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Abstract 
 
Marine viruses have thoroughly been studied in seawater, yet their dispersal from neuston 

ecosystems at the air-sea interface towards the atmosphere remains a knowledge gap. Here, we 

show that 6.2 % of the studied virus population were shared between air-sea interface 

ecosystems and rainwater. Virus enrichment in the 1-mm thin surface microlayer and sea foams 

happened selectively, and variant analysis proved virus transfer to aerosols and rain. Viruses 

detected in rain and aerosols showed a significantly higher percent G/C base content compared 

to marine viruses, and a genetically distinct rain virome supports that those viruses could inhabit 

higher air masses. CRISPR spacer matches of marine prokaryotes to “foreign” viruses from 

rainwater prove regular virus-host encounters at the air-sea interface. Our findings on 

aerosolization and long-range atmospheric dispersal implicate virus-mediated carbon turnover 

in remote areas, viral dispersal mechanisms relevant to human health, and involvement of 

viruses in atmospheric processes like ice-nucleation.  
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 Marine viruses represent the most abundant biological entities in the oceanic water 

column 1 where they contribute to microbial diversity 2, supply hosts with metabolic genes 3 

and influence carbon cycling by inducing host cell lysis (the “viral shunt”)4. While viruses have 

been studied in many marine habitats including the surface water 5 and deep-sea sediments 6, 

their presence at the air-sea interface, where microorganisms modulate gas and organic matter 

exchange processes 7-9, remains mostly enigmatic. Like many micro- and macroorganisms 10,11, 

viruses accumulate in the thin (<1 mm) uppermost layer of aquatic ecosystems, the surface 

microlayer (SML, reviewed by Cunliffe, et al. 12, Engel, et al. 13), where they belong to a pool 

of organisms collectively referred to as neuston 14. The enrichment of the virioneuston in the 

SML is mediated by bubble transport from the underlying water 15,16 and likely maintained by 

viral attachment to particles 17 and a dependency on abundant prokaryotic hosts 18. In 

freshwater, bacteriophages residing in the SML can form autochthonous communities 19 but 

comparatively little viromics studies have been conducted for marine SML (reviewed by Rahlff 
20). Sea foams float as (extended) patches on the sea surface (Supplementary Video), forming 

deposits at the shoreline and being microbial habitats that contrast the SML 21,22. Based on 

satellite data, foams (whitecaps) cover up to 6 % of oceanic surface area and are expected to 

become more frequent with climate change 23. During storms, foams can flood beaches 15 and 

massively pollute coastal areas like recently in Turkey 24. Furthermore, sea foams can contain 

pathogenic bacteria 25 and their easy spread might be an important step for the dispersal and 

aerosolization of its inhabiting microbes 26 and potentially viruses. Foams can effectively 

concentrate viruses 27 which survive more than three hours of drying and sunlight when caught 

in foams 28. Virus-like particles (VLP) can reach a 300 x higher abundance of in foams 

compared to surrounding waters 24.  

 

Interest in studying viruses in the skin-like layer between ocean and atmosphere arises from 

therein appearing human pathogenic viruses 29, the potential of SML viruses to get airborne 30, 

to selectively enrich in aerosols 31, and to disperse over long distances to eventually promote 

turnover of algal blooms in remote regions 32. Virus aerosolization from the SML was 

previously studied 15,30,33, but investigations pursuing metagenomic approaches to explore the 

virioneuston and its aerosolization in the field are lacking. A recent review highlighted the need 

to quantify marine aerobiota, to characterize the spatial-temporal dimensions of dispersal, and 

to understand acclimations of marine microorganisms to atmospheric conditions 34. Once 

airborne, viruses could even fulfill other functions as recently suggested 35: Airborne marine 

viruses could serve as ice-nucleating particles (INP), a function already described for many 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2022. ; https://doi.org/10.1101/2022.06.21.497027doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.497027
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

microorganisms 36,37, and act as catalysts to mediate freezing at temperatures warmer than -

10 °C. INP exist in the SML 38-40 and have an important role in cloud formation, cloud albedo 

and precipitation and thus are key in climate regulation dynamics 41. Viruses and bacteria can 

be found in clouds 42-45, where the latter might grow selectively 46 and as INPs, trigger their 

own precipitation 47,48. Precipitation could be an underestimated source of microorganisms to 

Earth’s surface, for example it contributed to as much as 95% of atmospheric bacterial 

deposition at a Korean site 46. So far, research on viruses included in wet precipitation was 

mainly focused on viruses relevant to human health, such as enteric or adenoviruses 49-51. Reche, 

et al. 52 reported that 107 bacteria and 109 viruses per m2 per day deposit above the atmospheric 

boundary layer, with marine origin making stronger contributions than terrestrial sources. This 

rate can be one order of magnitude higher for bacteria 53 and perhaps also for viruses. Rain 

events related to a hurricane decreased marine viral diversity and abundance as well as 

introduced novel taxa in the western Gulf of Mexico 54. Furthermore, stormwater runoff 

changed the viral community composition of inland freshwaters and a stormwater retention 

pond 55,56. However, the transmission cycle of neustonic viruses from the sea surface via 

aerosols to wet precipitation remains speculative and the degree of viral exchange between 

these habitats and along the natural water cycle is unknown.  

 

To fill these knowledge gaps, we analyzed 55 metagenomes including air-sea interface habitats 

(sea foams and SML), subsurface water (SSW) from 1 m depth, aerosols, and precipitation 

(rain, snow) collected in a coastal region of the Skagerrak in Tjärnö, Sweden (Fig. 1A). We 

explored the potential of marine viruses to become aerosolized and being returned to Earth via 

wet deposition. We hypothesized that aerosols and rain included marine viruses, and that sea 

foams have a particular role in the contribution to viral aerosolization due to their high content 

of organic material, high air content and direct contact with the atmosphere. Virus-host 

infections histories were investigated by studying the prokaryotic adapted immunity, namely 

the clustered regularly interspaced short palindromic repeats (CRISPR) system. Extraction and 

matches of CRISPR spacers, short sequences obtained from cell-invading mobile genetic 

elements, to viral protospacers allowed to reveal virus-host relationships across ecosystem 

boundaries.  
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Results 

 
Cell and VLP abundance, enrichments, and correlations thereof reveal tight virus-host 
coupling in the neuston  
 

Marine, aerosol, and rain samples were collected around Tjärnö Marine Laboratory, Sweden 

including 11 stations in coastal waters of the Skagerrak, where air-sea interface samples (SML, 

foam) and a reference depth were sampled (Fig. 1A). Prokaryotic, small phototrophic 

eukaryotic and VLP counts were measured to assess virus-host ratios and correlations in the 

neuston (SML, foam) compared to the underlying plankton in the SSW. Across all stations, 

flow cytometry revealed viral abundance between 5.0 x 107 - 1.8 x 108, 1.3 x 107 - 3.4 x 107 and 

1.4 x 107 - 2.0 x 107 VLPs mL-1 in floating sea foams, the SML and SSW, respectively (Extended 

Data Table 1, Extended Data Fig. 1). This increasing VLP gradient towards the atmosphere was 

supported by microscopic analysis as shown for station 4 (Fig. 1B a-c, Fig. S1), and VLPs in 

sea foams often adhered to particulate matter (Fig. 1B d). Counts of VLP in precipitation 

samples (rainwater) ranged between 3.7 x 104 - 3.4 x 105 VLPs mL-1. Enrichment factors (EF) 

for VLPs in the SML over SSW varied between 0.7 (depletion) and 1.9 (enrichment) (Extended 

Data Table 1). Total cell numbers of prokaryotes were 1.3 x 106 - 3.8 x 106, 7.0 x 105 - 1.1 x 

106 as well as 7.0 x 105 - 8.7 x 105 cells mL-1 in floating sea foams (Fig. 1B e), the SML and 

SSW, respectively (Extended Data Fig. 1, Extended Data Table 1). EFs for prokaryotes 

fluctuated between 0.9 and 1.3. Across the five precipitation samples, 2.3 x 103 - 1.8 x 104 

prokaryotic cells mL-1 were detected. Virus-host ratios (host=prokaryotes) based on flow 

cytometry data were highest in foams (range = 25.3 - 48.4), followed by the SML (range = 15.5 

- 34.2) and SSW (range = 19.3 - 26.7). Virus-host ratios in precipitation samples showed the 

strongest variation and ranged between 7.1 and 127.8 (Extended Data Table 1). The highest 

virus-host ratios in the SML were detected on days were VLP EFs were ³ 1.8 and prokaryotic 

EFs ³ 1.1 at the same time. Total cell numbers of small phototrophic eukaryotes ranged between 

3.4 x 103 - 1.8 x 104, 1.8 x 103 - 6.2 x 103, 2.1 x 103 - 5.0 x 103 cells mL-1 in sea foams, SML 

and SSW, respectively.  

 

Within the SML, the number of small phototrophic eukaryotes and prokaryotes was 

significantly correlated with VLP abundance (Pearson’s corr = 0.74, p = 0.014 and Pearson’s 

corr = 0.70, p = 0.025, respectively, Extended Data Fig. 2 A&B). When sea foam samples were 

included, the correlation’s significance increased (Extended Data Table 2) while the 
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plankton/SSW correlations with the same variables were not significant (Extended Data Fig. 2 

C & D). In addition, the absolute numbers of small phototrophic eukaryotes and their EFs were 

significantly correlated with absolute numbers and EF of prokaryotes for the neuston, inferring 

a common transfer mechanism of these cell types to the air-sea interface (Extended Data Table 

2, Fig. S2). EFs of VLP were significantly correlated to EFs of prokaryotes (Spearman’s 

rho = 0.62, p = 0.006) but not to EFs of small phototrophic eukaryotes (Extended Data Fig. 2 

E & F) probably indicating that enrichments of viruses in the SML are primarily dependent on 

host cell availability and that most SML viruses are prokaryotic viruses. 

 
Figure 1: Map depicting sampling stations and viral enrichment in sea-surface microlayer 
and sea foam. Map of sampling sites was generated using Ocean Data View 118 and 
https://maps.co. For further details about the stations, please refer to Table S8 (A). Gradient of 
virus-like particles (VLP) in sea foam (a), sea-surface microlayer (b) and 1-m deep subsurface 
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water (c) recorded in epifluorescence microscopy with VLP counts mL-1 from Station 4 as 
obtained from flow cytometry. Virus-like particles stick to particulate matter in the foam habitat 
(d). Sea foams were collected as floating patches from the ocean’s surface (e) (B). 
 
Correlations of cell and VLP counts with ice-nucleating particles, wind speed and 
environmental parameters 

 
INPs, like VLPs, showed a decreasing gradient from sea foams, SML to SSW (Extended Data 

Fig. 3), with INP in foams showing the highest concentrations over the detectable temperature 

range. Ice activity for all samples generally started at high temperatures of ~ -4 to -6 °C, 

comparable to observations for microorganisms in the atmosphere 57. Concentrations of INPs 

were only significantly correlated with VLPs, small phototrophic eukaryotes and prokaryotes, 

when all interface samples (sea foams and SML) were combined (Extended Data Table 2, 

Extended Data Fig. 4), but were not significantly correlated with VLPs and cells in the SSW. 

In addition, enrichment of VLPs (but not cells) in the SML was significantly correlated with 

the enrichment of INPs (Spearman’s rho = 0.86, p = 0.011, Extended Data Table 2). Correlation 

analysis of absolute VLP counts derived from neuston and plankton as well as EFs for VLPs 

and cells with meteorological data (light, salinity, and wind speed) did not reveal any significant 

relationships (Extended Data Table 2). However, numbers of small phototrophic eukaryotes 

(Pearson’s corr = 0.68, p = 0.031) and prokaryotes (Pearson’s corr = 0.71, p = 0.022) were 

significantly correlated with salinity at 1 m depth but insignificantly correlated within the SML, 

which could be explained by regular inflow of high saline water from the Atlantic Ocean that 

probably affects deeper water layers more than the SML.  

We applied linear models to investigate combinatory effects of environmental variables (wind 

speed, light, and salinity) on enrichment of cells and VLPs in the SML. Only one linear model 

considering the combinatory effects of wind speed and salinity on the enrichment of small 

phototrophic eukaryotes in the SML passed the F-test with significance (p = 0.038), and 59.6 % 

of the residuals were explained by this model. The model’s Akaike information criterion (AIC) 

was -2.37, which was superior to considering wind speed (AIC = 5.84) and salinity 

(AIC = 6.40) alone. Other models testing single and combined environmental parameters on 

the enrichments of cells and VLP in the SML were not significant. 
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Aerosolization of biota and decreasing diversity from marine towards atmospheric 

habitats 
 
Analysis of Shannon-Wiener Diversity Index of prokaryotic communities (extractions from 

filters with 5 - 0.2 µm pore size) suggests a lower diversity of atmospheric (rain, aerosol) 

microbiota compared to marine samples, but the difference was only significant between 

aerosols and SSW (Kruskal-Wallis with Dunn’s multiple comparisons test, p = 0.0097, Fig. 

2A). PERMANOVA confirmed significant differences for the NMDS analysis (p < 0.001, Fig. 

2B) with TukeyHSD on multivariate dispersion distances revealing significant differences 

between aerosols and foam (p = 0.02), aerosols and SML (p = 0.02), and aerosols and SSW (p 

= 0.0002) (Fig. S3). Correlation matrices showed that aerosol and rain communities are distinct 

from marine communities and from each other (Extended Data Fig. 5A). Beta-diversity analysis 

showed that SSW samples were mainly composed of Proteobacteria (mean relative abundance 

± standard deviation = 67.8 ± 5.2 %, n = 9), Bacteroidetes (22.6 ± 6.0 %), and Thaumarchaeota 

(5.1 ± 2.3 %). In general, the SML samples reflected this composition although two samples 

deviated by containing a major percentage of Planctomycetes (13.3 ± 28.7 %, n = 9) and 

Cyanobacteria (4.6 ± 7.2 %, n=9). Sea foams were like the SML but additionally contained 

WOR-2 (2.7 ± 3.2 %, n=3) and an increasing proportion of Bacteroidetes (37.7 ± 11.6 %, n = 3). 

Aerosols also contained Proteobacteria (43.4 ± 13.9 %, n = 8), Bacteroidetes (21.0 ± 21.6 %) 

and Planctomycetes (20.8 ± 13.0 %). The snow sample contained a relative abundance of 

97.3 % Cyanobacteria (Rivularia sp.). The mean relative abundance of Proteobacteria 

(49.9 ± 5.1 %) and Bacteroidetes (20.7 ± 2.4 %) in rain was comparable to aerosols, but in 

contrast to sea surface water and aerosols, Actinobacteria (6.3 ± 9.4 %) and Cyanobacteria 

(13.6 ± 5.1 %) were more abundant. 

 

Detection of the same bacterial ribosomal protein S3 genes in marine, aerosol and precipitation 

samples suggests their aerosolization from the sea surface, e.g., for Proteobacteria 

(Oceanospirillum maris, Loktanella vestfoldensis, Candidatus Pelagibacter), Bacteroidetes 

(Crocinitomix catalasitica and Bacteroides fragilis), Cyanobacteria (Crinalium epipsammum 

and Oscillatoria sp.) and Planctomycetes (Pirellula staleyi) (Fig. 2C&D). Interestingly, 

aerosols and precipitation contained Cyanobacteria such as Rivularia sp. (max. 14.1 % in rain, 

97.7 % in snow) and Proteobacteria such as Sphingobium japonicum (max. 21.8 %) or 

Methyloferula stellata (max. 21.4 %), which could not be found in any of the local marine 

samples (relative abundance = 0). Rain contained Actinobacteria (Cryocola sp., max. 20.3 %) 
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and Bacteroidetes such as Mucilaginibacter paludis (max. 20.1 %) that were only scarcely 

detected in marine samples (< 0.2 %) and thus probably originated from other sources.
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Figure 2: Diversity and relative abundance of marine and airborne prokaryotes based on relative abundance in rain, snow, aerosols, sea foam, 
surface microlayer (SML) and subsurface water (SSW). Diversity depicted by Shannon-Wiener index with * = p < 0.05 in Dunn’s multiple 
comparison test (post hoc analysis after Kruskal-Wallis test) (A), non-metric multidimensional scaling plot based on Bray-Curtis dissimilarity 
(stress = 0.082) (B), and stacked bar chart on beta-diversity at the phylum level (C). In C, relative abundance is based on read-normalized coverage 
on scaffolds carrying the ribosomal protein 3 gene (rps3) as explained in the main text. Black areas represent accumulated taxonomic units of minor 
abundance. Seawater samples show result of > 0.2µm samples, whereas rain contains >0.2 µm (#1+#3) and viromes (#2+#4). Heat mapshows 
relative abundance of prokaryotic taxa across different ecosystems (D). Black colored fields indicate < 1% relative abundance; (R=rain, S=snow, 
Ae=aerosols, F=sea foams, SML=surface microlayer, SSW=subsurface water. Sample number is in accordance with Table S10)
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K-mer based virus-host assignments reveal Pelagibacter and Porticoccus as prevalenthosts 

 

In total, 116 metagenome-assembled genomes (MAGs) could be recovered from 24 different 

samples (Table S1 & S2), which ranged from 58.8 – 100 % completeness (median = 86.3 %)and 

0 – 11.8 % contamination (median = 3.9 %) based on uBin 58. CheckM 59 resulted in 

completeness and contamination scores of 18.4 – 99.5 % (median = 80.6 %) and 0 – 17.3 % 

(median = 1.6%) for these MAGs, respectively. Most host MAGs were of bacterial origin, 

except for three assigned to the genus Nitrosopumilus (Archaea). Recovering MAGs from 

atmospheric samples was particularly challenging; only a single MAG was obtained from rain 

(genus Pedobacter) and from an aerosol sample (class Planctomycetes, order Pirellulales), 

respectively. Overall, bacterial MAGs were mostly classified as Gammaproteobacteria (n = 43), 

Alphaproteobacteria (n = 30), Bacteroidia (n = 36), and Planctomycetes (n = 4). Based on read 

mappings, all MAGs were detected in a marine ecosystem (except for the Pedobacter sp. MAG) 

and rain and some additionally in aerosols. (Table S3). MAGs were matched to viruses based 

on shared k-mer frequency patterns, revealing that 120 marine viruses matched a MAG 

assigned to Candidatus Pelagibacter (Extended Data Fig. 6). Hosts of rain viruses (not 

detectable in other sampled ecosystems) and one aerosol virus were predicted as MAGs 

belonging to the family Porticoccaceae and a Flavobacterium.  

 
Viral diversity and transfer from the sea surface to aerosols and rain 
 

Shannon-Wiener index values were significantly different for viruses between aerosols and 

SSW (Dunn’s multiple comparison test, p < 0.0001), but also weakly different between SML 

> 0.2 µm fraction and SSW virome samples (p = 0.029) (Fig. 3A). The distinct viral community 

of SML > 0.2 µm samples was also demonstrated by beta-diversity analysis (Fig. 3 B&C). Here, 

PERMANOVA confirmed significant differences for the NMDS analysis (p = 0.001), and post 

hoc pairwise analysis revealed significant differences between the SSW virome and the SML 

0.2 µm fraction (p = 0.013, Fig. S3). We investigated further on individual SML and foam 

viruses that were detected in aerosols and rain. EFs were overall higher for viruses in rain over 

interface habitats (SML, foam) compared to their enrichments in aerosols. Viruses with the 

closest relative of Cellulophaga phages (max. EF = 5.3), Mycobacterium phage (max 

EF = 15.7), Cyanophage P-RSM1 (max. EF = 7.4), Puniceispirillum phage HMO-2011 (max 

EF = 4.0) or Synechococcus phages (max EF = 12.4) were candidates often enriched (coverage 

ratio > 1) in rain compared to foam and/or SML. In aerosols, viruses closely related to 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2022. ; https://doi.org/10.1101/2022.06.21.497027doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.497027
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

Pelagibacter phages (max. EF = 2.8), Puniceispirillum phage HMO-2011 (max. EF = 1.3), 

Rhizobium phage (max. EF = 2.1), and one Synechococcus phage S-CBS1 (EF = 1.9) were 

enriched compared to marine samples (Fig. 3D). This agrees with many of the assembled 

marine viruses sharing protein clusters with Synechococcus, Rhizobium, Cellulophaga, 

Flavobacteria, Vibrio and Pelagibacter phages using vCONTACT260 (Extended Data Fig. 7 

& 8). Overall, the correlation matrix across all viromes and samples shows most positive 

correlations between foam, SML, SSW, which are well-interconnected systems, and some 

positive correlations of specific marine samples with aerosol and rain samples (Extended Data 

Fig. 5B). Viromes of marine samples and rain samples were sometimes even negatively 

correlated, suggesting alternative sources of rain viruses other than the sea surface. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2022. ; https://doi.org/10.1101/2022.06.21.497027doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.497027
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

 
Figure 3: Diversity and enrichment analysis of marine and airborne viruses based on relative 
abundance in rain, snow, aerosols, sea foam, surface microlayer (SML) and subsurface 
water (SSW). Alpha-diversity for all samples (except for #12, which contains 0 viruses) 
depicted by Shannon-Wiener index; * = p < 0.05, **** = p < 0.0001 in Dunn’s multiple 
comparison test (post hoc analysis after Kruskal-Wallis test) (A), non-metric multidimensional 
scaling (NMDS) plot based on Bray-Curtis dissimilarity (stress = 0.06) (B), and stacked bar 
chart on beta-diversity (C). If samples only contained rare viruses (sample #7), a single virus 
(#3, #5, #6, #11 #13) or no viruses (#12), they were removed, and only the relative abundance 
of the 200 most abundant viruses were considered for B&C. In (C), marine samples are 
separated by size fraction: > 0.2 µm = prokaryote fractions, < 0.2 µm = viromes; Rain sample 
#1 is a > 0.2 µm sample, whereas #2 and #4 are rain viromes. Enrichment ratio of SML and 
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foam viruses in rain and aerosols (D). Shown are ratios ≥ 1 of virus coverage for rain/foam 
(R/F), rain/SML (R/S), aerosol/foam (A/F), aerosol/SML (A/S), where the left tick stands for 
foam and SML virome and the right tick for foam and SML 0.2 µm fraction in the denominator. 
Black fields mean that the virus was absent in both ecosystems in the respective sample. Grey 
areas show out of range fields (ratio < 1, indicating depletion). Sample number is explained in 
Table S10.  
 

We then investigated the aerosolization patterns of two circular viral genomes of similar length 

and carrying viral hallmark genes (terminases, portal protein) across the different habitats and 

stations (Fig. 4A+B). Virus_1 (39.7 kb, percent G/C content = 46.7 %, no RefSeq match in 

vCONTACT2) was constantly of lower abundance in seawater samples compared to Virus_2 

(35.1 kb, percent G/C content = 35.1 %, no RefSeq match in vCONTACT2) across different 

stations. However, Virus_1 was consistently abundant in sea foams and was additionally found 

in three aerosol samples and two rain samples. Instead, Virus_2 was absent from the atmosphere 

despite its abundance in surface water. Virus_1 was linked to a Porticoccus MAG based on k-

mer patterns (Extended Data Fig. 6) and single-nucleotide polymorphism (SNP) analysis 

revealed multiple SNP overlaps for this virus between a foam, aerosol, and rain sample, 

supporting its transfer from the sea surface to aerosols and rainwater (Fig. 4C&D, Table S4). 

Cross-mapping of reads from all samples against all 1813 viral scaffolds revealed shared viral 

populations between ecosystems (Fig. 6A). Sea foams, SML and SSW shared 837 viruses, 

whereas 15 viruses were present in all studied ecosystems. Overlaps between aerosols and rain 

samples must be treated with caution, because some rain could have reached the aerosol filter 

membrane during sampling and filter exchange (Table S5), although we tried to rule out the 

second possibility by subtracting reads from handling controls. Precipitation had the highest 

number of unique viruses (109), followed by foams (25), SSW (18), SML (7) and aerosols (6). 

Uniqueness means that no other habitat had 90 % identical reads with 75 % scaffold coverage 

of at least 1x for that virus. A percentage of 6.2 % (111) of all viruses was shared between 

seawater including foam and precipitation. Interestingly, the rain sample pooled from Feb. 16th 

to 22nd of Feb. 2020 (event 2) defined most of this overlap compared to a sample from Feb. 7th 

and 9th February (event 1): Based on read-mapping, rain events 1 and 2 were associated with 

22 versus 85 viruses assembled from marine samples as well as 112 versus 44 viruses assembled 

from rain, respectively. Based on read-mapping, event 1 delivered 38 marine prokaryotic 

MAGs (min. 90 % genome covered with reads), whereas 79 marine MAGs were found in the 

rain sample belonging to event 2 (Fig. 5). To explain these differences by tracking to potential 

sources, backward trajectories (TJs) for air masses were calculated. They showed that during 

event 2, air masses spent on average 72 % of their time over the sea and loading conditions 
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(loading of air masses with generic particles) were fulfilled on average 35 % of the TJ. On the 

other hand, for event 1, air masses spent less time above the sea (64 %) and loading conditions 

were fulfilled, on average, only 10 % of the TJ points (Fig. 5). 

 

 
Figure 4: Succession of the coverage of two circular viral genomes across 28 metagenomes 
derived viromes of surface microlayer (SML), 1-m deep subsurface water (SSW) and sea foam 
as well as from sea foam filtered onto 0.2 μm membranes, aerosol, and rainwater samples (A). 
Synteny and functional annotations of the two circular viruses visualized using Easyfig 82 and 
annotated with DRAM-v80. Functional annotations are 1: Bifunctional DNA 
primase/polymerase, N-terminal [PF09250.12], 2: Sec-independent protein translocase 
protein (TatC) [PF00902.19], 3: Terminase, 4: Concanavalin A-like lectin/glucanases 
superfamily [PF13385.7], 5: Phage P22-like portal protein [PF16510.6], 6: Terminase-like 
family [PF03237.16]; Terminase RNAseH like domain [PF17288.3], 7: C-5 cytosine-specific 
DNA methylase [PF00145.18], 8: PD-(D/E)XK endonuclease [PF11645.9] (B). Variant 
analysis of Virus_1 for a sea foam, aerosol and rain sample reveals overlapping nucleotide 
polymorphisms. Blue and orange arrows indicate overlaps between three and two samples, 
respectively. For details, please see Table S4 (C). Venn diagram showing variant overlaps for 
Virus_1 in different ecosystems as shown in C (D).  
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Figure 5: Backward trajectories (TJs) of two rain events leading to different deliveries of marine viruses and metagenome-assembled genomes 
(MAGs) at the study site. Event 1 (upper left panel) refers to a rainwater sample from 7th to 9th of Feb., and event 2 (lower left panel) to a sample 
collected between 16th to 22nd of Feb. 2020. Sky blue and red points highlight where backward trajectories travel above sea and land, respectively. 
Blue filled squares represent points where loading conditions were fulfilled (please see main text for further explanation). Panels on the right show 
corresponding deliveries of viruses and MAGs to the study sites. A virus was considered marine or from rain if assembled in such a sample and 
counted if detected based on read mapping. Marine MAGs were considered present in rainwater 0.2 µm samples if 90% of the genome was covered 
with reads (see Table S3).

Longitude

La
tit
ud
e

Air masses 72% of
time over sea;
Loading conditions
fulfilled 35% of TJ

Rainwater delivers
85 marine viruses
44 rain viruses
79 marine prok. MAGs

Air masses 64% of
time over sea;
Loading conditions
fulfilled 10% of TJ

TJ

TJ

Rainwater delivers
22 marine viruses
112 rain viruses
38 marine prok. MAGs

EVENT 1

EVENT 2
Study site

Study site

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2022. ; https://doi.org/10.1101/2022.06.21.497027doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.497027
http://creativecommons.org/licenses/by-nc-nd/4.0/


Viral dispersal across the air-sea interface 

 16 

 

Rain and aerosol viruses show adaptations toward atmospheric residence and are 

targeted by marine prokaryote immunity 

 

To investigate if unique atmospheric viruses have genetic adaptations, we explored the content 

of guanine (G) and cytosine (C) bases in viral scaffolds. Viral scaffolds solely occurring in rain 

samples (Rain_unique, n = 109) exhibited a significantly higher percent G/C content than total 

viruses found in rain (Kruskal-Wallis with Dunn’s multiple comparisons test, p = 0.0002). All 

viruses found in marine samples had a highly significantly lower percent G/C content compared 

to aerosol, total rain and unique rain viruses when compared pairwise (KW-test, p < 0.0001, 

Fig. 6B). One very abundant circular viral genome was identified as a unique rain virus (39 kb, 

 coverage = 189 x, percent G/C content = 59.7 %) with its closest relative being Sulfitobacter 

phage pCB2047-C (ViralComplete) or a Rhizobium phage RHph_N3_2 (vCONTACT2). This 

phage carried typical phage hallmark genes like a major capsid protein, an endonuclease, a 

terminase and modification methylase, but also carried many hypothetical proteins (Table S6). 

In addition, two large viral scaffolds unique to rain (270 kb and 496 kb) and with some genes 

related to Mimiviridae and k-mer linked to a Flavobacteriaceae MAG, encoded for sensors of 

blue-light using FAD (BLUF, PFAM ID PF04940.13), a photoreceptor and for an UV-

endonuclease UvdE (PF03851.15). Another 16 kb viral genome with typical phage proteins 

(terminase, capsid) encoded for Tellurium resistance genes TerD (PF02342.19). From 

metagenomic assemblies, and one MAG of Schleiferiaceae bacterium MAG-54, CRISPR 

arrays with evidence level 3 and 4 from 18 different samples could be detected by 

CRISPRCasFinder 61, and mostly belonged to marine ecosystems (n = 14) and rainwater (n = 4, 

Table S7). CRISPR spacers extracted across all samples based on consensus direct repeat (DR) 

sequences from recovered arrays matched protospacers of viruses from seawater, but also the 

unique rain viruses (Fig. 6C, Fig. S4). Interestingly, CRISPR spacers matching most viral 

protospacers were extracted from two dominant arrays, with one of them targeting primarily 

(unique) rain viruses and the other one marine viruses (Fig S4, Table S7). 
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Figure 6: Overlapping occurrence of viral scaffolds, their percent G/C base content and 
CRISPR spacer to viral protospacer hits. Overview of shared viral scaffolds (>10 kb) length 
between seawater, aerosol and precipitation habitats obtained from 55 metagenomes and 
determined by mapping of reads. A viral genome was considered present in a sample if at least 
75 % of the genome were covered with reads at least 90 % identical to the genome, in 
accordance with suggested viromics benchmarks 78 (A). Percent of the bases guanine (G) and 
cytosine (C) in viral scaffolds from rain, aerosol, foam, surface microlayer (SML) and 
subsurface 1-m deep water (SSW) based on read mapping. “Rain_unique” refers to viral 
genomes exclusively found in rain. Stars indicate significant differences after Kruskal Wallis 
test and Dunn’s multiple comparison test (****, p = <0.0001). In each pairwise comparison, 
the marine groups were significantly different from the atmospheric groups. Rain_total was 
also significantly different from Rain_unique (***, p = <0.001), which is not indicated to 
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reduce complexity of the figure (B). CRISPR spacers (origin indicated as square) matching 
assembled viral scaffolds (circles) derived from different habitats (C). 
 

Discussion 

 

The atmosphere is known to mediate rapid transport of prokaryotes and viruses from marine 

and terrestrial sources over thousands of kilometers 62,63. Aerosol and rain samples contained 

MAGs and genetic signatures from marine microbes, suggesting that aerosolization from the 

sea surface generally took place. We found that precipitation samples for instance contained 

cyanobacteria of Rivularia sp. (order Nostocales), but this species could not be found in marine 

samples from the study site inferring transport from remote areas. Especially the rainwater 

community related to event 2 contained a mixture of local and probably dispersed prokaryotes. 

This confirms their travel along the natural water cycle and that the origin of the air mass is 

crucial for understanding airborne microbial diversity, especially near the ocean-atmosphere 

interface 64.  

Due to the tighter coupling of VLPs to their hosts in the neuston, one of the determining factors 

for a virus to get aloft is probably being associated with a host cell or other particulates, such 

as transparent exopolymer particles. These are prone to aerosolization, were found in cloud 

water and to absorb viruses 65,66. Viral attachment to biotic and abiotic surfaces in seawater is 

a common phenomenon 67 and more likely to occur in the SML 17 and in foams (Fig. 1B). We 

found that VLPs in foams often adhered to particulate matter though >50 µm particles were 

removed prior flow cytometric measurements, probably leading to an underestimation of the 

measured VLP counts in particle-rich sea foams. Michaud, et al. 33 used a mesocosm experiment 

to show that bacterial and viral aerosolization is taxon-specific, and our data support and extend 

the concept of selective aerosolization from the water surface under field conditions. Two viral 

genomes experienced the same environmental conditions but showed a consistently distinct 

aerosolization behavior on a spatial-temporal scale. Virus_1 became constantly more abundant 

in sea foams at different stations, and SNP analysis proved its transfer to rainwater. As 

enrichments of viruses in rainwater over foam compared to rainwater over SML were enhanced 

in the > 0.2 µm fraction (Fig. 3D), aerosolization from sea foams as a “springboard” from sea 

to air represents a likely scenario. In addition, correlation analyses demonstrated independence 

of VLP enrichment in the SML from various environmental conditions, but findings only apply 

for wind speeds < 6 m s-1, since higher wind speeds prevent SML sampling and bacterioneuston 

enrichment 68. The impact of wind-induced sea spray formation on virus and host 
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aerosolization, needs future investigations for instance by carrying out experiments in wind-

wave facilities.  

Atmospheric dispersal of viruses allows the spread of “foreign” genetic material into new 

habitats enabling bacterial evolution and explains why similar viral genomes can be found 

across large geographical distances 69. The fact that rain samples shared up to 6.2 % of the 

virome with marine samples, generally indicates profound viral exchange between both 

ecosystems. This is further supported by CRISPR spacers from sea surface prokaryotes 

matching viruses found exclusively in rain samples. Established adaptive immunity indicates a 

long-lasting virus-host relationship and proves a constant genetic inflow to the sea surface by 

precipitation.  

Previous work reported that bacterial isolates from rain are often pigmented 70, aiding their 

survival at high UV radiation. Rain and aerosol viruses detected in this study had a significantly 

higher percent G/C base content compared to marine viruses, which is a suitable adaptation for 

avoidance of thymine-specific damage by UV radiation in bacteria71 and occurred in recently 

described bacterial isolates from the stratosphere72. Some viruses carried genes, e.g. for 

Tellurium resistance, which could be relevant for tolerating atmospheric conditions where 

Tellurium contaminations occur 73. As genetic adaptations cannot be established within hours, 

for instance shortly after aerosolization, we assume that the atmosphere contains its own 

virome, likely maintained across large areas and different altitudes, supplied by marine or 

terrestrial sources, and then distributed up to the higher troposphere or even above. The hereby 

detected 109 distinct rainwater viruses associated with rain event 1 and carrying genes related 

to atmospheric life supports this conclusion. In contrast, air masses delivering rain during event 

2 were loaded over sea and contained more marine viruses and prokaryotic MAGs. We 

speculate that these viruses endure less well in the atmosphere than the high percent G/C-

adapted rain viruses but can still be dispersed with air masses or clouds and deposited from 

them. Consequently, air mass and cloud migration and therein transported microbes and viruses 

could have strong impacts on biogeography, diversity, and evolution of microbial communities 

on the ground, particularly in aquatic habitats. Future work using culture-dependent 

experiments is required to elucidate if marine viruses remain infective when they are returned 

to the surface during precipitation. Since sea surface hosts possess CRISPR spacers matching 

genomes of unique rain viruses, ongoing infections with these viruses in the sea surface are 

probable. Moreover, there is a tendency that at ecosystem boundaries, different CRISPR arrays 

are in charge for targeting viruses from different ecosystems (air, marine), although we assume 

that these arrays have high turnover rates in this dynamic interface ecosystem. Future work is 
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certainly required to confirm the here reported trends. In conclusion, our study shows broad 

dispersal of microbes and viruses along the natural water cycle and emphasizes that viruses 

crossing interfaces and ecosystem boundaries, e.g., with rainwater, can have a crucial role for 

shaping Earth’s aquatic microbiomes.  

 

Online methods 

 

Seawater sampling and processing 

 

Seawater sampling sites were located in the bay offshore Tjärnö, Swedish west coast in the 

Skagerrak (Fig.1), an area characterized by strong salinity gradients 74 (Table S8). Foams and 

SML were sampled from a small boat using the glass plate method 75 as previously described 
22. Corresponding subsurface water (SSW) from 1 m depth was collected as a reference using 

a syringe connected to a weighted hose. Wind speed was measured with a handheld 

VOLTCRAFT AN-10 anemometer (Conrad Electronic, Hirschau, Germany), and light 

conditions were recorded on the boat using the Galaxy Sensors smartphone application 

v.1.8.10. Temperature and salinity were measured from the small boat using a portable 

thermosalinometer (WTWTM MultiLineTM 3420).  

 

Water samples were stored in the dark and on ice until processing in the laboratory. Filtration 

equipment was treated prior to all usages with household bleach and rinsed with MilliQ water. 

Seawater (500 mL SML and 2 L SSW) and sea foams (200-400 mL) were sequentially vacuum 

filtered through 5 µm and 0.2 µm pore size Omnipore PTFE filter membranes (47 mm diameter, 

Merck/Sigma Aldrich, Munich, Germany). The flow-through of the 0.2 µm filter membrane 

was precipitated with 1 mg L-1 iron-III-chloride (Alfa Aesar/Thermo Fisher Scientific, Uppsala, 

Sweden) for 1 hour at room temperature 76, and the flocculates were in turn filtered onto another 

0.2 µm Omnipore PTFE filter membrane to obtain viruses and small prokaryotes. All filters 

were stored at -80° C until further processing and shipped on dry ice to the home laboratory for 

DNA extraction from the 0.2 µm filter and the FeCl3 flocculates. 

 

Aerosol and precipitation sampling 

 

We used a land-based aerosol pump/constant flow sampler (QB1, Dadolab, Milan, Italy) with 

a custom-made filtration unit (SIMA-tec GmbH, Schwalmtal, Germany) to filter aerosols from 
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the atmosphere in coastal proximity (Fig. S5). Incoming air was filtered through 0.1 µm pore 

sized Omnipore PTFE filter membranes (Merck/Sigma Aldrich, Munich, Germany). Filtered 

volumes and filtration duration varied and ranged from 19 to 61 m3 (average volume flow 7 L 

min-1) and from 24 to 96.5 hours, respectively (Table S5). Gas volume was normalized to mean 

temperature and mean air pressure from start and end of an aerosol filtration. Handling controls 

for aerosol samples were collected as follows: a filter membrane was briefly placed on the filter 

unit, and directly frozen in a falcon tube at -80 °C. Snow and rain with a volume of 90 mL and 

150 to 1050 mL, respectively were collected using funnels taped to Duran glass bottles. Rain 

was collected and, like seawater, filtered onto 0.2 µm pore size PTFE filter membranes, and the 

viral fraction was obtained as explained above. Rain collected between 16th to 22nd of Feb. 2020 

was prefiltered onto 5 µm due to visible pieces (probably plant-based) in the sample. For 

enough DNA yield for sequencing, DNA from rain for the periods 07-09. Feb and 16th to 22nd 

of Feb. 2020 were pooled, respectively. The snow sample was prefiltered on 5 µm and frozen 

at -80 °C. Later in the home laboratory, it was thawed at room temperature and concentrated in 

an Amicon® Ultra-15 centrifugal filter unit (Ultracel 100 kDa) by spinning in several steps at 

3000 x g, 10 minutes at 4 °C before DNA extraction. 

 

Air mass paths (backward trajectories) 

 

Transport pathways of air masses was evaluated with 5-day backward trajectories (TJs) 

generated using the Hybrid Single-Particle Lagrangian Integrated Trajectories (HYSPLIT) 

model 77. The TJs were calculated every one hour ending at 700 m above the site for the period 

1st to 29th February 2020. The European Centre for Medium-range Weather Forecasts 

(ECMWF) ERA5 model atmospheric reanalysis 78 is used to initialized HYSPLIT. After five 

days, the uncertainty associated with trajectories is estimated between 10 and 30 % of the travel 

distance79. Each TJ was then projected on the 10-m wind, total precipitation, land mask, surface 

pressure and cloud fraction model fields (ERA5), associating each point along the path with the 

nearest values of the considered model variables. The choice of the ending height (700 m) above 

the site is based on the analysis of in situ meteorological (Nordkoster A Automatic Weather 

Station, 58.890 °N, 11.010 °E as obtained from SMHI, https://www.smhi.se/en) and model 

(ERA5) data for February 2020 (Figure S6). To identify loading areas and air masses 

presumably responsible for the transport towards the site, a selection of TJs was carried out 

considering those (ones) arriving above the site during precipitation sampling events 1 (7-9 

February 2020) and 2 (14-16 and 20-22 February 2020). Similar to Becagli, et al. 80, loading 
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conditions along TJs were evaluated searching where each TJ was within the mixing layer and 

wind speed at surface was greater than 3 m s-1.  

 

Microbial cell counts and virus-like particle abundances 

 

Duplicates of unfiltered seawater, foam and precipitation samples were fixed with 

glutardialdehyde (1% final concentration, Merck, Sweden), stored for 1 hour in the dark and 

subsequently stored at -80 °C. Particle-enriched foams were gravity filtered onto 50  µm filters 

(CellTrics®, Sysmex Partec, Muenster, Germany) before cell counts of prokaryotes and small 

phototrophic (autofluorescent) eukaryotes were measured by a flow cytometer (BD Accuri C6, 

Becton Dickinson Biosciences, Franklin Lakes, USA) according to established protocols 81-83. 

Due to previously reported low coefficient of variance among SML biological replicates in flow 

cytometry 68, we did not measure biological replicates. VLPs were measured as done previously 
84. Flow cytometry results were further compared to VLPs counted under the epifluorescence 

microscope (Leica DMRBE Trinocular, Leica Microsystems). Enrichment factors (EFs) were 

calculated as previously performed 22. EF > 1 and < 1 indicate an enrichment and a depletion 

of measured specimens, respectively. 

 

Ice-nucleating particles 

 

INP were measured from the 5 µm filter membrane that was used for pre-filtration of seawater 

samples. Of these filters, small disks with 1 mm diameter were punched out, using biopsy 

punches, and each disk was immersed in 50 µL of ultrapure water in a well of a 96-well PCR 

tray (BrandtTech®, Essex, CT, USA). For each filter membrane, 24 punches were examined, 

filling one quarter of a PCR-tray. The PCR-tray was then sealed and cooled down in an ethanol 

bath of a thermostat with a cooling rate of 1 Kmin-1, while a camera took pictures every 0.1 K 

from below. On these pictures, frozen wells can be well distinguished from unfrozen ones, and 

the cumulative number of frozen wells was assessed for the different samples, a clean filter and 

pure water. Concentrations of INP were calculated from the cumulative number of frozen 

droplets, based on the known amount of filtered water and Poisson statistics. A more thorough 

description of the measurement method and data evaluation was described earlier 85. 
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Statistical analyses 

 

Correlations between abundances of prokaryotic cells, small phototrophic eukaryotes and VLPs 

were investigated using R version 4.0.3. 86 within R studio87. Pearson or Spearman correlations 

were applied after the Shapiro-Wilk test confirmed normal distribution of data and residuals 

(for linear models). Dependences of EFs on environmental variables (wind speed, light, 

salinity) and interactive effects of those parameters were further investigated using linear 

regressions, and the models were validated using adjusted R2 and AIC in the R programming 

environment. Differences in alpha diversity and viral percent G/C base content were analyzed 

using a Kruskal-Wallis test with Dunn’s multiple comparison as post hoc analysis in Graphpad 

Prism v.9.1. Ecosystem-based differences in beta diversity shown in NMDS plots were assessed 

using PERMANOVA (n = 999 permutations) as well as Betadispersion analyses followed by a 

TukeyHSD test and executed by ‘adonis2’ and ‘betadisper’ function of the R package vegan 88, 

respectively.  

 

DNA extraction and sequencing of metagenomes 

 

Genomic DNA was extracted from seawater (0.2 µm and <0.2 µm flocculated viral fraction), 

rain filter membranes (47 mm diameter, Merck/Sigma Aldrich, Munich, Germany), and the 

concentrated snow sample using the DNeasy PowerSoil Pro Kit (Qiagen, Hilden, Germany). 

DNA from aerosol filters (90 mm diameter, Merck/Sigma Aldrich, Munich, Germany) was 

extracted using DNeasy PowerMax Soil Kit (Qiagen) with a subsequent DNA precipitation 

step. After concentration in a speed-vac “Concentrator plus” (Eppendorf AG, Hamburg, 

Germany), DNA was quantified using QubitTM dsDNA High Sensitivity Assay Kit on a QubitTM 

4 Fluorometer (Invitrogen/Thermo Fisher Scientific) and sent for metagenomic sequencing to 

Fulgent Genetics (CA, USA). Library preparation was done according to the Illumina DNA 

Prep with Enrichment Reference Guide (Document # 1000000048041 v05, June 2020). 

 

Metagenomic analyses 

 

Raw shotgun sequencing reads of seawater (foams, SML, SSW), aerosols and precipitation 

datasets were quality-trimmed using bbduk 

(https://github.com/BioInfoTools/BBMap/blob/master/sh/bbduk.sh) and Sickle 89. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2022. ; https://doi.org/10.1101/2022.06.21.497027doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.497027
http://creativecommons.org/licenses/by-nc-nd/4.0/


Viral dispersal across the air-sea interface 

 24 

Sequencing controls were assembled using MetaSPAdes version 3.13 90 and used as a blueprint 

for read mapping 91 of actual samples; any reads that mapped to the negative controls were 

removed from downstream analyses 

(https://github.com/ProbstLab/viromics/tree/master/extract_unmapped_stringent). The same 

procedure including handling controls was carried out for metagenomic reads of aerosol 

samples.  

Within a snakemake workflow 92 designed for detecting viruses and prokaryotes, quality-

controlled paired-end reads were first assembled with MetaviralSPAdes 93 and reads were 

mapped back 91 to the assembly. Unassembled reads were assembled using MetaSPAdes 

version 3.14 90, and the two assemblies were joined for downstream processing. VIBRANT 

v.1.2.1. 94, VirSorter v.195 (only category 1, 2, 4, 5 were considered) and ViralVerify 93 were 

used to identify viral scaffolds and host contamination was removed with CheckV 96. Only viral 

scaffolds >10 kb kept and clustered at species level (95 % similarity) using VIRIDIC 97, and 

the longest or circular scaffold of each cluster was used as representative. Metagenomic reads 

were mapped to >10 kb viral genomes with at least 90 % identity using Bowtie2 91 with settings 

mentioned previously 98. To show the succession of two circular viral genomes across different 

samples, a separate mapping was done for these two scaffolds, and SNP analysis was performed 

for one marine virus that got airborne using Geneious v.11.1.5 99 with default settings for variant 

analysis. Venn diagrams were constructed using ugent Webtool 

(https://bioinformatics.psb.ugent.be/webtools/Venn/). Complying to current viromics 

conventions 100, only scaffolds covered with 75 % of reads were considered further, and breadth 

was checked with Calcopo (https://github.com/ProbstLab/viromics/tree/master/calcopo). Mean 

coverage of viral scaffolds was calculated (https://github.com/ProbstLab/uBin-

helperscripts/blob/master/bin/04_01calc_coverage_v3.rb), and sum-normalized based on 

sequencing depth. Genes on viral scaffolds were predicted using Prodigal v.2.6.3 101 in meta 

mode and resulting coverages were further read-sum normalized and functionally annotated 

using DRAM-v 102. Synteny of viral genomes was visualized using Easyfig v.2.2.5 103. 

Clustering of dereplicated viral genomes with the RefSeq database v.102 and v.1.5. 104 was 

performed using vCONTACT2 v.0.9.19. 60,105 and visualized using Cytoscape v.3.9 106. 

viralComplete 93 (https://github.com/ablab/viralComplete) was used to characterize viruses for 

beta-diversity analysis. The % G/C content of viral scaffolds considered present based on read 

mapping, was calculated with an inhouse script (https://github.com/ProbstLab/uBin-

helperscripts/blob/master/bin/04_02gc_count.rb). For investigating aerosolization and 

enrichment of viral scaffolds in rain over SML and foam the maximum (sum-normalized) 
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coverage of a virus across an ecosystem, e.g., across all aerosol samples, was considered 

assuming this value represents the highest possible abundance in that ecosystem. Then coverage 

ratios were calculated for the pairing rain/foam (R/F), rain/SML (R/S), aerosol/foam (A/F), 

aerosol/SML (A/S) and foam and SML samples were distinguished between the 5-0.2 µm and 

virome fraction. 

 

Prokaryotic community composition, binning of MAGs and virus-host interactions 

 

Genes from combined scaffolds from the two assembly steps were predicted using Prodigal 

v.2.6.3 in meta mode 101, and genes were annotated using DIAMOND 107 blast against 

FunTaxDB 58. The genes were clustered at 99% identity using CD-HIT 108, and the centroid of 

the cluster was used for downstream mapping. Profiling of the prokaryotic community 

composition was done by read mapping of individual samples against scaffolds carrying rpS3 

genes. Taxonomic assignment of rpS3 genes was performed using USEARCH 109 against the 

rpS3 taxonomy database by Hug, et al. 110Any unclassified and eukaryotic hits were 

excludedand coverages were read-sum normalized For mean relative abundances taxonomic 

units of the same taxonomy were summed up. Analysis of the Shannon-Wiener Index (alpha 

diversity) using the ‘estimate_richness’ function, beta diversity, and the non-dimensional 

scaling plots based on Bray-Curtis dissimilarity were performed using phyloseq package111 in 

R version v.4.0.3.86 within R studio v.1.3.1093. Binning of MAGs was done using MetaBAT 

2112 and Maxbin2113 with aggregating best genomes by DasTool 114 and followed by manual 

curation using uBin v.0.9.14. 58. MAGs were quality-checked using CheckM v.1.1.3 59, and 

taxonomic assignment was performed with the classify workflow of GTDB-tk v.1.7.0 (database 

release r202)115. Mapping to individual MAGs was performed with Bowtie2 91 under allowance 

of 2 % error rate (3 mismatches) for breadth calculation. Virus-host interactions were inferred 

from CRISPR-spacer matches and shared k-mer frequency patterns between assembled viruses 

and host MAGs. At first, CRISPRCasFinder 61 with -minDR 16 was run on sample assemblies 

>1 kb and MAGs to find CRISPR consensus DR sequences from arrays with ≥ evidence level 

3. Consensus DR sequences with 100 % similarity hits to viral scaffolds were removed from 

further analysis. Then DRs were used in MetaCRAST116 with settings -d 3 -l 60 -c 0.99 -a 0.99 

-r to extract CRISPR spacer from the read files of each sample. Spacers were homopolymer 

and length-filtered (20-60 bp), clustered at 99% identity, BLAST was performed with a 

BLASTn --short algorithm 117 against the viral scaffolds, and filtered at 80% nucleotide 

similarity. Prokaryotic MAGs (116) were compared and dereplicated using dRep 118 at 95% 
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average nucleotide identity. Additional MAGs that were excluded in the dRep process due to 

low quality in CheckM but had good contamination/completeness scores in uBin and formed 

their own cluster in the dRep compare mode were additionally considered for k-mer based 

virus-host linkages. Viral scaffolds were assigned to these MAGs using VirusHostMatcher 119 

at a d2* threshold of 0.3, as previously performed 120. Spacer-protospacer interactions and 

virus-host interactions based on k-mers were visualized using Cytoscape v.3.9 106.  

 

Data availability: ECMWF ERA5 reanalysis data are freely available on 

https://cds.climate.copernicus.eu/cdsapp#!/home . Sequencing data for this project are stored in 

Bioproject PRJNA811790, physical Biosamples SAMN26419398 - SAMN26419459 at NCBI. 

Sequence raw reads of samples and controls can be found at sequence read archive (SRA) under 

accession numbers SRR18243813 - SRR18243874. MAGs (116) are stored as Biosamples 

SAMN26866845 - SAMN26866960 and correspond to accessions JALHYV000000000 - 

JALHYZ000000000, JALHZA000000000 - JALHZZ000000000, JALIAA000000000 - 

JALIAZ000000000, JALIBA000000000 - JALIBZ000000000, JALICA000000000 - 

JALICZ000000000, and JALIDA000000000 - JALIDG000000000. The viral metagenome of 

1813 scaffolds is stored within Biosample SAMN27124720, accession number 

JALJEC000000000. Data will be released upon publication of the manuscript. For further 

details, please refer to Table S9.  
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