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Abstract

Cryo-electron microscopy (cryo-EM) represents a powerful technology for determining atomic models of
biological macromolecules1. Despite this promise, human-guided cryo-EM data collection practices limit the
impact of cryo-EM because of a path planning problem: cryo-EM datasets typically represent 2-5% of the
total sample area. Here, we address this fundamental problem by formalizing cryo-EM data collection as a
path planning optimization from low signal data. Within this framework, we incorporate reinforcement
learning (RL) and deep regression to design an algorithm that uses distributed surveying of cryo-EM
samples at low magnification to learn optimal cryo-EM data collection policies. Our algorithm - cryoRL -
solves the problem of path planning on cryo-EM grids, allowing the algorithm to maximize data quality in a
limited time without human intervention. A head-to-head comparison of cryoRL versus human subjects
shows that cryoRL performs in the top 10% of test subjects, surpassing the majority of users in collecting
high-quality images from the same sample. CryoRL establishes a general framework that will enable
human-free cryo-EM data collection to increase the impact of cryo-EM across life sciences research.

Main
Cryo-EM is one of the fastest-growing areas of structural
biology, enabling 3D structure determination of important
macromolecular complexes and membrane proteins2.
The impact of cryo-EM ranges from plant biology to
human health and disease. Indeed, the widespread
growth of cryo-EM has advanced our understanding of
pathogens, such as SARS-CoV-23, and has had a direct
impact on drug development4.

Cryo-EM is an expensive and highly involved technique.
For example, high-end microscopes cost millions of
dollars to purchase and require yearly service contracts
costing hundreds of thousands of dollars and full-time
staff to maintain the instrument. To collect cryo-EM data,
users require microscope time for multiple days to collect
sufficient high-quality data in addition to waiting weeks or
months to gain access to high-end cryo-EM instruments.
Thus, increasing the throughput of cryo-EM data
collection is critical for advancing biomedical research
efforts and reducing the cost of cryo-EM.

Major advances in microscope hardware (e.g., detectors5

and aberration-free image shift6,7) have led to rapid data
acquisition strategies. Despite collecting hundreds of
exposures per hour, much of the collected data is
discarded during processing. For example, from 2019 to
mid-2021, only 50% of exposures collected in the
Cianfrocco laboratory had resolution estimates of < 6 Å.
This is because cryo-EM users do not know a priori
which regions of a cryo-EM grid will produce the highest
resolution data. Analysis of micrograph quality across
different regions of a grid highlights the complex data
landscape users must navigate (Extended Data Fig. 1).
Cryo-EM samples are challenging samples for data
collection, indicating that path planning optimization in
addition to rapid data acquisition stands to improve
microscope performance and throughput.

Artificial intelligence provides a powerful framework to
recognize patterns in complex datasets. Recently,
incorporating deep learning models into a reinforcement
learning (RL) algorithm enabled RL to surpass
professional human performance in challenging games
such as AlphaGo8 and Dota 29. These approaches
demonstrate superior capabilities in learning strategic
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moves from simulation data. Given that many problems
in the real world involve perception, planning, and
decision-making, RL may impact many areas of human
life, such as self-driving vehicles10, robotics11,
healthcare12, and even trading and finance13. However,
the application of RL in life sciences remains
underexplored due to the lack of domain knowledge
needed to formulate RL into scientific processes.

As a step toward developing fully automated intelligent
decision-making for cryo-EM data collection, we present
an RL-based framework, cryoRL. The goal of cryoRL is
to identify the optimal path across cryo-EM samples to
collect as much high-quality data as possible in a given
time period (see Methods, Problem Formulation). Our
algorithm combines a low-magnification survey with
pretrained classification models that feed into a deep-Q
network for learning data collection policies. We
benchmarked the performance of cryoRL against human
subjects using a cryo-EM data collection simulator,
allowing both cryoRL and humans to simulate data
collection on the same dataset. Our results show that
cryoRL outperforms 9 out of 10 human subjects,
suggesting that cryoRL will serve as a framework to
automate cryo-EM data collection from all cryo-EM
instruments. Our data suggest that optimized path
planning with cryoRL will enable an approximately 40%

improvement in microscope throughput, thus improving
access and throughput on these instruments, thereby
reducing the overall cost of cryo-EM. 

Optimization of path planning on
cryo-EM samples with cryoRL
Given an unexplored cryo-EM grid, the goal of a data
collection session is to obtain the maximal number of
micrographs with high-resolution information in a limited
time. Importantly, the data collection path needs to be
optimized by reducing the time cost associated with
stage movement and Z-height adjustment of the
microscope. Therefore, two critical problems in cryo-EM
data acquisition are 1) quality prediction at the low or
medium magnification and 2) trajectory planning during
the data collection session.

In traditional cryo-EM data collection, users utilize a
sequential approach to interrogate, assess, and steer
data collection (Fig. 1A). First, a user will generate an
atlas of low magnification “grid-level” images to obtain an
overview of the sample (Fig. 1A). The user will examine
the atlas and choose to collect micrographs from the
holes in one patch, from a single square. Specifically, for
each square selected, the user will capture a
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“square-level” image and several “patch-level” images at
higher magnifications to visualize the overall shapes and
relative intensities of each hole (Fig. 1A). Depending on
the quality of the collected micrographs, the user decides
to collect in the same patch, a different patch, or a
different square. This iterative process will continue until
the user finds a pattern that produces the highest quality
data.

To automate cryo-EM data collection, we designed an
RL-based data collection algorithm: ‘cryoRL.’ CryoRL
aims to optimize cryo-EM data collection by combining
supervised regression and reinforcement learning (Fig.
1B). First, a deep regressor will predict a quality score for
each hole image at medium magnification. Subsequently,
an RL model will use these quality scores and the
hierarchical information on the grid to output a trajectory
of actions, i.e., to decide on the fly which positions
should be used for collecting high-resolution
micrographs.

In this work, we define micrograph quality based on the
amount of signal in Fourier space for a given micrograph.
Specifically, we calculate the maximum resolution at
which the contrast transfer function (CTF) can be
detected. This value - “CTFMaxRes” - is a routine value
that is a standard part of cryo-EM processing14,15.
CTFMaxRes is a valid metric considering that it
correlates with particle number and the signal-to-noise
ratio of the images. Importantly, CTFMaxRes is a widely

used parameter to filter out “bad” micrographs during
single particle processing, such as removing
micrographs with a CTFMaxRes of > 6 Å. In cryoRL, the
CTFMaxRes value of a micrograph defines the quality
score of the corresponding hole-level image.

CryoRL relies on a low-magnification grid mapping to
facilitate path planning across the grid. We call this a
“distributed” approach for data collection, which is
contrary to the traditional “sequential” data collection
strategy (Fig. 1). A distributed view of a grid provides a
landscape of the grid, which is essential for trajectory
planning. After collecting patch-level images across a
square, which can take 1-2 minutes per square, all holes
will be automatically identified and segmented. These
hole images will constitute a candidate pool in cryoRL.
Since these images are low magnification, this is
automated and does not constitute a time-consuming
step.

The reward function is a critical aspect of RL
implementations as these rewards will guide RL
behavior16. In cryoRL, we developed a reward scheme
that values finding good micrographs from neighboring
holes, where finding a good micrograph within the same
patch has the highest reward (see Methods). The
reward function also reflects realistic considerations
when operating the instrument: moving to neighboring
holes is faster than switching areas of a square or region
of a grid. cryoRL will reward the action of taking a “good”
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micrograph, and the reward amount is negatively
correlated to the time it takes to perform the action
(Extended Data Table 1, see Methods). Therefore,
cryoRL takes account of both quality prediction and
trajectory planning in a real-world setting with a practical
consideration of the time cost. For a baseline
comparison, we designed a “snowball baseline,” which
aimed to maximize the total number of micrographs
collected regardless of the quality, to compare the results
of cryoRL with the outcomes of a semi-random data
collection policy (see Methods).

To test and implement cryoRL, we performed all path
planning offline by running cryoRL on systematically
collected datasets (see Methods). For these datasets,

we imaged every hole across many squares (> 10) to
provide cryoRL with a landscape of holes from which to
choose.

CryoRL effectively navigates cryo-EM
samples to identify high-quality data
We tested the performance of cryoRL on a cryo-EM
sample of rabbit muscle Aldolase on a Quantifoil 1.2/1.3
grid from which we collected a systematic dataset (Fig.
2A, see Methods). For this sample, we trained the deep
regressor and deep Q-network on a subset of the
cryo-EM grid. The deep regressor successfully captured
the correlation between hole images and CTFMaxRes
values (Extended Data Fig. 2A). Using these trained
models, cryoRL collected micrographs from “good” holes
on the grid (Fig. 2B & 2C). Given that the overall
candidate holes in this dataset are low quality (less than
40% of candidates had a CTFMaxRes < 6 Å (Fig. 2B) -
cryoRL collected ~80% of images with a CTFMaxRes < 6
Å (Fig. 2C).

To visualize the behavior of cryoRL, we overlaid a
cryoRL trajectory on the cryo-EM sample (Fig. 2D-2G).
cryoRL visited six squares during data collection.
Zooming in on a selected square, we see that this
specific square contained holes with different ice
thicknesses and quality (Fig. 2D). CryoRL successfully
avoided empty holes or holes with very thick ice (Fig.
2E). Compared to the ground truth CTFMaxRes of all the
candidate holes, we found that cryoRL collected
micrographs with low CTFMaxRes only in the patches
with many high-quality holes (Fig. 2F & 2G). Therefore,
cryoRL learned an effective policy that minimizes the
time cost increase resulting from moving to a different
patch.

We conclude from these results that cryoRL successfully
collected high-quality micrographs when trained on a
small subset of the dataset.

Transferred models enable effective path
planning on different cryo-EM samples
and grid types
Our result on Aldolase showed that cryoRL learns a
policy to collect high-quality micrographs when both the
regressor and RL network are trained from a subset of
the same grid. However, RL models need to be trained
on a subset of the dataset where all the possible holes
are collected with a ground truth CTFMaxRes. A dataset
like this with a sufficient sample size for training is
usually not available and not practical to obtain.
Therefore, RL models must have good transferability so
they do not need to be trained on the same dataset.

To test the transferability of RL models, we collected a
dataset of a different cryo-EM sample, Apoferritin. We
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utilized a general deep regressor that was trained on
100,578 hole images from a variety of sample types with
associated CTFMaxRes values (see Methods,
Extended Data Fig. 2B) in combination with the deep-Q
network from Aldolase (Fig. 3A). The resulting images
collected by cryoRL showed a strong enrichment for
images < 6 Å (Fig. 3B), indicating that the transferred
models' allowed high-quality data collection. The overall
performance of cryoRL is 1.5 times above the baseline
with ~80% of collected images < 6 Å (Fig. 3C).

Given the performance of cryoRL on Apoferritin, we
switched to a different sample on a different grid: RNA
Polymerase II (RNAPII) on Au-Flat 1.2/1.3. CryoRL
utilized a deep regressor that was fine-tuned from the
pretrained general regressor with a subset of holes from
the RNAPII grid (see Methods, Extended Data Fig. 2C).
For the deep-Q network, instead of training on the same
grid, we used the deep-Q model from the Aldolase
dataset. Using the fine-tuned deep regressor and
transferred deep-Q network (Fig. 3D), cryoRL collected
high-quality images from the RNAPII dataset (Fig. 3E). A
comparison of cryoRL versus the baseline shows 2 times
more images below 4 Å (Fig. 3F).

CryoRL outperforms humans
To test human performance against cryoRL on the same
dataset, we designed and implemented a cryo-EM
simulator (see Methods, Supplemental Movie 1). We
compared the performance of cryoRL versus human
subjects on a new systematic dataset of rabbit muscle
Aldolase on a different grid type: UltrAufoil 1.2/1.3
(“AldolaseAu”, Fig. 4A). This dataset consisted of 5822
hole images and their ground truth CTFMaxRes from 30
squares. We asked ten users ranging from 3 months to
10 years of cryo-EM experience (see Methods) to collect
data with the simulator as if they were in a real data
collection session.

We compared the performance of human subjects with
cryoRL that used the pretrained general deep regressor
(Extended Data Fig. 2D) and the DQN trained with
AldolaseAu (Fig. 4A). From the trajectories of the number
of micrographs with CTFMaxRes < 6 Å over time, we
found that cryoRL outperformed 9 out of 10 human test
subjects (Fig. 4B). Interestingly, human subjects showed
a large variance in performance. The slopes of the lines
indicated the “good data rate”. CryoRL showed a
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consistent “good data rate”, whereas the rate of most test
subjects varied over time (Fig. 4B).

We quantified the averaged performance of human test
subjects and compared them with that of the baseline
and cryoRL (Fig. 4C). The baseline showed that this
dataset contained only 12% of targets with a
CTFMaxRes < 6 Å (Fig. 4C). The average performance
of humans exceeded the baseline, but the variance was
significant (Fig. 4C, Extended Data Fig. 3). CryoRL
outperformed humans by about 43% on average, with a
much lower variance, suggesting higher consistency
(Fig. 4C).

Next, we wanted to determine the behaviors of cryoRL
vs. human subjects. On average, human subjects spent
on average 14.5 min on the simulator per 100
micrographs. We found that cryoRL only visited four
unique squares, whereas human users, on average,
visited 12 squares (Fig. 4D). Consequently, cryoRL
collected over 100 micrographs per square, three times
more than the human test subjects (Fig. 4D). Given this
behavior, we conclude that in minimizing stage
movements, cryoRL collected more micrographs in total
and more high-quality micrographs as a result.

Finally, we wanted to compare if the good micrographs
collected by cryoRL and human subjects overlap. To do
this, we quantified the pairwise similarities between the
micrographs in each trajectory with the Jaccard similarity
coefficient (Fig. 4E). Surprisingly, we found that human
subjects had an average of 0.13 similarity coefficient,
further underscoring the variability of data collection (Fig.
4E). However, the three users who were able to collect
over 200 micrographs < 6 Å (Human-2, -7, and -9) had
the highest similarity to cryoRL (Extended Data Fig. 3,
Fig. 4E). Not surprisingly, the similarity among the
best-performing users was relatively high (Fig. 4E). On
the other hand, the three users who collected less than
100 good micrographs (Human-1, -3, and -10) had weak
concordance with cryoRL and among themselves
(Extended Data Fig. 3, Fig. 4E). This comparative
analysis showed that good micrograph selections were
alike within this dataset, but every bad micrograph
selection was bad in its own way.

Discussion
In this work, we show that cryoRL optimizes the path of
cryo-EM image collection to obtain the most high-quality
images in a limited time across four independent
datasets. Among our four experiments, three were tested
with transferred models, showing the generalizability of
cryoRL. Our results showed that the RL networks were
able to provide robustness and place cryoRL in the top
10% of human study subjects. Importantly, the deep-Q
network is highly transferable as all four experiments
shared the same deep-Q model.

Our design of low-magnification prediction with RL policy
training enables cryoRL to identify optimal paths across
cryo-EM samples. The deep regressor provides a
consistent prediction of the data quality at the hole level,
allowing cryoRL to map thousands of holes, a task that is
nearly impossible for human users. We believe the
challenge of mapping paths is highlighted in the cryo-EM
simulator: many human subjects cannot keep a
consistent rate of data quality collection (Fig. 4B).

The performance of cryoRL is directly related to the
accuracy of the deep regressor. Although the RL
networks provide some robustness to imperfect quality
prediction results, if the grid type is present in the training
data, the performance of a general model will be very
accurate. Importantly, given that some samples may
have specific hole types or may be visible at hole
magnification (e.g. viruses, microtubules), a sample
specific deep regressor could be incorporated into
cryoRL for increased accuracy of prediction. In the
future, we anticipate that the regressor may also learn
from the data just collected so that the decision-making
can be improved over time. Semi-supervised learning17

or active learning18 may be useful techniques that can be
applied to cryoRL in the future.

cryoRL outperforms average cryo-EM users due to
consistent data collection rates on local regions of
high-quality images. Analysis of cryoRL behavior versus
human subjects showed that cryoRL visited 4 squares,
whereas human subjects visited an average of 12
squares (Fig. 4D). Moreover, from these four squares,
cryoRL obtained a near-constant “good data rate” (Fig.
4B), whereas human subjects showed large variability in
the rate of collection (Fig. 4B). From these data, we
conclude that cryoRL is able to consistently collect
high-quality data.

The reward table within cryoRL will enable tuning cryoRL
for different data collection behaviors. For example, by
increasing the reward for images from different squares,
we can encourage cryoRL to explore larger regions of a
sample, as in data screening. The time costs and the
rewards associated with them can also be tuned to
reflect the specifications of different instruments.

The generality of the cryoRL framework allows for any
micrograph metric to serve as a target for reward. In
some cases where CTFMaxRes is not a good indicator
for data quality, the deep regressor can also be trained to
predict other metrics, like data quality measurement
output by MicAssess19 or picked particle numbers, as
long as the model is able to converge. We believe that
cryoRL has great flexibility and potential to automate
both data collection and data screening in various
scenarios.

Overall, the cryoRL approach will allow efficient
microscope usage through optimized path planning and
expert-level performance without the need for human
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intervention. From our results presented, we estimate
that microscopes will be 140% more productive than
current usage, thus expanding the pool of available
microscope time for users worldwide on high-end
cryo-EM instruments. This will greatly increase the
throughput of cryo-EM projects and help to reduce labor
costs and increase access to microscopes.
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Methods

Problem formulation

With predicted hole quality scores, cryo-EM data collection can be viewed as a path planning problem where the goal
is to find an optimal trajectory for microscope movement to maximize the number of good holes visited along the
trajectory in a given amount of time. This sequential process involves switching across images at different
magnification levels, which can be time-consuming and expensive. An effective planning algorithm thus should be able
to identify promising regions with plentiful high-quality holes and program the microscope to focus on those regions to
avoid overly frequent image switchings. To achieve so, cryoRL aims at optimizing an objective function as follows:

𝑚𝑎𝑥
𝑖=0

𝑛

∑ 𝑟(ℎ
𝑖
) ,  𝑠. 𝑡.

𝑖=0

𝑛

∑ 𝑡(ℎ
𝑖
) < τ 

where is a prespecified time duration, and is a reward for visiting a hole based on the quality of as well asτ 𝑟(ℎ
𝑖
) ℎ

𝑖
ℎ

𝑖
the time cost of the microscope movement (see section Time cost and RL Rewards). We propose to solve such𝑡(ℎ

𝑖
)

an optimization problem by reinforcement learning, which is well suited for sequential decision-making tasks and less
heuristic than other optimization solvers such as Genetic Algorithm20 and Simulated Annealing21. More details can be
found in22.

Deep regressors

We applied deep regression to estimate the CTFMaxRes of each hole, which has a maximum value of 20Å. The
regressor, backboned by ResNet-50, takes as the input the holes cropped out from hole-level images based on the
location information provided in the metadata. It is trained for 50 epochs with the Adam optimizer23 using loss unless𝑙

2
specified otherwise. A cosine scheduler24 is adopted with an initial learning rate. In addition to the implementation in
this study, the quality of a hole can also be categorized by a classifier as done in22. However, the classifier has to be
re-trained when the categorization criteria change.

The same model architecture was used for the training of the regressor for Aldolase, the general regressor, and the
fine-tuned regressor for RNAPII. The regressor for Aldolase used an initial learning rate of 0.0005 and a batch size of
128, with the training data size of 1197 and the validation data size of 2341. The general regressor used an initial
learning rate of 0.001 and a batch size of 256, with the training data size of 80443 and the validation data size of
20135. The data used to train the general regressor consisted of hole images from different grid types and hole sizes.
The fine-tuned regressor for RNAPII used the general regressor as the pre-trained model and only the final
fully-connected layer was trainable parameters. It was trained for 20 epochs with an initial learning rate of 0.0005 and
a batch size of 64. The training data size was 4544 and the validation data size was 4109.

RL Network

We applied the deep Q-learning approach25 to learn a planning policy for cryo-EM data collection. The DQN used in
our work is a 3-layer MLP with ReLU activations. The size of each layer is 128, 256, and 128, respectively. Since
moving the microscope to any target hole is considered a unique action from the agent in our RL system, the action
space of the system has the same size as the training samples, which can be potentially large. In addition, during
tests, the number of holes (i.e. actions) may vary case by case. Because of this, the general practice as many
approaches do, which sets the number of output nodes in the network to the number of actions, is not practical for our
case. While more sophisticated methods26,27 exist for dealing with varying space sizes, we applied a single output node
to estimate the Q-value of a hole once each time and batch process all the actions efficiently. A detailed description of
the components in our RL setup and training can be found in22. In this paper, we set the duration in our system to 480
minutes for training.
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Features to DQN

A good RL policy, if possible, should always reward small microscope movements. In other words, the hole path
planning strategy should prioritize areas with rich low CTFMaxRes holes first. The number of low CTFMaxRes holes
on a patch (square or grid) image is closely related to the quality (or value) of the image in cryo-EM data collection.
Based on this, we design hierarchical features for the DQN that represent the quality of images at different levels,
including histograms of CTFMaxRes on unvisited holes and the number of visited and unvisited low CTFMaxRes
holes. The histograms are smoothed by a Gaussian kernel to improve robustness against the imperfect regression
results. We listed the details of these features, which are computed separately for each hole and linearly normalized
between 0 and 1 in Extended Data Table 2. We also considered the history of the microscope movement by
concatenating the features for the last visited holes and the current one to be visited to form the final input to the𝑘 − 1
DQN.  In this study, was empirically set to 4.𝑘

Time cost and RL Rewards

In real cryo-EM data collection, the time needed to collect a micrograph varies depending on how far the stage needs
to be moved from its previous position. In this study, we defined the time cost as in Extended Data Table 1.𝑡(ℎ

𝑖
)

When the CTFMaxRes of the micrograph collected from is lower than a given threshold , the reward for each holeℎ
𝑖

𝑇
visit is defined as:𝑟(ℎ

𝑖
)

𝑟(ℎ
𝑖
) = 𝑒𝑥𝑝(− β * (𝑡(ℎ

𝑖
) − 𝑡

0
)),  𝑤ℎ𝑒𝑟𝑒 β > 0,  𝑡

0
> 0,  𝑖𝑓 𝐶𝑇𝐹𝑀𝑎𝑥𝑅𝑒𝑠

ℎ
𝑖

≤ 𝑇

In this study, we assigned , , and (unless specified otherwise). When the CTFMaxRes of theβ = 0. 1 𝑡
0

= 1. 0 𝑇 = 6 Å
micrograph collected from is larger than the given threshold , is defined as:ℎ

𝑖
𝑇 𝑟(ℎ

𝑖
)

𝑟(ℎ
𝑖
) = 𝑚𝑎𝑥(𝑒𝑥𝑝(− β * (𝑡(ℎ

𝑖
) − 𝑡

0
)) * (1. 2 * 𝑒𝑥𝑝(− 1. 7 * (𝐶𝑇𝐹𝑀𝑎𝑥𝑅𝑒𝑠

ℎ
𝑖

− 𝑇)) − 0. 2),  0),  𝑖𝑓  𝐶𝑇𝐹𝑀𝑎𝑥𝑅𝑒𝑠
ℎ

𝑖

> 𝑇

Thus, a partial reward can be gained if the obtained CTFMaxRes is only slightly higher than the threshold . In this𝑇
study, we presented data with .𝑇 = 6 Å

Snowball baseline policy

We designed a snowball baseline to compare with the results of cryoRL. The snowball baseline will start from a
random hole target and aims to maximize the total number of micrographs in a given time duration regardless of the
quality. To train this policy, we used in the reward function so that the reward only depends on the time cost.𝑇 = 30 Å
The baseline RL model was trained on the aldolase dataset and the same model was applied throughout this study.

Cryo-EM simulator and human study

We conducted a human study to directly compare the performance of cryoRL with humans. The dataset used was
AldolaseAu. We developed a simulator that mimics real data collection (Supplemental Movie 1) without the waiting
time to acquire each image. The hierarchical layers in the dataset were preserved and well reflected in the simulator.
The tested users were asked to collect 450-500 micrographs, and the resulting trajectories were recorded. We asked
the users to collect as many as good micrographs (with low CTFMaxRes), while trying to minimize the time cost of
moving the stage to distance positions, as in a real data collection. The users were given the freedom to look through
the low magnified images at different hierarchies without penalty for a fair competition to cryoRL. However, note that
this is not possible with the traditional “sequential” data collection strategy. The tested users were told the same time
cost table (Extended Data Table 1). We then translated the trajectories with the time costs used in this paper and
truncated the trajectories at 480 min to compare with the performance by cryoRL on the same dataset. The simulator
has two modes, “inspection mode” and “queueing mode”. In the inspection mode, the ground truth CTFMaxRes will be
given once the hole is “collected” immediately. In the queueing mode, the user may queue up a number of hole targets
without knowing their ground truth CTFMaxRes values until switching to the inspection mode. The tested users include
experts who are scientists with over 8 years of cryo-EM data collection experience and are still active in collecting
data, and novices who have less than 1 year of experience in cryo-EM data collection but have prior knowledge of
cryo-EM data collection. No significant difference was found between the average performances of the experts and the
novices.
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Jaccard similarity coefficient

The Jaccard similarity coefficient was calculated with the standard formula:

𝐽(𝐴, 𝐵) = |𝐴∩𝐵|
|𝐴∪𝐵|

where A and B are the two sets of micrographs that two different users or cryoRL collected.

CryoRL specifics per grid

To train and test cryoRL on Aldolase, we collected a dataset of Aldolase using a Talos Arctica microscope equipped
with a K2 detector. The dataset consisted of 3538 holes from 25 squares (Fig. 2A) and was split into training and test
sets (1197 holes originating from 9 squares belong to the training set, and 2341 holes from the remaining 16 squares
belong to the test set). Note that the training set represents only a small subset of the total data (33.8%). We trained
both the deep regressor and RL network on the training set and applied the models on the test set to quantify the
performance.

To test the transferability of RL models, we collected datasets of Apoferritin and RNA Polymerase II (RNAPII). The
specifics of the regression models training and testing can be found in the “Deep regressors” section above.
Specifically, the grid type used in RNAPII was not in the training set of the general regressor, therefore the prediction of
the general regressor on RNAPII was poor. After fine-tuning, the performance of the regressor was still not optimal, but
a general trend could be observed (Extended Data Fig. 2C). For RL networks, we simply used the RL model trained
on the Aldolase dataset as a transferability test. We then applied the regressors and RL network to the test set to
quantify the performance.

For AldolaseAu, we collected the systematic dataset consisting of 5822 holes from 30 squares. The general regressor
and RL network trained on Aldolase were applied on this dataset to quantify the performance and compare it with the
human study.

Cryo-EM sample preparation and data collection

Aldolase was prepared using rabbit muscle aldolase (Sigma Aldrich) at 1.6 mg/ml in a buffer of 20 mM HEPES (pH
7.4) and 50 mM NaCl onto either a freshly glow discharged Quantifoil 1.2/1.3 or UltrAuFoil grid plunge frozen using a
Vitrobot Mark IV (Thermo Fisher Scientific). Recombinant mouse Apoferritin was purified as described in a protocol by
Dr. Christos Savva. The sample was diluted to 4.1 mg/mL in buffer 50 mM Tris (pH 7.5), 100 mM NaCl, and 500 μM
TCEP prior to application on a freshly glow discharged UltrAuFoil 1.2/1.3 grid using a Vitrobot Mark VI (Thermo Fisher
Scientific). RNAPII was purified from S. cerevisiae as described28,29. An RNAPII elongation complex was formed with
factors Spt6, Spt4/5, and the Polymerase-associated complex 1 complex on a linear DNA construct as described30.
The complex was purified by size exclusion chromatography on an Äkta Micro (Cytvia) equipped with a Superose 6
3.2-300 column in a buffer containing 20 mM Na-HEPES pH 7.4, 75 mM NaCl, 3 mM MgCl2, 4% (v/v) glycerol.
Fractions containing complex were assessed by SDS-PAGE , crosslinked with glutaraldehyde (PMID: 32541898),
quenched, and dialyzed against a buffer containing 20 mM Na-HEPES pH 7.4, 75 mM NaCl, and 3 mM MgCl2 for 4
hrs at 4ºC. The sample (final concentration 150-200 nM) was applied to freshly glow discharged Au-Flat 1.2/1.3 grids
using a Vitrobot Mark VI (Thermo Fisher Scientific).

We imaged Aldolase and Apoferritin using a Talos Arctica (Thermo Fisher Scientific) equipped with a K2 Summit
detector (Gatan Inc.) operating at 200 keV. Micrographs were collected in counted mode using a pixel size of
0.91Å/pixel. AldolaseAu was imaged using a Glacios (Thermo Fisher Scientific) equipped with a K2 Summit detector
(Gatan Inc.) operating at 200 keV with a pixel size of 0.98Å/pixel in counted mode. RNAPII was imaged using a Titan
Krios G2 equipped with a K3 detector (Gatan Inc.) behind a Gatan Imaging Filter (Gatan Inc.) operating at 300 keV
with a slit width of 20 eV.

All data were collected using Leginon31. Movies were motion-corrected using MotionCor232 and CTF-estimated with
CTFFIND415 run from within the Appion environment33.
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Extended Figures
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Extended Data Table 1. Time cost table used in this study.

Current hole and the previous hole belong to … 𝑡(ℎ
𝑖
)

…the same patch 1 min

…different patches but the same square 2 min

…different squares but the same grid area 6 min

…different grid areas 8 min

Extended Data Table 2. Input features to the deep-Q network

Data Type Feature

Hole Estimated CTFMaxRes
Is the hole visited?

Patch/square/grid

Gaussian-smoothed CTFMaxRes histograms of unvisited holes
Number of unvisited holes

Number of unvisited low CTFMaxRes holes
Number of visited holes

Number of visited low CTFMaxRes holes

Microscope movement
A new patch-level image?

A new square-level image?
A new grid-level image?

Supplemental Data
Supplemental Movie 1 - Demonstration of the cryo-EM data collection simulator used in the human study.
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