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ABSTRACT

Promoter-proximal Polymerase II (Pol II) pausing is a key rate limiting step for gene expression. DNA and
RNA-binding trans-acting factors regulating the extent of pausing have been identified. However, we lack
a quantitative model of how interactions of these factors determine pausing, therefore the relative
importance of implicated factors is unknown. Moreover, previously unknown regulators might exist. Here
we address this gap with a machine learning model that accurately predicts the extent of promoter
proximal Pol II pausing from large scale genome and transcriptome binding maps, as well as gene
annotation and sequence composition features. We demonstrate high accuracy and generalizability of the
model by validation on an independent cell line which reveals the model’s cell line agnostic character.
Model interpretation in light of prior knowledge about molecular functions of regulatory factors confirms
the interconnection of pausing with other RNA processing steps. Harnessing underlying feature
contributions we assess the relative importance of each factor, quantify their predictive effects and
systematically identify previously unknown regulators of pausing. We additionally identify 16 previously
unknown 7SK ncRNA interacting RNA-binding proteins predictive of pausing. Our work provides a
framework to further our understanding of the regulation of the critical early steps in transcriptional
elongation.

Key Points: Please provide 3 bullet points summarizing the manuscript's contribution to the
field (100 characters max per point).

- ML model that accurately predicts promoter proximal Pol II pausing from ChIP and eClip-seq data
- Quantification of the interconnection of pausing and other steps of gene regulation
- Identification of novel putative trans regulators of pausing
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GRAPHICAL ABSTRACT

INTRODUCTION

Transcription of genes is an essential mechanism to maintain cell homeostasis and enable adaptation to
changing internal and external stimuli (1, 2). It is tightly regulated by chromatin state and transcription
factors (TFs) functioning in a highly coordinated fashion (3). The transcriptional cycle starts with the
recruitment of the RNA polymerase into the pre-initiation complex (PIC) (4, 5). During transcription
initiation a short fragment of nascent RNA is synthesized. The polymerase is then paused at the promoter
before entering into productive elongation upon further regulatory signals or to terminate prematurely (6).
This promoter proximal pausing is a key rate limiting step for gene expression as it decides whether a full
length transcript will be made or not (7, 8). At equilibrium, paused RNA polymerase accumulates at the
promoter since the rate of transcriptional initiation is faster compared to the rates of productive elongation
or premature termination (9, 10). In vivo, this accumulation can be observed in assays that monitor
nascent transcription such as global run-on sequencing (GRO-seq) (11). Based on this data the
equilibrium between transcription initiation and productive elongation, which is decisive for the regulation
of gene expression, can be quantified by the pausing index (PI), also known as the travelling ratio (TR)
(12–14). It is defined as the ratio of GRO-seq reads in a window around the promoter compared to the
rest of the gene body.

Promoter proximal pausing is the default state after transcription initiation (10, 15–17). In addition the
duration of pausing is regulated by the interplay of specific factors that either promote pausing or
elongation (16). Pause promoting factors include the DSIF complex consisting of Spt5 and Spt4, the
negative elongation factor NELF, the 7SK complex, consisting of the most highly expressed non-coding
RNA 7SK and proteins such as LARP7 and also specific features of the DNA / RNA sequence (7, 18–22).
The most important elongation promoting factor is the positive transcription elongation factor B (PTEFb),
which consists of CDK9, CCNK, CCNT1 and CCNT2 (23, 24). Biochemical blocking of P-TEFb showed
that its activity is critically important for pause release (25–29). Positive and negative regulators are tightly
interlinked. PTEFb is bound by the inactivating 7SK complex and can be released into its active form by
BRD4 (30). Once active it phosphorylates regulators of elongation, such as DSIF, as well as other
regulators of chromatin state and RNA processing (31). In addition to these direct regulators, pausing is
also indirectly regulated by factors that determine transcriptional initiation and transcript processing (32,
33). For example, SRSF2 regulates splicing and has been demonstrated to also determine the duration of
pausing (34, 35) .
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Recruitment of PTEFb to specific promoters through interactions with individual TFs (e.g. NFKB),
Mediator, coactivators, and RNA-binding proteins (e.g. DDX2, SRSF2) has been described (34, 36–38).
Large scale binding maps of hundreds of RNA binding proteins (RBPs) have recently become available
from the ENCODE project (39). Together with the DNA binding maps and GRO-seq these data allow to
systematically address several key questions about the regulation of pausing at specific promoters. First,
which sequence or protein factors determine the recruitment of regulators to a specific promoter? Second,
how do signals from positive and negative regulators translate into the extent of pausing quantitatively?

Here we address these questions by training machine learning models that predict the extent of promoter
proximal pausing quantified by the pausing index from large scale genome and transcriptome binding
maps as well as gene annotation and sequence composition features. We demonstrate high accuracy
and generalizability of the model by validation on an independent cell line and we show that the model
can accurately predict differential pausing between cell lines indicating that the model captured general
cell type independent rules of pausing regulation. Model interpretation allows for assessing the relative
importance of each factor, to quantify their effects and predictive values, and to systematically identify
previously unknown regulators of pausing. Grouping of factor contributions by molecular functions
confirmed the strong interconnection of pausing and co-transcriptional splicing and other steps of gene
expression. We additionally identified 16 previously unknown 7SK interacting RBPs predictive of pausing.
These novel pause regulators allow for a systematic and targeted investigation of the regulation of
pausing at specific promoters in more detail. Moreover, they provide entry points for experimental
manipulation (e.g. with knockdown experiments) to assess their downstream effects on pausing and gene
expression in general.

MATERIALS AND METHODS

Transcript Annotations (GENCODE)

To engineer gene-centric features of protein binding events and gene annotation and sequence
composition features as predictors in our machine learning models we obtained transcript annotations for
protein coding genes and non-coding RNAs from the GENCODE (40) database for the hg19 (GrCH37)
genome build. We obtained 81745 annotated protein coding transcripts for 20167 genes. Of these
transcripts, 30186 (18889 genes) were supported by RefSeq (41) annotations and selected as high
confidence transcripts for the analysis. From the annotations we obtained 5-prime, intronic, coding exonic,
and 3-prime genomic regions for each transcript which served to capture interpretable binding sites when
integrating CHIP-seq and eCLIP-seq data sets (see CHIP-seq data integration & eCLIPseq data
integration). HUGO gene nomenclatures (HGNC) (42) from GENCODE were used to further annotate the
transcripts with their respective gene symbols.

A set of non-coding transcripts was obtained through appropriate filtering of the GENCODE transcript
annotation set for transcripts that were annotated as one of miscRNA, miRNA, snoRNA, snRNA and
lincRNA which represent miscellaneous, micro, small nucleolar, small nuclear and long intervening RNA
biotypes, respectively. These non-coding transcripts were used to engineer features for the machine
learning task as well as other downstream analyses especially in the context of the 7SK non-coding RNA
(see Identification of 7SK Interacting Poteins). Analogous to the protein coding transcripts the genomic
regions (5-prime, intronic, exonic, and 3-prime) of non-coding transcripts were used to create binding site
features based on CHIP-seq and eCLIP-seq data sets.
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Transcript Quantifications (RNA-seq)

To ensure that only expressed transcripts are considered we obtained pre-processed transcript
quantifications from total RNA-seq experiments from the ENCODE (43, 44) project for the K562 and
HepG2 cell lines for the hg19 (GrCH37) genome build. Each experiment had two biological replicates.
The obtained transcript expressions were required to have a valid ENSEMBLE (45) ID, to be annotated in
the aforementioned GENCODE and RefSeq transcript annotation set, to be expressed (fragments per
kilobase million (FPKM) > 0) in both of the replicates. The FPKMs were log10-transformed for
downstream analyses. After these filtering steps we considered 16403 (K562) and 16670 (HepG2) of the
30186 protein coding transcripts and 2655 and 1950 non-coding transcripts for the K562 and HepG2 cell
line, respectively. The transcript quantifications data sets (tsv-files) were taken from ENCODE
experiments ENCSR885DVH (K562) and ENCSR181ZGR (HepG2), with accession numbers of
replicated experiments ENCFF424CXV and ENCFF073NHK for the K562 cell line and accession
numbers ENCFF205WUQ and ENCFF915JUZ for the HepG2 cell line, respectively.

Transcription Start Site Annotations (CAGE)

To increase the confidence in the expressed transcripts we further integrated Cap-analysis Gene
Expression Data (CAGE) (46) transcription start sites (TSS) for the K562 and HepG2 cell lines. CAGE
read counts of the most correlated replicates were aggregated per cell fraction per cell line. Reads were
normalized to transcripts per million reads (TPMs). Resulting TSS were then parametrically clustered (47)
into CAGE transcription start site clusters (CTSS cluster) with a TPM threshold of 0.1. Singletons with
TPM less than 0.1 were excluded. Only transcripts whose transcription start site (TSS) was also the
dominant CAGE transcription start site (CTSS) in a cell-type specific CTSS cluster were retained. We
thereby were left with 16194 and 16412 protein coding transcripts in the K562 and HepG2 cell line,
respectively.

Quantifying Promoter-Proximal Pol II Pausing (GRO-seq)

We integrated Global-Run-On-sequencing (GRO-seq) (48) data to quantify transcriptional pausing at
protein coding genes with the commonly used pausing index (PI) also known as the traveling ratio (12,
26). The PIs served as targets to be predicted in a machine learning task. GRO-seq captures the nascent
fragments that build up during the transcriptional cycle and thereby allows to assess Pol II productivity
based on the nascent RNA fragment output. As it is commonly done in the field, we have defined the PI
as the log2 ratio of GRO-seq read counts (number of 30 bp reads overlapping at each position) at the
transcription start site (TSS) to the GRO-seq read signals in the gene body. To optimize the PI definition
we have built pausing indices with varying TSS window sizes and chose the window size maximizing the
negative correlation of the PI with the corresponding transcript expressions (Pearson’s ⍴= -0.68 (K562)
and ⍴= -0.66 (HepG2); see Supplementary Figure S1 pausing index optimization). This was motivated
by the fact that high PIs, representative of transcriptional pausing, should result in low gene expression
profiles and vice versa. This led to a sharp TSS window size of 3bp ranging 1bp up- and downstream of
the TSS, while rendering the remaining part of the transcripts as the gene body window. Read lengths of
30bp (K562, GSM1480325) and at least 25bp (HepG2, GSM2428726) ensure that the most frequent Pol
II pause site and associated components (49) are covered. Each signal (counts of GRO-seq reads within
windows) was then normalized by the respective window size. A pseudocount of 1 read was added to
each resulting window for the log2 transformation when building the ratio. The PI was calculated for each
of the 16194 and 16412 expressed protein coding transcript in a strand specific manner for the K562 and
HepG2 cell line, respectively. Only transcripts which solely contained the DNA base letters (A,T,C,G)
along the whole transcript were considered. This further led to the exclusion of 16 and 9 protein coding
transcripts in the K562 and HepG2 cell line, respectively. This filtering ensures that we exclude reads that
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might be erroneously mapped such that we capture the full GRO-seq read signals along the remaining
transcripts and thereby obtain comparable signal counts. Overlapping protein coding transcripts were
excluded given the fact that corresponding GRO-seq signals can not be uniquely ascribed to a particular
transcript and consequently would result in convoluted PI signals. Transcripts which had no GRO-seq
signal neither at the TSS nor in the gene body were excluded as well (n=129 in K562; n=196 in HepG2).
This has led to the consideration of 8426 and 8260 protein coding transcripts in the K562 and HepG2 cell
line, respectively (see Supplementary Figure S2 for distribution of pausing indices). The corresponding
GRO-seq wig-files can be found under GEO accessions GSM1480325 and GSM2428726 for the K562
and HepG2 cell lines, respectively.

DNA Binding Sites (CHIP-seq)

The integration of chromatin immunoprecipitation sequencing (CHIP-seq) (50) data served to engineer
features of gene-centric genomic protein binding events as inputs for the machine learning models. These
binding sites for DNA binding proteins (DBPs) were obtained from all available CHIP-seq experiments
from the ENCODE project for the K562 and HepG2 cell lines for the hg19 (GrCH37) genome build
through corresponding peak-called data sets (bed-files). Perturbation experiments were excluded and
only optimal irreproducible discovery rate (IDR) (48, 51) thresholded replicated peaks were considered for
downstream analyses to increase the confidence in the obtained binding sites. Experiments with
antibodies directly against the factor of interest and newer versioned experiments were prioritized over
epitope-tagged and older versioned experiments. We thereby obtained 5041190 (K562) and 4138805
(HepG2) genomic binding sites for 309 (K562) and 211 (HepG2) factors (see Supplementary Tables S1
& S2 for CHIP-seq factors per cell line) that served for feature engineering purposes (see Feature
Engineering). ENCODE CHIP-seq accession numbers for each cell line can be found in Supplementary
Tables S3 & S4.

RNA Binding Sites (eCLIP-seq)

Enhanced crosslinking and immunoprecipitation (eCLIP-seq) (52) data served to build gene-centric
transcriptomic protein binding features. Binding sites of all RNA-binding proteins (RBPs) from the
ENCODE project for the K562 and HepG2 cell lines were obtained for the K562 and HepG2 cell lines for
the hg19 (GrCH37) genome build through corresponding peak-called data sets (bed-files). Perturbation
experiments were excluded and only optimal IDR thresholded replicated peaks were considered. Newer
versioned experiments were prioritized over older versioned experiments. We thereby obtained 409839
(K562) and 435015 (HepG2) transcriptomic binding sites for 120 (K562) and 103 (HepG2) factors (see
Supplementary Table S5 & S6 of eCLIP-seq factors per cell line) for feature engineering (see Feature
Engineering). ENCODE eCLIP-seq accession numbers for each cell line can be found in Supplementary
Tables S7 & S8.

Identification of 7SK interacting proteins

We filtered the GENCODE transcript annotation data set for all 7SK annotated transcripts to enable the
identification of known and novel 7SK binding proteins via observed eCLIP-seq signals on corresponding
transcripts and assess their predictive value in the context of transcriptional pausing. In particular, 7SK
transcripts which were labeled as pseudo versions were included if they were expressed at least at the
median expression level of all expressed non-coding transcripts. Their inclusion was motivated by the
idea that factors that also bind these pseudo 7SK transcripts may compete (53) for respective binding
sites with factors that bind the non-pseudo version. The set of 7SK binding factors was defined for each
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cell line as all factors with at least one eCLIP binding site on any of the 7SK transcripts (see
Supplementary Tables S9 & S10).

Feature Engineering

For the machine learning task of predicting the gene-wise pausing index of protein-coding genes we
engineered features of DNA- and RNA binding events at protein-coding and the closest proximal
non-coding transcripts upstream and downstream of the TSS of each protein-coding transcript as well as
DNA sequence and annotation features of protein-coding transcripts as predictors for the models. The
following features were created:

● transcript length
● strand specification
● chromosome specification
● location on the linear genome
● number of annotated exons
● average exon width
● exon density (ratio of the length of the transcript including introns to the number of exons)
● fraction of exonic sequence (ratio of the length of all exonic sequences to the transcript length)
● GC content of the whole transcript including introns
● Width of CAGE transcription start site cluster (CTSS)
● GC content of CTSS
● distance to most proximal CpG island along with information about the CpG island (length, and

features of the sequence: number of CpGs, number of C and G, percentage of CpG, percentage
C or G, and ratio of observed to expected CpG)

● binary encoding whether the transcript is a housekeeping gene
● binary encoding of RBP binding events separately for 5’/3’-UTR, introns and coding exons
● binary encoding of DBP binding events separately for 5’/3’-UTR, introns and coding exons

excluding Pol II bindings as these are expected to be naturally correlated with the prediction
target

● binary encoding of RBP/DBP binding events separately for 5’/3’-UTR, introns and coding exons of
the two most TSS proximal non-coding RNAs excluding Polymerase II bindings as these are
expected to be naturally correlated with the prediction target

CpG island annotations were taken from the UCSC golden path for the hg19 genome build
(cpgIslandExt.txt.gz). Annotations of housekeeping genes were taken from (54). The number of proximal
ncRNAs was fixed to two since in combination with CHIP-seq and eCLIP-seq signals on these proximal
ncRNAs the feature space would otherwise overgrow the number of genes (and therefore data points in
the regression task) which would result in overfitting of the models. Numeric features not in the range [0:1]
were rescaled to that range to achieve faster and more accurate model convergences. DNA- and
RNA-binding signals went into the model as binary features (binding (1) or non-binding (0)) (see
Supplementary Tables S11 & S12 for number of binding events per factor on individual genomic or
transcriptomic regions for each cell line). Distribution of annotation based features for the K562 and
HepG2 cell lines can be found in Supplementary Figures S3 and S4, respectively. These feature
vectors served as a scaffold to build various data matrices for a machine learning regression task based
on different feature sub-spaces based on prior domain knowledge as discussed in the next section.
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Feature subsets based on prior knowledge

We stratified the feature space into functionally related sets of proteins in order to characterize the
relevance and quantify the importance of pre-, co- or post-transcriptional events in the context of
transcriptional pausing. These subsets of binding features of DNA- and RNA-binding factors implicated in
specific biological processes were constructed by integrating Gene Ontology (GO) (55, 56) annotations.
Functional sets of factors (Chromatin, Initiation, Elongation, Termination, Splicing) were generated based
on whether a specific factor was annotated to a biological process (BP) ontology term of any of the
following, representative for these major biological functional sets: Chromatin (chromosome organization,
GO:0051276; chromatin organization, GO:0006325; chromatin remodeling, GO:0006338), Initiation
(RNA polymerase II preinitiation complex assembly, GO:0051123; transcription initiation from RNA
polymerase II promoter, GO:0006367), Elongation (transcription elongation from RNA polymerase II
promoter, GO:0006368), Termination (termination of RNA polymerase II transcription, GO:0006369),
Splicing (mRNA splicing via spliceosome GO:0045292; regulation of alternative mRNA splicing via
spliceosome, GO:0000381) and Processing (mRNA export from nucleus, GO:0006406; mRNA 3'-end
processing, GO:0031124). The set of Elongation factors was further extended by pause regulatory factors
from the literature (16, 57, 58) if not already included in the GO-derived factor set Elongation. These
were super elongation complex (SEC) factors CCNT1, CCNT2, ELL, ELL2, ELL3, AFF1, AFF4, MLLT1,
MLLT3, established pausing factors NELFA, NELFB, NELFCD, NELFE, SUPT4H1, SUPT5H, SUPT6H,
SUPT16H, BRD4, MYC, TAF1, TBP, PAF1, and CDK9 (P-TEFB), as well as 7SK ncRNA pause mediator
complex binding factors LARP7, HEXIM1, HEXIM2 and MEPCE (see also Supplementary Table S13).
However, we could only consider a subset (n=19) of all established pausing factors, which were assayed
in the CHIP-seq and eCLIP-seq experiments. The final Elongation factor set thus contained POLR2A,
POLR2B, POLR2G, POLR2H, MLLT1, SUPT5H, GTF2F1, BRD4, WDR43, NCBP2, HNRNPU, LARP7,
MYC, TAF1, TBP, AFF1, EZH2, PAF1 and SSRP1. However, Polymerase associated factors (POLR2A,
POLR2B, POLR2G, POLR2H) were excluded since these are expected to correlate with the pausing
signal. A set of 7SK binding proteins derived from binding sites observed in the eCLIP-seq data was
generated to quantitatively assess the importance of unknown or less well established 7SK associated
factors (see 7SK non-coding RNA or Supplementary Table S4 of 7SK binding factors per cell line). A set
representative of general pausing associated factors was generated by forming the union of the
Elongation and 7SK associated factor set (Elongation+7SK). For a list of factors in each resulting
functional factor set per cell line see Supplementary Tables S14 & S15.

Each resulting factor set was further stratified into sequence-specific and non-sequence-specific binders.
The Molecular Signatures Database (MSigDB) (59, 60), a collection of annotated gene sets, the Catalog
of Inferred Sequence Binding Preferences (CIS-BP) (61), a library of transcription factors and their
binding motifs and the Homo sapiens comprehensive model collection (HOCOMOCO) (62), a collection

of transcription factor binding models for human and mouse via large-scale ChIP-seq analysis based on

binding motifs, were queried to identify sequence specific factors (see Supplementary Tables S16 &
S17).

The feature vector space of binding events was then accordingly grouped by these factor sets (see

Supplementary Table S18 of factor presence in feature subspaces) to form different feature matrices,
always accompanied with DNA sequence and annotation features of protein coding genes. These
feature matrices based on prior domain knowledge, 7SK ncRNA associations and sequence-specificity
served to build an array of predictive models based on features with a defined biological function. For a
baseline comparison of model performances we have further built 100 random models which randomize
over the number of factors, the factors itself and their binding patterns. The binding patterns were
randomized according to the observed binding proportions.
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Model Training

Models of transcriptional pausing were obtained by training Extreme Gradient Boosting Tree (XGB)
regressors to predict the pausing index with each of the feature subsets (see Feature Stratification). Apart
from 5-fold cross validating the models on the training cell line, we applied trained models to the
completely independent test data sets from the other cell line. This provided us with an unbiased estimate
of the model performances as trained models have neither seen the genes target distribution nor the
specific feature distributions of the other cell type. To enable such validation procedure each feature
matrix was reduced to features common to both cell lines. We refer to these as the synchronised models
as compared to the individual models which on the other hand incorporated all available features specific
to a cell type. In the case of individual models 50% of the available data points were held out prior to
training as an independent test data set. Though this set is not from an independent cell line as is the
case with the synchronised models, it still provides an unbiased model performance estimate as trained
models have also not seen any of the data points from the hold out test data set.

Regression with squared loss was chosen for the learning objective. The coefficient of determination
(R-squared, R2) was used as the evaluation metric to compare and evaluate trained models. See
Supplementary Table S19 for hyperparameter specification and the zenodo repository for R-Data
structures with all model matrices (model.matrices.RDS).

Feature scoring

Shapley additive explanations (SHAP) (63, 64) were used as a scoring metric for feature contributions.
SHAP is a game theoretic approach to explain the output of any machine learning model. In contrast to
the well known variable importance metric it is able to show the positive or negative relationship for each
feature with the target. As opposed to most feature importance metrics that average over all genes, each
gene receives its own set of SHAP values, greatly enhancing the prediction transparency. SHAP values
are additive and allow to aggregate over contributions of subsets of features which enabled us to capture
contributions of binding features per protein and subsequently group these proteins into sets of positive
and negative regulatory factors. For instance, we obtain contribution scores for a transcription factor
binding on the 5’UTR, exons, introns and 3’UTR on the genome and transcriptome as identified by
CHIP-seq and eCLIP-seq, respectively. We derived total factor contributions by aggregating the SHAP
scores per factor over each gene region which enabled us to identify specific pause regulatory factors by
selecting factors with high effect sizes.

RESULTS

Predictive Models of Transcriptional Pausing

The transitioning of promoter-proximally paused Pol II (Fig. 1A, promoter-proximally paused Pol II) into its
elongating phase of nascent RNA synthesis (Fig. 1A, elongating Pol II) is regulated by trans-acting protein
co-factors as well as cis-regulatory DNA and RNA sequence features (16, 18) which we refer to as
chromatin signatures.
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Figure 1:

(A) Central question as to which specific factors are implicated in the transitioning of
promoter-proximally paused Polymerase II into its elongating phase of nascent RNA synthesis. (B)
Integration of large-scale genomic data sets to build the chromatin context of transcriptional pausing (A)
with protein binding events and gene annotation and sequence composition features for the prediction
task of promoter-proximal pausing of the Polymerase II quantified by relating GRO-seq read densities
at the TSS to GRO-seq read densities in the gene body (C) Machine learning approach to predict
promoter-proximal Pol II pausing with chromatin signatures (B), followed by the integration of prior
knowledge and selection of factors as modulators of promoter-proximal Pol II pausing.

For the identification of such specific regulatory chromatin signatures we used large-scale genomic and
transcriptomic protein binding maps from ENCODE and compiled gene annotation and sequence
composition features. We then followed a systematic machine learning approach to predict the degree of
transcriptional pausing at protein coding genes (Fig. 1B) through the integration of these chromatin
signatures in a regression model with Extreme Gradient Boosting trees (XGB) with the potential to reveal
explanatory factors (Fig. 1C).

To facilitate the validation in independent cell lines we obtained relevant data sets for two different cell
lines (K562 and HepG2). The prediction target was defined as the gene-wise pausing index (see
Materials & Methods; see Supplementary Figure S2 for pausing index distributions). It quantifies the
degree to which a gene is paused (high pausing index) or elongated (low pausing index). To construct the
feature matrix of predictors as input for our models we systematically integrated genome-wide CHIP-seq
(see Materials & Methods) and eCLIP-seq (see Materials & Methods) data from the ENCODE project,
providing DNA and RNA binding sites on the genome and transcriptome respectively (see
Supplementary Tables S11 & S12). Gene-centric annotation and composition features were mainly
engineered based on GENCODE transcript annotations (see Materials & Methods, Supplementary
Figures S3 and S4). CAGE transcription start sites were integrated (see Materials & Methods) to define
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high confidence TSS and further validate the expression of transcripts. We thereby obtained a total of
2503 features of 2485 DNA & RNA binding and 18 gene annotation features in the K562 cell line and
1832 features of 1814 DNA & RNA binding and 18 gene annotation features in the HepG2 cell line. We
then trained an Extreme Gradient Boosting Tree regressor (see Materials & Methods and Supplementary
Table S20) to predict the pausing index of protein coding genes (n=8426 in K562) with high accuracy and
explain up to 68% of the observed variance (R2~0.68 on 50% hold-out test data set, K562) of the pausing
index (Fig. 2A).

Figure 2:

(A) Observed vs. predicted pausing indices (log2 scale) of a 5-fold cross-validated and regularized
XGB regression model in the K562 cell line applied to an independent 50% hold-out test dataset from
the same cell line taken prior to training. Pearson’s correlation coefficient rho (⍴) with the associated
p-value is depicted in the upper left. The residual regression error is colored in red (see legend resid).
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(B) Observed vs. predicted pausing indices of a 5-fold cross-validated and regularized XGB regression
model in the K562 cell line applied to the independent test dataset from the cross cell line (HepG2).
Model was trained with features common to both cell lines. Pearson’s correlation coefficient rho (⍴) with
the associated p-value is depicted in the upper left. The residual regression error is colored in red (see
legend resid). (C) Venn diagram of transcripts between cell lines. (D) Observed vs. predicted pausing
indices of a 5-fold cross-validated and regularized XGB regression model from each cell line applied to
data of genes exclusively expressed in the cross cell line. Pearson’s correlation coefficient rho (⍴) with
the associated p-values are depicted in the upper left. (E) Observed pausing indices from the K562 vs.
HepG2 cell line. Transcripts with at least a 2-fold higher pausing index in one but not the other cell line
are colored either green (HepG2 specific transcripts) or blue (K562 specific transcripts). Transcripts
with similar pausing indices (less than a 2-fold change) in both cell lines, thus not specific to any of the
cell lines, are colored in orange. Pearson’s correlation coefficients (⍴) for each of the groups with
associated p-values are depicted in the upper left. (F) Observed pausing index differences between cell
lines against differences of predicted pausing indices obtained from models trained in each cell line and
applied to data from the cross cell line. Models were trained on features common to both cell lines.
Differences are shown for genes which showed a 2-fold change between cell lines as identified in E).

The model performances can be further evaluated through 1) the application of a model trained on one
cell line and applied to the full data of the other cell line (Fig. 2B) 2) the application of a model trained on
one cell line and applied to genes that are only expressed in the other cell line (Fig. 2D) and 3) the
application of a model trained on one cell line and applied to genes present in both cell lines with
significantly different pausing indices representing extreme observation specific to the other cell line (Fig.
2F). See Supplementary Figure S5 for figure 2 analog of model performances of a model trained on the
HepG2 cell line and validated on the K562 cell line.

The predictive power and generalizability of the model was supported by the high prediction performance
on the independent cross-cell type test data set (Fig. 2B, performance on HepG2 data of K562 model) in
which it was still able to explain up to 53% of the variance. The decreased model performance with an R2

of 0.53 as compared to 0.68 (Fig. 2A) is likely due to the reduced amount of features that are available in
the HepG2 cell line (39% of all features (n=987) of n=2503 features available in the K562 cell line).

A good performance in the cross cell type prediction task (Fig. 2B) can have two reasons: 1) the model
captures the signal of ubiquitously expressed genes which are similar between cell types, as might be the
case with housekeeping genes, or 2) it learned general rules that would also allow for predicting cell type
specific pausing indices from cell type specific chromatin signatures. To distinguish these scenarios we
identified the sets of exclusively expressed genes (Fig. 2C) and assessed the performances of models
trained on one of the cell lines on the genes exclusively expressed in the other cell line (Fig. 2D). The
K562 model was able to explain up to 57% and the HepG2 model up to 58% of the observed variance in
the pausing indices in the HepG2 and K562 cell line respectively.

We further validated that our model can also identify quantitative changes on transcripts which showed
differential (fold change >= 2) cell type specific distributions of the pausing indices. For these sets of
transcripts (Fig. 2E, blue, green) we evaluated the concordance of observed pausing index differences
between the cell lines against the differences of predictions of the pausing indices using models trained in
one of the cell lines and applied to data in the other cell line (Fig. 2F). Although we can recognize a
substantial decrease in model performances with a correlation of 0.24 (Fig. 2F, HepG2 specific pausing
indices; green) as compared to 0.73 for the prediction on the entire HepG2 cell type data (Fig 2B) or 0.76
on HepG2 cell type specific genes (Fig 2D), the model still maintains predictive power for extreme
observations of pausing indices specific to the cross cell type which further underlines the ability of the
model to generalize to other cell lines.
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Given the high predictive power of the obtained model not only on intra-cell type holdout test data sets
(Fig. 2A), the inter-cell type test data set (Fig. 2B) as well as its ability to predict pausing indices of cell
type specific genes (Fig. 2D) and cell type specific differential pausing indices (Fig. 2F), we concluded
that our model captured general rules of pausing regulation independent of the cell type and that the
underlying chromatin signatures of the models would have sufficient discriminatory power to explain the
observed variance in the pausing index. We thus continued with downstream feature interpretation and
selection approaches to suggest potentially novel regulators of transcriptional pausing. Downstream
analyses were performed on data from the K562 cell line due to the increased amount of features
available.

Contribution of individual transcript processing steps to the prediction of pausing

We next aimed to gain a mechanistic understanding of the underlying predictive contributions. To
measure the contributions of model features we have used Shapley Additive Explanations (SHAP) (64,
65) as a feature scoring metric (see Materials & Methods) which captures the directional contribution of
each model feature specifically for each gene on the target variable. A model feature may increase or
decrease the pausing index or exert no effect at all depending on the factors relevance for pausing and
their interaction with other features of each gene (Fig. 3A). Their combined effects converge in predicted
pausing indices which in turn represent the average output whether a gene is paused or not.

Because transcriptional pausing is connected with other steps of gene expression from chromatin
organization (66–68), transcription initiation (8, 49, 69), to splicing (32, 70, 71) and post-transcriptional
transcript processing (33, 72, 73), we assessed the regulators of these pre-, co- or post-transcriptional
events according to their importances in predicting pausing. To that end we have generated sets of
regulators (see Methods and Supplementary Tables S14 & S15) representative of specific RNA
processing events (Chromatin, Initiation, Elongation, Splicing, Termination, Processing) based on Gene
Ontology (GO) annotations. The Elongation factor set was further extended by established pausing
factors from the literature. The 7SK non-coding RNA complex is a key regulator auf pausing (34, 74–78).
To assess the role of RNA binding proteins participating in the 7SK complex for pausing, we additional
built a set of factors that bind the 7SK ncRNA in the eCLIP-seq datasets (see Methods and
Supplementary Tables S9 & S10 for 7SK binding factors per cell line). This set included the well known
7SK binder LARP7, the pausing related regulator AQR previously not associated with the 7SK as well as
the following factors not previously associated with pausing: SSB (LARP3), HNRNPK, DGCR8, PCBP1,
ATF, ZNF800, XRCC6, NCBP2, SBDS, YWHAG, GRWD1, ZNF622, SRSF7, TARDBP and BUD13. A set
consisting of the union of Elongation and 7SK associated factors was generated as well
(Elongation+7SK). All sets of regulators were further stratified into known sequence-specific and
non-sequence-specific binders (see Supplementary Tables S16 & S17) in order to assess the relevance
of sequence specific binding events. For each factor in the resulting functional set of regulators we
aggregated their feature contributions (Fig. 3A) per functional process (Fig. 3B).
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Figure 3
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(A) Individual feature contributions (y-axis; only top 5 individual features colored and remaining
aggregated in rest_variables) on each transcript (x-axis) with a sample zoom-in on a subset of
transcripts for better visual investigation (B) Aggregate absolute contributions of factor classes based
on prior knowledge, further divided by sequence and non-sequence specific binding factors. The
process Processing refers to mRNA polyadenylation and export from the nucleus. (C) R2 performances
of individual models of factor classes based on prior knowledge on 50% holdout test data set (D)
Aggregate absolute contributions of factors based on their binding modes.

Splicing factors had the highest contributions followed by elongation and 7SK binding proteins. This
strongly supported the intricate connection to co-transcriptional splicing events (35, 70, 79) and
strengthened the role of the newly identified 7SK binding proteins as transcriptional pause regulatory
factors. The Elongation factor set of established pausing factors served as a validation of our approach.

We next asked how models would perform if they are trained exclusively on the features defined by each
of the previously defined sets of regulators. For a baseline comparison models were also trained on
randomized input data (see Materials & Methods). Figure 3C shows the model performances (R2 values)
for each of the feature subspaces of cross-validated models in the K562 cell line on the independent 50%
holdout test data sets (see also Supplementary Table S20 for all model results). In general all models
perform reasonably well relative to the number of features they incorporate. As an example the splicing
factor based model (Splicing) incorporates only 14% (n=57) of all available factors yet performs almost
equally well as the full model (All) incorporating all available factors (n=398). Likewise, the Initiation model
considers only about half the number of factors than the chromatin associated model (Chromatin) yet
performs slightly better (R2 of 0.54 vs. 0.53).

As expected, the 7SK ncRNA associated factor model (7SK.Binding) and the model with previously
established pausing factors (Elongation) perform very well despite the low number of factors considered
in those models. The predictive power of pausing/elongation factors becomes further evident when we
consider the model of the union of 7SK and established elongation factors (Elongation+7SK) which
outperforms (R2 0.62) each individual factor set alone (7SK.Binding: R2 0.55, Elongation: R2 0.56) and
performs almost equally well as the full model (R2 0.62 vs. 0.68). This result highlights the relevance of
the novel set of 7SK binders identified by protein-RNA interactions as putative pause regulators. Taken
together, the majority of factor sets show high predictive power relative to the number of factors they
incorporate but their performances should not be compared to each other due to the variable amount of
factors considered in the models. Their predictive value demonstrates the interconnectedness of
underlying processes with the transcriptional pausing outcome. It further supported and strengthened the
role of the 7SK ncRNA as a transcriptional pause mediator complex and allowed us to suggest the factors
from the set of 7SK associated factors (7SK.Binding) (see Supplementary Tables S9 & S10) as
additional 7SK ncRNA binding proteins to be implicated in the regulation of pausing based on their
predictive value .

We next asked whether protein-DNA or protein-RNA binding events contributed to the explanatory power
of the models. We found that the individual contributions of RNA binding events are generally higher than
those of DNA binding events (Fig. 3D). Investigating the contributions of factors by their functional classes
within the highest ranked class (RNA introns) (see Supplementary Figure S7 & S8) reveals that splicing
factors are enriched for RNA intron binding sites (Fisher’s exact test, one-sided (greater), p = 0.034, odds
ratio 4.45, confidence interval [1.11;Inf] in K562 and p=0.032, odds ratio 7.1 [1.15;Inf] in HepG2). The high
contributions of genomic binding events on the 5’ region of transcripts (Fig 3D, DNA_five_prime) are in
line with observed genomic five prime modulated transcriptional pause states (80).
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Overall the results for the HepG2 cell line are very similar and support the conclusions (Supplementary
Figure S6). Although gene annotation and composition features account for 26% of all feature
contributions (see Supplementary Figure S9-12) they are static in their nature and cannot explain
variation of pausing between cell lines. Therefore, we focus the discussion on individual proteins and their
binding events as they are dynamic between cell lines.

Modulators of Transcriptional Pausing

Based on our model, we aimed to identify specific pause regulatory factors. To obtain a ranking of the
importance of individual DNA- and RNA-binding factors for predicting Pol II pausing, we aggregated the
SHAP contributions (see Supplementary Figure S13 & S14 for individual feature contributions per cell
line) into a single contribution score per factor and selected the minimal set of most influential factors (16
out of 398) that makes up 50% of all feature contributions (Fig. 4A). Established pausing factors from the
literature (Fig. 4A, highlighted in red) are ranked among these top influential factors, validating our factor
ranking approach. Three factors not primarily related to pausing were ranked higher than the established
pausing factors and are potential novel modulators of pausing with at least the effect size of the
established factors. However, all other factors have similarly high contributions and can be considered
almost equally important.

Figure 4.

(A) Increasingly ordered aggregate factor contributions of factors that makeup at least 50% of model
contributions. Established pausing/elongation factors are colored red. The bar fill colors identify
DNA-binding (DBP; dark red), RNA-binding (RBP; orange) or DNA- and RNA-binding (DBP/RBP; grey)
factors. (B) Functional roles of identified factors.

A minimal model that only operates on the features of these 16 most influential factors (including gene
annotation and composition features) which includes only five known pausing or 7SK related factors
(AQR, BRD4, SUPT5H, TAF1, TBP) achieves an R2 of 0.65 (on 50% holdout test data set; see
Supplementary Figure S15 & S16 performances of minimal models per cell line) and thus performs
almost equally well as the full model with all 398 factors and an R2 of 0.68. Additionally, it outperforms the
Elongation+7SK model (Fig. 3) which incorporates almost twice as many factors (n=27) factors of 7SK
associated and established elongation factors which, although highly predictive, only achieved an R2 of
0.61 as compared to an R2 of 0.65 of the minimal model which indicates that not all pausing related
factors were captured in the Elongation+7SK set. The minimal model (n=9) of the HepG2 data consisted
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of RBFOX2, AQR, TAF1, TBP, RBM15, RBM22 KHSRP, PRPF8 and YBX3, which are all included in the
minimal model identified in K562.

Upon investigation of the identified most influential pausing factors (n=16, K562) defined by our model the
interconnection of pausing with other RNA-processing events becomes further apparent. An interesting
picture emerges considering the functional background of these factors (Fig. 4B).

Pausing factors

Several pausing factors are well established (TAF1, TBP, SUPT5H) and occupy high ranks in our models.
TAF1 and TBP are components of the pre-initiation complex (PIC). Its formation inherently leads to
pausing (58). This behaviour can be modulated by other pausing factors, especially the protein
complexes NELF and DSIF (SUPT5H) increase pausing whereas the P-TEFb complex associates with
pause release.

Chromatin remodelers
The chromatin remodeler EP400 had a large impact on our model. Chromatin state is defined by
nucleosome positioning and posttranslational modification of its histones. It is tightly linked to transcription
initiation, elongation and co-transcriptional splicing and can be actively modulated by chromatin
remodelers (81–84). EP400 is a histone acetyltransferase and promotes gene activation after PIC
assembly through the depositioning of H3.3/H2.AZ into promoters and enhancers (85). It interacts with
the well known pausing factor MYC (26, 85, 86) and might be linked to transcriptional pausing through
this association. In fact, regulation of Pol II pausing at promoter proximal nucleosomes by chromatin
remodelers like for instance Chd1 (87) are already established.

Transcriptional repressors and activators
Among the top influential factors we can find activating transcription factors ZFX, JUN and JUND as well
RBFOX2 as a repressive transcription factor. ZFX family members exert a transcription activating
function in multiple types of human tumors and bind downstream from the TSS at the majority of CpG
island promoters regulating genes for essential housekeeping functions. ZFX family members have been
suggested to act in a similar manner as the MYC family of transcription factors due to their shared
pervasive binding at promoter sites as well as similar profound proliferation defects upon knockdown (88,
89). Given that MYC plays an important role in transcriptional pause release through the recruitment of
P-TEFb (26, 90), a similar connection could exist for ZFX. Moreover, a comparison of the binding patterns
of ZFX with Pol II and H3K4me3 have shown that ZFX is slightly downstream from the most frequent Pol
II pause site and slightly upstream of the downstream peak of H3K4me3 signal (88, 89), further
suggesting a role of ZFX in regulating Pol II pausing.

JUN and JUND are subcomponents of the activating protein 1 (AP-1) (91, 92) which in turn controls cell
proliferation, neoplastic transformation, apoptosis and the expression of immune mediators. AP-1 is
suppressed by the negative elongation factor NELF (93), but so far no regulation of transcriptional by
AP-1 has been reported.

RBFOX2 acts both, as a regulator of alternative splicing as discussed later, and transcriptional repressor
through the binding to chromatin-associated RNA, especially promoter-proximal nascent RNA, through
the recruitment of the polycomb-complex 2 (PRC2) to its site of action (88, 94, 95). In fact, RBFOX2
knockout cardiomyocytes were linked with decreased pausing indices and a coordinated transcriptional
pause enhancing role of RBFOX2 and PRC2  at gene promoters has been suggested (95).
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Co-Transcriptional splicing and mRNA regulatory factors
The presence of several splicing associated factors (RBFOX2, PRPF8, RBM15, RBM22, KHSRP, YBX3,
AQR) further strengthens the intricate connection to co-transcriptional splicing events (32, 71, 96, 97).
Co-transcriptional splicing of pre-mRNAs is dependent on the availability of the nascent RNA that forms
during the transcriptional cycle which in turn is a function of Pol II pausing. In fact, it has been shown that
active spliceosomes are complexed to the Pol II S5P C-terminal-domain during elongation and
co-transcriptional splicing (98). In particular it has also been shown that transcription kinetics strongly
impact splicing decisions, such that slow Pol II elongation rates allow more time for spliceosome
assembly and thereby favor splicing. Moreover, the inhibition of the spliceosomal U2 snRNP function has
been shown to enhance Pol II pausing in promoter-proximal regions, to impair the recruitment P-TEFb
and thereby reduce Pol II elongation velocity at the beginning of genes (79). These indicated that the
release of paused Pol II requires the formation of functional spliceosomes and that a positive feedback
from the splicing machinery to the transcription machinery exists. In this context, RBFOX2 acts as a well
established regulator of alternative splicing (99–101) with an integral role in transcriptional pausing (95).
Likewise, RBM15 (102), RBM22 (103, 104), PRPF8 (105), KHSRP (106) and YBX3 (107) as pre-mRNA
splicing factors or spliceosome components are likely to have a similar connection to pausing as is the
case for RBFOX2 and splicing in general.

AQR is a high ranking R-loop resolution factor (108). R-loops are RNA/DNA structures in which nascent
RNA anneals back to the template DNA (109–112). It has also been suggested that R-loop formation is
likely part of the mechanism for Pol II pausing (111) to hold back elongation of Pol II (113) and the DNA
replisome (114). The importance of splicing events for pausing is further strengthened by splice defect
induced R-loop formations as a result of increased RNA-DNA hybrid annealing due to the lack of splicing
dependent nascent RNA processing which would otherwise prevent the formation of such structures
through timely splicing events.

Novel pausing factors
For the factors ZBTB40 and SMAD5 not previously associated with the regulation of pausing we suggest
a novel link. ZBTB40 is not well characterized but has been established to be a regulator of osteoblast
activity and bone mass (115). SMAD5, together with other SMAD proteins, is a signal transducer and is
activated in the cytoplasm and accumulated in the nucleus where it regulates transcription via remodeling
of the chromatin architecture through the recruitment of a variety of coactivators and corepressors to the
chromatin (88, 94), suggesting a role regulating transcriptional pausing outcomes through a series of
chromatin remodeling events and recruitment of transcription factors.

DISCUSSION

The understanding of promoter-proximal Pol II pause regulatory elements is an important step towards
disentangling the gene regulatory mechanisms underlying cell homeostasis and plasticity. We improved
our understanding by training machine learning models that predict the extent of promoter proximal
pausing from large scale genome and transcriptome binding maps, as well as gene annotation and
sequence composition features providing insights into cis- and trans-acting regulatory elements
underlying transcriptional pausing. Our model achieves high predictive accuracy (R2 ~ 0.68 with n=389,
factors; R2 ~ 0.65 with only n=16 factors), indicating that the binding of identified trans-acting protein
factors to DNA and RNA explain a large part of the variability of the extent of pausing. The accurate
prediction of differential pausing based on cross cell type specific binding data (R2 ~ 0.52) demonstrated
that the model learned general rules, which are not cell type specific. This is in line with the observation
that pausing of genes is consistent across a large proportion of cell types (12). Models built from subsets
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of proteins implicated in all steps of gene expression, including chromatin remodelling, transcription
initiation, elongation, splicing and further downstream transcript processing demonstrated high predictive
power. This confirms the intimate cross talk between these processes (8, 16, 49, 66, 67, 70, 116, 117). Of
note, factors implicated in splicing have the highest predictive power for pausing. This is in line with many
studies that show dual roles for individual proteins such as RBFOX2 (99–101), SRSF2 (32), U2AF65 (79)
or MAGOH (79) providing a direct causal link between the two processes. One important goal of our
analysis was to identify novel potential pausing regulators. We achieved this using two approaches. First,
we identified novel 7SK binding RBPs and showed that their binding patterns are highly predictive of
pausing. Second, we analysed the feature importance in our model and pinpointed protein factors with
higher feature importance than established pausing factors. Many of these factors such as RBOFX2
(99–101), AQR (108), JUN and JUND (91) have been demonstrated to affect pausing or are implicated in
processes that have already been associated with pausing. These factors constitute interesting targets for
further experimental validation, as our results already provide some initial mechanistic hypotheses.

We chose to analyse data from the HepG2 and K562 cell lines, since they have been extensively
characterized in the ENCODE project. The number of DNA and RNA binding maps available is
unparalleled and enables identification of previously unknown regulators of promoter proximal pausing.
These data sets come with the limitation that not all previously characterized regulators of pausing are
available. The second limitation is that only GRO-seq data and similar variations are available to quantify
promoter proximal pausing. Recent multi-omics approaches based on TT-seq (118) and mNET-seq (7, 8,
119) have been applied to K562 and Raji B cell lines to estimate the kinetic rates of initiation and pause
duration more precisely. These approaches provide ground for future studies of transcriptional pausing
with greater precision and detail once broadly available across cell lines which would enable elaborate
validation procedures. Unfortunately such data are not available for a second ENCODE cell line such that
a cross validation of the model would not be possible. Taken together, our work provides a framework to
further our understanding of the regulation of the critical early steps in transcriptional elongation. We
expect further improvements with better kinetic profiling of the polymerase and increasing availability of
binding maps or improved prediction of binding sites from sequence.

AVAILABILITY

The code is available at https://github.com/heiniglab/POLII_pausing. All data and results are also
available at 10.5281/zenodo.5236311.

ACCESSION NUMBERS

GRO-seq data for the K562 and HepG2 cell lines were obtained from studies with GEO accessions
GSM1480325 and GSM2428726, respectively. RNA-seq data transcript quantifications data sets
(tsv-files) were taken from ENCODE from the experiment ENCSR885DVH with accession numbers of
replicated experiments ENCFF424CXV and ENCFF073NHK for the K562 cell line, as well as the
experiment ENCSR181ZGR with accession numbers of replicated experiments ENCFF205WUQ,
ENCFF915JUZ for the HepG2 cell line. ENCODE Accession number of CHIP-seq and eCLIP-seq data
sets can be found in supplementary tables S3 & S4 and S7 & S8, respectively. Annotations of
housekeeping genes were taken from (54) (see Supplementary Table S21; housekeeping.RDS in
zenodo repository). CpG island annotations were taken from the UCSC golden path for the hg19 genome
build (cpgIslandExt.txt.gz) (see Supplementary Table S21; cpg.islands.RDS in zenodo repository). Gene
annotations along with HGNC and RefSeq metadata files were taken from GENCODE (see
Supplementary Table S21). CAGE transcription start sites are provided in the zenodo repository as an
R-data structure (CTSS.RDS).
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