition. 

 

Model interpretation 

We obtained a trained model 𝐻𝑜𝑙𝑜𝐺𝑁𝑁+ for the target gene 𝑡 after training. We interpreted the model in three 

ways: 

(1) Detecting cell types more affected by FCEs. We calculated the mean value of 𝑬𝟎�  and 𝚫𝑬�  from each 

trained 𝐻𝑜𝑙𝑜𝐺𝑁𝑁+. And then we calculated 𝚫𝑬�/𝑬𝟎�  for each cell type and regarded cell types with higher 

𝚫𝑬�/𝑬𝟎�  as cell types more affected by FCEs. 

(2) Identifying ligand–receptor pairs mediating FCEs. For each trained 𝐻𝑜𝑙𝑜𝐺𝑁𝑁+, we extracted the view 

attention 𝑐" which represents the contribution of each view 𝑣 (corresponding to the ligand–receptor pair 𝑣) 

to the expression profile prediction (Supplementary Fig. 1c). We calculated the mean absolute value of 

𝑐" in each repeatedly trained 𝐻𝑜𝑙𝑜𝐺𝑁𝑁+ and plotted these results in the FCE mediator plot. 

(3) Identifying the major sender and receiver cell types in FCEs. As mentioned before, 𝐴u(")𝑋 matrix 

represents the general CE strengths from each cell type to each cell, and 𝑊(") incorporates the impacts 

from each sender cell type. Thus, we calculated the general FCE strengths from sender cell type 𝐶 to the 

cell 𝑖 as: 

𝜔>,$
(") = (𝐴u(")𝑋)$,> 	_𝑊>,D

(")

D

 

The general FCE strengths for each cell type are plotted in Supplementary Fig. 3. The computing process 

is also shown in Supplementary Fig. 1c. Also, we summed up the contribution of sender cell type 𝐶 to all 
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cells of cell type 𝐶′, and plotted it as the cell-type-level FCE network. The weight of the edge from cell 

type 𝐶 to 𝐶′ in the cell-type-level FCE network is calculated as:  

𝜔>,>%
(") = _𝜔>,$

(")

$∈>%
 

 

Predicting expression profile with each network view 

To verify some ligand–receptor pairs indeed facilitate cells exhibit specific gene expression patterns and 

remove the multicollinear effect, we predicted the target gene expression profiles with each single view of the 

CE network. Similar to the 𝐻𝑜𝑙𝑜𝐺𝑁𝑁+, the architecture of the model using the network view 𝑣 is: 

𝑬q(") = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 �𝐿𝑖𝑛𝑒𝑎𝑟i𝑅𝑒𝐿𝑈(𝐴u(")𝑋𝑊(") + 𝐵("))j� + 𝑆𝑖𝑔𝑚𝑜𝑖𝑑i𝐿𝑖𝑛𝑒𝑎𝑟(𝑿)j 

𝐿𝑜𝑠𝑠 = 𝑀𝑆𝐸(𝑬, 𝑬q(")) 

Baseline model  

In this article, we used three baseline models: a model only using cell-type information (Fig. 4), a model using 

the spatial proximity relationship matrix rather than a multi-view CE network as the adjacency matrix (Fig. 3f, 

Supplementary Fig. 6b), and a Lasso model with both ligand–receptor communication and cell-type 

information (Supplementary Fig. 6c). 

As the first baseline model, we trained a full-connected network using cell type matrix 𝑿 only, and obtain 

𝑬qE5FG'HIFF'+GJI according to: 

𝑬qE5FG'HIFF'+GJI = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑i𝐿𝑖𝑛𝑒𝑎𝑟(𝑋)j 

As the second baseline model, we trained a graph model similar to 𝐻𝑜𝑙𝑜𝐺𝑁𝑁+ but used the spatial proximity 

relationship matrix as the adjacency matrix: 

𝐴$,&
JKE($L$+G = exp	[−C

𝑑𝑖𝑠𝑡$,&
𝑀𝑒𝑎𝑛(𝑤,")

G
-

] 

We got the preprocessed adjacency matrix 𝐴uJKE($L$+G in the way discussed before. Then we constructed a 

graph model and obtained 𝑬qJKE($L$+G according to as: 

𝑬qJKE($L$+G = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 �𝐿𝑖𝑛𝑒𝑎𝑟i𝑅𝑒𝐿𝑈(𝐴uJKE($L$+G𝑋𝑊 + 𝐵)j� + 𝑆𝑖𝑔𝑚𝑜𝑖𝑑i𝐿𝑖𝑛𝑒𝑎𝑟(𝑿)j 

The loss function, training strategy and hyperparameters are same as the HoloNet GNN model. 

As the third baseline model, we predicted the target gene expression with Lasso regression (‘sklearn’ LassoCV 

function with default parameters) using both the ligand–receptor communication and cell-type information: 
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𝑿",&
(FK) =_𝐴$,&

(")

&

 

𝑬qFK = 𝐿𝑎𝑠𝑠𝑜(�𝑿(FK)||𝑿�) 

where 𝑿 is the cell-type information, and || represents the concatenation of matrices. We calculated the 

Pearson correlation of 𝑬qE5FG'HIFF'+GJI , 𝑬qJKE($L$+G and 𝑬qFK with 𝑬 as the accuracies of baseline models and 

compared them with the accuracy of HoloNet GNN model.  

 

Gene ontology enrichment analysis for genes linked to CEs 

We characterized the genes more affected or less by cell–cell communication using the ‘clusterProfiler’ R 

package (version 3.14.3)57. We ranked the target genes with the performance improvements after considering 

CEs. We enriched the top or bottom genes into ‘biological processes’ GO terms, regarding all target genes 

used to be predicted as the background gene set. The results of enrichment analysis are visualized with the dot 

plot. 

 

TCGA data analysis 

We applied GEPIA58 to study the gene expression data from the TCGA database. We performed the Pearson’s 

method to calculate correlation coefficients between expression levels of different genes in TCGA breast cancer 

data. 

 

Data availability 

The used datasets can be downloaded from the 10x Genomics website 

(https://www.10xgenomics.com/resources/datasets) and Zenodo data repository 

(https://zenodo.org/record/4739739). The preprocessed public spatial data is available at 

https://zenodo.org/record/6602473.  

 

Code availability 

HoloNet is implemented as a Python package. The code and tutorial of HoloNet are available at 

https://github.com/lhc17/HoloNet. 
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