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The paradigmatic sequence-structure-dynamics-function relation in proteins is nowadays well es-
tablished in the scientific community; in particular, large effort has been spent to probe the first
connection, indeed providing convincing evidence of its strength and rationalising it in a quantita-
tive and general framework. In contrast, however, the role of dynamics as a link between structure
and function has eluded a similarly clear-cut verification and description. In this work, we propose
a pipeline aimed at building a basis for the quantitative characterisation of the large-scale dynamics
of a set of proteins, starting from the sole knowledge of their native structures. The method hinges
on a dynamics-based clusterization, which allows a straightforward comparison with structural and
functional protein classifications. The resulting basis set, obtained through the application to a
group of related proteins, is shown to reproduce the salient large-scale dynamical features of the
dataset. Most interestingly, the basis set is shown to encode the fluctuation patterns of homolo-
gous proteins not belonging to the initial dataset, thus highlighting the general applicability of the
pipeline used to build it.

I. INTRODUCTION

Internal large-scale motions of proteins are intimately
linked to protein function [1]. These motions, happen-
ing on timescales of the order of µs-ms [2], typically in-
volve the collective fluctuations of secondary structure
elements, leading to a variety of potential conformational
states that might promote the exposure of specific bind-
ing sites [3, 4], or might facilitate the induced fit of the
protein upon interaction with partner molecules [5, 6].
In addition, it has been shown not only that large-scale
dynamics is essential for a protein to carry out its biolog-
ical role [7], but also that a remarkable correlation exists
between a proteins function and its specific dynamical
signature [8], thus strengthening the view of dynamics
as a link between a protein’s structure and its specific
function. This is particularly evident for the case of al-
losteric proteins, where the binding of a ligand conveys
a signal that is propagated within the protein structure
through a modulation of its internal dynamics, result-
ing in alternative conformational states and an altered
protein function [9–11].

Several computational methods exist for the study of
slow dynamics in proteins [12–14]; however, in order to
develop a more general view of how dynamics bridges
structure and function, it is necessary to build a dataset-
wise approach for the comparison of such large-scale dy-
namics among proteins sharing different degrees of se-
quence and structural similarity. Attempts in this di-
rection have been performed in several works [15–20].
Maguid et al. [21] based their analysis on a dataset of
pairs of homologous proteins; comparison of vibrational
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backbone dynamics within each pair led to the remark-
able observation of correlation between dynamics and
evolutionary conservation. Analyses of the distance in
dynamics have also been performed in the case of struc-
turally and functionally diverse sets of proteins; in this
regard, Hensen et al. [8] introduced the notion of ”dy-
nasome”, namely an ensemble of observables computed
from molecular dynamics (MD) simulations of a struc-
turally heterogeneous protein dataset. The method high-
lights a striking correlation between the dynasome de-
scriptors (which include 34 observables for each protein,
ranging from the first five eigenvalues of the covariance
matrix of Cα fluctuations to the average ruggedness of the
energy landscape) and the proteins functional classifica-
tion. However, this approach relies on time-consuming
MD simulations, which limits its applicability to large
protein datasets. In addition, the large number and so-
phistication of the descriptors employed does not enable a
straightforward recognition and visualization of the sim-
ilarities in dynamics between proteins in term of confor-
mational movements.

To overcome these limitations, in this work, we set-
up and validate a novel pipeline for the identification of
a basis set of conformational motions in an enzymatic
family, representing a common vocabulary of their large-
scale dynamics. To this aim, we investigated internal
protein dynamics in terms of fluctuations at the level of
single residues. Our approach does not require the acqui-
sition of expensive MD simulations, since it is based on
the topology of native contacts derived from a protein’s
experimental structure; specifically, we made use of the
normal mode analysis (NMA) [22], which represents, to-
gether with the principal component analysis (PCA) [23],
one of the main protocols employed to identify the most
relevant patterns in the large-scale dynamics of proteins.
While PCA requires a large set of configurations (for ex-
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ample from MD trajectories) to build the covariance ma-
trix, NMA can be performed with the sole knowledge
of an equilibrium configuration of the system. For this
reason, NMA is often used in combination with simpli-
fied quadratic models, such as the linearized versions of
elastic network models (ENMs) [24]. Another degree of
simplification can also be introduced by building coarse-
grained (CG) models of the protein, where the atomistic
degrees of freedom are replaced by a smaller number of
physically relevant representative beads. In spite of this
simplicity, the collective, large-scale dynamical features
obtained by NMA of ENMs of proteins showed to be
successful to predict experimental B-factors [25] and also
conformational changes [26, 27].

In our approach, normal modes are computed from
the β-Gaussian elastic network model of a set of
chymotrypsin-related proteases, for which in-depth anal-
yses of evolutionary relationships and structural similar-
ities are available in the literature [28–31]. In the β-
Gaussian model, each residue is described in a simpli-
fied representation as two beads [32]: one corresponds
to the Cα atom and represents the mainchain, while the
second, describing the sidechain, is positioned according
to the degrees of freedom of the first bead. An effective
quadratic potential energy is used to model the bead fluc-
tuations from the native conformation. We made use of
this information to perform a dynamics-based alignment
between all pairs of proteins from the dataset; the results
from the alignment were used to construct a distance
matrix in the space of protein dynamics and to cluster
together proteins with similar large-scale motions, thus
adding an additional layer of information to clustering
procedures based on sequence identity [33, 34] or struc-
tural similarity [35–37].

Moreover, we developed a way to represent each pro-
tein’s large-scale normal mode as a vector field on the
3D space. Thanks to this representation, we were able
to build a high-dimensional basis set of large-scale pro-
tein modes. The basis set is validated by comparison
with results from MD simulations, with the perspective
of applying this methodology to a dataset comprehensive
of a large number of protein classes, differing in struc-
ture and function. In this way, common fluctuations be-
tween distant proteins can be correlated to the presence
of local structural elements, with implications in protein
engineering for the design of scaffolds that are able to
perform controlled conformational changes in functional
enzymes [38, 39]. In addition, the large-scale dynamics
might serve as a guide in the identification of those pat-
terns where the preservation of a high resolution is of
paramount importance in the construction of simplified,
multiscale models [40–44] that retain the original dy-
namics. In particular, by describing at an atomistic level
the structural elements identified as important for the
desired conformational movements and simultaneously
coarse-graining the remainder of the protein, it might be
possible to obtain a simplified and computationally in-
expensive protein model that shows the conformational

dynamics of the high-resolution one.
The article is structured as follows: in Section II, the

workflow developed for the construction of the basis set of
conformational moves is described; in Section III, techni-
cal details on the methods employed are given; in Section
IV, the results are presented and discussed; eventually,
the conclusions and the future perspectives are discussed
in Section V.

II. OVERVIEW OF THE WORKFLOW

In our approach, the identification of a common set of
conformational motions among different proteins is based
on the analysis of their dynamics in a CG representation;
from here, a representative set of normal modes is identi-
fied through a dynamics-based clustering of the proteins
comprising the initial dataset. The selected, representa-
tive modes are then orthonormalized and ordered, so as
to obtain the final basis set. An overview of the work-
flow is given in Figure 1 and explained in detail in the
following paragraphs.

The starting point is the identification of a set of pro-
teins. The choice of this dataset is arbitrary and inde-
pendent on the pipeline; however, the number of proteins
that the dataset contains is supposed to be large enough
so as to be representative of the families or superfamilies
that are included, meaning that the more distant are the
members in terms of homology, the larger should be the
dataset. This is necessary to ensure sufficient generality
of the resulting basis set of conformational motions.

The selected set of structures is used to run pairwise
dynamics-based protein alignments with the ALADYN
software developed by some of us [45]. ALADYN takes
two input structures and performs the maximization of
a score function that takes into account the spatial su-
perposition of protein regions that have similar motion.
The dynamical information is encoded in the low-energy
(large-amplitude) eigenvectors obtained from the diago-
nalization of the interaction matrix Mij of the Hamilto-
nian function of the β-Gaussian Network Model:

H =
1

2

∑
ij

δ~xiMijδ~xj (1)

where δ~xi is the displacement vector of the i-th bead
with respect to the equilibrium configuration. Once the
eigenvectors have been obtained, the extent and consis-
tency of the alignment are quantified through the root-
mean-square inner product (RMSIP) between the spaces
given by the first 10 modes of each aligned protein. If we
call Ni and Nj the total number of residues in the chains
of the two aligned proteins, the RMSIP calculation is lim-
ited to a subset q < Ni, Nj of marked Cα. These subset
of amino acids are chosen by firstly grouping the amino
acids in groups of 10 subsequent ones; then maximizing a
single scoring parameter via the standard Metropolis cri-
terion over the space of possible pairs of groups among
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FIG. 1: Schematic representation of the workflow proposed, from the choice of the protein dataset to the creation of the
vector fields on a grid. Once orthonormalized and ordered, the latter are used to construct the final basis set.

the two proteins’ sequences, as exhaustively explained
in [45]. Specifically, the RMSIP is defined as:

RMSIP({~vkl }i, {~wkm}j) =

= RMSIPij :=

√√√√ 1

10

10∑
l,m=1

∣∣∣∣∣
q∑

k=1

~vkl · ~wkm

∣∣∣∣∣
2

(2)

The RMSIP ∈ [0, 1] takes on the value 1 in case of per-
fect correspondence of the spaces, and 0 in case of their
complete orthogonality. The quantity (1.0 - RMSIP),
which still takes values in the interval [0, 1], is therefore
suitable to define a distance in dynamics between two
proteins after alignment. Statistical significance of the
alignment, quantified by means of a z-score, is taken into
account by weighting the RMSIP by the hyperbolic tan-
gent of the module of the z-score, so as to give more
importance to the most reliable results. The distance in
dynamics between two aligned proteins i and j is there-
fore defined as:

dij = 1.0− (RMSIPij · tanh|zij |) (3)

After all the pairwise alignments between the elements
of the dataset are performed, a distance matrix that
expresses differences in the large-scale dynamics is ob-
tained; then the dataset undergoes hierarchical cluster-
ing [46] based on this distance matrix, in order to identify
groups of dynamics-related proteins. The optimal num-
ber of clusters is identified from the interplay between
resolution and relevance [47–51]. These two quantities,
which are defined in more detail in the Methods section,
are entropies that are related to each other and depend
on the clusterization procedure adopted. We exploited
them to select the number of clusters to retain, by con-
sidering the smallest number of clusters (hence the lowest
resolution) that gives the highest relevance (Figure 2).

Once the optimal number of clusters is derived, protein
representatives of each cluster are identified as the cluster
centroids, namely the proteins with the shortest distance
to every other protein of the cluster itself. In addition,
a representative for the whole dataset is selected as the
protein with the most characteristic dynamics, expressed
in terms of the lowest distance with respect to all the
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FIG. 2: Relevance-resolution curve used to determine the
optimal number of clusters. Each point corresponds to a
different number of clusters. The optimal subdivision,
indicated with an orange star, corresponds to 9 clusters.

other dataset members. The other protein structures are
then dynamically aligned to this one with ALADYN, so
as to have a consistent orientation in space.

From an ENM representation of each of these newly
oriented structures, normal modes are computed. In or-
der to facilitate the comparison between modes belong-
ing to proteins with a different sequence length, the first
5 reoriented normal modes of the cluster representatives
are placed on a cubic lattice, and interpolated on the grid
points so as to obtain a smooth vector field (Figure 1). In
this way, we move from comparing the 3N -dimensional
modes of different proteins (where N is the number of
residues, different for each protein), to comparing vector
fields defined on identical 3D lattices having the same
dimension. More details on the lattice construction and
interpolation are given in Section III. Proteins belonging
to the dataset employed in this work, despite displaying
a range of sequence length and radius of gyration, do not
grandly differ in size; therefore, the modes interpolated
on the lattice can be directly compared. However, it
might be the case that the dataset includes proteins with
very different size; this would require a rescaling of the
protein coordinates before the interpolation on the lat-
tice, so as to compare motions occupying similar volumes
in space.

The interpolated modes are orthonormalized using the
Gram-Schmidt algorithm [52]. The components of the
basis are finally ordered according to decreasing entropy,
considered as a measure of their degree of collectivity.
The entropy S of a mode k is defined as:

Sk = −
∑
i φ

k
i lnφki

lnN
, (4)

where N is the number of lattice sites and φki is the

square modulus of the k-th mode on the lattice site i. Sk
takes a maximum value of 1 if the mode is delocalized
on all the lattice sites, and a minimum value of 0 if the
mode is localized on a single site.

The final set of orthonormalized and ordered vector
spaces represents the basis of protein dynamics. In the
next section, technical details of the methods employed
are presented.

III. MATERIALS AND METHODS

A. Preprocessing of the dataset

A dataset of 116 chymotrypsin-related proteases, for
which structural experimental information is available,
was selected. This dataset is based on the one used in ref.
[31], from which proteins with sequence identity > 70%
were removed. The dataset comprises serine proteases
from bacteria, eukaryotes, archaea, and viruses, in ad-
dition to chymotrypsin-related cysteine proteases from
positive-strand RNA viruses. The full list of proteins’
PDB IDs is given in Table S1. The structures were
downloaded from the Protein Data Bank, and the co-
ordinate files were cleaned-up from heteroatoms, from
copies of the protein in the crystallographic cell, and
from residue-configurations with low occupancy. The po-
sition of missing atoms was rebuilt and the protein con-
formations were optimized using the software FoldX [53].
Non-terminal missing residues were modelled with MOD-
ELLER [54, 55]. An analysis of the first 3 normal modes
for each protein was run using an elastic network model
with a cutoff of 10 Å, in order to identify the problematic
cases in which the flexible protein termini impaired the
analysis of the motion of the protein core. Such analy-
sis was conducted by visual inspection of the modes on
the protein structures. In those cases, flexible tails were
not considered in the following analyses, which thus fo-
cused on globular structures. Moreover, in the case of
multi-domain structures, only the domain known to have
protease activity was retained.

B. Dynamics-based alignment and clustering

The dynamics-based alignment of all the pairs of pro-
tein structures was performed with the ALADYN soft-
ware [45], using as input the cleaned coordinates files.
From the resulting alignment scores, clustering of the
structures was performed with the Python library SciPy,
using the ward linkage method.

The calculation of relevance and resolutions, used to
identify the optimal number of clusters, was performed
with an in-house script. Specifically, given a labeling ŝ :=
(s1, . . . , sη) (e.g. a clustering) to a sparse dataset made
by N ≥ η data points (in our case the single proteins

in the dataset), resolution is defined as an entropy Ĥres
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representing the relative amount of information loss in
the process:

Ĥres[ŝ] := −
∑
s

ps · log2(ps) ps :=
ks
N

(5)

where ks is the number of data points that fall into
the same cluster s. It is proven [48] that Ĥres increases
monotonically with the number of clusters, in accordance
with the idea that the coarser is our clustering, the more
information we loose. On the other hand, the relevance
Ĥrel is defined as:

Ĥrel[k̂] := −
∑
k

k ·mk

N
· log2

(
k ·mk

N

)
(6)

where mk is the number of clusters containing the same
amount k = 0, . . . , N of data points, for a given cluster-
ing process. By choosing the lowest resolution value cor-
responding to the largest relevance, we can rely on the
most compact clusterization (thus increasing the statis-
tics within each cluster) that preserves the highest em-
pirical information content.

C. Lattice interpolation and basis construction

Normal modes of each protein of the dataset have been
computed with an in-house code. The first 5 reoriented
normal modes of the cluster representatives were placed
on a cubic lattice, with a lattice constant of 1 Å(for a
total of 45 modes, namely vector fields). The vector on
each protein Cα was translated on the nearest lattice grid
point. The mode vectors were interpolated on the lat-
tice in order to create a smooth vector field (Figure 1),
using Gaussian functions with σ=0.8 Å and truncated
at a distance of 2 Å. This distance is slightly smaller
than the lowest spatial distance between two Cα atoms
to make sure that the vector coming from the original
protein mode is not spuriously modified during interpo-
lation. The chosen value of σ ensures that in correspon-
dence of the cutoff the mode field is close to zero. The
resulting vector at each grid point ijk is the sum of the
mode fields centered on the nearby Cα grid points, calcu-
lated at ijk, within the cutoff. Eventually, orthonormal-
ization and ordering of the modes was performed with
Python scripts.

D. Molecular dynamics simulations

Molecular dynamics simulations have been performed
on the representatives of each cluster, using the soft-
ware Gromacs 2019 [56]. The proteins were described
with the Amber99sb-ildn force field [57], and the TIP3P
model [58] was used for water molecules. Sodium and
chloride ions were added at a concentration of 0.15 M,
and balanced so as to neutralize the charge in the sim-
ulation box. All systems were energy minimized for

100 steps by steepest descent. The solvent was then
equilibrated for 500 ps with positional restraints on the
protein heavy atoms, using a force constant of 1000
kJ·mol−1·nm−2. MD simulations were carried out in the
NPT ensemble for 250 ns for each system. Protein and
solvent were coupled separately to a 300 K heat bath with
a coupling constant of 0.1 ps, using the velocity-rescaling
thermostat [59]. The systems were isotropically pressure-
coupled at 1 bar with a coupling constant of 2.0 ps, using
the Parrinello-Rahman barostat [60]. Application of the
LINCS [61] algorithm on hydrogen-containing bonds al-
lowed for an integration time step of 2 fs. Short-range
electrostatic and LennardJones interactions were calcu-
lated within a cut-off of 1.0 nm, and the neighbor list
was updated every 10 steps. The particle mesh Ewald
(PME) method was used for the long-range electrostatic
interactions [62], with a grid spacing of 0.12 nm.

The calculation of the root-mean-square fluctuations
from the trajectory coordinates was performed on the
protein Cα atoms using the Gromacs tool gmx rmsf. The
dynamic cross-correlation was computed with a Python
script, using the library MDTraj [63]. Plots were pro-
duced with Python libraries, and protein images were
rendered with VMD [64].

IV. RESULTS AND DISCUSSION

A. Overview of the protein dataset

Proteases are enzymes catalyzing the reaction of hy-
drolysis of peptide bonds. The independent evolutionary
origin of these proteolytic enzymes, which led to a vari-
ety of chemical solutions for the same functional problem
[65], is reflected in the large variety of sizes, shape and
specificity of proteases [66]. In this work, however, we fo-
cus on a specific superfamily of proteases. The 116 mem-
bers of the selected dataset are indeed chymotrypsin-
related proteases, sharing a common structure with two
β-barrel-like domains that accommodate the binding site
(Figure 3). However, the length of the turns and loops
connecting the sheets greatly varies; moreover, α-helices
are present in some of the structures, as a result of adap-
tation to specific functions and recognition/binding of
specific ligands. The result of this structural variability
is a range of sequence lengths and protein sizes (Figure
S1). Not only the number and type of secondary struc-
tures can vary, but also the size and structural complete-
ness of the β-barrels themselves; for example, the 2A pro-
teases of enteroviruses (family C3, subfamily C3B) have
only four antiparallel β-strands in place of the N-terminal
barrel [67]. In all the proteins included in the dataset,
the proteolytic reaction is performed by a catalytic triad
of residues, located between the β-barrels. The type of
amino acid playing the role of nucleophile in the mech-
anism of catalysis determines the class of proteases: in
the serine proteases, the catalytic triad contains His, As-
p/Glu, and Ser residues [68]; in the cysteine proteases,
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the triad is composed of His, Asp/Glu, and Cys or of a
dyad of His and Cys residues, as in the hepatitis A virus
3C protease and in the coronavirus 3C-like proteases [69].

The classification used in the remainder of the pa-
per is based on MEROPS, a hierarchical classification
scheme for proteases [70, 71]. In the MEROPS database,
chymotrypsin-related proteases constitute the PA clan,
which contains 9 families of cysteine proteases (repre-
senting proteases of positive-strand RNA viruses) and
14 families of serine proteases (representing proteolytic
enzymes from eukaryotes, bacteria, some DNA viruses
and eukaryotic positive-strand RNA viruses). Families
are defined on the basis of sequence similarity and/or
resemblance of the folds among their protein members.
However, experimental structural information is available
for a limited number of these families; therefore, not all
of them are represented in the dataset employed in this
work.

  

H57D102

S195

FIG. 3: Cartoon representation of chymotrypsin from Bos
taurus (PDB ID: 2CGA). Colors are used to differentiate the
structural elements; in particular, the two β-barrels are
distinguishable in yellow. The catalytic triad is represented
in licorice and colored in red.

B. Results of the dynamics-based alignment

We performed an alignment based on the dynamical
information entailed into the first 10 lowest frequency
modes obtained by the NMA on the β-Gaussian Net-
work Model of each pair of proteins in the dataset. The
alingment consists in the optimization of a score func-
tion that maximizes the RMSIP of the two sets of normal
modes. The distance matrix obtained from the pairwise
dynamics-based alignments of all proteins of this dataset
is used as a measure of similarity in dynamics. This can
be compared to the MEROPS classification by comput-
ing the average distance between protein pairs that fall

into the same family. Following such a procedure, it is
apparent that the average distance in dynamics is lower
within each family, with respect to the total average (Fig-
ure 4). In other words, proteins are significantly closer in
dynamics within the same family then they are to mem-
bers of other families.

FIG. 4: Average distances (in terms of dynamics) between
proteins of the dataset belonging to the same family. Only
those subfamilies including more than one representative
member are displayed here.

The distance matrix is used as input for the division of
the dataset into dynamically homogeneous protein clus-
ters. The outcome of the hierarchical clustering is graph-
ically expressed by the dendrogram in Figure S2. On
the basis of the resolution-relevance plot, 9 clusters were
identified (Figure 2); this corresponds to a threshold of
≈ 0.58 in the clustering dendrogram. The resulting clus-
ters appear to be quite homogeneous in terms of protease
classification (Figure S3). Importantly, the dynamics-
based clustering automatically tends to group proteins
belonging to the same subfamily. Figure 5.a shows that
in most of the cases (17 of the 19 subfamilies represented
in the dataset) all the members of each subfamily fall
into the same cluster, thus suggesting that these proteins
share a similar conformational dynamics and strengthen-
ing the idea of homogeneity in dynamics between homol-
ogous proteins [72, 73]. On the other hand, each cluster
groups several subfamilies, and only 4 clusters out of 9
include proteins belonging to only one subfamily (Figure
5.b). Therefore, the clustering procedure proves able to
effectively group different protein subfamilies that, de-
spite the different evolutionary origin, share similar dy-
namics.
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a. b.

FIG. 5: a. Distribution of the members of each subfamily among the different clusters, expressed as percentage with respect
to the total number of members of the subfamily. In b. each row represents the content of each cluster classified on the basis
of the function (in percentage with respect to the total population of the cluster).

C. Comparison between the dynamics-based and
the structure-based clustering

We compared the results from the dynamics-based
clustering on the proteases of the PA clan with the
structure-based distance tree calculated in the work of
Mönttinen et al. [31]. There, the authors identified a
common structural core of 72 residues for the set of PA
clan proteases taken into account; according to the struc-
tural similarities of this common core, they built a dis-
tance tree between the members of the dataset. 5 dif-
ferent clusters were identified, contrary to the 9 cluster
found in this work.

Despite the two different approaches, the results
present several similarities, showing a close relation be-
tween structure and dynamics. The S1A subfamily,
which includes both bacterial and eukaryotic proteases,
forms a clearly distinct and compact cluster both in terms
of structure and dynamics. On the other hand, the S1D
subfamily, which includes bacterial proteases, is split in
two different groups in terms of structure as well as dy-
namics: in both cases, the S1D Achromobacter protease I
(1ARB) is close to the bacterial S1B proteases, while the
S1D protease AL20 of Nesterenkonia abyssinica (3CP7)
is close to the members of the bacterial S1E subfamily.
This difference between members of the S1D subfamily
has been explained on the basis of the different evolution-
ary history of the bacteria in which they are expressed
[31].

Another common feature emerging from the two clus-
tering approaches is the similarity between the S39 sub-
family of positive-strand RNA viruses and the bacterial
S1B proteases; interestingly, such degree of similarity is
higher than between S39 and the other viral proteases, as
already reported on the basis of structural comparisons

[74]. Moreover, the bacterial S6 family forms an indepen-
dent group in both clustering approaches. This peculiar-
ity has been attributed to the presence of a long β-stalk
structure at the C-terminus (Figure S4), which is absent
in all the other proteases of the PA clan [31, 75]; the
protease domain alone, instead, shares high structural
similarity with that of the S1A subfamily. However, the
β-stalk domain was cut before the dynamics-based align-
ment, meaning that our analysis of dynamics of the S6
protease domain alone is able to distinguish this subfam-
ily from the other members of the PA clan.

Importantly, the two types of clustering present also
some differences. In the case of the structure-based anal-
ysis, the cysteine proteases tend to be grouped together;
however, in the dynamics-based alignment, the similarity
is only at the level of one of the two large groups in which
the dataset is divided, as evident from the dendrogram in
Figure S3. Within this group, C families are mixed with S
families, and appear to be more distributed among differ-
ent clusters than in the distance tree built on the basis of
the structural features. This is indicative of a clear differ-
entiation of the C proteases in terms of dynamics, despite
their structural similarity in the protein core. Another
difference regards the heat-shock proteases S1C, which
includes proteins from bacteria, chloroplasts, and mito-
chondria; even though structurally similar in the prote-
olitic core, members of this subfamily appear very scat-
tered in the dynamics-based clustering. Specifically, the
observed similarities in dynamics accentuates the struc-
tural relatedness already observed between some eukary-
otic S1C proteases and different viral protease subfam-
ilies, inasmuch that these similarities are stronger than
the similarity within the S1C subfamily itself. This re-
latedness has been previously explained on the basis of
exchanges of protease genes between eukaryotic viruses

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2022. ; https://doi.org/10.1101/2022.06.21.497011doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.497011
http://creativecommons.org/licenses/by-nc-nd/4.0/


8

and their hosts [31].
In the structure-based distance tree, proteases from fla-

vivirus (families S29 and S7) and from togavirus (family
S3) are grouped together, even though the two viruses be-
long to different families; on the opposite, S29/S7 and S3
are placed in different clusters when their dynamics is in-
cluded in the analysis. This distinction might arise from
the difference in function: the S3 protein togavirin, in
fact, does not only function as a viral protease, but plays
also the structural role of capsid protein of the virus [76].
S29 and S7 proteases, on the other hand, possess only
proteolitic function and do not work as structural com-
ponents.

Overall, the inclusion of dynamics in the comparison
of the proteases from the PA clan adds therefore an addi-
tional level of classification, which seems appropriate to
bridge structural and functional similarities.

D. Creation and validation of the basis set of the
high-dimensional space of protein dynamics

The representative proteins of the 9 clusters are iden-
tified by the PDB codes: 3D23, 1HPG, 2YOL, 1VCP,
3QO6, 1L1J, 1WXR, 4JCN, 4I8H. Their structures are
represented in Figure S5. Protein 1GDQ is chosen as the
reference structure of the whole dataset, against which
the other representatives are dynamically aligned prior
to lattice interpolation of their normal modes (see Sec-
tion III). In the latter, the oriented protein modes are
placed and interpolated on a cubic lattice, orthonormal-
ized, and finally ordered. The interpolation on the grid
allows us to easily compare the dynamics of any pair of
proteins, irrespectively on the number of residues. For
instance, modes from proteins with a different number of
Cα cannot be directly compared in terms of scalar prod-
ucts, while different vector fields on the grid have the
same dimensionality.

We investigated the quality of the orthonormalized
modes as a basis set for the dynamics of the whole
dataset, by computing the overlap between the spaces
given by the protein modes and by the basis. To this aim,
the RMSIP was computed between the space spanned by
the first 5 modes of each protein in the dataset (after
their interpolation on the lattice) and the first n compo-
nents of the basis. For each protein, the components of
the basis are ordered so as to maximise the RMSIP with
the protein modes. The resulting RMSIP for each pro-
tein is plotted in Figure 6.a as a function of the number n
of basis vectors considered for the calculation of the RM-
SIP. From the distribution of the values attained when
using the full basis set (45 vector fields), the RMSIP is
greater than 0.5 for ≈ 94% of the proteins, showing in
those cases a good agreement between the dynamics of
the protein and the one expressed by the basis [77]. The
agreement is excellent (RMSIP> 0.7) for ≈ 61% of the
proteins; therefore, we can conclude that the identified
basis is indeed able to describe with a good generality the

large-scale conformational dynamics of the dataset. For
each protein, we also computed the normalized RMSIP,
by dividing each value of RMSIP with the value obtained
with the use of the full basis set. The normalized RM-
SIP curves show that, for each dataset member, as few as
15 basis components are sufficient to reproduce the 80%
of the dynamics that would be attained with the use of
the full basis set (Figure 6.b); however, such components
differ from protein to protein, meaning that there are no
vector fields in the basis that can be considered more
essential than others. This suggests that a further reduc-
tion in the dimension of the basis set would lead to a loss
of generality in the description of the dynamics of this
class of proteins.

E. Comparison with MD simulations

In order to better assess the ability of the basis to re-
produce the general dynamics of chymotrypsin-like pro-
teases, we performed MD simulations of four proteins be-
longing to the same family, and compared the per-residue
fluctuations emerging from the simulations with those ob-
tained by filtering the trajectory along the vectors of the
basis; a good agreement would be indicative of the ability
of the basis to describe the large-scale dynamics of the
protein. Two of the proteins used as test-case belong to
the dataset; these are 1EKB [78] and 1NPM [79], eukary-
otic proteases belonging to the S1A subfamily. The other
two proteins, 4YOG [80] and 3W94 [81], are external to
the dataset, and as such have not been used to define the
basis. 4YOG is a C30 protease from the bat coronavirus
HKU4, while 3W94 is an S1A enteropeptidase. These
two proteins have been included here in order to test the
generality of the identified basis for the description of the
dynamics of the PA clan, independently on the specific
members of the initial dataset.

For each of the four proteins we compared the root-
mean-square fluctuations (RMSF) as computed from the
simulation, and as computed from the same trajectory
filtered along the modes given by the backmapping of
the protein structure on the basis vectors. The com-
parison shows a good qualitative agreement (Figure 7
and Figure S6), in particular in correspondence of all
the secondary structure elements. In the unstructured
regions, the comparison is slightly less accurate; this is
particularly true for long loops, which are more sensi-
tive to the limitations of the ENM and of the NMA
employed to define the modes of the basis, since both
assume small-amplitude fluctuations from a well-defined
reference structure. From the two sets of trajectories,
namely the original MD simulations and the filtered ones,
we also computed the dynamic cross-correlation matrices
(Figure S7 and Figure S8), which give a measure of the
degree of correlation between each pair of Cα atoms in
terms of fluctuations from their average position. When
comparing the original and filtered trajectories, the in-
tensity of the resulting correlations are different, with
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FIG. 6: a. RMSIP between the subspaces spanned by the first 5 modes of each protein and the first n basis vectors, as a
function of the basis size n. The histogram on the right represents the distribution of the RMSIP values attained when the
full basis is used. b. RMSIP normalized with respect to the value attained from the use of the full basis.

higher correlations/anti-correlations emerging form the
trajectory filtered on the basis; however, the patterns of
correlation are strikingly similar between the two tra-
jectories for all of the four proteins. Also in this case,
therefore, the basis set appears to be able to describe the
relevant large-scale dynamics of the considered protein
systems.

V. CONCLUSIONS

In this work, we proposed a workflow for the identifi-
cation of common large-scale conformational motions in
a set of proteins. Specifically, we performed a dynamics-
based clusterization of 116 chymotrypsin-related pro-
teases, belonging to the PA clan, and compared the re-
sulting clusters to the MEROPS classification and to a
more recent structure-based classification of the same
dataset of proteases. The clustering based on the dy-
namics adds interesting information to that known on
the basis of structural and evolutionary relationships be-
tween the members of the protein family, thus facilitating
the interpretation of dynamics as a bridge between pro-
tein structure and function. In addition, we used NMA
and the β-GNM to build a basis set of vectors of the high-
dimensional space of the PA clan large-scale dynamics,
and tested the basis set to demonstrate that it is suffi-
ciently complete to describe the main large-scale dynam-
ical features of the members of the dataset. The basis
set of conformational motions was also successfully vali-
dated by comparison with results from MD simulations
of proteins internal and external to the initial dataset.

In this regard, the method proved to deal particularly
well with the conformational dynamics of structured re-
gions; loops and disordered regions are by definition chal-
lenging to describe with an ENM, which is able to repro-
duce only small-amplitude fluctuations with respect to

a well-defined reference structure; the dynamics of such
regions, however, is qualitatively different from the func-
tional one of the structured part, which is the one re-
sponsible to carry out the biological function in the pro-
teins under examination. Additionally, we note that the
dataset employed contained only a number of proteins be-
longing to the family of chymotrypsin-related proteases:
a larger dataset is expected to lead to more general re-
sults; however, the number of proteins included was lim-
ited by the availability of experimental structures and
by the choice to remove proteins with too high sequence
identity. The natural development of the methodology
presented and discussed in this work is its application to
a larger dataset of proteins, comprehensive of multiple
enzyme superfamilies, with the aim of building a basis
set of conformational motions that represents a general
vocabulary of proteins’ common dynamics. The method
can then be employed to identify those common struc-
tural signatures that characterise the dynamics encoded
in the basis components and relate them to specific bio-
logical functions.
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FIG. 7: Root-mean-square fluctuations of the Cα atoms, normalized with respect to their sum for a qualitative comparison.
The shaded areas correspond to structured regions of the protein, identified with the DSSP algorithm [82, 83].

https://doi.org/10.5281/zenodo.6669245.
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