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Abstract
Computational approaches for sub-organelle protein localisation and identification are
often neglected while general methods, not suitable for specific use cases, are promoted
instead. In particular, organelle-specific research lacks user-friendly and easily accessible
computational tools that allow researchers to perform computational analysis before
starting time-consuming and expensive wet-lab experiments. We present the Organelx
e-Science Web Server which hosts three sequence localisation predictive algorithms:
In-Pero and In-Mito for classifying sub-peroxisomal and sub-mitochondrial protein
localisations given their FASTA sequences, as well as the Is-PTS1 algorithm for detecting
and validating potential peroxisomal proteins carrying a PTS1 signal. These tools
can be used for a fast and accurate screening while looking for new peroxisomal and
mitochondrial proteins. To our knowledge, this is the only service that provides these
functionalities and can fasten the daily research of the peroxisomal science community.
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1 Introduction
Signatures in the amino acid composition of proteins have been associated with protein
domains, families functional sites and their subcellular localisation [1–4]. This information
can be combined with machine learning (ML) approaches to develop prediction tools,
that nowadays are easily findable and accessible [5–8].

Moreover, ML and deep-learning (DL) approaches are often used to encode pro-
tein sequences, thus showing promising results in several tasks, including subcellular
classification [9–15]. Unified Representation (UniRep) [9] and the Sequence-to-Vector
(SeqVec) [10] are two of most promising and already used DL-embeddings embeddings.

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2022. ; https://doi.org/10.1101/2022.06.21.497045doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.497045
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Web Server tools overview. The 4 columns show the typical workflow
which consists of: (1) tool selection (Is-PTS1, In-Pero, In-Mito); (2) input a FASTA file
containing one or more sequences; (3) processing via sequence embedding representation
and SVM classification; (4) output generation.

UniRep [9] provides amino-acid embedding containing meaningful physicochemically and
phylogenetic clusters and proved to be efficient for distinguishing proteins from various
SCOP (structural classifications of proteins) classes. SeqVec showed similar results
and optimal performance for predicting subcellular localisation [10]. However, their
potential has been explored for highly specific tasks, such as sub-organelle localisation,
just recently [16]. In particular, their usage can be adapted for sub-peroxisomal and
sub-mitochondrial protein localisation.

Peroxisomes and mitochondria are ubiquitous organelles surrounded by a single
biomembrane (peroxisomes) or a double biomembrane (mitochondria) that are relevant
to many metabolic and non-metabolic pathways [17, 18]. However, the full extent of
the functions of peroxisomes, mitochondria and their shared pathways is still largely
unknown [19] and the discovery of new peroxisomal and mitochondrial proteins can
facilitate further knowledge acquisition.

The OrganelX Web Server, available at https://organelx.hpc.rug.nl/fasta/, hosts
two algorithms designed to classify sub-peroxisomal (In-Pero) and sub-mitochondrial
(In-Mito) proteins localisations given their FASTA sequences. In addition, it is possible
to perform a specific protein targeting signal (PTS) research in the sequence (Is-PTS1).
Our tool consents to detect and validate on the PTS1 associated with peroxisomal
proteins. The PTS1 is present in the C-terminal part of the protein sequence. It is
defined as the final dodecamer with a focus on the terminal tripeptide [20]. An overview
of the functionalities available in the Web Server is shown in Figure 1.

To our knowledge, there is no service that automatically performs In-Pero and In-Mito
classification as well as Is-PTS1 detection. These predictions are noticeably useful for
peroxisomal-related research [21].

2 OrganelX functionalities and examples
Input The input is a FASTA text file containing one or more protein sequences. Each
sequence begins with a single-line description, followed by sequence data. The single-line
description consists of >sp|ID|Desc symbols, where >sp is a fixed prefix, ID is the
sequence name, and Desc is a descriptive text, followed by tokens of the FASTA sequence
on the next lines.
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Output The output file is a plain text file containing the classification results. The
results of each class are represented by the predicted class name followed by ‘:’ and the
IDs of the corresponding classified entries.

Processing Methods The three classification algorithms start representing the se-
quence as a concatenation of two deep learning-based sequence embeddings, namely
UniRep and Seqvec [9, 10]. The classification is performed by Support Vector Machines
(SVM), where the In-Pero and In-Mito algorithms classify among sub-organelle classes.
There are two classes (matrix and membrane) for peroxisomal proteins and four classes
(matrix, inner-membrane, intermembrane, outer-membrane) for mitochondrial proteins.
The third algorithm detects the PTS1 signal by matching a regular expression. Adopting
a similar workflow that starts with the embedding representation and performs an SVM
based classification, the Is-PTS1 validation algorithm classifies true and false PTS1.

Validation The algorithm was validated on two validation sets. Data were down-
loaded from Uniprot [22] on the 25/02/2021. For validating In-Pero, we queried for
reviewed proteins with a clear sub-peroxisomal annotation in membrane (”SL-0203”
and ”GO:0005778”) or matrix (”SL-0202” and ”GO:0005782”). We then clustered the
query results for 40% of sequence identity with CD-hit [23] and removed the sequences
overlapping with our training set, obtaining 85 membrane proteins and 59 matrix pro-
teins. Our model obtained an accuracy of 0.88. We also tested the Is-PTS1 predictor
retrieving in a similar way 15 true and 15 false, where true refers to a peroxisomal
protein carrying the PTS1 signal and false refers to a peroxisomal protein without
PTS1 signal. The performance in terms of accuracy is 0.83. The in-depth analysis of
the In-Mito predictor is available in the original paper [16]. Datasets are available at
https://github.com/MarcoAnteghini/.

Examples In order to submit a job, the user must specify an arbitrary username,
his email address (optional) and upload a FASTA file. The computation time changes
depending on the file size and the traffic on the website. The user can either wait for
the results via email, or simply refreshing the result web page. An example is visible
at https://organelx.hpc.rug.nl/fasta/test_example, where also a FASTA file can be
downloaded.
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