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Abstract 

Prediction learning is considered a fundamental feature of biological systems that underlies 

perception, action, and reward. For cultural artifacts like music, isolating the genesis of reward 

from prediction is challenging, since predictions are acquired implicitly throughout life. Here, we 

examined the trajectory of listeners’ preferences for melodies in a novel musical scale, where 

local and global predictions were independently manipulated. Across seven studies (n = 842 

total) in two cultures, participants preferred melodies that were presented more during exposure 

(globally predictable) and that followed schematic expectations (locally predictable). Learning 

trajectories depended on music reward sensitivity. Furthermore, fMRI showed that while 

auditory cortical activation reflects predictions, functional connectivity between auditory and 

reward areas encodes preference. The results are the first to show a hierarchical, relatively 

culturally-independent process by which predictions map onto reward. Collectively, our findings 

propose a novel mechanism by which the human brain links predictions with reward value. 
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Why do we love music? In contrast to other pleasures in life, such as food and sex, music has no 

obvious adaptive value; yet an attraction to music is ubiquitous across cultures and across the 

lifespan. Indeed, both listening to and performing music ranks highly among life’s greatest 

pleasures (Dube & Le Bel, 2003) and reliably engages the dopaminergic reward system (Ferreri 

et al., 2019; Salimpoor, Benovoy, Larcher, Dagher, & Zatorre, 2011; Salimpoor et al., 2013). 

One hypothesis for the allure of music is that it coopts a ubiquitous feature of the central nervous 

system that underlies perception, action, and emotion: the continuous learning of reward signals 

from prediction and prediction error (Clark, 2013; Engel, Fries, & Singer, 2001; Friston, 2010; 

Schultz, 2000). Recent findings have converged on the hypothesis that the rewarding effect of 

music comes from making successful predictions and minimizing prediction errors, known as the 

predictive coding of music (PCM) model Gold, Pearce, Mas-Herrero, Dagher, and Zatorre 

(2019); (Vuust, Heggli, Friston, & Kringelbach, 2022). Musical predictions can be structural 

(melody, tonality), temporal (rhythm, meter), and/or acoustic (pitch, timbre), and emerge from 

repeated exposure, which imparts implicit knowledge of statistical properties (frequencies and 

transitional probabilities) of stimulus sequences commonly encountered within one’s own culture 

(Huron, 2006; Margulis, 2014). The human ability to recognize and learn transitional 

probabilities has been posited to underlie language learning (Saffran, Aslin, & Newport, 1996) 

and decision-making  (Haruno et al., 2004). This same statistical learning mechanism is also 

used to learn transitional probabilities in tone sequences (Saffran, Johnson, Aslin, & Newport, 

1999). While repeated exposure to sound sequences with predictable statistical probabilities can 

change preferences for those sound sequences (Loui, Wessel, & Hudson Kam, 2010), we do not 

know the trajectory by statistical learning of predictions and minimizing prediction error relates 

to preference, or to activity in the reward system. Nor do we know how this relationship varies 

across culture, or with individual differences in reward sensitivity to music. Understanding the 

relationship between predictive coding and the reward system will provide a mechanistic account 

not only for why people enjoy music, but also the circumstances under which our ability to 

predict leads to reward, a concept that underlies much of motivated behavior (Schultz, 2015). 

 

A fundamental challenge in understanding how predictability inherently relates to learning and 

reward comes from the fact that most stimuli that we encounter, even for the first time, makes 

use of overlearned predictions to we may have been exposed throughout our lives. This is 

especially the case with musical structures, such as common sets of pitches or musical scales that 

we have implicitly acquired from lifelong exposure. We circumvent this challenge by 

incorporating a unique and unfamiliar musical system: the Bohlen-Pierce (B-P) scale, which 

differs acoustically and statistically from the world’s existing musical systems (Loui, 2022). 

Here, we test the hierarchical organization of mapping between predictions and reward using 

naturalistic music composed in the B-P scale. In Study 1-4, we ask the degree to which self-

reported liking ratings reflect high-level predictions (through repeated exposure to full pieces) as 

well as low-level predictions (through alterations to the endings of exposed melodies). In Study 

5, we test the effects of musical reward sensitivity, as well as both congenital and acquired music 

anhedonia, on this mapping between predictions and reward. In Study 6, we test the effects of 

culture on statistical learning by comparing groups from the US and China. Finally, in Study 7, 

we evaluate brain activation in the reward system during the process of learning statistically 

probabilities and preference-formation using fMRI.  
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Results 

For all studies, participants provided familiarity and liking ratings for melodies in the B-P scale 

that were either 1) presented a variable number of times in an exposure phase (effect of number 

of presentations, i.e. global, veridical, high-level manipulation), or 2) altered to have a different 

ending than the original melodies that were presented during exposure (effect of alterations, i.e. a 

local, schematic, moment-by-moment, low-level manipulation, which generates a prediction 

error that varies by the number of presentations). Familiarity ratings were used as the outcome 

variable to quantify prediction learning, and liking ratings were used as the outcome variable to 

quantify reward.  To investigate the effect of number of presentations on these post-exposure 

familiarity and liking ratings, we constructed linear mixed-effect models using the R package 

lme4 (Bates, Mächler, Bolker, & Walker, 2015) with an interaction term to account for the effect 

of alterations. We specified random intercepts for each participant and counterbalanced melody 

assigned to each condition. Significance of fixed effects (number of presentations and melody 

alteration, both treated as categorical variables) was determined by an analysis of variance 

(ANOVA) using the Satterthwaite method to approximate the degrees of freedom with the 

lmerTest package (Kuznetsova, Brockhoff, & Christensen, 2017). The stimuli are made available 

on https://osf.io/n84d5/, along with the preregistration for this study. 

 

Study 1 

Participants listened to 8 monophonic musical melodies composed in the B-P scale during the 

exposure phase. The number of presentations varied for each melody (either 2, 4, 8, or 16 times 

with two melodies in each condition). After exposure, participants made familiarity and liking 

ratings for each melody, along with two melodies not heard in the exposure phase (thus, 

presented 0 times during exposure), as well as altered versions of the 10 melodies, which were 

identical except for an unexpected ending. For familiarity ratings, we found significant main 

effects of number of presentations (F(4, 3164.4) = 341.64, p < 0.001, ηp² = 0.3) and alterations 

(F(1, 3164.4) = 46.17, p < 0.001, ηp² = 0.01): participants were more familiar with original, non-

altered melodies, as well as those which were presented more within the exposure phase. The 

effect of number of presentations was stronger for the non-altered melodies than for the altered 

one, as supported by an ordinal interaction between the two factors (F(4, 3164.4) = 6.03, p < 

0.001, ηp² = 0.008). For liking ratings, we found significant main effects for both number of 

presentations (F(4, 3158.3) = 3.45, p = 0.008, ηp² = 0.004), and alterations (F(1, 3158.3) = 19.40, 

p < 0.001, ηp² = 0.007): participants preferred both non-altered melodies and those which were 

presented more during the exposure phase. The interaction between the number of presentations 

and melody manipulation was marginal (F(4, 3158.2) = 2.17, p = 0.07, ηp² = 0.003).  

 

Study 2 

In Study 2, we extended the findings from Study 1 to determine the degree to which changing the 

specific numbers of presentations during the exposure phase affected liking ratings. In a new 

group of participants, we replicated Study 1 but with melodies that were presented either 0, 2, 4, 

6, 10, or 14 times. As expected, we found significant main effects of number of presentations 

(F(5, 3740.1) = 3215.45, p < 0.001, ηp² = 0.22) and alterations (F(1, 3740) = 36.49, p < 0.001, 

ηp² = 0.01) on familiarity ratings, indicating that participants were more familiar with unaltered 

melodies and those that were presented more during the exposure phase. The interaction between 

the number of presentations and alterations was also significant (F(5, 3740) = 2.57, p < 0.001, 

ηp² = 0.003). For liking ratings, we again found significant main effects for both number of 
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presentations (F(5, 3718.1) = 3.05, p = 0.009, ηp² = 0.004) and alterations (F(1, 3158.3) = 39.21, 

p < 0.001, ηp² = 0.01), such that participants preferred both non-altered melodies and those which 

were presented more during exposure. We did not detect an interaction effect (F(5, 3718.1) = 

1.45, p = 0.2, ηp² = 0.002).  

 

Studies 3 and 4 

Studies 3 and 4 were designed to replicate the findings from Studies 1 and 2 with a new sample. 

Study 3 used the same numbers of presentation as Study 1 (0, 2, 4, 8, 16) and Study 4 used the 

same numbers of presentation as Study 2 (0, 2, 4, 6, 10, 14). In Study 3, we replicated the 

significant main effects on familiarity ratings of number of presentations (F(4, 3180.2) = 323.83, 

p < 0.001, ηp² = 0.29) and alterations (F(1, 3180) = 37.31, p < 0.001, ηp² = 0.01), as well as the 

interaction between the two (F(4, 3180) = 2.95, p = 0.02, ηp² = 0.004). Similarly, for liking 

ratings, we replicated main effects of number of presentations (F(4, 3164.4) = 9.16, p < 0.001, 

ηp² = 0.01), and alterations, (F(1, 3164.1) = 9.7,  p = 0.002, ηp² = 0.003). Again, we did not 

detect an interaction (F(4, 3164.4) = 0.7, p = 0.59, ηp² = 0.001). 

In Study 4, we replicated the significant main effects on familiarity ratings of number of 

presentations (F(5, 3754.2) = 274.49, p < 0.001, ηp² = 0.29) and alteration (F(1, 3754.1) = 54.03, 

p < 0.001, ηp² = 0.01), but not the interaction between the two (F(5, 3754.1) = 1.43, p = 0.2, ηp² = 

0.002). For liking ratings, we again replicated the effect of number of presentations (F(5, 3729.1) 

= 2.62, p = 0.02, ηp² = 0.004), and alterations (F(1, 3729.1) = 20.58, p < 0.001, ηp² = 0.005).The 

interaction between number of presentations and melody alteration was not significant (F(5, 

3729.1) = 0.46, p = 0.81, ηp² = 0.001).  

 

Meta Analyses of Studies 1-4 

 

Prediction shows a logarithmic relationship with liking and familiarity 

To determine the magnitude of the effect of prediction on liking and familiarity ratings, we 

collapsed data across Studies 1-4 and treated the number of presentations as a continuous 

variable, using the same linear mixed-effects models as above. We specifically tested three 

classes of models: whether liking and familiarity ratings continued to increase with the number 

of presentations (linear relationship), increased to a maximum and then decreased (quadratic 

relationship), or increased rapidly with lower numbers of presentations and then leveled off 

(logarithmic relationship). To this end, we compared fits of models with quadratic and 

logarithmic transformations of number of presentations as the predictor variable to that with no 

transformation (a linear model). Each model was constructed using an effect coding contrast. 

Following the suggestion of Zuur, Ieno, Walker, Saveliev, and Smith (2009), parameters were 

estimated using maximum likelihood, and Akaike’s Information Criteria (AIC) was computed 

and compared across different models. As shown in Table 1, logarithmic models resulted in the 

best fit for both familiarity and liking ratings (see Figure 1). 
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Table 1. Standardized Beta coefficients, associated p-values, and AIC for each model fit for 

familiarity (a) and liking (b) ratings. AIC for the best-fitting models are shown in bold. 
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Figure 1. Meta-analysis of Studies 1 to 4, showing effects of alterations and number of 

presentations on familiarity and liking ratings.  

 

Music reward sensitivity influences the learning trajectory 

With the aggregated data from 667 participants across Studies 1-4, we then tested the hypothesis 

that individual differences in music reward sensitivity may be due, in part, to an inability to 

translate statistically-learned predictions into a reward response. Using the Barcelona Music 

Reward Questionnaire (BMRQ), a measure of music reward sensitivity (Mas-Herrero, Marco-

Pallares, Lorenzo-Seva, Zatorre, & Rodriguez-Fornells, 2013), we divided our sample from 

Studies 1-4 into tertiles representing high (hyperhedonics, BMRQ = 86-100), medium (hedonics, 

BMRQ = 76-85), and low sensitivity (anhedonics, BMRQ = 26-75) to music reward. As in 

Studies 1-4, we ran the same linear mixed-effects model (treating number of presentations as a 

categorical variable) with an additional interaction term for music-reward sensitivity and tested 

for significance of fixed effects with an ANOVA. For familiarity ratings, this revealed a main 

effect of number of presentations (F(7, 13934.6) = 719.3, p < 0.001, ηp² = 0.27) and alteration 

(F(1, 13838.3) = 196.12, p < 0.001, ηp² = 0.01), but not music-reward sensitivity (F(2, 674.3) = 

1.18, p = 0.31, ηp² = 0.004). Furthermore, we detected two-way interactions between number of 

presentations and music-reward sensitivity (F(14, 13959.1) = 2.42, p = 0.002, ηp² = 0.002) and 

number of presentations and alteration (F(7, 13838.2) = 7.12, p < 0.001, ηp² = 0.004), but not 

between music-reward sensitivity and alteration (F(2, 13838.2) = 0.28, p = 0.76, ηp² = 0.00004). 

The three-way interaction between music-reward sensitivity, alteration, and number of 

presentations was not significant (F(14, 13838.2) = 0.58, p = 0.88, ηp² = 0.0006). 

 

For liking ratings, we found main effects for number of presentations (F(7, 13849) = 9.43, p < 

0.001, ηp² = 0.005), alteration (F(1, 13770.2) = 94.6, p < 0.001, ηp² = 0.007), and music-reward 

sensitivity (F(1, 3729.1) = 20.58, p < 0.001, ηp² = 0.02). Furthermore, there was a significant 

two-way interaction between number of presentations and music-reward sensitivity (F(14, 
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13857.3) = 2.23, p < 0.01, ηp² = 0.002), though no significant two-way interactions between 

alteration and music-reward sensitivity (F(2, 13770.2) = 1.13, p = 0.32, ηp² = 0.0002) nor 

between number of presentations and alteration (F(7, 13770.2) = 1.58, p = 0.14, ηp² = 0.001). 

Again, a three-way interaction between number of presentations, alteration, and music-reward 

sensitivity was not found (F(14, 13770.2) = 0.33, p = 0.99, ηp² = 0.0003).  

 

To further probe the detected interaction between music-reward sensitivity and number of 

presentations on both liking and familiarity ratings, we applied the same approach of fitting a 

linear, quadratic, and logarithmic model from our first meta-analysis to each tertile separately, 

while treating number of presentations continuously. For familiarity ratings, a logarithmic model 

performed best for all three music-reward sensitivity groups (see Table 2). Hyperhedonics had 

the highest beta value for the logarithmic model, followed by hedonics and anhedonics, 

respectively. This, combined with the significant two-way interaction between number of 

presentations and music reward sensitivity, suggests that hyperhedonics were more ready to rate 

pieces presented fewer times as familiar (see Table 3, Figure 2). 

 

For liking ratings, the best fit model differed across groups: A linear model showed the best fit 

for predicting liking ratings from the hyperhedonic and hedonic groups, whereas a quadratic 

model showed the best fit for predicting liking ratings from the anhedonic group (see Figure 2). 

While hedonics and hyperhedonics’s liking ratings increased with more presentations, 

anhedonics’ liking ratings showed an inverse-U curve, decreasing as the number of presentations 

increased after 10 presentations. Additional model fits for the altered melodies also support the 

inverse-U curve relationship between number of presentations and liking in the anhedonic group, 

as shown in the Supplementary Materials (Figure S1). 

 

We additionally found evidence that individual differences in musical exposure and experience 

influenced the learning trajectory. These results are presented in the Supplementary Materials 

(Table S1).  
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Table 2. Standardized Beta coefficients, associated p-values, and AIC for each model fit for 

familiarity (a) and liking (b) ratings across music reward sensitivity. AIC for the best-fitting 

model for each group is shown in bold. 

 

 
Figure 2. Meta-analysis of Studies 1 to 4 showing best-fit models for the effect of number of 

presentations on familiarity and liking, separated by music reward (tertile split on BMRQ: 

hyperhedonic, hedonic, and anhedonic groups). 

 

Study 5 

Study 5 consisted of two case studies that include participants with congenital and acquired 

music-specific anhedonia, a condition in which listeners derive no pleasure from listening to 

music (Mas-Herrero, Zatorre, Rodriguez-Fornells, & Marco-Pallares, 2014). Both participants 

underwent a streamlined version of our study paradigm, with melodies presented 0, 4, 10, and 14 

times, and only one melody per condition. We calculated the mean squared error (MSE) for 

liking and familiarity rating of the non-altered melodies using predictions from the best fit 

models of musical anhedonics, hedonics, and hyperhedonics in Study 4. For familiarity ratings, 

the hyperhedonics’ model best predicted music-specific anhedonics’ responses (i.e. the 

hyperhedonic model showed the lowest MSE of 7.93), followed by the anhedonic (8.66) and 

hedonic (8.71) models. In contrast, for liking ratings, our anhedonic model had the lowest MSE 

(2.35) when predicting the music-specific anhedonics’ data, compared to both the hedonic (4.05) 

and hyperhedonic (3.59) models. These case studies provide further support for the idea that both 

cases of congenital and acquired musical anhedonia had difficulty mapping predictions to 

reward.  

 

Study 6 

Study 6 extends the findings from Studies 1-4 to investigate possible cultural effects on the 

process of learning musical structure and subsequent reward. To this end, we recruited 156 
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participants from China to complete the identical procedure as Study 4. For familiarity ratings, 

we detected significant main effects of number of presentations (F(5, 3558) = 221.17, p < 0.001, 

ηp² = 0.24) and alteration (F(1, 3557.9) = 21.33, p < 0.001, ηp² = 0.006), such that original 

melodies and those heard more during the exposure phase were rated as more familiar by 

participants. The interaction between the number of presentations and alteration was marginal 

(F(5, 3557.9) = 2.2, p = 0.05, ηp² = 0.003). For liking ratings, we replicated the significant main 

effects for both number of presentations (F(5, 3540.1) = 8.5, p < 0.001, ηp² = 0.01), and for 

alterations (F(1, 3450) = 28.11, p < 0.001, ηp² = 0.008), such that participants preferred both non-

altered melodies and those which were presented more during the exposure phase (Figure 3). We 

did not detect an interaction effect (F(5, 3540.1) = 0.57, p =0.73, ηp² = 0.001). 

 

For results showing the influence of music-reward sensitivity on liking and familiarity ratings in 

the Chinese population, see Supplementary Materials. 

 

 
Figure 3. Cross-cultural replication of the effects of alterations and number of presentations on 

familiarity and liking ratings. Error bars represent +/- 1 Standard Error. 

 

Study 7 

In Study 7, we relate prediction learning to activation in the reward system of the brain in an 

fMRI study. 21 young adults participated in the same study design as in Study 6 outside of the 

scanner, and then listened to the 8 melodies during fMRI. Whole-brain, univariate analyses 

showed greater activation for original vs. altered melodies in auditory regions, specifically the 

right Heschl’s gyrus. A follow-up within-subjects ANOVA on the dependent variable of beta-

values in the Hesch’s gyrus confirmed a significant main effect of alteration (F(1, 18) = 6.0, p = 

0.025, ηp² = 00.25, Figure 4A). This suggests that the auditory cortex is sensitive to the 

predictions. 
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The functional connectivity between auditory and reward areas was quantified by correlating the 

time series of beta-values extracted from Heschl’s gyrus and the medial prefrontal cortex (see 

Materials and Methods). A two-way within-subjects ANOVA with the dependent variable of 

auditory-reward functional connectivity, with the factors of alterations and number of 

presentations, showed a significant main effect of alteration (F(1,18) = 10.43, p = .005, ηp² 

= .367) and a significant main effect of number of presentations (F(1,18) = 5.275, p = .034, ηp² 

= .227). Figure 4B shows a linear relationship for original melodies as well as the effect of 

alteration. For results using the ventral striatum as the seed-region of the reward network, see the 

Supplementary Materials.  

 

 
Figure 4. fMRI results. A) Greater activation for original than for altered melodies in Heschl's 

gyrus, confirming that auditory regions implement predictions. B) Higher functional 

connectivity, as quantified by correlations in beta-series, between auditory regions (Heschl’s 

gyrus) and reward regions (mPFC) for original melodies than for altered melodies (B) which 

increases with number of presentations for original but not for altered melodies.  

 

Discussion 

Across seven studies, we showed that listeners from two different cultures can rapidly learn both 

local and global predictions in novel musical pieces and that this learning subsequently maps 

onto liking and changes in the reward system of the brain. In Studies 1-4, we established that 

changing the number of presentations (global prediction learning) and altering the endings of 

melodies (local prediction learning) both independently changed predictions in nested but 

orthogonal ways that affected self-report preferences for music. Meta-analysis across Studies 1-4 

and neuropsychological results from Study 5 confirmed that individuals with musical anhedonia 

formed predictions in the same way as controls, but did not derive preferences from predictions 

in the same way as their more hedonic counterparts. Study 6 established that results were similar 

in both Chinese and American participants. Finally, Study 7 ties this relationship between 

prediction and reward to increasing functional connectivity between the auditory and reward 

system. 
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Taken together, results provide support for the PCM, while extending it in three key directions: 

1) towards its applicability to prediction and reward in the case of unfamiliar, statistically and 

probabilistically novel music; 2) towards its relevance in more culturally-independent context via 

a cross-cultural comparison, and 3) towards its specific disruption in the special case of musical 

anhedonia. PCM proposes that musical expectations can form from learning statistical 

regularities and patterns in music (schematic expectations) as well as familiarity with a particular 

piece of music or genre of music (veridical expectations; (Huron, 2006; Vuust et al., 2022). 

However, the degree to which these two types of expectations influence musical reward has been 

difficult to assess, given that adult humans are usually overexposed to particular musical genres 

that follow the same statistical patterns. Using novel melodies written in an unfamiliar musical 

key, and manipulating expectations in two different ways, circumvents this issue and allows us to 

disentangle the influence of different types of predictions on musical reward and preference. The 

fact that participants liked melodies that they heard more during the exposure phase, as well as 

altered versions of those same melodies, suggests that both types of expectations contribute to 

musical reward.  

 

Furthermore, while the PCM argues that the brain's ability to make real-time predictions in music 

depends on prior experience, cultural background, musical competence, and individual traits, the 

degree to which these factors contribute to musical reward is not yet clear. Our results argue that 

cultural background plays a minimal to non-significant role in predictive learning of music when 

using novel musical stimuli that do not come from any existing culture. Both American and 

Chinese participants showed the same effect of local and global manipulations on preference 

ratings, suggesting that the influence of culture on music reward learning may apply in situations 

in which there are differences in implicit knowledge of familiarized musical structure.  

 

Individual differences in reward sensitivity to music, on the other hand, does seem to be an 

important factor in the process of linking predictive coding with musical reward, in that 

participants who experience less pleasure from music in general did not continue to like pieces 

after more repetitions. In addition, there was a significant interaction between BMRQ and 

number of presentations on familiarity ratings, in that participants with lower reward sensitivity 

to music rated the pieces they heard more during exposure as less familiar than hyperhedonics. 

The difference in liking ratings associated with BMRQ could therefore be due to motivation, in 

that people who are less sensitive to musical rewards were less motivated to learn from the task. 

However, the fact that musical anhedonics still show differences in liking ratings when local 

predictions were manipulated (original vs. altered versions) suggests that they are able to learn 

some aspects of statistical regularities in the music. Further research, possibly an fMRI study 

with a large population of  musical anhedonics, will be needed to isolate the key mechanism by 

which the mapping between predictive coding and reward is altered in individuals with musical 

anhedonia.   

 

Importantly, our study is the first to show that forming predictions of novel music de novo is 

associated with changes in the reward circuitry of the brain. Electrocortical (EEG and ECoG) 

recordings have demonstrated that cortical signal in the middle Heschl’s gyrus is sensitive to 

melodic expectations (Di Liberto et al., 2020), and fMRI studies have found that auditory and 

reward-related areas of the brain (including the amygdala, hippocampus, and ventral striatum) 

show increased activation during musical prediction errors (Gold et al., 2019) as well as during 
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unexpected and/or unpredictable chord sequences (Cheung et al., 2019). However, as previous 

studies used familiar musical stimuli rooted in the Western musical tradition with exclusively 

Western participants, it was not possible to determine when in the process of statistical and 

reward learning the auditory and reward systems of the brain become engaged. Here, we 

observed that predictions emerge specifically in the middle Heschl’s gyrus, which showed 

sensitivity to melodic alterations, thus extending previous EEG/ECoG results. Furthermore, 

increased functional connectivity between the Heschl’s gyrus and mPFC was observed when 

listening to pieces that were presented more frequently, suggesting that the influence of repeated 

exposure on liking is subserved by changes in communication between the auditory and reward 

network.  

 

Several outstanding questions stem from these studies that warrant future exploration. First, it is 

unclear from the existing data whether preference ratings would continue to increase with more 

than 16 exposures. It is quite possible that the positive relationships found between presentation 

and liking is reflective of the positive side of a quadratic function, and that if we were to extend 

the number of repetitions in this paradigm, we would see preference ratings begin to decrease at 

an inflection point. Given that we chose to optimize for longer, more dynamic pieces of music, it 

was not feasible to increase the number of presentations beyond 16 without altering other key 

aspects of the design, introducing fatigue or habituation, or otherwise increasing cognitive 

demand in ways that would confound the study. Future studies with shorter stimuli may be able 

to assess the full extent of the relationship between liking and repetition in B-P stimuli and the 

degree to which relative frequencies (14 relative to 10 vs 14 relative to 2) play a part.  

 

Second, it remains unclear the specific mechanism by which the mapping between implicit 

learning and musical reward becomes aberrant in participants with musical anhedonia. While the 

current fMRI study shows sensitivity to prediction in the reward system, it is not sufficiently 

powered to assess possible neurobiological differences between musical anhedonics and 

hedonics. Previous neuroimaging studies that included participants with musical anhedonia have 

shown reduced structural and functional connectivity between auditory cortex, reward and 

emotion-processing areas of the brain in musical anhedonics (Loui et al., 2017; Martínez-Molina, 

Mas-Herrero, Rodríguez-Fornells, Zatorre, & Marco-Pallarés, 2019) and that alterations of 

fronto-striatal pathways can lead to either increases or decreases in subjective liking ratings of 

music (Mas-Herrero, Dagher, Farrés-Franch, & Zatorre, 2021). Future neuroimaging studies will 

therefore be needed to determine the possible role that this auditory-subcortical-prefrontal 

network plays in the mapping between musical prediction and reward.  

 

In sum, we developed an innovative paradigm to assess prediction-reward learning of music de 

novo across cultures and in special populations. Our results are the first to show the hierarchical 

organization by which predictions and prediction errors in music map on to reward, and provide 

strong evidence that this hierarchical learning process emerges similarly across cultures. 

Individuals with musical anhedonia did not show the same pattern of reward learning, offering a 

testable mechanism by which the human brain learns to predict sounds from our environment 

and to map those predictions onto reward. As the relationship between predictions and reward 

underlie much of motivated behavior (Clark, 2013; Friston, 2010; Schultz, 2015), examining the 

emergence of this relationship during the course of a study may provide a better understanding of 
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how these foundational neurocognitive systems may go awry in a variety of psychiatric and 

neurological diseases. 

 

Materials and Methods 

Stimuli 

The stimuli used in all studies were composed in the Bohlen-Pierce Scale. While most musical 

systems around the world are based around the octave, which is a 2:1 ratio in frequency, the B-P 

scale is based on a 3:1 ratio (tritave rather than octave) that is divided into 13 logarithmically 

even steps. This 13-tone scale can be used to generate musical intervals and chords which have 

low-integer ratios and are perceived as psychoacoustically consonant (Mathews, 1988). While 

music in B-P scale is known to some composers, performers, conductors and scholars, it is 

considered “non-standard music” (Hajdu, 2015) and has not been adopted into any mainstream 

musical culture to date. Monophonic melodies were composed in the B-P scale by a musician 

and research assistant in the lab (E.Z.) in the digital audio workstation Ableton Live on a Korg 

nanoPAD2 USB MIDI and played on a MIDI clarinet instrument from the plugin library 

Xpand!2 by Air Music Tech. The clarinet was chosen because its timbre has higher energy at 

odd harmonics than at even harmonics; this spectral distribution is easier to learn due to its 

congruence with the B-P scale (Loui, 2022). In total, 14 20s Bohlen-Pierce melodies were 

composed that followed the same artificially-derived harmonic structure from past studies (Loui 

et al., 2010). Light compression and reverb were applied to all stimuli to bring them to the same 

volume, and were subsequently exported as 44.1kHz .mp3 files. To generate melodies that 

contained an error in local prediction, an altered version of each melody was also created, which 

was identical to the original piece except for the ending, which was changed to violate the 

musical structure of the B-P scale. Specifically, violations consisted of deviations from the 

chordal tones of the last chord (Loui, Li, & Schlaug, 2011; Loui et al., 2010; Loui, Wu, Wessel, 

& Knight, 2009), such that they disrupt the harmonic structure of the established melody. The 

original and altered melodies are available online at https://osf.io/n84d5/ . In all studies, the 

altered melodies were presented only once, during the post-exposure phase. Finally, two of the 

melodies were used only as part of the perceptual cover task (during the exposure phase). A 

vibrato effect was added to a single note in these two melodies and during the task, participants 

were asked to press a key whenever they heard the vibrato note. To decrease expectations, we 

created six versions of each, where the location of this vibrato note varied across each version.    

 

Study 1 

Participants 

A priori power analysis using pilot data (n = 46) indicated that a sample size of 165 would 

achieve 0.80 power to detect a medium effect size (Cohen’s f = 0.27) of the effect of the number 

of presentations on liking ratings at a significance level of 0.05. Participants were Prolific 

workers in the United States between the ages of 18-65. We recruited 234 participants for Study 

1, of which 66 participants were excluded for failing our perceptual cover task (see Procedure 

below), resulting in a final sample size of N = 169 (104 female; mean age = 32.03).  

 

To measure individual differences in music reward sensitivity and identify musical anhedonics, 

participants completed the BMRQ, a 20-item questionnaire based on five factors: musical 

seeking, emotion evocation, mood regulation, sensory-motor, and social reward. Participants also 

completed the Goldsmith Musical Sophistication Index (Gold-MSI), a self-report measure of 
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musical skills and behaviors (Müllensiefen, Gingras, Musil, & Stewart, 2014), the Revised 

Physical Anhedonia Scale (PAS), a self-report measure of general anhedonia (Chapman, 

Chapman, & Raulin, 1976), and the Ten-Item Personality Inventory (TIPI), a brief measure of 

the Big-Five personality traits (Gosling, Rentfrow, & Swann, 2003). All scales were scored in 

accordance with the original publication.  

 

Procedure 

After consenting, participants were screened using an online headphone check (Woods, Siegel, 

Traer, & McDermott, 2017) to ensure that they were using headphones and could hear our 

stimuli properly before undergoing the three phases of our study. In phase 1 (pre-exposure), 

participants listened to 8 of the B-P melodies, one at a time, and provided liking ratings, using a 

Likert-scale ranging from 1(‘strongly dislike’) to 6 (‘strongly like’) and familiarity ratings, from 

1 (‘not familiar at all’)  to 6 (‘very familiar’) for each melody. As the pre-exposure ratings are 

intended for a different analysis on the effects of novelty rather than reward learning, they will 

be presented in a separate report; here we focus on post-exposure ratings. 

 

In phase 2 (exposure), the 8 melodies heard in phase 1 were played for participants a varying 

number of times (either 2, 4, 8 or 16 with two melodies in each condition). The specific melodies 

in each of the 4 exposure conditions was counterbalanced across participants. Furthermore, the 

presentation order was pseudorandomized so that no melody was heard consecutively. During 

this phase, participants were asked to complete a perceptual cover task, in which they were 

instructed to listen for notes that contained a “warble” sound (vibrato) and to press the “v” key 

on their keyboard as soon as they heard one. Six of the trials (created from two different B-P 

melodies) heard in the exposure phase contained vibrato notes, with the vibrato occurring at 

different points of the melody. In total, participants heard 66, 20s melodies during phase 2, 

resulting in an exposure phase that lasted 22 minutes.  

 

During phase 3, participants heard each of the 8 melodies again (without vibrato), along with 2 

new melodies that they had not heard in phase 1 or 2 (0 presentation condition) as well as the 

altered versions (different endings) of these ten melodies. Participants provided liking and 

familiarity ratings for each of these 20 trials, using the same scale as in phase 1.   

 

After completing phase 3, participants were redirected to an online survey where they provided 

demographic information and completed individual difference measures including the BMRQ 

and PAS. 

 

Exclusion criteria  

Participants who did not accurately perform the surface task of identifying the warble/vibrato 

notes during exposure were removed from all subsequent analyses. Specifically, for each 

participant, we calculated d-prime from the total number of hits (number of vibrato melodies for 

which a ‘v’ was pressed), misses (number of vibrato melodies for which a ‘v’ was not pressed), 

false alarms (number of vibrato melodies for which a ‘v’ was not pressed) and correct rejections 

(number of non-vibrato melodies for which a ‘v’ was not pressed). D-prime was calculated from 

the difference between z-transformed hit and false-alarm rates, with the adjustment where 0.5 

errors were assumed for participants who made no errors (Wickens, 2001). The d-prime measure 

therefore indicates how well participants could discriminate between a warble note and a non-
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warble note and was used to remove participants who did not follow instructions for the surface 

task. Any participant who had a d-prime measure of less than 1 ( ~69% correct) was removed 

from subsequent analyses (Wickens, 2001), as was specified in our pre-registration. However, in 

follow-up analyses we did explore whether keeping the participants who did not reach the d-

prime criterion changed the results; these exploratory analyses are included in Supplementary 

Materials. 

 

Study 2 

Participants 

To maintain consistency, we used the same target sample size from our a priori power analysis 

for Study 1 for Studies 2-4. We recruited 221 participants. 57 participants were excluded for 

failing a perceptual cover task, resulting in a total sample size of 164 (93 female, mean age = 

32.67).  

Procedure 

Participants underwent the same procedure as in Study 1, with the exception that 10 melodies 

were presented either 0, 2, 4, 6, 10, or 14 times during the exposure phase (2 melodies in each 

condition).  

 

Study 3 

Participants 

We recruited 214 participants, 45 of which were excluded for failing our perceptual cover task, 

resulting in a total sample size of 169 (89 female; mean age = 32.27). 

Procedure 

Participants underwent the exact same procedure as in Study 1, with the exception that the order 

of melodies heard in the pre-exposure phase was completely randomized.  

 

Study 4 

Participants 

We recruited 222 participants, 57 of which were excluded for failing our perceptual cover task, 

resulting in a total sample size of 165 (83 female; mean age: 31.78).  

Procedure 

Participants underwent the exact same procedure as in Study 2, with the same 10 melodies 

during exposure phase, with the exception that the order of melodies heard in the pre-exposure 

phase were randomized and counterbalanced across participants. 

 

Study 5 

Participants 

The congenital music specific anhedonic (initials BW, 58-year-old male) had participated in a 

previous case study in our lab (Loui et al., 2017). The acquired music specific anhedonic (initials 

NA, 53-year-old female) had reached out to final author after self-reporting a loss in pleasure 

derived from music listening after having received rTMS treatment for depression after the death 

of a loved one. As both of these cases were self-identified as musically anhedonic, rather than 

recruited online using Prolific, they were treated as separate case studies rather than included in 

the same group for Studies 1 through 4. Both of these cases had low scores on the extended 

BMRQ (eBMRQ BW = 30; NA = 43; (Cardona, Ferreri, Lorenzo‐Seva, Russo, & Rodriguez‐
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Fornells, 2022) but normal PAS scores (PAS-auditory: BW = 8, NA = 4; PAS-non-auditory: BW 

= 14, NA = 15).  

Stimuli 

We used a subset of four non-altered melodies which were rated, on average, the highest in post-

exposure liking ratings across Studies 1-4 for Study 5. These, along with their altered versions, 

resulted in eight unique melodies presented to participants in this study. Participants also 

completed an updated version of the BMRQ: the extended Barcelona Music Reward 

Questionnaire (eBMRQ), which includes an additional sixth factor (4 additional items) which 

measures experiences of absorption in music listening (Cardona et al., 2022). 

Procedure 

Participants underwent the same procedure as previous studies, with the exception that melodies 

were presented either 0, 4, 10, or 14 times during the exposure phase and that there was only one 

melody assigned to each condition. 

 

Study 6 

Participants 

Participants were recruited via Wechat, a Chinese instant messaging app. A poster containing a 

QR code was sent in several group messages of Beijing college students, who subsequently 

shared this code via word of mouth and personal Wechat messages. We recruited 216 

participants. 56 were excluded for failing our perceptual cover task and 4 for completing the task 

twice, for a total of 156 (106 female; mean age: 23.09). 

Stimuli 

The same stimuli used in Studies 2 and 3 were used in Study 6. Participants in Study 6 also 

completed the eBMRQ instead of the BMRQ.  

Procedure 

The QR code led to a questionnaire that recorded participants' name and email address. An email 

was then sent to the address participants provided, which contained a link to the experiment. This 

link redirected participants to our experiment, in which they subsequently underwent the same 

Procedure as Study 3. 

 

Study 7 

Participants 

Participants in this study were either undergraduates at Northeastern University who completed 

the study (both the online task and an in-person fMRI scan) for course credit or young adults 

recruited via word-of-mouth from the Boston area. A total of 21 participants (15 female, mean 

age = 19.8) completed the fMRI version of our task. 

Stimuli 

The same stimuli and materials that were used in Study 6 were used in Study 7, including the 

eBMRQ. 

Procedure 

Participants underwent the same procedure as in Study 6 as well as an fMRI scan immediately 

after completing the online behavioral study. During the scan, participants listened to 24 clips of 

music once. Eight of the clips were Bohlen-Pierce melodies that participants had heard 

previously during the task (at 0/4/10/14 presentations; both original and altered melodies). The 

remaining trials acquired were not in the Bohlen-Pierce scale and were not used in the analysis 
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for the present study. Each trial consisted of 20s  of passive listening, followed by 2s to rate the 

melody for liking (on a scale of 1-4), and 2s to rate the melody for familiarity (also 1-4 scale).  

fMRI Data Acquisition 

Images were acquired using a Siemens Magnetom 3T MR scanner with a 64-channel head coil at 

Northeastern University Biomedical Imaging Center. fMRI data were acquired as echo-planar 

imaging (EPI) functional volumes covering the whole brain in 48 axial slices (fast TR = 475 ms, 

TE = 30 ms, flip angle = 60°, FOV = 240mm, voxel size = 3 x 3 x 3 mm3, slice thickness = 3 

mm, anterior to posterior, z volume = 14.4 mm) in a continuous acquisition protocol of 1440 

volumes for a total acquisition time of 11.4 minutes. T1 images were also acquired using a 

MPRAGE sequence, with one T1 image acquired every 2400 ms, for approximately 7 minutes. 

Sagittal slices (0.8 mm thick, anterior to posterior) were acquired covering the whole brain (TR = 

2400 ms, TE = 2.55 ms, flip angle = 8°, FOV= 256, voxel size = 0.8 x 0.8 x 0.8 mm3). As part of 

the existing protocol we also acquired resting state and DTI sequences, but these were not used 

for this study. 

fMRI Data Analysis 

Pre-processing. fMRI data were preprocessed using the Statistical Parametric Mapping 12 

(SPM12) software (Penny, Friston, Ashburner, Kiebel, & Nichols, 2011) with the CONN 

Toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012). Preprocessing steps included functional 

realignment and unwarping, functional centering, slice time correction, outlier detection using 

the artifact detection tool, functional and structural segmentation and normalization to MNI 

template, and functional smoothing to an 8mm gaussian kernel (Friston et al., 1995). Denoising 

steps for fMRI data included white matter and cerebrospinal fluid confound correction (Behzadi, 

Restom, Liau, & Liu, 2007), and bandpass filtering to 0.008– 0.09 Hz.  

First-level analysis. First- and second-level analyses were completed in SPM12. For each 

participant, data were converted from 4D to 3D images, resulting in 1440 scans. The model was 

specified using the following criteria: interscan interval = 0.475 seconds, microtime resolution = 

16, microtime onset = 8, duration = 42. Only data from the time while the participant was 

listening to the musical excerpt were included in this model. Each of the 8 trial types (0/4/10/14 

presentations of both original and altered melodies) was modeled separately. The resulting first-

level contrasts were then analyzed using a one-sample t-test across all participants at the second 

level. Whole-brain results were rendered to a standard MNI brain. Results from the second-level 

analyses were statistically corrected using a voxel threshold of p < 0.05 (FDR-corrected) through 

CONN Toolbox. Beta-weights for ROIs in the auditory and reward networks, as defined by 

previous work in our lab (Wang, Belden, Hanser, Geddes, & Loui, 2020), were extracted from 

participants’ first-level SPM.mat files using the CONN Toolbox and correlated separately for 

each trial to test for the effects of alteration and number of presentations on the functional 

connectivity between auditory and reward regions. 
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