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ABSTRACT 

Respiratory disease is a major cause of morbidity and mortality in children worldwide. Many 

childhood respiratory diseases are characterised by chronic inflammation, however, the 

immune landscape of the paediatric airway remains uncharacterized. This is due to 

difficulties obtaining tissue-specific samples in early life as well as limited application of 

technologies that permit deep profiling from small sample volumes. Here, we employ 

multiomic single-cell sequencing to generate the first immune cell atlas of the paediatric 

lower airway with more than 44,900 cells across 12 preschool aged children. By integrating 

transcriptome-wide gene expression, assessment of 154 surface proteins, and functional 

pathway analysis, we extensively characterised 41 immune and epithelial cell populations 

present in the bronchoalveolar lavage of 11 children with cystic fibrosis and an age-matched 

healthy control. Paired spectral flow cytometry analysis of over 256,000 cells revealed high 

correlation in cell subset proportions and protein expression across the two techniques. We 

further revealed that paediatric alveolar macrophages consist of 13 functionally distinct sub 

populations, including previously undescribed populations enriched for IFN-α/β signalling, 

markers of vesicle production, and regulatory/repair function. Other novel immune cell 

populations not observed in previous studies of the adult lung include CD4 T cells expressing 

inflammatory signalling genes. Further, whilst we show no significant difference in overall 

cell proportions between CF and healthy lung, we observed significant differential gene 

expression in the alveolar macrophage population, including genes associated with lung 

inflammation (IL33, CCL15) and fibrosis (RBMS3, COL4A1, SPP1). Our work provides a 

comprehensive cellular analysis of the paediatric lower airway, reveals key immune 

signatures of early life lung disease, and provides a reference for investigations of respiratory 

immunity in children. 

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.17.496207doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496207
http://creativecommons.org/licenses/by-nc/4.0/


3 

INTRODUCTION 

Early childhood is a crucial period for the pulmonary system, characterised by rapid 

development and growth (1). The development of the pulmonary system in early childhood 

has lifelong implications and insults to this process can result in reduced pulmonary function 

in childhood, reduced peak pulmonary function in early adulthood, and a shorter descent to 

pulmonary insufficiency in later life. Childhood pulmonary diseases such as 

bronchopulmonary dysplasia (2), asthma and wheezing disorders (3), suppurative lung 

diseases (cystic fibrosis, idiopathic bronchiectasis, primary ciliary dyskinesia) (4) and 

interstitial lung diseases (5) are highly prevalent and all involve pulmonary inflammation. 

Current understanding of the mechanisms of pulmonary inflammation in early life in both 

health and disease is relatively limited, in part due to difficulty obtaining relevant 

biospecimens with enough volume to allow meaningful analysis. 

Single-cell technologies offer the opportunity to better understand cell composition and 

function using small volume samples. Such technologies include single-cell RNA sequencing 

(scRNA-seq), multiomic single-cell sequencing (including cellular indexing of 

transcriptomes and epitopes by sequencing (CITE-seq)), and spectral flow cytometry (an 

advance on conventional flow cytometry as it allows analysis across the whole fluorescence 

spectrum). These technologies are increasingly used in pulmonary research (6, 7) but they 

have thus far primarily focused on analysis of lung tissue or epithelium, and samples 

collected in adult life. Consequently, pulmonary immune cells, which make up a small 

proportion of the tissue, as well as cell phenotypes in childhood, are currently 

underrepresented. Bronchoalveolar lavage (BAL), which is the most common method of 

sampling the lower airway in early life, is predominantly made up of immune cells and is the 

most relevant sample type for studies of pulmonary inflammation (8). 

To improve our understanding of pulmonary immunity in early life, we aimed to apply novel 

multimodal single-cell analyses to BAL samples collected as part of clinical care in the first 6 

years of life. We used samples collected from children with disease (cystic fibrosis) and one 

healthy control, and applied scRNA-seq, CITE-seq and spectral flow cytometry. The results 

offer several advancements in our understanding of immune cell composition of the 

childhood lung and how this differs to adult life, as well as highlighting key signatures of 

paediatric respiratory health and disease. 
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MATERIALS AND METHODS 

Study participants 

All subjects (n=11 with CF and n=1 healthy control) are enrolled in the AREST CF cohort at 

the Royal Children’s Hospital, Melbourne, Australia (9). All families gave written and 

informed consent for their involvement in the AREST CF research program (HREC #25054), 

which includes collection of samples and clinical data. The healthy control participant had no 

history of lower airway disease and underwent bronchoscopy to investigate upper airway 

pathology. Supplementary Table 1 describes the demographics of study participants, and 

Figure 1A outlines the experimental design. 

BAL sample collection and cryopreservation 

All subjects underwent clinically indicated bronchoscopy. BAL was performed under general 

anaesthesia. Each BAL aliquot consisted of 1mL/kg (maximum 20mL) of normal saline 

being inserted via the working channel of the bronchoscope and then suctioned for return. 

BAL samples were placed on ice and processed immediately after the procedure. Samples 

were centrifuged at 300 x g for 10 min at 4°C. Cell-free BAL supernatant was then collected 

and stored at -80˚C for cytokine analysis. The cell pellet was resuspended in 10mL of media 

(RPMI supplemented with 2% fetal calf serum (FCS)), filtered through a 70uM filter and 

centrifuged at 300 x g for 7mins at 4°C. Supernatant was discarded and the cell pellet 

resuspended in media of for cell counting. The sample was then centrifuged at 300 x g for 10 

min and resuspended in equal parts media and chilled freezing solution (FCS with15% 

dimethyl sulfoxide (DMSO)). The freezing solution was added to resuspended cells drop by 

drop on ice. The samples were transferred to cryovials, and then cooled at -1˚C per minute to 

-80 ˚C overnight before being transferred to liquid nitrogen for storage. 

Single-cell sequencing and flow cytometry processing 

1.  BAL cell thawing and live single cell sorting 

Cryopreserved BAL cells were thawed in 10mL media (RPMI supplemented with 10% heat-

inactivated FCS) with 25U/mL benzonase at 37°C and centrifuged at 300xg for 10 min. The 

pellet was resuspended in 1mL PBS for cell counting. Following cell count, 9mL PBS was 

added to the tube and cells were centrifuged at 300 x g for 10 min. Supernatant was discarded 
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and the cell pellet resuspended in PBS for viability staining using live/dead fixable near infra-

red viability dye (Invitrogen) according to manufacturers’ instructions. The viability dye 

reaction was stopped by the addition of FACS buffer (2% heat-inactivated FCS in PBS 2mM 

EDTA) and cells were centrifuged at 400 x g for 5 min. Cells were resuspended in FACS 

buffer for live, single cell sorting using a BD FACSAria Fusion according to the gating 

strategy outlined in Supplementary Figure 1. 

2.  Sample and raw data processing for scRNA-seq (participants A1-D1) 

Viable cells were sorted on a BD Influx cell sorter (Becton-Dickinson) into PBS + 0.1% 

bovine serum albumin and retained on ice. Sorted cells were counted and assessed for 

viability with Trypan Blue using a Countess automated counter (Invitrogen), and then 

resuspended at a concentration of 800-1000 cells/µL (8x105 to 1x106 cells/mL). Final cell 

viability estimates ranged between 92-96%. Single cell suspensions were loaded onto 10X 

Genomics Single Cell 3' Chips along with the reverse transcription (RT) mastermix as per the 

manufacturer's protocol for the Chromium Single Cell 3' Library (10X Genomics; PN-

120233), to generate single cell gel beads in emulsion (GEMs). Reverse transcription was 

performed using a C1000 Touch Thermal Cycler with a Deep Well Reaction Module (Bio-

Rad) as follows: 55oC for 2h; 85oC for 5min; hold 4oC. cDNA was recovered and purified 

with DynaBeads MyOne Silane Beads (Thermo Fisher Scientific; Cat# 37002D) and 

SPRIselect beads (Beckman Coulter; Cat# B23318). Purified cDNA was amplified as 

follows: 98oC for 3min; 12x (98oC for 15s, 67oC for 20s, 72oC for 60s); 72oC for 60s; hold 

4oC. Amplified cDNA was purified using SPRIselect beads and sheared to approximately 

200bp with a Covaris S2 instrument (Covaris) using the manufacturer’s recommended 

parameters. Sequencing libraries were generated with unique sample indices (SI) for each 

chromium reaction. Libraries for all samples were multiplexed and sequenced across on 

2⨉150 cycle flow cells on an Illumina NovaSeq 6000 (26bp (Read 1), 8bp (Index), and 98 bp 

(Read 2)).  

 

The Cell Ranger Single Cell Software Suite (version 6.0.2) by 10x Genomics was used to 

process raw sequence data into FASTQ files. First, raw base calls from multiple flow cells 

were demultiplexed into separate pools of samples. Reads from each pool were then mapped 

to the GRCh38/hg38 genome (version 12) using STAR. The count data was processed and 
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analyzed in R as described below. This dataset will be henceforth referred to as the “scRNA-

seq data.  

 

3.  Sample and raw data processing for CITE-seq (participants E2-L2) 

Sorted live single cells were centrifuged at 400 x g for 5min at 4°C and resuspended in 25µL 

of cell staining buffer (BioLegend). Human TruStain FcX FC blocking reagent (BioLegend) 

was added according to manufacturers’ instructions for 10min on ice. Each tube was made up 

to 100µL with cell staining buffer and TotalSeq Hashtag (HTO 1-8) reagents (BioLegend) 

were added to each sample for 20min on ice. Cells were washed with 3mL cell staining 

buffer and centrifuged at 400xg for 5min at 4°C. Supernatant was discarded and each sample 

resuspended at 62,500 cells/100µL following which 100µL of each sample were pooled into 

one tube. Pooled cells were centrifuged at 400xg for 5min at 4°C, supernatant discarded, and 

resuspended in 25µL cell staining buffer and 25ul of TotalSeqA Human Universal Cocktail 

v1.0 (BioLegend) for 30min on ice. This cocktail contains 154 immune related surface 

proteins. Cells were washed in 3mL cell staining buffer and centrifuged at 400xg for 5min at 

4°C. Following two more washes, cells were resuspended in PBS + 0.04% BSA for 

Chromium captures. 

Single-cell captures and library preparations were processed with the 10x Genomics 

Chromium single-cell Platform using the 10x Chromium Next GEM single-cell 3’ Reagent 

V3.1 Dual Index kits (10x Genomics, USA) following the manufacturer’s manual. In brief, 

pooled cells were counted and an estimated 40,000 cells were loaded per lane onto the 10x 

Chromium controller to form single-cell Gel Beads-in-Emulsion (GEMs) in duplicate. 

Captured cells were then lysed and barcoded and mRNA molecules were reverse transcribed 

to generate cDNA within the single GEMs. The barcoded cDNA was PCR-amplified and 

scRNA-seq libraries were constructed using the 10x 3’v3.1 library kits. The TotalSeq-A 

scADT-seq and scHTO-seq libraries were constructed as per manufacturer's instructions 

(BioLegend). The duplicate scRNA-seq, scADT-seq and scHTO-seq libraries were quantified 

by Tapestation 4200 D1000 chip (Agilent). Upon input normalisation, the 6 libraries were 

pooled and sequenced on the Illumina NextSeq500 sequencing platform to generate 400 

million 2x75-bp paired-end reads. 
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Reads from each sample were processed using 10x Genomics Cell Ranger software (version 

5.0.0). 'cellranger mkfastq' was used to demultiplex the Illumina sequencer’s BCL files into 

FASTQ files. Next, 'cellranger count' was used to generate single-cell gene-count matrices 

against the 10x Genomics pre-built GRCh38 reference genome and transcriptome (2020-A 

(July 7, 2020) version). All subsequent analysis was performed in R (version 4.0.3) (R Core 

Team. R. A language and environment for statistical computing, 2020) with Bioconductor 

(version 3.12) (10). The DropletUtils package (version 1.10.3) (11) was used to create a 

SingleCellExperiment object from the Cell Ranger output directories and to identify non-

empty droplets. Samples were demultiplexed based on the hashtag oligo (HTO) counts using 

the ‘hashedDrops’ function from DropletUtils with the default parameters. This was 

performed separately for each capture. In parallel, samples were demultiplexed using their 

genetic data by running cellsnp-lite (v1.2.0) (12) and Vireo (v0.5.6) (13). Specifically, reads 

from non-empty droplets were genotyped at 36.6M SNPs with minor allele frequency (MAF) 

> 0.0005 in the 1000 Genomes Project 

(http://ufpr.dl.sourceforge.net/project/cellsnp/SNPlist/genome1K.phase3.SNP_AF5e4.chr1to

X.hg38.vcf.gz) using cellsnp-lite and then vireo assigned each cell barcode to 1 of 8 donors, 

doublets, or unassigned based on these genotypes. This was performed separately for each 

capture and then pairs of donors were matched across captures by identifying the best match 

between captures based on the genotype profile of each donor. As more cells were 

confidently assigned to donors using genetic demultiplexing, the genetic assignments were 

used for downstream analysis. Almost all genetic assignments corresponded to a single HTO, 

which was then used to link each cell’s genetic assignment to a study participant 

(Supplementary Table 2). This dataset will be henceforth referred to as the “CITE-seq data”.  

4.  Flow cytometry protocol and analysis (participants F2-L2) 

BAL samples from seven participants had remaining cells for flow cytometry analysis. 

Following viability stain as described above, cells were then resuspended in human FC-block 

according to manufacturers’ instructions for 5 minutes at room temperature. The antibody 

cocktail (Supplementary Table 3) made up at 2X concentration was added 1:1 with the cells 

and incubated for 30 minutes on ice. Following staining, cells were washed with 2 mL FACS 

buffer and centrifuged at 400 x g for 5min. Cells were then resuspended in 2% PFA for a 

20min fixation on ice, washed, and resuspended in 150µl FACS buffer for acquisition using a 

5L Cytek Aurora. Our protocols for the collection and processing of paediatric BAL for 
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single-cell analysis are publicly available at https://www.protocols.io/workspaces/earlyAIR. 

Flow cytometry results were analysed (manual gating, UMAP) using FlowJo Version 10.8.1 

software. Manual gating was performed according to the gating strategy depicted in 

Supplementary Figure 1. UMAP analysis was conducted using a concatenated file containing 

all live single cells (total 256, 278) from each individual using default parameters within 

FlowJo. Mean expression levels of each protein were exported from FlowJo for each 

manually gated cell type, following which heatmap plotting and unsupervised hierarchical 

clustering was performed using the Morpheus heatmap tool 

(https://software.broadinstitute.org/Morpheus). 

Single-cell sequencing data analysis 

The “scRNA-seq data” was generated from 4 individuals’ samples (participants A1-D1), 

across 4 captures (1 control sample, 3 CF samples). The “CITE-seq data” was generated from 

a further 8 individuals’ samples (participants E2-L2) multiplexed across 2 captures (8 CF 

samples). Both datasets were similarly processed using the R statistical programming 

language (version 4.1.0). As previously described for the “CITE-seq data” in Methods 

Section 2 of Single-cell sequencing and flow cytometry processing, the DropletUtils package 

(version 1.14.1) (10) was used to identify non-empty droplets in the “scRNA-seq data”. This 

was performed separately for each capture. There were 33,538 non-empty droplets across the 

4 samples for the “scRNA-seq data” and 36,601 across the 8 samples for the “CITE-seq 

data”. Quality control was performed on each sample independently by examining the total 

cell number, the total unique molecular identifier (UMI) count distributions, the number of 

unique genes detected, and the proportions of ribosomal and mitochondrial gene counts per 

cell. Droplets with unusually large mitochondrial proportions were identified and removed 

from each sample. Outliers were detected based on being more than 3 median absolute 

deviations (MADs) from the median value of the metric across all droplets in each sample. 

DropletQC (14) was used to detect and tag additional empty droplets; there was convincing 

evidence of additional empty droplets present in the “scRNA-seq data”. The filtered droplets 

from the “scRNA-seq data” and “CITE-seq data” were then combined across 32,732 unique 

genes, resulting in a total of 54,106 unique droplets. 1,558 “uninformative” genes, such as 

mitochondrial genes, ribosomal genes, sex chromosome genes and pseudogenes, were then 

removed. Droplets that were unassigned or doublets based on their genetic profile were 

discarded, along with HTO doublets and the additional DropletQC empty droplets originating 
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from the “scRNA-seq data”, leaving 45,590 droplets. 19,120 genes were retained for 

downstream analysis after genes expressed in less than 20 cells were discarded. 

The droplets were then automatically annotated with cell type labels from the Human Lung 

Cell Atlas (HLCA) versions 1 (https://app.azimuth.hubmapconsortium.org/app/human-lung) 

and 2 (https://app.azimuth.hubmapconsortium.org/app/human-lung-v2) using versions 0.4.1 

and 0.4.4 of the Azimuth online application, respectively. The annotated cells were then split 

into 3 separate data subsets based on their HLCA level 3 labels: “macrophage” (33,161 cells), 

“T/NK” (6,462 cells) and all “other” cells (5,922 cells), to facilitate confirmation of cell 

identity and identification of cellular subpopulations. Genes without associated Entrez 

identifiers were removed at this stage, leaving 16,001 genes for subsequent analyses. 

Each data subset (“macrophage”, “T/NK” and “other” cells) was independently normalised 

with SCTransform (15), integrated, scaled, and clustered using Seurat (version 4.0.6) (16-19). 

Data integration of the 12 samples for each subset of cells was performed using reciprocal 

principal components analysis (RPCA) with the 4 “scRNA-seq data” samples set as 

references, 30 dimensions, 3000 features and 20 neighbours for anchor picking. For the 

“other” cells subset, the number of neighbours to consider when weighting anchors 

(k.weight) was set to the smallest number of cells in a single sample minus one. The cells in 

each subset were clustered using the smart local moving (SLM) algorithm with 30 principal 

components. Ten resolutions between 0.1 and 1 were explored using the clustree  (20) 

package (version 0.4.4); a resolution of 1 was selected for downstream analysis of each data 

subset. This strategy resulted in 23, 18, and 23 subclusters in the “macrophage”, “T/NK” cell, 

and “other” cell data subsets, respectively. The clusters were visualised using Uniform 

Manifold Approximation and Projection (UMAP). The quality of each cluster was assessed 

by examining their Azimuth prediction score distributions, total UMI count distributions and 

the distributions of the total number of unique genes detected.  

Marker gene analysis was performed for each cluster, in each of the data subsets, as 

previously described in Sim et al. 2021 (21), except that a 1.5-fold change cutoff was used for 

the TREAT test. Gene set enrichment analysis of the REACTOME gene sets 

(https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp) was performed for each cluster in 

each data subset using ‘camera’ (22). The antibody derived tag (ADT) data associated with 

the “CITE-seq data” was normalised using the ‘dsb’ (23) method (version 1.0.1) following 

their suggested workflow (https://cran.r-
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project.org/web/packages/dsb/vignettes/end_to_end_workflow.html). The combination of the 

top marker genes, REACTOME pathways and ADT expression for each cluster was used to 

assign them cellular and/or functional identities. The clusters were then consolidated using 

these manually assigned labels. Cells in clusters with no obvious cellular and/or functional 

identity and poor quality control metrics were removed from subsequent analyses. This 

strategy resulted in 14, 12 and 15 manually annotated clusters in the “macrophage”, “T/NK” 

and “other” subsets, respectively. Broad cell type labels were also manually assigned to each 

cluster, resulting in a total of 13 broad cell type labels across the three data subsets. Marker 

genes for the consolidated subpopulations in each data subset were identified using the 

‘Cepo’  (24) method. Differences in composition of macrophage subpopulations between the 

control and CF samples were assessed for statistical significance using the ‘propeller’ test  

(25) from the speckle (version 0.0.3) package (https://github.com/Oshlack/speckle). 

The “macrophage”, “T/NK” and “other” cell data subsets were subsequently combined 

resulting in a total of 44,972 cells. The data were then normalised, integrated, scaled and 

clustered as previously described herein. The subpopulation and broad cell type labels were 

visualised using UMAP. Marker genes for the broad cell types were identified using the 

‘Cepo’ method. Differences in composition of broad cell types between the control and CF 

samples were assessed for statistical significance using ‘propeller’ (25). Cell type proportions 

estimated by flow cytometry and scRNA-seq were compared using the ‘propeller’ approach; 

the proportions were arcsin transformed and linear models fitted using limma, taking the 

paired individual samples into account. The Benjamini-Hochberg procedure (26) was used to 

adjust for multiple testing. 

Pseudobulk samples (27) were generated by adding the counts for each sample, for each cell 

type.  Genes with very low counts were filtered out using the ‘filterByExpr’ function from the 

edgeR package (28) based on the strategy described in Chen et al. (2016) (29), leaving 11,429 

genes. Differential gene expression analysis within macrophages, between the control and CF 

samples, was performed using limma (30) as described in Sim et al. 2021 (21). Briefly, the 

data were transformed using voom (31) with cyclic-loess normalisation; significantly 

differentially expressed genes were then identified using moderated t tests, incorporating 

robust (32) empirical Bayes shrinkage of the variances, followed by TREAT tests (33) with a 

log-fold change cutoff of 0.5 at a false discovery rate (FDR) less than 0.05. Enrichment of 
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gene ontology (GO) terms and REACTOME pathways was tested using ‘gsaseq’ from the 

missMethyl package (34) (version 1.28.0), taking gene length into account. 

All of the code, figures and outputs for the analyses described herein can be viewed at the 

following workflowr  (35) (version 1.7.0) analysis website on GitHub: 

https://oshlacklab.com/paed-cf-cite-seq/. The code, as well as all necessary inputs and outputs 

can be cloned from the GitHub repository associated with the analysis website:  

https://github.com/Oshlack/paed-cf-cite-seq.    
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RESULTS AND DISCUSSION 

1.  Broad immune and epithelial cell profile of the paediatric lung 

Unsupervised clustering of single-cell sequencing data and cell annotation using marker gene 

analysis revealed the following transcriptionally distinct broad cell populations in paediatric 

BAL: alveolar macrophages, proliferating macrophages, monocytes, dendritic cells, 

neutrophils, B cells, CD4 T cells, CD8 T cells, NK cells, NK-T cells, proliferating NK/T 

cells, innate lymphocytes, γδ T cells, mast cells, epithelial cells and endothelial cells (Figure 

1B). Macrophages were the most abundant cell type identified, followed by CD4 T cells, 

proliferating macrophages, CD8 T cells, dendritic cells, innate lymphocytes, B cells, 

monocytes, NK cells and neutrophils. Epithelial cells, NK-T cells, γδ T cells, proliferating 

NK/T cells, mast cells, and endothelial cells were rarer, and not detected in all individuals 

(11/12, 11/12, 9/12, 10/12, 6/12, and 2/12 respectively) (Figure 1C). 

The five most significant marker genes for each broad cell population are shown in Figure 

1D. These marker genes included those described previously for respective cell populations; 

macrophages (CYP27A1, MS4A4A and PPARG), proliferating macrophages and 

proliferating NK/T cells expressing cyclic genes (PCLAF and MKI67), B cells (CD19, 

MS4A1), CD4 T cells (CD3D, CD3E), CD8 T cells (CD8A, CD8B), innate lymphocytes 

(LEF1, XCL1), γδ T cells (TRGC1, GZMK), NK cells (KLRC1, XCL1), NK-T cells 

(KLRC1, CD3D), dendritic cells (CLEC10A, CD1E), monocytes (CSF1R, FCGR2B), mast 

cells (TPSAB1, CPA3), epithelial cells (AGR2, KRT17), and endothelial cells (SPARCL1, 

ACKR1) (6, 7, 36-38). 

Annotation of each cell population was further confirmed by analysis of expression of 

TotalSeq ADTs (Figure 1E). Alveolar macrophages expressed myeloid lineage proteins 

CD172α, CD11c, CD71, HLA-DR, and CD169 as previously reported for alveolar 

macrophages in adults (39, 40). Monocytes were distinguished from macrophages based on 

the pan monocyte marker CD14, as well as the lack of CD71 and CD169. Dendritic cells 

expressed CD11c, CD172α and CD1c; and mast cells expressed known protein markers 

FcεR1α, CD63, and IgE (41). Cells annotated as lymphoid lineage by marker genes expressed 

expected lineage proteins, including B cells (CD19+CD20+), CD4 T cells (CD3+CD5+CD4+), 

CD8 T cells (CD3+CD5+CD8+), γδ T cells (CD3+TCRVδ2+), NK cells (CD3-CD56+) and 

NK-T cells (CD3+CD56+).  Epithelial cells were positive for tissue resident marker CD49b. 
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2.  Comparison of cell proportions by single-cell sequencing and flow cytometry  

To investigate how results obtained by single-cell sequencing compared to those obtained by 

flow cytometry, we directly compared the 7 BAL samples analysed with both techniques. 

Our flow cytometry panel permitted identification of alveolar macrophages, monocytes, 

dendritic cells, neutrophils, B cells, CD4 T cells, CD8 T cells and airway epithelial cells 

across 256,000 live, single cells (Figure 2A). Proportions of alveolar macrophages, 

monocytes, B cells, CD4 T cells, CD8 T cells and airway epithelial cells were generally 

consistent between the two techniques for each individual (Figure 2B-C). However, we 

observed statistically significant differences in the proportion of neutrophils (fold change 

flow vs scRNA-seq: 1.2, FDR=0.006) and dendritic cells (fold change flow vs scRNA-seq: -

1.17, FDR=0.019) (Figure 2C). Due to the low RNA content of neutrophils and previously 

reported challenges in characterising these cells using single-cell technologies such as 10x  

(42), the higher proportion of neutrophils detected by flow cytometry was unsurprising. The 

reduced proportion of dendritic cells detected by flow cytometry compared to scRNA-seq 

was likely due to the absence of key dendritic cell subset markers CD1c and CD123 in our 

flow cytometry panel. Comparable protein expression patterns were observed for common 

surface markers CD3, CD8, CD4, CD19, CD16, CD45, HLADR, CD11c, CD14, CD47 and 

CD279 across the two techniques (Figure 2D). Of note, our flow cytometry panel also 

included several surface proteins not available in the TotalSeq-A cocktail, including CD206 

for alveolar macrophages, CD15 and CD66b for neutrophil subtyping, and EPCAM for 

airway epithelial cells (Figure 2C). Airway macrophages showed auto-fluorescent signatures 

in flow cytometry data as we and others have described previously (8, 43).  

Despite the aforementioned challenges of studying neutrophils by scRNA-seq, we identified a 

population of 252 neutrophil-like cells, to which 7 donors contributed more than 10 cells and 

the remaining 5 fewer than 10 cells. This population mapped to neutrophils identified by a 

publicly available and annotated scRNA-seq dataset of the adult lung (44) and expressed 

inflammatory genes including those encoding for S100 proteins and the IL-1 signalling 

pathway. Protein expression on these cells included CD35, CD55, CLEC12A, CD48, and a 

lack of HLA-DR (Figure 1E). CD55 and CD35 are known to be involved in neutrophil 

phagocytosis (45). Cells in this neutrophil-like population also shared gene and protein 

features with monocytes (genes: FCN1, CD300E; proteins: CD11b and CD14), which has 
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been described for neutrophils previously (46-49). A more extensive panel of neutrophil-

specific ADTs that are not currently included in the TotalSeq A cocktail could be used to 

further characterise this cell type; for example, CD15 and CD66b are protein markers that we 

use to distinguish BAL neutrophils from monocytes by flow cytometry (43). We show by 

flow cytometry that BAL neutrophils can be further subtyped based on CD16 and CD66b 

expression, with CD16-CD66bhigh, CD16+CD66bhigh and CD16+CD66blow subsets identified 

(Supplementary Figure 1, Figure 2D).  

An inherent limitation of our data is that our samples were cryopreserved and thawed prior to 

analysis. This process is known to deplete granulocytes; however, we have shown in previous 

work that cryopreservation of BAL should not affect the yield of other immune cell 

populations (8). As is the case with most clinical studies, our sampling times are 

unpredictable in nature and cryopreservation is unavoidable.  

3.  Identification of functionally distinct alveolar macrophage subpopulations 

As alveolar macrophages are the most abundant immune cell in BAL and are known to 

undergo significant functional development in early life (50), we performed a subclustering 

analysis of our broad alveolar macrophage population (Figure 3A-B). Subclusters were 

annotated based on marker gene analysis (Figure 3C), ADT protein expression (Figure 3D), 

and with reference to what has been described in previous scRNA-seq literature. To further 

confirm annotations and understand subpopulation functionality based on DEGs, we also 

performed REACTOME pathway enrichment analyses for each subtype (51). A list of 

enriched REACTOME pathways in each population is provided in Supplementary Table 4, 

and a full list of cluster marker genes can be found in extended data file 1. 

Our analysis revealed 13 functionally distinct subpopulations of alveolar macrophages, of 

which several have recently been described in adults. Subtypes characterised in the adult lung 

and also identified here include intermediate macrophages expressing both monocyte and 

macrophage genes (macro-int) (7), chemokine-expressing macrophages (macro-CCL) (7), 

interstitial macrophages, and metallothionein-expressing macrophages (macro-MT) (7) 

(Figure 3B). The macro-CCL population in our dataset was enriched for the chemokine-

receptor-bind-chemokines REACTOME pathway, and expressed genes for chemokines 

CCL4, CCL20, CCL23, CXCL5, CXCL8, CXCL9 and CXCL10, further confirming its 

annotation. Interestingly, macro-interstitial, macro-CCL, and macro-int cells expressed high 
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protein levels of CD54 (ICAM1), a transmembrane glycoprotein receptor known to play an 

important role in migration of leukocytes to sites of inflammation (52) (Figure 3D). In 

addition to expressing genes associated with both monocytes and macrophages, the macro-int 

population also expressed proteins associated with both populations, including CD11b, CD48 

and intermediate levels of CD14 (Figure 3D). 

The most abundant functional macrophage subcluster in our data, at a median of 12.8% of 

macrophages, was a population expressing IFN-α/β signalling genes that we denoted as 

macro-IFN-α/β. This cluster was characterised by expression of IFI27 and IGF1 and enriched 

for REACTOME pathways including interferon-alpha-beta signalling. The next most 

abundant subcluster we defined as macro-lipid (9.32% of macrophage), based on enrichment 

of genes (NUPR1, RBP4) and REACTOME pathways associated with lipid digestion and 

transport. The macro-int population described above made up 8.65% of macrophages. We 

also identified other novel rare macrophage subpopulations expressing markers of: viral-

response (IFI44L, IFIT1, RSAD2, CXCL10) denoted as macro-viral; vesicle production 

(AZU1, PLAC8) denoted as macro-vesicle; cholesterol biosynthesis related genes (MSM01, 

FDFT1) denoted as macro-cholesterol; regulatory function (ATF4, GDF15) denoted as 

macro-reg; response to DNA damage (CDKN1A, MDM2) denoted macro-repair; and T cell 

interaction (IL32, TRAC, CD2) denoted as macro-T (Figure 3C). The macro-T population 

expressed macrophage markers CD169, CD172α and CD71 whilst also expressing proteins 

CD8, CD2, and CD103 (Figure 3D). Whilst unconventional, a growing body of evidence 

regarding novel macrophage subpopulations expressing T cell markers has recently emerged 

(53, 54). All macrophage subpopulations were identified in each individual (Figure 3B), and 

there was no statistically significant difference in subcluster proportions between healthy and 

CF samples.  

Overall, our data suggest macrophages in the early lung are highly activated. This is 

evidenced by the identified subclusters, but also enrichment for a range of inflammatory 

pathways including IL-1 signalling, IFNa/b activation, chemokine signalling, and antiviral 

responses. This is consistent with prior studies showing that the upper airway of children 

demonstrates a baseline pre-activated state, characterised by upregulation of antiviral and 

inflammatory signatures compared to adults (55). Our findings demonstrate that children may 

have these pre-activated signatures in the lower airway as well. This may have important 

implications for pathogen response given that the increase in upper airway interferon 
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signatures is thought to contribute to the milder illness with SARS-COV-2 infection seen in 

children.  Whilst these inflammatory signatures were observed in our healthy and CF 

samples, further work characterising the baseline activation state from samples of healthy 

children are required. 

4. Inflammatory CD4 T cell subsets in the paediatric lower airway 

Our initial gene and protein expression analysis in Figure 1 showed broad populations of 

CD4 T cells, CD8 T cells, innate lymphocytes, NK cells, NK-T cells and γδ T cells in BAL 

of children. As with macrophages, we next explored heterogeneity within these T/NK subsets 

using a subclustering approach (Figure 4). Our analysis revealed both known and novel 

subtypes, using marker gene (Figure 4B, extended data file 2), ADT protein expression 

(Figure 4C) and REACTOME pathway analysis (Supplementary Table 5). Previously 

reported subtypes observed by single-cell RNA sequencing of adult lung samples that we also 

observed in our analysis were CD8 Trm, CD8-GZMK, CD4 Treg, γδ T cells, NK cells, NK-T 

cells, innate lymphocytes and proliferating NK/T cells (6, 7, 44). 

Two subtypes of CD8 T cells (CD8 Trm and CD8-GZMK) and NK-T cells showed gene and 

protein markers of lung tissue residency, including surface expression of CD103 and CD49a 

(56) (Figure 4B-C). Conversely, CD4 T cell subsets, NK cells, innate lymphocytes, and γδ T 

cells were negative or only weakly positive for CD103 and CD49a, suggesting they were 

recently recruited from the circulation. Both CD8 Trm and CD8-GZMK subtypes expressed 

genes encoding for cytotoxic proteases GZMA, GZMB, GZMH, GZMM however CD8-

GZMK was the only CD8 subtype to express GZMK. Recent work has shown that patterns of 

cytotoxic molecule expression relate to CD8 T cell differentiation stage, with a lack of GZM 

expression observed in naïve CD8 T cells, the majority of memory CD8 T cells co-expressing 

GZMA/B/M, and a low number of intermediately-differentiated CD8 T cells expressing 

CZMK (57). CD4 T follicular helper (CD4-TFH) cells expressing TFH genes SCGB3A1 and 

PD1 signalling (58) were also identified, however only in one individual (Supplementary 

Figure 2A). 

To our knowledge, we are the first to describe subtypes of CD4 T cells enriched for IFN and 

NFκB signalling genes in the lung. Features of the CD4 T-IFN subtype include marker genes 

IFIT1, IFIT3, RSAD2 (Figure 4B) as well as REACTOME enrichment for interferon and 

antiviral pathways. Features of the CD4 T-NFκB subtype include marker genes TNFRSF4, 
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TNFRSF18, NFKB2 (Figure 4B) as well as REACTOME enrichment for several NFκB 

activation and signalling pathways (Supplementary Table 5). These inflammatory CD4 T 

cells were observed in samples from both health and disease (cystic fibrosis) (Supplementary 

Figure 2A). This highlights that these cells may represent a unique characteristic of the 

paediatric lung and adds further evidence to the concept that the paediatric lower airway is 

primed for inflammatory responses.  

5.  Defining rare cells 

A final subclustering analysis of all other cells (not macrophages, not T/NK) revealed further 

heterogeneity within the rarer DC, B cell and epithelial cell clusters (Figure 5, Supplementary 

Table 6, Supplementary Figure 2B, extended data file 3). DCs were separated into 

conventional DC (cDC1 and cDC2), plasmacytoid DC, and migratory DC, based on 

previously described marker genes (6) and protein expression. cDC1 expressed CLEC9A 

gene and CD141 protein, whilst cDC2 expressed CD1c (59-61). Plasmacytoid DC expressed 

plasmacytoid surface marker CD123, were negative for conventional markers CD1c and 

CD141, and marker genes included CLEC4C and GZMB. Plasma B cells were also 

identified, characterised by key marker genes (JCHAIN, MZB1, TNFRSF17) as well as 

protein expression of plasma markers CD27 and CD38 (62) (Figure 5B-C).   

Whilst BAL predominantly samples immune cells of the lower airway, a small fraction of 

airway epithelial cells was also captured. We identified 4 subtypes of airway epithelial cells: 

ciliated epithelial cells, basal epithelial cells and 2 clusters containing cells of a goblet/club 

phenotype. These were annotated using the recently released Human Lung Cell Atlas 

(HCLA) (6). The ciliated epithelial cell cluster expressed marker genes which are exclusively 

expressed by ciliated columnar cells of the tracheobronchial tree, and multiciliated epithelial 

cells in the HLCA. The basal epithelial cells expressed well-validated marker genes KRT17, 

KRT5, and KRT6a. Two distinct populations expressing a mixture of goblet and club cell 

marker genes were identified. One cluster, denoted as goblet/club cells, expressed marker 

genes including MUC5AC, TFF1, AZGP1, FST, and SYT8 which are expressed by club, 

goblet and mucus secreting cells. Another cluster, denoted as tracheobronchial goblet/club 

cells, expressed the marker gene TSPAN8 which is a HCLA marker gene for both club and 

goblet cells from the lower airway.   

6. Altered macrophage gene expression in cystic fibrosis 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.17.496207doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496207
http://creativecommons.org/licenses/by-nc/4.0/


18 

Previous work in adults showed altered single-cell gene expression signatures in BAL 

macrophages from patients with chronic obstructive pulmonary disease compared to healthy 

controls (63). Furthermore, macrophages have been shown to play a role in adult CF lung 

disease, demonstrating both hyper-inflammatory properties and impaired phagocytic capacity 

(64, 65). As such, we next explored differential gene expression in alveolar macrophages 

from CF samples compared to an age matched healthy control (Figure 6). We recognise the 

limitations of a single control sample and highlight that further studies in larger patient 

cohorts are required.  In our exploratory analysis we showed that alveolar macrophages from 

children with CF show higher expression of genes associated with lung inflammation (IL33, 

CCL15, CCL7. S100A12) (66-69), lung disease and fibrosis (RBMS3, PRRX2, SPP1, FBN1) 

(66, 70-72), and extracellular matrix formation (COL4A1 and its receptor ITGB1) (63, 73). 

Furthermore, compared to control macrophages, CF macrophages show reduced expression 

of genes associated with phagocytosis including IGHA2, IGHG4, IGHM (74), indicating 

impaired function (Figure 6A).  Within the samples from children with CF, we observed 

significant patient-to-patient variability in gene expression which is not explained by sex or 

age (Figure 6B). This variability may be associated with factors such as disease-causing 

genotype, modifier genes, treatments received, and comorbidities (i.e. chronic infections), 

further highlighting the need for assessment of samples from larger cohorts. Recent work in 

adults with CF used scRNA-seq to show that CF sputum samples were characterised by a 

relative abundance of monocyte-derived macrophages and activated monocytes when 

compared with healthy controls (75) . The authors also showed that CF sputum granulocytes 

exhibited an immature hyperinflammatory phenotype with reduced expression marker genes 

of phagocytosis. Combined, these exploratory data provide novel insights into disease 

pathophysiology and highlight the utility of next generation single-cell technologies in 

defining mechanisms of pulmonary disease. 

CONCLUSIONS 

This is the first single-cell analysis of bronchoalveolar lavage from early life and includes 

both RNA and protein. These novel data fill a substantial gap in existing pulmonary scRNA-

seq data. Early life is a crucial period of development for both epithelial and immune cells of 

the pulmonary system. For example, unlike other organs such as the skin, liver and brain 

where the transcriptome of resident macrophages from fetal and adult life are very similar, 

there are substantial differences in the gene expression profiles of fetal and adult lung 
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resident macrophages (76). This highlights childhood as a period where fetal lung resident 

macrophages must develop before eventually exhibiting an adult phenotype. 

The recent release of the HLCA contained a core dataset derived from samples of 107 

individuals, however the youngest of these individuals was 10 years old (6). The HLCA also 

included an extended dataset, however only 6 of the 338 (1.7%) were from individuals 6 

years or less and these samples were not analysed separately to identify specific 

developmental changes. Previous scRNA-seq datasets involving people with CF have also 

focused only on adult samples. Furthermore, the majority of published pulmonary scRNA-

seq datasets are derived from lung tissue or epithelium, allowing unparalleled analysis of 

these cell types but limiting the assessment of the pulmonary immune system. The use of 

bronchoalveolar lavage in our study allowed robust profiling of lower airway immune cell 

populations.  

By integrating transcriptome-wide data, assessment of highly multiplexed surface proteins, 

and functional pathway analysis, we extensively characterised 41 cell populations in the 

bronchoalveolar lavage of children aged 3-6 years. We revealed several novel cell subtypes, 

most notably functional macrophage subpopulations and inflammatory CD4 T cells.  Our 

analysis of paired cell surface protein expression using TotalSeq ADTs and spectral flow 

cytometry further extends current knowledge of lung cell types and provides within-study 

validation of our transcriptomic findings. In addition, our initial analysis identified signatures 

of early life cystic fibrosis lung disease but was limited by the inclusion of only one healthy 

control due to the difficulty in obtaining lower airway samples from healthy children. Further 

work investigating these signatures in larger patient cohorts is required and will be facilitated 

by programs such as the Pediatric Networks for the Human Cell Atlas.  

This study provides the first transcriptional profile of early life lower pulmonary samples and 

provides a reference dataset for researchers investigating the pulmonary immune system in 

childhood and its role in health and disease.  
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FIGURE LEGENDS 

Figure 1.   Broad immune and epithelial cell profile of the paediatric lung. (A) Multimodal 

experimental design: 12 cryopreserved bronchoalveolar (BAL) samples from children aged 3-

6 years were thawed and sorted by FACS for live, single cells. These cells underwent 

scRNA-seq, CITE-seq, or flow cytometry as specified and were analysed to create a cell atlas 

of the paediatric lower airway. (B) UMAP visualisation of broad immune and epithelial cell 

populations, coloured by cell type. (C) Proportions of each broad population in each 

participant (D) Most significant marker genes for each broad population. (E) Expression of 

TotalSeq antibody derived tags (ADT) for immune cell lineage markers in each broad cell 

population for 8 samples that were analysed by CITE-seq. Endothelial cells were only 

identified in 2 participants whose samples were analysed by scRNA-seq, so there is no ADT 

data for this cell type.  

Figure 2. Flow cytometry analysis of BAL samples and comparison with scRNA-seq. (A) 

UMAP depicting major cell populations identified by spectral flow cytometry of 7 samples: 

B cells, CD4 T cells, CD8 T cells, dendritic cells, macrophages, monocytes, neutrophils and 

airway epithelial cells. (B) Cell proportions identified by scRNA-seq and flow cytometry in 

samples from individuals that received both techniques (participants F2-L2). Common cell 

types identified in both datasets are shown. All cell types identified by scRNA-seq are shown 

in Figure 1. (C) Statistical comparison of the difference in proportions identified by flow 

cytometry and scRNA-seq. *indicates cell types where a significant difference was observed. 

(D) Cell type specific protein expression by flow cytometry for markers included in the 

panel: CD15, CD66b, CD16, CD11c, CD14, CD45, CD19, CD47, HLA-DR, CD63, CD172α, 

CD206, CD4, CD4, CD8, CD279 (PD1), and EPCAM.  

Figure 3. Identification of functionally distinct alveolar macrophage subpopulations. (A) 

UMAP visualisation of macrophage subpopulations identified by a subclustering analysis of 

cells within the total macrophage pool. (B) Proportions (as a percent of all macrophages) of 

each macrophage subpopulation in each participant. (C) Most significant marker genes for 

each macrophage subpopulation. (D) Expression of relevant TotalSeq antibody derived tags 

(ADT) in each macrophage subpopulation for 8 samples that were analysed by CITE-seq.  
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Figure 4. Characterisation of distinct T and NK cell subsets. (A) UMAP visualisation of T 

and NK cell subsets identified by a subclustering analysis of cells within the ‘T/NK’ group. 

(B) Most significant marker genes for each identified T and NK cell subset. (C) Expression 

of TotalSeq antibody derived tags (ADT) for T and NK cell markers in each cell subset for 8 

samples that were analysed by CITE-seq. CD4 TFH cells were only identified in 1 participant 

whose sample was analysed by scRNA-seq, so there is no ADT data for this cell type.  

Figure 5. Characterisation of rare myeloid, B cell and epithelial cell population. (A) UMAP 

visualisation of cell subsets identified by a subclustering analysis of cells within the ‘not 

macrophage, not T/NK’ population. (B) Most significant marker genes for each cell subset. 

(C) Expression of relevant TotalSeq antibody derived tags (ADT) in each cell subset for 8 

samples that were analysed by CITE-seq. Endothelial cells were only identified in 2 

participants whose samples were analysed by scRNA-seq, so there is no ADT data for this 

cell type.  

Figure 6. Altered macrophage gene expression in cystic fibrosis. (A) Volcano plot depicting 

differentially expressed genes in the broad macrophage population between healthy and CF 

samples. Red: upregulated in control compared to CF, blue: downregulated in control 

compared to CF, grey: not significantly different between the two groups. (B) Heatmap 

depicting individual expression levels of all 58 differentially expressed genes in the broad 

macrophage population between healthy and CF samples. Variables including disease [CF or 

control], sex [female (F) or male (M)], age [3-6 years], and batch [1 (scRNA-seq) or 2 

(CITE-seq)] are shown. 
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