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Abstract 
Given an array of phenotypes (e.g., yield across strains and conditions), one can ask how to 
best choose subsets of conditions that are informative about the whole dataset, enabling 
efficient system identification and providing a basis vector in phenotype space. Here we 
introduce a mixed integer linear programming approach to choose explanatory and response 
variables for a phenotypic matrix. We applied the algorithm to a set of fitness measurements for 
462 yeast strains under 38 carbon sources, and to the growth phenotypes of 65 marine bacteria 
on 11 media. The algorithm identifies environments that can be used as features to predict 
growth under other conditions, providing biologically interpretable metabolic axes for strain 
discrimination. Our approach could be used to reduce the number of experiments needed to 
identify a strain or to map its metabolic capabilities. The generality of the algorithm makes it 
appropriate for addressing subset selection problems in areas beyond biology. 
 
Keywords 
Phenotyping, Feature selection, Yeast, Marine bacteria, Microbial growth, Environmental 
conditions, Machine learning  
 
  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2022. ; https://doi.org/10.1101/2022.06.20.496733doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.20.496733
http://creativecommons.org/licenses/by/4.0/


 

2 

Introduction 
 

As the price of DNA sequencing has decreased, reading genomes is no longer the limiting 
factor in understanding microbes: interpreting genomes is. In principle, genomes carry 
information on how microbes will behave in different environments, but in practice the 
interpretability of genomic information is severely limited by our lack of knowledge about the 
function of many individual genes, as well as by a limited understanding of how genes work 
together to produce higher-level functions. In many biological problems where the goal is to 
understand the ultimate behavior of an organism or system, the new frontier of “phenomics” has 
become increasingly valuable. Defined as the study of arrays of organismal behaviors 
(phenotypes) under multiple conditions or perturbations (Houle et al. 2010; Baran et al. 2013; 
Bowen et al. 2011; Baran et al. 2011), phenomics approaches the challenge of understanding 
biological systems from a top-down perspective: empirical phenotypes are measured, often in a 
high-throughput manner, and then analyzed in search for associations (between genotypes and 
phenotypes, or between different phenotypes). These associations can, in turn, be used to 
understand how the individual subsystem properties of diverse organisms give rise to cell-level 
or community-level functions, including mutual interdependencies in microbial communities. An 
important goal towards the development and applicability of these approaches is to understand 
and efficiently organize high-throughput phenotypic data of organisms grown in a variety of 
environments (Price et al. 2018; Barnett et al. 1990). This goal is the main focus of this paper.  
 
A lot of work has been done to characterize the phenotypes of microbes for applications ranging 
from drug discovery to industrial fermentation (Demain and Sanchez 2009; Schmidt 2005). 
Numerous technologies have been developed to facilitate the generation of these data, 
including Biolog Phenotype MicroArrays (Hosmer et al. 2022), robotic screening tools (Barton et 
al. 2018), and multiplexed bioreactors such as the eVolver (Wong et al. 2018). However, 
compared to the extreme speed in the decrease of sequencing cost, measuring phenotypes is 
still relatively cost and labor intensive; thus, prioritizing which conditions and organisms to 
measure is a crucial component of experimental design. Ideally one would want to narrow down 
a set of measurements to those organisms and conditions that are most informative for 
reconstructing larger phenotype matrices and provide the most predictive power regarding other 
measurable phenotypes. Narrowing in on “high value” phenotypes would have two major 
advantages for biologists: 1) reduce the experimental burden of large screens, and 2) provide 
insight into mechanistic links between traits.  
 
The question of finding an optimal phenotype or set of phenotypes can be effectively modeled 
as a mathematical optimization problem that integer linear programming is well-suited to 
address. Integer linear programming (ILP) refers to linear optimization problems over integer 
variables and has been widely used to formulate problems where discrete choice decisions 
have to be made. In our setting, we seek to assign phenotype variables to either a set of 
predictors or response variables, giving rise to an extremely large number of possible solutions. 
ILP offers a methodology to search that solution space much more efficiently than exhaustively 
enumerating all possible solutions. Over the last decade, dramatic improvements in ILP solvers 
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and the widespread availability of high-dimensional biological datasets have created attractive 
opportunities to expand the applications of ILP to questions of biological importance (Gusfield 
2019). Great strides have been made in the analysis of DNA sequences (Lancia 2008), protein-
protein interaction networks (Dittrich et al. 2008), and mass spectrometry data (DiMaggio et al. 
2009) using linear programming methods. However, the preceding examples modeled a single 
phenotype as a linear combination of phenotypes; methods capable of modeling multiple 
phenotypes as the combination of other phenotypes are still limited.  
 
One of the questions specifically addressed in this study is whether it is possible to efficiently 
organize phenotypic datasets, based on the fact that some phenotypes may be predictable as 
combinations of other phenotypes. One challenge is that the search space can be very large 
and despite increasing capabilities, it is often very expensive to explore all possible 
combinations of variables. This work begins to address this challenge by describing the results 
of a mathematical framework that we call “multi-output subset selection” (MOSS), to understand 
which microbial phenotypes are most “informative.” This method splits a dataset’s features into 
responses and predictors and performs regularized linear regression using these features. The 
training of the regression model is performed by solving an ILP and exploiting several heuristics 
that can substantially speed up the computational time needed to find an optimal solution, 
similar to the process outlined in Thommes et al. 2019. Although MOSS has its origins in subset 
selection problems (Miller 1984) and MILP (Bertsimas et al. 2016), in contrast to the earlier 
works it considers a setting with multiple response variables, which requires a novel formulation. 
We applied MOSS to two microbial phenotype datasets, and successfully identified sets of 
predictor variables with the highest predictive power. MOSS has the potential to enable 
experimentalists to minimize the number of experiments they need to perform while maintaining, 
with a certain degree of uncertainty, the most information regarding a microbe’s phenotype. 
MOSS and its possible extensions could find broad applicability in other data-rich scientific 
areas beyond biology. 

 
Results 
 
A method to separate growth phenotypes into predictors and responses 

 
Given a dataset encoding phenotypic information (e.g., growth yield) for a variety of organisms 
under different environmental conditions, one can perform a regression to predict an organism’s 
phenotype in environment A based on the linear combination of its phenotypes in environments 
B and C. However, it may be better (from an accuracy perspective) to use environments A and 
B to predict environment C, or some other combination. Multi-output subset selection (MOSS), 
formulated as a combinatorial optimization problem and described in detail in the Methods, 
selects 𝑝 predictors from 𝑚 environments in order to predict 𝑚− 𝑝 responses using linear 
regression. Accuracy is measured using the hinge loss function. 
 
Inputs to MOSS (see Figure 1 for an illustration) include a matrix (X) of organisms by 
phenotypes; the number of predictors (p); and the maximum and minimum allowable values on 
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the regression coefficients (M). Outputs of MOSS consist of a binary predictor vector (z) whose 
elements indicate whether an environment is a predictor or response, and the regression 
coefficients (β). Phenotypes (elements of z) can alternate between being a predictor or 
response, irrespective of their state under different constraints. 
 
MOSS uses regression to select predictors and responses, but a classification model would be 
better suited for our discrete growth data, which contains response variables mapping to one of 
three different categories (see Methods). Therefore, we elected to train random forest (RF) 
models (Breiman 2001) using the predictors determined by MOSS. A random forest is an 
ensemble learning model that can perform classification by constructing a large collection of 
decision trees and taking the majority vote of all the trees. Individually, decision trees are poor 
classifiers, but by democratically pooling their results, random forests can improve the predictive 
accuracy and control for overfitting (Ho 1995; Liaw et al. 2002). The number of RF models 
trained depend on the number of predictors to which MOSS has been constrained: for example, 
when applied to a dataset containing 11 phenotypes, if p was set to 1, 10 random forest models 
were trained, and when p was set to 10 predictors, only 1 random forest model was trained. The 
accuracy score was used as the metric to assess the random forest models (see Methods). 
Prior to training the models, we split the data into training and test sets (see Methods). 
 
We designed MOSS with the goal of facilitating the prioritization of conditions under which a 
biological system should be characterized in order to maximize knowledge gained across a 
broader set of conditions. The question is the following: if we can choose only a subset of the 
environmental conditions, and aim at using phenotypes under such conditions as predictors of 
phenotypes under all other conditions, what is the ideal choice of conditions we should choose? 
Here we apply MOSS to two distinct datasets. The first dataset (DATASET 1) is a matrix of 
growth phenotypes (optical density (OD)) for 65 marine bacteria on 11 different media (see 
Forchielli et al. 2022 and Figure 2). This matrix is relatively small, and it pertains to a single set 
of experiments performed in our laboratory in order to map the metabolic capabilities of these 
heterotrophic bacteria on different carbon sources. The second dataset (DATASET 2) is a 
compendium of discrete growth phenotypes collected in a large book originally written as a 
practical guide for identification of different yeast strains based on their growth capacity under 
different conditions (Barnett et al. 1990). 
 
Analysis of DATASET 1: Marine heterotrophic bacterial phenotypes on well-defined 
media 
 
We systematically applied MOSS to DATASET 1 at different values of the number of predictors. 
For each number of predictors, MOSS yielded an optimal choice of media selected as 
predictors, which were then used as variables in a RF. We then built the RF (see Methods) and 
evaluated its performance in predicting growth on other media (i.e., those not selected as 
predictors), compared to a RF that uses all phenotypes except one as variables for predicting 
the phenotype left out.  
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MOSS labeled certain phenotypes as predictors more often than others (Figure 3A), potentially 
indicating that these frequently chosen phenotypes are more informative than phenotypes that 
were selected less frequently. To test this hypothesis, we used Shannon entropy (e) (see 
Methods) as a metric to quantify how informative each variable is (Figure 3B).  In this dataset, 
difcoMB, which was never selected as a predictor, has the lowest entropy: almost all of the 
strains experience positive growth on this condition; thus, very few experiments must be 
conducted in order to “know” whether a strain grows on difcoMB. Despite this clear 
interpretation for the difcoMB condition, for the remaining media the relationship between 
Shannon entropy and W (the number of times a medium was selected) is poorly represented by 
a linear regression model (Adjusted R-squared = 0.056, p-value = 0.25) (Figure S2A). On the 
other hand, there is a mild negative relationship between the number of times a phenotype is 
selected as a predictor variable and the best accuracy score for that phenotype across all 
models (Adjusted R-squared = 0.32, p-value = 0.042). This suggests that MOSS does not 
necessarily select the most easily predicted phenotypes as response variables more often: 
when assigning class labels, MOSS considers a variable’s ability to be predicted as well as its 
ability to predict other variables. Therefore, highly informative variables may not be selected as 
predictors if they are also difficult to predict. These selection patterns may hint at underlying 
relationships between the predictor variables, although it is also possible that the small size of 
the dataset and skewed distribution of entropy values are masking the relationship between 
entropy and selection.  
 
Some phenotypes are more difficult to predict than others due to an apparent lack of 
relationship with other measured phenotypes, while others can be predicted more accurately 
due to associations with multiple phenotypes. No single medium predicts growth on any other 
medium well, but growth on certain media can be predicted almost perfectly with as few as 3 
predictor variables (Accuracy = 0.95 for difcoMB). Model performance was maximized for 9 of 
the 11 media when p was less than 5. In fact, MOSS equals or outperforms RF alone for almost 
all phenotypes, which is to say that using all 10 remaining phenotypes as predictors results in 
poorer model performance compared to using a subset of phenotypes (Figure 3C). Only three 
phenotypes were predicted better using all the available data, but the differences in model 
performance were small (Figure 3C). One consequence of using all variables to predict one 
response is overfitting; using all of the available data may introduce too much noise to the 
model, and therefore negatively affect performance. Our observations suggest that selecting 
multiple predictor variables improves model performance, but the number and identity of the 
predictor variables is central to model performance. 
 
Analysis of DATASET 2: Yeast carbon assimilation growth profiles 

 
Following the application of MOSS to a binary dataset, we were interested in evaluating its 
performance on a categorical dataset that included more than two possible response values.  
For our main dataset, we used a subset of a vast phenotypic resource describing the aerobic 
growth of a variety of yeast strains on 44 different compounds as the sole carbon sources. This 
reference manual was initially used to identify yeasts using phenotypic tests, and therefore 
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describes the results of 91 physiological tests (Barnett et al. 1990). Descriptions of how these 
carbon assimilation tests were performed can be found in (Barnett et al. 1990). 
 
Growth of each yeast strain was originally discretized into six categories: negative (no growth), 
variable, weak, delayed, positive, and unknown. Strains with missing (unknown) data were 
removed; one of two carbon sources that were highly linearly correlated were also removed; 
and the variable, weak, and delayed growth categories were combined into a single category 
(see Methods). Each carbon source and yeast strain exhibit different profiles (Figure 4A, 
Figure 4C). Some carbon sources (e.g., glucose) could be utilized by almost all strains, while 
other carbon sources (e.g., methanol and inulin) could only be utilized by very few strains 
(Figure 4B). Likewise, some strains exhibited “generalist” tendencies, since they were able to 
grow on most carbon sources, while others were “specialists,” since they could only grow on a 
small portion of carbon sources (Figure 4C).  
 
In order to determine which carbon sources best predict yeast growth on other carbon sources, 
we applied MOSS to the dataset of 462 yeast strains grown on 38 carbon sources (Figure 4A). 
The number of predictors, 𝑝, varied between using 1 and 37 carbon sources. D-gluconate was 
used as a predictor in almost all runs, except when there was only 1 predictor (Figure 5A), in 
which D-xylose was used instead. Inulin, methanol, and D-glucose were never used as 
predictors (Figure 5A), since the yeast strains either always grew or never grew on these 
carbon sources (Figure 4A and Figure 5A). In other words, inulin, methanol, and D-glucose 
contained less information (entropy) than the other carbon sources (Figure 5B). Generally, the 
larger a carbon source’s entropy, the more often it was used as a predictor (Supplementary 
Figure S2B). This contrasts with the observations for DATASET 1; however, this is easily 
explained by the limited size of DATASET 1 in comparison to DATASET 2 and the skewed 
distribution of values, which could easily obscure the relationship between entropy and the 
number of times a phenotype is selected as a predictor. 
 
We trained random forest models using 1 to 34 predictors, instead of 37 predictors, for each 
response carbon source, excluding D-glucose. Models for D-glucose were not trained because 
almost all strains exhibited positive growth. Overall, the accuracy increases as the number of 
predictors increases (Figure 5C), although not every carbon source is predicted equally well. 
When D-xylose is the only predictor, xylitol has the best accuracy (Accuracy = 0.70) and inulin 
has the worst accuracy (Accuracy = 0.26). However, inulin prediction accuracy increases as 
there are more predictors, while xylitol prediction accuracy decreases until it becomes a 
predictor (when 𝑝 = 5). Furthermore, methanol often has the best prediction accuracy, followed 
by inulin, sucrose, and myoinositol, while DL-lactate often has the worst prediction accuracy. 
Overall, the yeast phenotypes are harder to predict for low values of p compared to the bacterial 
growth phenotypes. This could result from the increased difficulty of predicting categorical 
growth phenotypes compared to binary positive/negative growth. In the future, this issue could 
be better addressed by comparing the prediction accuracy for binary and categorical– or even 
continuous– growth using the same or more comparable datasets.    
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Discussion 
 
The rise of large-scale phenotyping in biology is motivated by the enormous landscape of 
possible functions that cells can perform, and the value of being able to screen for those with 
relevance to specific applications. The development of high-throughput technology enables the 
production of large multidimensional datasets (for multiple phenotypes across multiple 
conditions) that can be extremely valuable for academic and industrial research, but that can be 
costly to generate and difficult to interpret. Reducing the enormous experimental burden 
required to execute these assays would represent an important outcome for many researchers, 
likely to advance the pace of biological discovery, and to facilitate the commercial feasibility of 
screening assays. MOSS helps achieve this goal by identifying combinations of phenotypes that 
best predict other phenotypes within a dataset. Here, we focused on microbial growth in 
different environments, but it is not difficult to imagine other contexts in which MOSS could be 
applied: examples include predicting antibiotic sensitivity, metabolic engineering production 
rates, and microbial interactions. 
 
Our results suggest that MOSS has powerful applications for large-scale phenotypic screens by 
greatly reducing experimental burden. Following an initial screen, MOSS allows 
experimentalists to select a subset of conditions to test depending on available resources, 
desired level of accuracy, and the phenotypes of interest. The MOSS/RF model provides a clear 
picture of the effort needed to achieve a certain level of results, which can vary greatly 
depending on the experimental stakes. For example, selecting metabolically compatible bacteria 
for engineered microbial communities may allow a higher margin of error because the 
consequences of incorrect predictions are less severe compared to applications that involve 
selecting drug candidates for in vivo studies. Furthermore, our results indicate that the quality of 
predictions varies by phenotype, possibly due to the inherent biology of the system and 
associated data structure, or to experimental design. In the future, it may be interesting to ask if 
specific types of data and organism/condition pairs are better captured by MOSS, and whether 
this can teach us anything about the underlying structure of the system itself. Phenotypic 
information processed through MOSS will allow researchers to prioritize efforts on high-value 
phenotypes or shift resource allocation to ensure the most important data is collected. 
  
We should point out that the problem of feature selection is not new to biology, and 
considerable work has been done to improve model performance on high-dimensional biological 
datasets by extracting the most relevant variables from those that may be uninformative, 
irrelevant, or redundant (Saeys et al. 2007). The traditional response to this challenge has been 
dimensionality reduction using projection-based methods such as PCA, but these approaches 
do not preserve the original semantics of the data, complicating downstream analysis. On the 
other hand, feature selection techniques have focused mainly on supervised methods that 
require the a priori application of class labels (Varshavsky et al. 2006); without specific domain 
knowledge, few practical tools exist for the optimal subset selection of biological data. In 
addition, we are not aware of any methods that enable biologists to organize phenotypic 
datasets in such a way that highlights the best predicted features, although MILP is a well-
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known method in other disciplines (Floudas 1995). To the best of our knowledge, MOSS is the 
first method that simultaneously solves a number of prediction problems by optimally selecting a 
subset of predictors and a complementary set of response variables.  
  
From a biological perspective, the results of MOSS, in addition to helping prioritize and plan 
larger phenotypic screens from pilot ones, could also help interpret the resulting data. The fact 
that a given phenotype can be expressed as a linear combination of other phenotypes may 
suggest an underlying mechanistic relationship between these phenotypes. For example, in the 
analysis of the marine dataset, phenotypes are easy to predict because their growth is 
positively/negatively associated with growth on specific subsets of other media. This suggests 
that these metabolic traits are linked by mechanistic or ecological reasons. For example, growth 
on amino sugars is predicted with a high level of accuracy (Accuracy = .923) when growth on 
neutral sugars, amino acids, and peptides are used as predictors, which suggests overlapping 
metabolic pathways are utilized in the assimilation of these carbon sources. On the other hand, 
on the rare occasions that growth on amino acids was selected as a response variable, the 
accuracy was relatively low compared to the other media (Accuracy = .571 and .708 for p = 1 
and 2, respectively). A possible explanation could be that the organisms grow on different 
subsets of the same medium (HMBaa contains all 20 standard amino acids) and the particular 
patterns between individual components or subsets cannot be detected due to the experimental 
design. Growth on the organic acid medium was also difficult to predict, suggesting that this trait 
is not linked to any particular set of carbon sources tested in the experiment, which could 
suggest that these particular organisms possess multiple different metabolic pathways for the 
incorporation of organic acids into biomass. 
  
It is important to note the limitations of the algorithm and their implications for the biological 
interpretation of results. MOSS selects the optimal subset of features to explain the remaining 
features, but it does not optimize the predictability of any individual feature. In the future, it may 
be interesting to explore our formulation with tree-based models. Furthermore, in this work 
MOSS was applied to discretized fitness data; future developments could extend the current 
methods to be more comprehensive. We envisage that it would work well on continuous 
variables because the objective function can be easily substituted with l1-norm or l2-norm. This 
is a particularly interesting prospect, as it would add a layer to the biological interpretation of 
microbial phenotypes by considering the magnitude of growth in addition to the ability to grow 
under various conditions. We expect that there will be many more datasets similar to those 
analyzed in this work; our code is freely available, open source, and could be further developed 
for usage in myriad scientific disciplines.  
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Methods 
 

Data pre-processing 
 

Values from the table in Chapter 6 of (Barnett et al. 1990) were digitized into a table with 590 
yeast strains (samples, 𝑛) and 44 carbon sources (features, 𝑚) (Supplementary Table S2). 
Symbols for positive (“+”), negative (“–”), delayed (“D”), weak (“W”), variable (“V”), and unknown 
(“?”) growth were cast into categorical numbers. Negative growth was cast to 0; variable, weak, 
or delayed growth was cast to 1; positive growth was cast to 2; and unknown values were cast 
as null (“NaN”). Spearman correlations between each pair of features were calculated, and one 
of two highly correlated features (absolute Spearman correlation greater than 0.74) were 
dropped (Supplementary Table S3), reducing the number of features to 38. Lastly, samples with 
at least one missing (null) value were also dropped, reducing the number of samples to 462. 
 
Categorical features were encoded as a one-hot numerical array, where each categorical level 
(negative; variable, weak, or delayed; and positive) was separately encoded and indicated by a 
1 when that type of growth was exhibited. However, we eliminated the negative (0) categorical 
level, thereby yielding 2 dummy variables out of the 3 categorical levels, and doubling the 
number of features to 76. Zero values were cast to -1 so that the categorical one-hot arrays had 
values of -1 and 1, which is appropriate for hinge loss. 

 
Linear programming approach to linear regression 

 
Linear regression is a statistical method to model the linear relationship between response 
variables, 𝒚, and predictor variables, 𝒙, by estimating the parameters, 𝜷, that provide the best 
explanation for the data: 

 
𝒚 = 𝒙′𝜷 + 𝜺,	 (1) 

 
where prime denotes transpose. One approach to model fitting involves minimizing the 
difference between the actual and predicted responses (the error). If the ℓ1-norm, ∑ |𝑦3! − 𝑦!|	"

!#$ is 
used as an error metric, then linear regression can be formulated as an optimization problem: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒%78𝑦! − 𝒙𝒊'𝜷98	
"

!#$

 

𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡				−𝑀 ≤ 𝛽C𝒋 ≤ 𝑀,∀𝑗,	 
(2) 

 
where 𝑀 is a scalar value that bounds the estimated coefficients. 
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A method to determine predictors and responses 

 
We use the convention that all vectors are column vectors. We first define the 𝑛 ×𝑚 matrix, 𝑿 =
(𝑋!,*) = 	 (𝒙𝟏' , … , 𝒙𝒏' )′, of observations with 𝑛 samples and 𝑚 attributes. We want to select a 
subset 𝑝 from the attributes and use this subset as predictors for the remaining 𝑚− 𝑝 attributes 
(responses): 

 
𝑿 = 𝑿𝑩+ 𝑩- + 𝑬, ⇔	𝒙!' = 𝑥!'𝑩+ 𝛽-' + 𝜀!'	 (3) 

 
where 𝑩 = (𝐵𝑖,𝑗) = (𝛽𝟏, … , 𝜷𝒎)	 is the 𝑚 ×𝑚 coefficient matrix, 𝑩𝟎 = (𝛽-' , … , 𝛽-')′ is the 𝑛 ×𝑚 

constant matrix, 𝛽- = Q𝛽-,$, … , 𝛽-,2R
'	 is the constant vector and 𝑬 = 	 (𝜀1′ , … , 𝜀𝑛′ )′	 is the noise 

matrix. Note that 𝛽*,6 (𝛽*)6 = 𝐵6,* 	represents how attribute 𝑗 is used to predict attribute 𝑘, and 
𝑥!,* denotes the value of attribute 𝑗 of sample 𝑖. Using the ℓ1-penalty as a loss and including a 
sparsity constraint, Equation (3) can be formulated as a mixed integer linear program: 
 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑩,𝜷𝟎,𝒘,𝒛,; 	
$
"
∑ ∑ 𝑤!,*2

*#$
"
!#$ + 𝜆∑ ‖𝛽*‖1	

2
*#$       

𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡																									𝑡!,* − 𝑥!'𝛽* − 𝛽-,* ≤ 𝑤!,* 	∀𝑖, 𝑗,	      
−𝑡!,* + 𝑥!'𝛽* + 𝛽-,* ≤ 𝑤!,* 	∀𝑖, 𝑗,	      

7𝑧*

2

*#$

≤ 𝑝,	

−𝑀𝑧6 ≤	 (𝛽*)6 = 𝐵6,* 	≤ 𝑀𝑧6 	∀𝑗, 𝑘,	 
−𝑀𝑧* ≤ 𝑡!,* − 𝑋!,* ≤ 𝑀𝑧* 	∀𝑖, 𝑗,	

𝑤!,* ≥ 0, ∀𝑖,	
𝑧* ∈ {0,1}, ∀𝑗,	
𝐵!,* ∈ 𝑅, 𝛽-,* ∈ 𝑅, ∀𝑖, 𝑗,	      

(4) 

 
where 𝑤 is a dummy variable for the loss, reformulating the absolute loss using linear 
constraints; 𝜆 controls the sparsity or robustness constraint; 𝑡 is a dummy variable for whether 
an attribute affects the loss; 𝑧 is the indicator variable for whether an attribute is a predictor 
Q𝑧* = 1R or a response Q𝑧* = 0R; 𝑥! is the vector of the attributes of sample 𝑖; and 𝛽* is the vector 
of coefficients to predict attribute 𝑗. If an attribute is a predictor, then coefficients are bounded 
between ±𝑀 and 𝑡!,* can be anything and will be set to 𝑥!'𝛽*, thus not affecting the loss. 
However, if an attribute is a response, then coefficients are set to 0 and 𝑡!,* is set to 𝑋!,*, 
therefore affecting the loss. 

 
Since this dataset [9] involved categorical data, Problem (4) was further reformulated to use 
hinge loss for 𝑋!,* ∈ {−1,1}: 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒<,%",=,> 	
1
𝑛
77𝑤!,*

2

*#$

"

!#$

	+ 𝜆7‖𝛽*‖1

2

*#$

	

𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡								7𝑧*

2

*#$

≤ 𝑝,			

																									−𝑀𝑧6 ≤	 (𝛽*)6 = 𝐵6,* 	≤ 𝑀𝑧6 	∀𝑗, 𝑘,		 
																									𝑋!,*(𝑥!'𝛽* + 𝛽-,*) ≥ 1 − 𝑤!,* −𝑀𝑧* , ∀𝑖, 𝑗,	 

																									𝑤!,* ≥ 0, ∀𝑖,		
																									𝑧* ∈ {0,1}, ∀𝑗,	

																									𝑧* = 𝑧6 	𝑖𝑓	(𝑗, 𝑘)	𝑎𝑟𝑒	𝑖𝑛	𝑜𝑛𝑒	𝑔𝑟𝑜𝑢𝑝,		
																									𝐵!,* ∈ 𝑅, 𝛽-,* ∈ 𝑅, ∀𝑖, 𝑗.		

(5) 

 
Heuristics solutions to speed up solution time 

 
The MILP Problem (5) is NP-complete. We observed that solving Problem (5) with larger 𝑝 
(e.g., when the number of predictors is 34 or more) can be solved relatively quickly (on the order 
of minutes). However, solving this problem for fewer predictors becomes very slow or 
impossible. Consequently, we used a similarity-based heuristic method first in order to obtain a 
near-optimal feasible solution and offer it to the solver. This reduced the time needed by the 
solver to reach an optimal solution. 
 
We observed a similarity between the predictors selected at constraint bounds 𝑝 and 𝑝 + 1, 
where 𝑝 + 1 is a larger constraint bound. Consequently, after solving Problem (5) at the 
constraint bound 𝑝 + 1, the selector indicator variable is 𝑧?@$. When solving at the constraint 
bound 𝑝, we added an additional constraint to ensure that the predictors at constraint bound 𝑝 
are selected from the predictors at constraint bound 𝑝 + 1: 

 
𝑧?@$' 𝒛 ≥ 𝑝,	 (6) 

 
where 𝑧 is the selector indicator at the constraint bound 𝑝. After solving Problem (5) with 
additional constraint, we obtain a sub-optimal selection indicator vector 𝑧ABCCD$. This first 
heuristic solution performs monotone selection since we remove a single attribute from 𝑧?@$.  
 
In an alternative heuristic, we replaced Constraint (6) with the following relaxed version:  

𝑧?@$' 𝒛 ≥ 𝑝 − 1,	 (7) 
 
using 𝑧ABCCD$ as the starting point of the resulting MILP. 
 
After solving Problem (5) with Constraint (7), we obtain a sub-optimal selection indicator vector 
𝑧ABCCDE. In all experiments discussed in this paper we used 𝑧ABCCDE. 
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Using the predictors in random forest models 
 
Prior to training random forest models, we randomly selected 50% of the samples in our dataset 
to form the training and validation set, and retained the remaining 50% of the samples as the 
test set. Two-fold cross-validation was used to tune parameters (e.g., the number of variables 
randomly sampled as candidates at each split, the maximum depth of the tree, etc.). Models 
were built using 1 to 34 features as predictors, out of the 37 total features. When 1 feature was 
used as a predictor, 35 models were constructed, and when 34 features were used as 
predictors, 3 models were constructed, one model for each response feature, excluding D-
glucose. Accuracy was used to evaluate model quality: 
 

Accuracy	Score =
(True	Positives + True	Negatives)

(True	Positives + True	Negatives + False	Positives + False	Negatives).
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Figure 1. MOSS takes as input a matrix (X) of observations by variables, in this case 
organisms by features. For each fixed number of predictor variables, p, MOSS provides 
as output the predictor variable(s) that predict the remaining response variables with the 
highest accuracy. Subsequently, the labeled data can be used to build models using 
supervised learning methods, such as Random Forest. 
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Figure 2. Growth profiles of bacteria grown on various media. 65 different marine 
heterotrophic bacterial strains (columns) were grown individually on 11 different media 
(rows) (see Forchielli et al. 2022 for details) including Difco Marine Broth (difcoMB), 
eight engineered media with single classes of carbon sources (HMBpep = peptides; 
HMBaa = amino acids; HMBlips = lipids; HMBoligo = oligosaccharides; HMBorg = 
organic acids; HMBntrl = neutral sugars; HMBamisug = amino sugars; HMBacdsug = 
acidic sugars), a defined medium containing all 8 carbon classes (HMBcmpt), and a 
medium with no added carbon sources (HMB–). The name of the different strains are 
available in Supplementary Table S1. The value of each phenotype represents final 
optical density (OD600) (normalized to time zero), with yellow indicating that the growth 
was significantly greater than the change in OD for the negative control without added 
bacteria (see details of criteria for significant growth in Forchielli et al. 2022). The data 
were clustered by strains just for visualization purposes. This heatmap corresponds to 
matrix X for dataset 1. 
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Figure 3. Accuracy of predictions based on MOSS-defined predictors. Outcome of 
MOSS predictions for the marine heterotrophic library dataset described in Fig. 2. (A) 
Matrix showing which media were used as a predictor (white) or as a response (black) 
as a function of the total number of predictors allowed. (B) Shannon entropy of each 
medium. (A and B) Media are arranged in descending order of how frequently they 
were used as predictors. (C) Accuracy of each random forest model for each number of 
predictors, p. Dot size represents the standard deviation of accuracy scores for values 
obtained via 5-fold cross-validation; column C is the RF control without MOSS; if no dot 
is displayed for a medium, the medium was selected as predictor. 
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Figure 4. Growth profiles of yeast strains grown aerobically on various carbon 
sources. (A) Two-dimensional hierarchical clustering of the experimental phenotypes of 
462 yeast strains grown aerobically on 38 different carbon sources from (Barnett et al. 
1990). Each entry represents the phenotype of a yeast under a specific condition, where 
the columns are different yeast strains and the rows are the carbon sources. (B and C) 
Stacked bar charts of the growth profile of each carbon source (B) and each yeast 
strain (C). Positive growth is indicated in yellow; variable, weak, or delayed growth is 
indicated in teal; and negative (no) growth is indicated in purple. 
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Figure 5. Carbon sources used as predictors. (A) Heat map of when a carbon 
source was used as a predictor (while) or as a response (black) as a function of the total 
number of predictors allowed. (B) Entropy of each carbon source. (C) Accuracy of each 
random forest model. Each line represents the carbon source that is being predicted. 
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