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Abstract  1 

Identifying genetic variants associated with nicotine-motivated behavioral traits is an 2 

important strategy to understand the fundamental mechanisms underpinning smoking and tobacco 3 

abuse. For suitable emulation of behavioral phenotype with the full advantage of this invertebrate 4 

model, we newly established a worm model of nicotine seeking by Conditioned Cue Preference 5 

(CCP). We demonstrated that C. elegans also exhibited pivotal features of nicotine-motivated 6 

behaviors as in mammals. First, we identified the nicotine-elicited cue preference is mediated by 7 

nicotinic acetylcholine receptors in worms. Additionally, we exhibited dopamine is also required 8 

for the development of CCP. Subsequently, we identified the nAChRs subunits associated with 9 

the facilitation of nicotine preference. Accordingly, we validated human GWAS candidates 10 

associated with nicotine dependence involved in the role of those nAChR subunits. we addressed 11 

the cross-species functional validation to determine the GWAS candidate genes have authentic 12 

roles in nicotine seeking associated with tobacco abuse. The loss of function strain of CACNA2D3 13 

orthologue, calcium voltage-gated channel auxiliary subunit alpha2delta 3, was tested for CCP. 14 

We also tested the knock-out (KO) strain of the CACNA2D2 orthologue, calcium voltage-gated 15 

channel auxiliary subunit alpha2delta 2, which is closely related to CACNA2D3 in the same family 16 

and shared the human smoking phenotypes. Our orthogonal test suggests the functional 17 

conservation of the α2δ subunit of calcium channel in nicotine motivated behavior. 18 

 19 

 20 

 21 
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Introduction  1 

Tobacco abuse has been a major public health concern and smoking is still a leading cause of 2 

preventable death 1. Tobacco abuse is considerably heritable. 2-6. Nicotine dependence has been 3 

considered a hallmark in the progress and maintenance of tobacco abuse and human population 4 

genetics has identified statistically significant gene variants relevant to nicotine dependence. 7-9. 5 

Thus, the identification of genetic mechanisms underlying behavioral traits is an important strategy 6 

for understanding the underpinning mechanism of nicotine dependence. Although genome-wide 7 

association studies (GWAS) have been successfully identified numerous Single Nucleotide 8 

Polymorphisms (SNPs) associated with substance use disorder (SUD) over the past decade 9-14, 9 

most of the candidate genetic variants have not been independently validated or improved our 10 

understanding of nicotine dependence. 11 

We, therefore, exploit the rapid genetic workflow of C. elegans, which has a simple nervous 12 

system but completely defined connectome15-17, as a tool for accelerating functional validation of 13 

GWAS candidates associated with smoking/nicotine self-administration behavior. C. elegans 14 

responds to abused substances in a way that mimics substance-dependent behaviors observed in 15 

mammals 18-27. Hence, worms have been a powerful model for SUD and nicotine dependence. C. 16 

elegans exhibit nicotine withdrawal-dependent behavior and state-dependent development of 17 

chemical preference, analogous to mammalian studies 22,26,27. Accordingly, we established nicotine 18 

Conditioned Cue Preference (CCP) to measure the nicotine preference and seeking in C. elegans. 19 

Here, we are demonstrating nicotine and withdrawal elicits CCP in C. elegans. The CCP assay 20 

stably elicits acquisition, progress, and extinction of nicotine-paired cue preference. The CCP 21 

assay also reveals CPP properties in mammals that are mediated by nicotinic acetylcholine 22 

receptors (nAChRs) and dopamine. 23 
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Subsequently, we tested nAChRs mutant animals in CCP to define nAChR subunits that 1 

specifically act on nicotine seeking. We then tested GWAS candidates of human smoking and 2 

nicotine dependence associated with the role of those nAChR subunits. Here, we suggest α2δ 3 

subunit of Voltage-Gated Calcium Channel (VGCC) is required for the nicotine preference 4 

affecting the progression of nicotine dependence. 5 

 6 

Results  7 

Establishment of CCP (Conditioned-Cue Preference). Psychostimulants including nicotine elicit 8 

a CPP in rats and mice 28-30. We adapted the mammalian Conditioned Place Preference (CPP), a 9 

form of associative learning used to study the rewarding and aversive effects of drugs, to develop 10 

nicotine CCP and determine the nicotine preference and seeking in C. elegans. We have found that 11 

hexane, an alkane volatile odorant, is a neutral stimulus to C. elegans and is suitable as a 12 

conditioned stimulus (CS). Hexane was tested in numerous ranges of concentrations (Fig. 1a). C. 13 

elegans showed no preference at any tested concentrations (Hexane; 98.5% as non-diluted, 10-1, 14 

and 10-2 diluted). Subsequently, classical conditioning was performed using nicotine as an 15 

Unconditioned Stimulus (US) (Fig. 1b). The nicotine concentration and withdrawal time from 16 

nicotine were determined based on the behavioral and physiological response to various 17 

concentrations shown in previous studies 23.  18 

Worms first respond to the psychostimulant, nicotine by increasing motility at about 1.5 19 

μM concentration (26), although, high concentrations (100 µM) of nicotine will induce locomotor 20 

paralysis in C. elegans; presumably due to acutely activating acetylcholine-sensitive ion channels 21 

on the worm's motor neurons and muscles (23). Furthermore, worms show nicotine-induced 22 

motivated behavior over a range of concentrations (31). In addition, nicotine withdrawal causes 23 
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locomotion stimulation in worms as a withdrawal symptom. The 1.5 μM concentration was 1 

sufficient to induce this nicotine-dependent stimulation of locomotion, thus we mainly used it for 2 

our CCP assays. Wild-type animals successfully develop acquisition of nicotine Conditioned Cue 3 

Preference (CCP) after a prolonged time of association in time-dependent manner (Fig.1c). In a 4 

similar manner, other concentrations of nicotine (which were higher but not paralyzing the worms) 5 

also successfully elicited the preference. Seeking Index (SI) is obtained as represented in Fig. 1b. 6 

A high SI indicates that the nicotine-paired cue acts as a strong attractant, which corresponds to 7 

the development of preference by the conditioning with reinforcing drug. Prolonged conditioning 8 

of CS (hexane) and US (nicotine) leads to the development of nicotine-paired cue preference, 9 

although hexane is a neutral olfactory stimulus to naive animals. The CCP was validated by 10 

pretreatment of US only, CS only, or Conditioned (CS+US), respectively. CCP was not developed 11 

by US only or CS only, whereas conditioning occurred and facilitated CCP when CS was paired 12 

with the US (Fig.1d).  13 

We also demonstrate that CCP induced by nicotine is mediated by dopamine signaling. 14 

The development of CCP was impaired in the KO mutant animals of cat-2, tyrosine hydroxylase 15 

in C. elegans, which was dopamine deficient (Fig.2). It suggests that the CCP of worms has an 16 

evident face value, the recapitulation of the pivotal features of nicotine-dependent behaviors in 17 

mammals, in which nicotine-caused increased dopamine mediates nicotine-induced motivated 18 

behavior 32, 33. Additionally, wild-type animals can also represent the extinction of CCP, greatly 19 

reduced paired rewarding. Expression of nicotine-induced CCP was abolished in subsequent 20 

chemotaxis assays after the presentation of CS (hexane) alone in the absence of US (nicotine) 21 

during the withdrawal period (Fig.3a). Therefore, it feasibly suggests that CCP can be used to 22 

investigate the genes and pathways associated with reinstatement. Accordingly, to further 23 
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investigate the underlying mechanism involved in the regulation of CCP in the neural circuits, we 1 

questioned neural circuits that mediate positive chemotaxis to CS that were previously neutral but 2 

acted as attractants after conditioning. Chemotaxis behaviors are regulated primarily by the 3 

chemosensory neurons and modulated by integration of signaling with interneurons 34,35. C. 4 

elegans have 32 presumed chemosensory neurons that detect a variety of olfactory and gustatory 5 

cues 36-39. In worms, AWC and AWA, ciliated chemosensory neurons, mediate attraction to the 6 

volatile odorants 40. We exploited AWC-ablated animals to test in CCP. Killing a pair of AWC 7 

neurons via expression of reconstituted Caspase41,42 resulted in impaired CS (hexane) preference 8 

after conditioning with US (nicotine) (Fig. 3b), indicating that the primary sensory neurons are 9 

AWC head neurons for attraction to hexane after conditioning. 10 

In the laboratory, C. elegans is reared in agar plates seeded with OP50 bacteria as a food 11 

source. Since cultivation without food has been used for odor/starvation conditioning paradigm 12 

for Conditioned Place Aversion (CPA), in order to dispel any controversy about the cultivation 13 

environment in the CCP assay, the nicotine conditioning and withdrawal process in CCP assay 14 

was conducted in the presence of OP50 bacteria on nicotine plates (Fig. 1, 2 and 3). However, we 15 

expanded the usage of the CCP to confirm the reinforcing effects of nicotine acting in worms were 16 

irrelevant to food. A development of CCP was also provoked by the repeated intermittent pairing 17 

of hexane with nicotine (Fig.4). CCP was successfully facilitated by the short period (1min) of 18 

multiple sessions of conditioning of US (nicotine) and CS (hexane) without E. coli (food) and 19 

following withdrawal, indicating CCP was specifically elicited by nicotine alone.  It demonstrated 20 

the reinforcing effect of nicotine in C. elegans. Together with the result in Fig. 1d, in which CCP 21 

was not established when CS (hexane) was presented alone with the food, it demonstrated that 22 

nicotine is the primary reinforcer in the progress of CCP in C. elegans.  23 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2022.06.21.497113doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.497113


7 
 

CCP via nAChRs. The nAChRs function as pentameric ligand-gated ion channels. Conformational 1 

transitions after binding to nicotine, accompanied by various regulatory mechanisms enable 2 

nAChRs to respond dynamically to genetic and environmental factors. Elucidating subunits that 3 

specifically play a role in preference and seeking behavior elicited by nicotine will provide insight 4 

in the conservative role of nAChRs in mammals. It has been reported that two nAChR subunits, 5 

ACR-15 and ACR-16 , are required for nicotine-withdrawal induced stimulation of locomotion 23. 6 

Nicotine also elicits associative learning with the rewarding effects in worm and ACR-5 and ACR-7 

15  have been reported involved in this 31. We tested nAChR subunit KO mutant animals in CCP 8 

assay. The 29 nAChR homologs are reported in C. elegans genome whereas 17 in mammals 23,43. 9 

These nAChRs classified into five groups, which are ACR-16 group, UNC-29 group, UNC-38 10 

group, ACR-8 group, and DEG-3 group 43. We screened 12 nAChR mutants by CCP assay, 11 

focusing on ACR-16 group, which closely resembles the mammalian α7-nAChR subunit, a 12 

predominant subtype in the brain 44,45. Here, we represent consistent results with previous findings 13 

and also newly identified additional nAChR subunits associated with nicotine-induced motivated 14 

behaviors (Fig. 5). In a single session of chronic CCP analysis, we identified delayed development 15 

of CCP in KO mutants of acr-5, and impaired in acr-15, acr-16, which is compatible with the 16 

previous reports in nicotine dependent-locomotion of worms (Fig. 5). Furthermore, we also 17 

identified the impaired development of CCP in KO mutants of acr-9, acr-11, acr-21 (Fig. 5). The 18 

expression enrichment profile, provided by a single-cell gene expression profile of every neuron 19 

type in the C. elegans (CeNGEN) 46, shows that acr-9 is expressed in AVA, a crucial interneuron 20 

validated for the development of nicotine-dependent locomotion, in which acr-15 and acr-16 are 21 

expressed23.  Recently, the AVA interneurons have been shown to participate in the integration of 22 

sensory-motor input and decision making 47. Interestingly, acr-21, the nAChR α9 (CHRNA9) 23 
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orthologue, is enriched in the RMG 46, the gap junctional hub interneurons that electrically connect 1 

to many sensory, motor, and interneurons and is known to modulate pheromone attraction and 2 

social behavior 48. RMG neurons form a close connection with AVA and ADA neurons, and acr-3 

11, which we newly identified to play a role in nicotine CCP, is reported to be enriched in ADA. 4 

We also identified the unc-63 and unc-38 mutants were defective in the development of CCP. This 5 

result is consistent with previous investigation in nicotine dependent stimulation of locomotion, 6 

however, a further comprehensive analysis will be required as both mutant animals, unc-63 and 7 

unc-38, are not severely uncoordinated as described 23,49,50. Nonetheless, our results demonstrate 8 

that the nicotine-elicited conditioned cue preference is mediated by nAChRs.  9 

Orthogonal test for nicotine preference. Cross-species functional validation of GWAS candidates 10 

using C. elegans has been used successfully to demonstrate the functional relevance of candidates 11 

in substance dependent behaviors (51). We asked whether nicotine CCP in worms could be a viable 12 

and useful tool to accelerate the assessment of biologically significant pathways associated with 13 

nicotine dependence through rapid functional characterization of GWAS candidates.  Nicotine has 14 

been reported to evoke a calcium response from worms to mammals 23,52-54. The nAChRs mediate 15 

the increased intracellular calcium via VGCC-dependent and VGCC-independent manners that 16 

contribute to neural plasticity. Functional nAChRs are homopentameric or heteropentameric 17 

channels composed of 5 subunits by a combination of the α(α2-α10) and β(β2-β4) subunits 55-58. 18 

The Genome-wide meta-analysis on nicotine dependence has reported the protective role of 19 

CACNA2D3 in nicotine dependence for African Americans 59. The CACNA2D3 is also reported in 20 

the association of success in abstaining from smoking 60. CACNA2D3 is responsible for encoding 21 

the α2δ, auxiliary subunits of Voltage-Gated Calcium Channel (VGCC), which influences the 22 

biophysical properties of the calcium channels 61. The worm orthologue of CACNA2D3 modulates 23 
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voltage dependence, the activation kinetics, and the conductance of calcium current of VGCC like 1 

mammalian a2δ (62). Other members of the α2δ family, CACNA2D2 is also associated with 2 

nicotine dependence, smoking initiation, and cigarettes consumption 63.  The loss of function 3 

alleles of unc-36, CACNA2D3 orthologue was tested in CCP for the functional validation in the 4 

development of nicotine preference. We have tested multiple mutant alleles of unc-36. The unc-5 

36 (e251) and unc-36 (ad698) are both loss of function alleles by the introduction of the premature 6 

stop codon and showed delayed or impaired progress of nicotine-conditioned cue preference in a 7 

single session of chronic CCP unlike WT animals (Fig. 6a, 6b, and 6c). We also tested mutant 8 

animals of tag-180, CACNA2D2 orthologue, which is closely related to CACNA2D3 in the same 9 

family and shared the human smoking phenotypes. The tag-180 (ok779), deletion mutant (KO), 10 

showed impaired development of nicotine preference (Fig. 6d). We also tested animals in repeated 11 

session of conditioning and intermittent withdrawals. The orthogonal test exhibited a reduced 12 

development of CCP in unc-36 (e251) and tag-180(ok779) (Fig. 6e). Taken together, our data 13 

demonstrate that α2δ subunit of VGCC is required for the nicotine preference contributing to the 14 

development of nicotine dependence.  15 

Discussion  16 

Human genetic association studies have been successful in revealing genetic variants 17 

associated with smoking-related phenotypes. When analyzing the NHGRI/EBI GWAS catalog 18 

(release:2021-01-14), it contained 1,504 SNPs associated with smoking/nicotine that reached 19 

genome-wide significance. Most of these variants (93%) are yet to be replicated by an independent 20 

study. Although GWAS studies associated with tobacco smoking have revealed numerous genetic 21 

factors, the estimated heritability has been limited to explaining underlying mechanisms. Thus, 22 

various attempts have been suggested to accelerate functional validation and comprehensive 23 
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analysis  64. In a comparative proteomics study, 83% of the worm proteome exhibits homology 1 

with human genes and recent meta-analysis with orthology-prediction methods showed that 2 

approximately 52.6% of the human protein-coding genome has noticeable orthologues in worms, 3 

illustrating that the nematode provides a suitable model organism for functional validation of 4 

human genes. 65,66. 5 

Cross-species functional validation has long been used in worms including SUD related 6 

phenotypes. For example, the introduction of a human TRPC (transient receptor potential 7 

canonical) channel can rescue the defective nicotine dependent simulated locomotion phenotype 8 

of worm TRPC channel KO strain 23. A mammalian transient receptor potential channel vanilloid 9 

(TRPV) can substitute worm orthologue and directs behavioral responses 67. The transgenic worms 10 

containing the human SLC18A2 gene provided model to investigate the brain dopamine and 11 

serotonin vesicular transport disease 68. Recently, interspecies chimerism with a mammalian gene 12 

in the worm platform identified orphan anti-opioid system 69. The transgenic worm to express the 13 

mammalian μ (mu) opioid receptor (MOR), which is not normally found in the worm genome, 14 

responds to opioids such as morphine and fentanyl. Successively, this transgenic worm contributed 15 

to finding the orphan GPCR of which mammalian orthologue shows functional conservation 16 

related to the anti-opioid pathway. Therefore, we exploited worms to define vulnerability 17 

phenotypes by proper modeling of behavioral phenotypes and to test the functional evaluation of 18 

human GWAS candidates associated with nicotine dependence and smoking. The CCP in worms 19 

is specifically induced by nicotine and mediated by dopamine. We identified the nicotine-elicited 20 

cue preference is mediated by nicotinic acetylcholine receptors in worms. Taken together, we 21 

demonstrated that worms exhibited the key features of nicotine-dependent behaviors in mammals. 22 
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The GWAS reveals numerous risk factors associated with diseases. Despite the successes 1 

of GWAS, most of the candidate genetic variants have not been independently validated or 2 

provided novel insight into novel treatments. Experimental approaches for functional validation 3 

will be required to determine whether candidate genes have an actual role in the disease. A 4 

previously identified GWAS variant of CACNA2D3, in which the SNP is in the intron region, was 5 

not prioritized for further validation, but it was reported that this variant was associated with 6 

reduced expression levels in three human brain tissues and was associated with nicotine 7 

dependence 59. We validated its function by testing the loss of function or KO strains of orthologue 8 

that allow for further pathway evaluation afterwards. A CACNA2D3 encodes α2δ, auxiliary 9 

subunits of VGCC, that influences the biophysical properties of the calcium channels. VGCCs are 10 

pivotal in excitable cells with permeability to mainly calcium ions. Although it has been suggested 11 

that permeation of calcium ions into cells through VGCC will play a pivotal role in the induction 12 

of plasticity of nicotine through nAChRs 52,70,71, close interaction between nAChRs and VGCC for 13 

the subsequent event to mediate nicotine response is depending on the cell types, in which specific 14 

subtypes of nAChRs are expressed 57,58. Mostly, non-α7-nAChRs mainly interact with the VGCC 15 

to mediate the signaling caused by nicotine.  16 

α2δ proteins are encoded by 4 genes (CACNA2D1, CACNA2D2, CACNA2D3, CACNA2D4) 17 

and expressed throughout the central nervous system to co-assemble with most of the α1 subunit 18 

forming functional calcium channel 72. α2δ proteins also interact with other proteins such as α-19 

neurexins, LRP1 (low-density lipoprotein receptor-related protein 1), NMDA receptor (N-methyl- 20 

d-aspartate), and BK channels (large-conductance calcium-activated potassium channels) 73-76. 21 

The part of these might be related to recent implications of α2δ proteins in the progress of SUD. 22 

Like CACNA2D2 and CACNA2D3 have been reported as GWAS candidates associated with 23 
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nicotine dependence 59,63, CACNA2D1 has been involved in the increased presynaptic NMDAR 1 

activity associated with hyperalgesia following chronic morphine 77. An aberrant interaction 2 

between thrombospondin (TSP) and CACNA2D1 has been proposed as a possible mechanism of 3 

synaptic remodeling in the hippocampus during chronic ethanol consumption 78. An interaction 4 

between α-neurexins and α2δ proteins is evolutionarily well conserved endorsed by an interaction 5 

between NRX-1 and UNC-36 in C. eleagns 73. The C. elegans genome includes 2 genes predicted 6 

to encode α2δ family proteins, unc-36 and tag-180, predicted as CACNA2D3/ CACNA2D1 like 7 

orthologue and CACNA2D2 like orthologue, respectively 66. Like mammalian α2δ proteins, the 8 

function of UNC-36 in the modulation of the voltage dependence, the activation kinetics, and the 9 

conductance of calcium currents was electrophysiologically validated in the neuromuscular 10 

junction, whereas TAG-180 has no effects 62. UNC-36 has been also demonstrated as a regulator 11 

of synaptogenesis together with UNC-2, Cav2-like α1 subunit of VGCC, in the neuromuscular 12 

junction 79. Interestingly, the tag-180 has not shown a functional association related to calcium 13 

channel activity so far. However, it is of interest that the behavioral phenotype of tag-180 in 14 

nicotine motivated behavior has been defined, here. Perhaps it reflects the non-canonical 15 

interactions and role of α2δ proteins, such as the accumulation of CACNA2D2 in lipid rafts 16 

independently from the interaction with calcium channels 80.  17 

Here, we have established a novel CPP paradigm assay for nicotine seeking in worms 18 

which could accelerate the functional validation of genes associated with the progress of nicotine 19 

dependence. We determined the nicotine seeking by CCP and the functional validation of the 20 

orthogonal test showed orthologues of CACNA2D2, CACNA2D3 have a role in nicotine-motivated 21 

behavior in C. elegans. Thus, follow-up studies of the α2δ protein should be performed to 22 

investigate a comprehensive functional characterization of the mechanisms of nicotine seeking and 23 
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taking. We are pursuing the identification of nAChR subunits that specifically act on nicotine 1 

seeking and defining a subset of neurons in which this subunit acts.  2 

 3 

Materials and Methods 4 

All strains were cultivated on nematode growth media (NGM) plates with Escherichia coli strain 5 

OP50 at 20oC as described 81  and the hermaphrodite worm was used for behavioral analysis. The 6 

Bristol N2 strain was used as wild-type (WT) animals. The strains below were obtained from 7 

Caenorhabditis Genetics Center (CGC, Minneapolis, MN, USA), which is supported by the 8 

National Institutes of Health Office of Research Infrastructure Programs (P40 OD010440).  9 

The following mutant alleles were used in the study: cat-2 (e1112), acr-5(ok180), acr-9(ok933), 10 

acr-11(ok1345), acr-12(ok367), acr-14(ok1155), acr-15(ok1214), acr-16(ok789), acr-18(ok1285), 11 

acr-19(ok967), acr-21(ok1314), unc-38 (x20), and unc-63(x13), unc-36(e251), unc-36(ad698), 12 

tag-180(ok779). The strain PY7502, oyIs85[ceh-36p::TU#813 + ceh-36::TU#814 + srtx-1p::GFP 13 

+ unc122p::DsRed], was used for AWC ablated animals. PY7502 was generated via expression of 14 

recCaspases (split caspases) 41 under ceh-36 promoter 82.  15 

Behavioral Assay  

Nicotine Conditioning. The nicotine plates were prepared freshly in 60 mm plate. When 

NGM is cooled to 55°C after sterilization, nicotine was added up to the designated 

concentration (1.5 μM). Concentrated OP50 was seeded on the nicotine plates and then one 

day later nicotine plates were used for conditioning. OP50-seeded nicotine plates were stored 

at 4°C and consumed within a week for the conditioning.  

The Synchronized eggs were collected for 3 hours, and then were harvested with S 

basal-buffer [100 mM sodium chloride, 50 mM potassium phosphate (pH 6.0)] for the 
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conditioning when they were reached to Day1 young adult stage (16-24 hours later after mid-

L4 stage). To introduce hexane as a Conditioned Stimulus (CS) to the nicotine conditioning 

plate, 80 µl of agar lump (2% BBL agar) on the lid (60 mm plate) was freshly prepared before 

the conditioning. S basal-buffer harvested animals were placed in the middle of the 

conditioning plate (1.5 μM nicotine) and then covered with a lid with an agar lump which 

3µl of hexane was added. Since a CS was a volatile odor, the plates were sealed with parafilm 

during conditioning. After 4, 6, or 8 hours of conditioning (for 8hrs, 3 µl of hexane was 

refilled to agar lump after 4hrs for another 4hr), worms were washed with S basal -buffer 3 

times then transferred to OP50 seeded NGM without nicotine and hexane for the withdrawal 

session. 1 hour later, a chemotaxis assay was conducted. The withdrawal procedure (here, 1 

hour) was followed after all the sessions, including [CS only] and [US only] which validated 

CCP, prior to performing chemotaxis to CS. 

For the repeated sessions of conditioning, 1 minute of conditioning was conducted in 

1ml of the S basal -buffer containing 1.5 μM nicotine and 2 μl of hexane with gentle rotating. 

After washing with S basal 3 times, conditioned worms were placed on OP50-seeded NGM 

for 10 minutes of withdrawal session. The above was performed repeatedly. The final 

withdrawal session prior to performing chemotaxis to CS was 1 hour like other CCP. 

Chemotaxis to CS A chemotaxis assay was performed as described previously 36,39,83. 

Briefly, 10 ml chemotaxis media [1.6% BBL-agar, 5mM potassium phosphate; pH 6.0, 1mM 

CaCl2, 1mM MgSO4] were prepared on the 100 mm petri dish. 1 µl of 100mM NaN3 was 

added to the point marked in the section of A and B (Fig. 1b). 1 µl of CS (undiluted hexane) 

was added on top of the NaN3 in the section of A. Immediately after the CS was absorbed 

into the 100 mm chemotaxis plate, about 100 washed animals were placed in the area marked 
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using glassware micropipette. 40 minutes later with parafilm sealing, the number of 

accumulated animals in each section marked (Fig. 1b) was counted to calculate the Seeking 

index. The index was calculated by [(number of animals in A - number of animals in B)/Total 

number of animals [Seeking index SI= (A-B)/Total(A+B+E)]. Total 100-150 animals were 

tested in each trial to get the index. 

In the case of an uncoordinated strains [unc-38 (x20), and unc-63(x13), unc-36(e251), unc-

36(ad698)], their CCP was confirmed again by creating an environment that could be reached 

to the CS (same concentration given) by moving a short distance. A square 100 mm 

chemotaxis plate with a grid engraved on it was prepared using the same amount of 

chemotaxis media. And then chemotaxis was performed in a space where animals showing 

uncoordinated movement using only 60 mm in the center could arrive at their destination in 

time. At these trials, the WT control were also performed under the same conditions. 

Statistical Analysis  1 

WT control groups were always tested together at each trial to evaluate the drug plate and the 2 

conditioning process. Each dot in the graph represents the population assay in which about 100-3 

150 animals were tested. The mean and standard error of the mean (SEM) were determined for all 4 

experimental parameters. The data were analyzed employing the Mann-Whitney or Dunnett’s tests 5 

using GraphPad Prism software (version 8.0.1). Data points with p-values below 0.05 (P < 0.05) 6 

were considered to be significant. 7 

Sequence alignment  8 

protein sequences were analyzed by database similarity search (84) and the multiple protein 9 

sequences were simultaneously aligned using the COBALT, a constraint based alignment tool (85). 10 

The phylogenetic tree was constructed by COBALT using minimum evolution method. The 11 
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sequences used for the phylogenetic tree analysis: P48182.1, Q93149.1, P54246.5, NP_491354.2, 1 

NP_495647.1, NP_001361818.1, NP_510285.2, NP_508692.3, NP_491906.1, AAG35183.1, 2 

NP_495716.1, NP_505206.2, NP_505207.1, NP_001023961.1, NP_506868.2, NP_001129756.1, 3 

NP_001367183.1, NP_001355515.1, NP_504024.2, NP_001379138.1, NP_001380111.1, 4 

NP_496959.1, NP_001255705.1, NP_509932.2, NP_492399.1, NP_491472.1, NP_491533.2, 5 

G5ECT0.1, NP_001255865.1, Q19351.5, NP_509556.4, NP_001023570.2 6 

 7 

 8 

 9 

 10 
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Figure Legends 11 

Fig.1 Nicotine Conditioned Cue Preference (CCP) using hexane as conditioned stimulus (CS). 12 

(a) Identification of hexane, as a neutral odor substance to naïve animals. One-way ANOVA of 13 

chemotaxis in wild-type animals to various concentrations of hexane did not show significant 14 

differences (p=0.6136, F(2, 32)=0.02649). (b) The diagram of nicotine Conditioned Cue 15 

Preference (CCP) using hexane as Conditioned Stimulus. 1-day adult Wild-type worms were pre-16 

incubated with 1.5 µM nicotine and 2µl of non-diluted hexane for conditioning. The conditioned 17 

worms were transferred to OP50-Bacteria seeded plate then 1 hour later withdrawn worms from 18 

nicotine were moved to the chemotaxis assay plate. (c) Wild-type C. elegans develops CCP after 19 

chronic conditioning and following withdrawal from nicotine. (d) The CCP development by 20 

nicotine conditioning was validated by pretreatment of US only or CS only. US only; 4hr treatment 21 

of nicotine alone (1.5 µM), CS only; 4hr treatment of hexane alone, Conditioned (US + CS); 4hr 22 

conditioning of nicotine (1.5 µM) and hexane, all of those were withdrawn for 1 hour before 23 

chemotaxis to hexane. Each dot represents trial of population assay. (****, One-way ANOVA, 24 

F(4, 36)=1.683). 25 
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 1 

Fig.2 Dopamine is required to develop CCP. A cat-2 encodes a tyrosine hydroxylase, which 2 

catalyzes the conversion of tyrosine to L-DOPA, the biosynthetic precursor of dopamine. 3 

Conditioned (US + CS); 4hr conditioning of nicotine (1.5 µM) and hexane, animals were 4 

withdrawn for 1 hour before chemotaxis to hexane. Each dot represents trial of population assay. 5 

P=0.7527(Mann-Whitney test). 6 

 7 

 8 

 9 

 10 

Fig. 3. Characteristics of CCP. (a) Wild-Type C. elegans learns extinction of CCP. Each dot 11 

represents trial of population assay. **, P<0.01; ***, P<0.001 (Mann-Whitney test). (b) Nicotine 12 

Conditioned Cue Preference (CCP) of AWC neuron ablated animals. Single session of 4 hours 13 

CCP on 1.5 µM nicotine plates. Single session of 4 hours CCP on 1.5 µM nicotine plates 14 

 15 

 16 

 17 

Fig. 4. CCP is specifically elicited by nicotine. The short time of repeated conditioning (1min, 18 

without food during conditioning) and withdrawal elicits successful CCP. A conditioning session 19 

(nicotine and hexane) was 1minute and 10minutes of withdrawal was followed. After multiple 20 

session of conditioning, the last withdrawal session was consistent as 60minutes before conducting 21 

chemotaxis to CS. Each dot represents trial of population assay. *, P<0.05; ***, P<0.001 (Mann-22 

Whitney test). 23 
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Fig. 5. Identification of nAChRs relevant to CCP progression. (a) Phylogenetic analysis 1 

showing the nAChR receptor family of C. elegans. Using protein sequence homology, nAChR 2 

subunits were classified. (b) WT#1; one-way ANOVA with a post-hoc Dunnett’s test. F(2, 3 

18)=62.13, P<0.001 (c) acr-5 (ok180), (P=0.002, One-way ANOVA, F(2, 23)=8.396, ** 4 

represents P<0.01 from post hoc multiple comparison test; Dunnett’s). ** represents P<0.01 from 5 

post hoc multiple comparison test; Dunnett’s. (d) acr-9 (ok933), (not significant, One-way 6 

ANOVA, F(2, 33)=2.755, ns from post hoc multiple comparison test; Dunnett’s). (e) acr-7 

11(ok1345), (not significant, One-way ANOVA, F(2, 21)=1.423, ns from post hoc multiple 8 

comparison test; Dunnett’s). (f) acr-12(ok367), (p=0.003, One-way ANOVA, F(2, 27)=7.029, ** 9 

represents P<0.01  from post hoc multiple comparison test; Dunnett’s). (g) acr-14(ok1155), 10 

(p=0.001, One-way ANOVA, F(2, 21)=9.189, ** represents P<0.01  from post hoc multiple 11 

comparison test; Dunnett’s). (h) WT #2, (p<0.001, One-way ANOVA, F(2, 18)=11.17, ** 12 

represents P<0.01  from post hoc multiple comparison test; Dunnett’s). (i) acr-15 (ok1214), (not 13 

significant, One-way ANOVA, F(2, 21)=1.735, ns from post hoc multiple comparison test; 14 

Dunnett’s). (j) acr-16 (ok789), (not significant, One-way ANOVA, F(2, 31)=0.9130, ns from post 15 

hoc multiple comparison test; Dunnett’s). (k) acr-18(ok1285), (P=0.01, One-way ANOVA, F(2, 16 

15)=6.177, ** represents P<0.01 from post hoc multiple comparison test; Dunnett’s). (l) acr-17 

19(ok967), (P=0.03, One-way ANOVA, F(2, 18)=4.080, * represents P<0.05 from post hoc 18 

multiple comparison test; Dunnett’s). (m) acr-21(ok1314), (not significant, One-way ANOVA, 19 

F(2, 21)=0.09735, ns from post hoc multiple comparison test; Dunnett’s). (n) WT#3, (p<0.001, 20 

One-way ANOVA, F(2, 18)=40.66, *** represents P<0.001  from post hoc multiple comparison 21 

test; Dunnett’s). (o) unc-38(x20), (not significant, One-way ANOVA, F(2, 22)=0.08521, ns from 22 

post hoc multiple comparison test; Dunnett’s). (p) unc-63(x13), (not significant, One-way 23 

ANOVA, F(2, 15)=0.5035, ns from post hoc multiple comparison test; Dunnett’s). 24 

 25 

 26 

Fig. 6. The orthogonal test evaluated nicotine preference of α2δ proteins (a) Wild-type CCP was 27 

conducted at each trial to evaluate the drug plate and the conditioning process (***, One-way 28 

ANOVA, F(3, 32)=27.17, *** represents P<0.001 from post hoc multiple comparison test; 29 

Dunnett’s). (b) unc-36 (e251), orthologue of CACNA2D3, showed delayed and reduced 30 
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development of CCP (***, One-way ANOVA, F(3, 47)=7.694, * represents p<0.05 and ** P<0.05 1 

from post hoc multiple comparison test; Dunnett’s). (c) Impaired CCP was observed in unc-36 2 

(ad698), orthologue of CACNA2D3, (*, One-way ANOVA, F(3, 16)=3.475, * represents p<0.05 3 

and ** P<0.05 from post hoc multiple comparison test; Dunnett’s). (d)Impaired CCP in tag-180 4 

(ok779), orthologue of CACNA2D2. (*, One-way ANOVA, F(3, 47)=2.885, * represents p<0.05 5 

from post hoc multiple comparison test; Dunnett’s). (e) Orthogonal test in repeated CCP. Repeated 6 

training of conditioning and intermittent withdrawal further demonstrated reduced development of 7 

nicotine preference in the mutant animals of α2δ orthologues. (***, One-way ANOVA, F(3, 8 

31)=8.112, ** represents p<0.01 and *** P<0.001 from post hoc multiple comparison test; 9 

Dunnett’s).  Each dot represents a trial of population assay.   10 
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