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Abstract
Background
We provide a reproducible and scalable Snakemake workflow, called RNA-Seq-Pop, which provides end-to-
end analysis of RNA-Seq data sets. The workflow allows the user to perform quality control, differential
expression analyses, call genomic variants and generate a range of summary statistics. Additional options
include the calculation of  allele frequencies of  variants of  interest,  summaries of  genetic variation and
population structure (in measures such as nucleotide diversity, Watterson’s θ, and PCA), and genome wide

selection scans (Fst, PBS), together with clear visualisations. We demonstrate the utility of the workflow by
investigating pyrethroid-resistance in selected strains of the major malaria mosquito,  Anopheles gambiae.
The workflow provides additional modules specifically for An. gambiae, including estimating recent ancestry
and determining the karyotype of common chromosomal inversions.

Results
The Busia lab-colony used for selections was collected in Busia, Uganda, in November 2018. We performed
a comparative analysis of three groups: a parental G24 Busia strain; its deltamethrin-selected G28 offspring;
and the susceptible reference strain Kisumu. Measures of genetic diversity reveal patterns consistent with
that  of  laboratory  colonisation  and  selection,  with  the  parental  Busia  strain  exhibiting  the  highest
nucleotide diversity of 1.04x10-3,  followed by the selected Busia offspring (7.1x10-4),  and finally, Kisumu
(6.2x10-4).  Differential  expression  and  variant  analyses  reveal  that  the  selected  Busia  colony  exhibits  a
number  of  distinct  mechanisms  of  pyrethroid  resistance,  including  the  Vgsc-995S  target-site  mutation,
upregulation of SAP genes, P450s, and a cluster of carboxylesterases. During deltamethrin selections, the
2La  chromosomal  inversion  rose  in  frequency  (from  33%  to  86%),  suggesting  a  link  with  pyrethroid
resistance, which was previously observed in field samples from the same region. RNA-Seq-Pop analysis also
reveals  that  the most  widely-used insecticide-susceptible  An.  gambiae strain,  Kisumu,  appears  to  be a
hybrid strain of An. gambiae and its sibling species An. coluzzii, which should be taken into consideration in
future research.

RNA-Seq-Pop is designed for ease of use, does not require programming skills and integrates the package
manager Conda to ensure that all dependencies are automatically installed for the user. We anticipate that
the workflow will provide a useful tool to facilitate reproducible, transcriptomic studies in An. gambiae and
other taxa.
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Introduction 

Transcriptomics is central to our understanding of how genetic variation influences phenotype (Stark et al.,
2019).  In  recent  years,  RNA-Sequencing  has  replaced  microarray  technologies  for  whole-transcriptome
profiling, providing a relatively unbiased view of transcript expression  (Zhao et al., 2014) with associated
higher sensitivity and greater dynamic range (Lowe et al., 2017). The utility of RNA-seq is exemplified by the
vast amounts of data accruing (Van den Berge et al., 2019), and in the many discoveries it has revealed –
such as the extent of alternative splicing, and the biology of non-coding RNAs (Stark et al., 2019; Wang et
al., 2010; Wang & Burge, 2008). 

In  recent  years,  various  computational  workflows have  been  developed to  analyse  RNA-Seq  data  in  a
reproducible manner  (Lataretu & Hölzer, 2020; Zhang & Jonassen, 2019), however, these workflows are
designed  with  the  primary  aim  of  differential  expression  analysis  (DEA)  and  leave  a  large  amount  of
untapped  sequence-based  information.  In  our  own  area  of  research,  vector  genomics,  a  scan  of  the
literature  revealed  thirty-three  RNA-Sequencing  studies  (supplementary  table  1),  of  which  only  five
interrogated the sequence data (Bonizzoni et al., 2015; David et al., 2014; Faucon et al., 2017; Kang et al.,
2021; Messenger et al., 2021). A barrier to exploiting the full range of information contained within RNA-
Seq  data  sets  has  been  the  absence  of  comprehensive,  user-friendly  pipelines  which  permit  easily
reproducible analysis (Grüning et al., 2018) and enable comparisons across studies.

In  this  study,  using the workflow management  system Snakemake (Mölder  et  al.,  2021),  we present  a
reproducible computational workflow, RNA-Seq-Pop, for the analysis of Illumina RNA-Sequencing datasets.
The workflow is  applicable to any paired-end Illumina RNA-Sequencing data. However, we also present
modules specifically of interest in the analysis of the major malaria mosquito, Anopheles gambiae s.l., and
demonstrate their use in a study of pyrethroid-resistance in a strain of An. gambiae from Busia, Uganda. 

Pyrethroids are the most widely used class of insecticide in malaria control, and over the past two decades,
resistance in malaria vectors has spread throughout sub-Saharan Africa, posing a threat to vector control
efforts  (Ranson,  2017).  In  this  period,  the  incrimination  of  genes  involved  in  insecticide-resistant
phenotypes of  Anopheles gambiae has been primarily based on transcriptomic studies. For many years,
these were performed using microarrays; synthesis of which has highlighted the repeatable overexpression
of  a  handful  of  genes  involved  in  detoxification,  confirming  well-established  cytochrome  P450s  as
candidates, whilst also implicating more diverse genes such as ABC transporters and sensory appendage
proteins  (Ingham et al.,  2018).  Yet to date,  relatively few diagnostic markers have been identified, and
important  genes  have  been  missed  by  standard  transcriptomic  analyses  (Njoroge  et  al.,  2021).  These
shortcomings illustrate the need for a more comprehensive approach to marker discovery. While whole-
genome sequencing is providing valuable information on known and novel resistance variants (Clarkson et
al., 2021; The Anopheles gambiae 1000 Genomes Consortium, 2020) exploiting the sequence data within
RNA-Seq can help bridge the step from transcriptomics to genomics.

In Uganda, pyrethroid resistance has escalated in recent years (Lynd et al., 2019; Tchouakui et al., 2021). As
well as the Vgsc-995S mutation, which has repeatedly been associated with pyrethroid-resistance,  recent
genomic  studies  from  this  region  have  shown  that  a  triple-mutant  haplotype,  linking  a  transposable
element, a gene duplication  (Cyp6aa1) and a non-synonymous mutation  Cyp6p4-I236M, is an important
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marker of pyrethroid resistance  (Njoroge et al., 2021). A SNP-array based GWAS also demonstrated the
Cyp4J5-L43F  mutation to be  a  useful  marker  for  insecticide resistance,  whilst  also implicating the  2La
inversion  karyotype  as  a  potential  marker  (Weetman  et  al.,  2018).  We  use  RNA-Seq-Pop to  uncover
patterns  of  insecticide  resistance  in  Ugandan  An.  gambiae,  monitoring  these  resistance-associated
mutations, whilst performing differential expression analyses, summarising genetic variation and ancestry,
and karyotyping chromosomal inversions.

Materials & Methods
RNA-Seq-Pop implementation
We designed the  RNA-Seq-Pop workflow according to Snakemake best practices  (Köster, 2022).  RNA-Seq-
Pop is constructed with a single configuration file in human-readable yaml format (the config file), alongside
a simple tab-separated text file containing sample metadata (the sample sheet). The overall  RNA-Seq-Pop
workflow is shown in figure 1.
Dependencies  are  internally  managed by  the package manager Conda;  to  install  all  required software,
specify  the  --use-conda  directive  at  the  command  line,  and  Conda  will  automatically  create  isolated
software environments in which to run. As of v1.0.0, RNA-Seq-Pop modules are written in Python (75% of
the  codebase)  and  R  (25%),  and  internally,  the  workflow  utilises  a  library  (RNASeqPopTools)  which
providethe infrastructure to the Python codebase, to ensure readability. We provide a tutorial in the GitHub
wiki to guide users on how to set up and run RNA-Seq-Pop.  
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Quality Control
The workflow begins by checking concordance between the user-provided sample metadata, configuration
file, and reference and fastq files. Quality control metrics of fastq files are calculated with fastqc (Andrews,
2010), and logs and statistics from eight tools in the workflow are integrated into a report with MultiQC
(Ewels et al., 2016). Raw fastq reads may be optionally trimmed with cutadapt (Martin, 2011).

Differential expression
Trimmed reads are aligned to the reference transcriptome with Kallisto (Bray et al., 2015) and differential
expression performed at the gene-level with DESeq2 (Love et al., 2014) and at the isoform-level with sleuth
(Pimentel et al., 2017). The gene-level counts are normalised to account for sequencing depth, and principal
components analysis (PCA) and Pearson’s correlation performed among all samples, and on subsets of the
user-selected treatment groups used in differential expression analysis. Plots of these analyses are useful for

5

Figure 1: The RNA-Seq-Pop workflow and example outputs. The workflow has been designed for ease of 
use, requiring only a configuration file to set up workflow choices and a sample sheet to provide sample 
metadata. Modules highlighted in green are specific to An. gambiae s.l.
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exploratory data visualisation, providing an additional quality control step to ensure expected relationships
between  samples.  RNA-Seq-Pop  combines differential  expression  results  from  multiple  pairwise
comparisons into a Microsoft Excel  spreadsheet for the user,  as well  as generating individual  .csv files,
volcano plots, and identifying the number of differentially expressed genes at various FDR-adjusted p-value
thresholds.  We  use  the  R  package  fgsea (Korotkevich  et  al.,  2021) for  GO  term  and  KEGG  pathway
enrichment analysis, on the most highly ranked genes based on differential expression (FDR-adjusted) p-
values and, and optionally FST values.

Variant calling
Reads are aligned to the reference genome with HISAT2 (Kim et al., 2019) and read duplicates marked with
samblaster (Faust  & Hall,  2014) producing  binary  alignment  files  (BAM),  which are  sorted by  genomic
coordinate and indexed with SAMtools v1.19 (Danecek et al., 2021). SNPs are then called with the Bayesian
haplotype-based caller  freebayes v1.3.2  (Garrison & Marth, 2012). SNPs are called jointly on all samples,
with different treatment groups called as separate populations, at the ploidy level provided by the user in
the configuration file.  The workflow internally  parallelises  freebayes by splitting the genome into small
regions, greatly reducing overall computation time. The separated genomic regions are then concatenated
with bcftools v1.19 (Danecek et al., 2021) and the final VCF piped through vcfuniq (Garrison et al., 2021), to
filter out any duplicate calls that may occur at the genomic intervals between chunks. Called variants are
then annotated using snpEff v5.0 (Cingolani et al., 2012).

Variant analysis & selection
RNA-Seq-Pop can then perform analyses on the variants called by freebayes. We apply filters to the data,
including  restricting  to  SNPs  (excluding  indel  calls)  and  applying  missingness  and  quality  filters.  We
recommend using a quality score of 30 and a missingness proportion of 1, meaning a variant call (reference
or alternate allele) must be present in each sample, i.e there are no missing allele calls. For each pairwise
comparison specified in the config file, the workflow can perform a windowed Hudson’s FST scan (Bhatia et
al.,  2013;  Hudson  et  al.,  1992) along  each  chromosomal  arm,  outputting windowed  FST estimates  and
genome-wide plots.  Population branch statistic (PBS)  scans may also be performed,  conditional  on the
presence of three suitable populations for the phenotype(s) of interest (Yi et al., 2010). It is also possible to
run Hudson’s FST and PBS scans, taking the average for each protein-coding gene, rather than in windows. All
population genetic statistics are calculated in scikit-allel v1.2.1. (Miles & Harding, 2017). We also provide a
script (geneScan.py) to interrogate the VCF files, reporting missense variants from any gene of the user’s
choice. A tab-separated file of variants of interest can be provided, from which the workflow will produce
allele frequency heatmaps for each biological replicate and averaged across treatment groups. We define
the expressed allele balance as the allele frequency at a genomic location in the aligned read data – for this
analysis,  RNA-Seq-Pop does not use variants called by  freebayes,  but instead calculates the proportion of
each allele directly in bam files. An example variant of interest file for An. gambiae is provided in the RNA-
Seq-Pop GitHub repository. 

All analyses described thus far can be conducted across all taxa of any ploidy, requiring only a reference
genome (.fa), transcriptome (.fa), and genome annotation files (.gff3). 
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Anopheles gambiae s.l specific analyses
For  Anopheles gambiae s.l  datasets we have exploited the  Anopheles gambiae 1000 genomes resource
(Miles et al., 2017; The Anopheles gambiae 1000 Genomes Consortium, 2020), to incorporate H12 and iHS
(Garud et al., 2015) genomic selective sweep analysis. The workflow outputs the differentially expressed
gene’s  genomic  location,  the  specific  sweep signals  present  in  the  Ag1000g  resource  at  that  genomic
location, and whether the region is a known insecticide resistance-associated locus. We caution that this
kind of analysis is exploratory: many genes will be contained within selective sweeps, and may not have a
causal link to phenotypic variation.

Population structure, ancestry and karyotyping
To investigate population structure, we apply SNP quality and missingness filters to the SNP data, which can
be configured by the user. Multiple measures of population genetic diversity are estimated for each sample,
such as nucleotide diversity (π),  Watterson’s θ  (Watterson, 1975),  and inbreeding coefficients.  We then
prune SNPs in high linkage by excluding variants above an R2  threshold of 0.01 in sliding windows of 500
SNPs with a step size of 250 SNPs, and perform a PCA on the remaining SNPs. If the analysed species is An.
gambiae,  An.  coluzzii,  or  An.  arabiensis, the  pipeline  can  implement  an  analysis  of  putative  ancestry
informative markers  (AIMs).  The AIMs were derived from two different datasets.  The  An. gambiae/An.
coluzzii AIMs derive from the 16 genomes project (Neafsey et al., 2015) and in West Africa may distinguish
between individuals with An. gambiae or An. coluzzii ancestry. The An. gambcolu/An. arabiensis AIMs are
derived from phase 3 of the Anopheles gambiae 1000 genomes project, and distinguish between individuals
with either An. gambiae or An. coluzzi ancestry from An. arabiensis. The relative proportion of ancestry is
reported and visualised for the whole genome by chromosome. We modified the program compkaryo (Love
et al., 2019) to enable the identification of common inversions on chromosome 2 in pooled samples.

Busia RNA-Seq
Mosquito lines
We  used  a  pyrethroid-resistant  colony  of  Anopheles  gambiae  s.s from  Busia,  Uganda,  alongside  the
standard multi-insecticide-susceptible reference strain, Kisumu. After 24 generations in colony, we stored
RNA from the Busia strain (Busia parental), and selected the remaining colony using 0.05% deltamethrin
papers in WHO tube assays for  4 generations (full  details  of  the selection regime can be found in the
supplementary text 2). We exposed females from the selected generation (G28) for one hour to 0.05%
deltamethrin WHO papers using standard protocols, left for 24 hours post-exposure, and survivors were
stored at -80°C prior to RNA extraction (Busia selected). Unexposed, age-matched Kisumu females were
used as controls and stored in -80°C prior to RNA extraction.

Library prep
We extracted RNA from pools  of  five,  4-day old female mosquitoes using a Picopure RNA isolation kit
(Arcturus, Applied Biosystems, USA). We performed six replicates for each Busia-derived treatment group,
and four for Kisumu. Library quality and quantity were determined on a Tapestation 2200 (Agilent, UK) using
high sensitivity RNA screentape. Paired-end 150bp RNA-Sequencing libraries were prepared and sequenced
by Novogene (https://en.novogene.com/), on an Illumina NovaSeq 6000 system.
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Results
Busia resistance phenotyping
The parental G24  An. gambiae Busia strain had lost much of its pyrethroid resistance during the time in
culture and exhibited susceptibility to deltamethrin (100% mortality, 96.3-100 95% CIs) and low-prevalence
resistance to permethrin (92.6% mortality, 85.6-96.4 95% CIs). Four generations of deltamethrin selections,
demonstrated this loss to be readily reversible and resulted in a G28 selected Busia strain that showed
increased resistance to both deltamethrin (69.7% mortality,  63.2-75.6 95% CIs)  and permethrin  (21.7%
mortality, 14.9-30.5 95% CIs) when exposed for one hour in WHO tube assays. We compared the two Busia
strains to one another, and to the pyrethroid-susceptible reference strain, Kisumu. 

RNA-Sequencing
As an illustrative example of the modules and output of the RNA-Seq-Pop workflow, we will describe the
analysis of the Busia RNA-Seq dataset.  

Quality control
We used  RNA-Seq-Pop to  import  FASTQ data  files  into FastQC  (Andrews,  2010)  to  determine levels  of
adaptor content, quality scores, sequence duplication levels and GC content in the raw read data. After
genome alignment, we applied rseqQC and SAMtools to collect mapping statistics from the resulting BAM
files. We then integrated MultiQC into the workflow, which collates statistics and results from eight tools to
generate  a  convenient,  interactive  (.html)  quality  control  report.  Figure  2  shows reports  generated  by
multiQC on the Busia An. gambiae dataset. 
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We removed adapter sequences from the paired-end reads and aligned them to the  Anopheles gambiae
PEST reference transcriptome (AgamP4.12) (Figure 2b). 844.25 million reads were processed in total, with
727.84 million successfully aligned, giving an overall  85.58% alignment rate (+/- 0.206% standard error)
across sixteen total replicates. The breakdown of reads counted per sample can be found in supplementary
Figure 3. 

As a further quality control step, and to uncover the overarching relationships of gene expression between
samples,  RNA-Seq-Pop performs  a  principal  components  analysis  (Figure  3a),  and  a  sample-to-sample
correlation  heatmap  (Figure  3b)  on  the  DESeq2  normalised  count  data.  In  both  analyses,  biological
replicates of each treatment group clustered together, supporting robust replication in these samples.

9

Figure 2: MultiQC captures quality control  statistics from across the  RNA-Seq-Pop workflow. a) per-base sequence
content  as  calculated  by  FASTQC  b)  Total  reads  and  number  of  successfully  aligned  reads  to  the  reference
transcriptome by Kallisto. c) The number of reads that were successfully mapped to the reference genome with HISAT2
d) The proportion of missense, synonymous and nonsense SNPs reported by snpEff.
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Differential expression
We compared the selected Busia strain primarily
to  the  parental  strain,  and  also  to  the  lab-
susceptible  Kisumu,  which  provides  a  cross-
reference with earlier studies, as well as an extra
level of filtering to identify candidate genes. Our
DESeq2 differential expression analysis (Wald test)
identified  5416  differentially  expressed  genes
between Kisumu and the parental Busia line and
5657  between  the  parental  Busia  and  selected
Busia.  The  full  table  of  differentially  expressed
genes  in  all  comparisons  can  be  found  in  the
supplementary  file  S1,  and  volcano  plots  in
supplementary figures 4a, b, c.

The  high  sequencing  depth  performed  provides
ample power to detect differences in expression.
For  example,  a  number  of  genes  belonging  to
candidate detoxification families that are known to
interact  with  insecticides  were  significantly

10

Figure  4:  A  volcano plot  showing  gene expression  differences
between Busia Parental and Busia Selected. -Log10 P-values are
plotted against Log2 Fold Change. Red=genes with adjusted p-
value < 0.05 and an absolute fold change > 2,  green= adjusted
pvalue > 0.05 and a fold change > 2, blue= adjusted pvalue >
0.05 and a fold change < 2. An outlier (AGAP012637) has been
removed for visualisation purposes.

Figure 3: Exploratory sample clustering. a) Principal Components Analysis of the normalised read count data, showing
clear separation between conditions b) A sample-to-sample Pearson’s correlation heatmap of normalised read counts
assigned  to  each  biological  replicate,  dendrograms  show  heirarchical  clustering  applied  directly  to  Pearson’s
correlations
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differentially expressed, for example, 51 cytochrome P450s, 23 carboxylesterases and 20 ABC transporters.
All  three  sensory  appendage  protein  (Sap) genes  in  the  An.  gambiae genome  were  significantly
overexpressed in the selected Busia strain compared to the parental Busia line.  Sap2 showed 10.7 fold
overexpression (6.5-17.5 95% CIs), while Sap1 exhibited 1.8-fold (1.36-2.44 95% CIs) and Sap3 2-fold (1.58–
2.51 95% CIs) overexpression.

Using an option within  RNA-Seq-Pop  that compares expression trends across multiple comparisons,  we
identified a  cluster of carboxylesterases which were overexpressed in Busia (G24) vs Kisumu and in Busia
(G28) vs Busia (G24). In the latter comparison,  Coebe2c showed a fold change of 1.69 (1.3-2.1 95% CIs),
Coebe3c 3.05 (1.6-5.9 95% CIs) and  Coebe4c 1.61 (1.2-2.2 95% CIs). We examined whether any selective
sweeps were observed around these loci in the Ag1000g phase 1 data set and identified one in the  An.
gambiae Gabon population, although not in the Ugandan sample.

Variant calling
We enabled RNA-Seq-Pop to call genomic variants with freebayes and output data in VCF format. Across all
chromosomes,  and  after  filtering,  RNA-Seq-Pop called  734,269  variants.  Figure  5  shows  a  visual
representation  of  genome  composition  in  the  Anopheles  gambiae  PEST  reference genome,  and  the
proportion of  SNPs covered by each genomic  feature  in our  genotype calls.  The  An. gambiae genome
consists of 54% intergenic and 46% genic sequence (of which 14% are exonic, and 32% intronic). Given the
nature  of  RNA-Seq,  we  expected  to  primarily  find  SNPs  in  coding  regions  of  the  genome,  which  are
expressed. Indeed, of these 734,269 variants, we find 73% residing within exons, 11% in introns, and 16% in
intergenic regions. The finding of 16% of SNPs in intergenic regions is likely to be explained by expression of
non-coding  RNAs,  and  the  misannotation  of  transcripts  –  particularly  5’  and  3’  UTRs.  The  workflow
automatically annotates the called variants with snpEff - across all exons, 16.4% of variants were annotated
as non-synonymous, and 58.1% as synonymous. 

There was a positive correlation between read counts per gene, and the number of called SNPs per gene
when controlling for gene size (GLM - coef=0.135, pval=2.2e-36, supplementary Table 5). A PCA based upon
read  count  data,  was  not  qualitatively  different  from  the  PCA  on  expression  data  (Figure  3  and
supplementary Figure 6).
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Figure 5: SNPs from RNA-Seq are enriched in transcribed regions. Illustration of the proportion of SNPs found within
each  genomic  feature  in  the  AgamP4  reference  genome  (Upper  panel)  and  in  the  combined  Busia  and  Kisumu
Anopheles gambiae RNA-Seq dataset (Lower panel). 
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Genetic diversity
Table  1  shows  genome-wide  nucleotide  diversity  (π)  and  Watterson’s  θ,  averaged  across  20kb  non-
overlapping windows. To standardise sample size we down-sampled both Busia strains from six to four
replicates. Both measures of genetic diversity were significantly lower in the Kisumu strain compared to the
two Busia strains, as would be expected after a long history of laboratory colonisation. The selected Busia
line also shows a reduction in genetic diversity compared to its founding strain, the parental Busia colony.

Known insecticide resistance variants of interest
If provided with a list of user-defined variants of interest, RNA-Seq-Pop will generate reports and plots of
allele balance (the allele frequency found in the read alignments). For our variants of interest, we curated a
selection of SNPs which have been associated with insecticide resistance in previous studies. Figure 6 shows
allele frequencies of variants of interest across all  samples. We show that over the four generations of
selections, the frequency of the Vgsc-995S kdr allele increased from 25% (95% CIs: 21.5-29.8%) in G24 to
fixation (100%) in the selected G28 Busia strain. In agreement with recent work from the Ag1000g project,
we found no known secondary kdr mutations alongside the Vgsc-995S allele (Clarkson et al., 2021).

Figure 6: Variants of Interest. A heatmap showing allele frequencies of variants of interest found in read data in a)
each sample and b) overall average allele frequency across strains. Blank cells indicate that the mutant allele was not
detected despite reads across that genomic position. 
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Table 1: Genetic Diversity. Average measures of genetic diversity, calculated in 20kb overlapping windows,
across chromosomal arms. a) π, Nucleotide diversity b) Θ, Watterson’s theta 

π (95% CIs) Θ (95% CIs)

Busia Parental 1.04x10-3  (1.02x10-3-1.07x10-3) 7.4x10-4  (7.23x10-4-7.57x10-4)
Busia Selected 7.07x10-4  (6.87x10-4-7.27x10-4) 5.51x10-4 (5.37x10-4-5.65x10-4)

Kisumu 6.18x10-4  (6.0x10-4-6.35x10-4) 4.06x10-4  (3.95x10-4-4.18x10-4)
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In addition, the Cyp4j5-L43F mutation, previously associated with insecticide resistance in Uganda, showed
a large increase in frequency after the selection regime, increasing from an average frequency of 43% (95%
CIs: 32-54%) to 98% (95% CIs: 94-100%). The  Gste2-I114T mutation, associated with DDT resistance, was
absent in both Busia strains, however surprisingly, it was present at high frequency (92%) in the pyrethroid
susceptible Kisumu reference strain. Another mutation, Gste2-L119V, increased in frequency from 11% (95%
CIs: 9-13%) to 52% (95% CIs: 47-58%). The Cyp6p4-I236M mutation, linked to a swept haplotype in Uganda,
was present in Busia samples, but there was no significant difference in frequency between the parental
(39%, 95% CIs: 29-53%) and selected groups (38%, 95% CIs: 26-52%). In agreement with these differences in

frequency of known insecticide-resistance variants, we find Fst values in both the Vgsc and Cyp4J5 genes in
the top 5% percentile between the G24 parental Busia strain and the G28 selected Busia strain, but not in
Cyp6P4 (89th percentile).

The  Ace-1-G280S mutation was absent from all  samples. A single allele of the  rdl-A296G mutation was
detected in the Parental Busia strain, however, this could have resulted from a base-calling error in the
sequencing  reads.  Complete  allele  balance  data  for  all  variants  of  interest  can  be  found  in  the
supplementary file S2. We looked within the primary candidate gene from differential expression analysis,
Sap2, for allele frequency changes, but no non-synonymous variants were present in the data. 

Selection
The  workflow permits  calculation of  Fst and  the  population branch  statistic  (PBS)  both  in  windows as
genome-wide  selection  scans  (GWSS)  and  within  each  gene.  In  the  context  of  insecticide  resistance,
finding regions of high genetic differentiation between susceptible and resistant mosquito populations can

allow us to identify loci or variants that contribute to the phenotype. We found high overall levels of  Fst

between the parental Busia and the selected Busia, however,  Fst on chromosomal arm 2L was especially
elevated as compared to the other arms (supplementary Table 8). In the Busia data, the GWSS’s exhibit a
large degree of noise, which may result from the inbred nature of the colonies used in this analysis. In other
datasets from F1 An. gambiae (examples in supplementary figure 11), the genome-wide selection scans are
able to capture signals at sites of known selective sweeps.

Chromosomal Inversions
We estimated the karyotype of the samples with compkaryo for the 2La and 2Rb chromosomal inversions,
by  extracting karyotype-tagging  SNPs.  We focus on these two inversions  because both contain  a  large
number of tagging SNPs, providing confidence in the overall  calls.  Figure 7 shows a diagram of the  An.
gambiae genome, with the location and average karyotype frequency per group. After the four generations
of  selections,  the 2La inversion rose significantly  in frequency from an average of  33% to 86% (Mann-
Whitney U, Adjusted P-value = 0.014), where 0% means no 2La alleles across all tagSNP loci, and 100%
means  all  2La  alleles  across  all  tagSNP loci.  The  frequency  of  the  2Rb  inversion  was  also  significantly
different  between  Kisumu  and  both  Busia  colonies  (Mann-Whitney  U,  Adjusted  P-values  <  0.05).
Supplementary figure 10 shows the per-replicate karyotype frequency. 
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Ancestry 
Ancestry informative markers are SNPs which show fixed (or almost fixed) differences between species.
RNA-Seq-Pop can utilise sets of Ancestry Informative markers to investigate the proportion of ancestry for
each  chromosome assigned  to  either  An.  gambiae, An.  coluzzii  or  An.  arabiensis.  Figure  7  shows  the
position of called AIM alleles that map to either An. gambiae or An. coluzzii across the genome. This shows
that the Busia samples were primarily of An. gambiae s.s ancestry across all chromosomes, in concordance
with the X chromosome-based SINE species ID assay (Santolomazza et al., 2008). However, the pattern was
markedly different for the susceptible reference strain, Kisumu, which showed a large degree of putative An.
coluzzii ancestry on the autosomes (supplementary table 9). 

Discussion
RNA-Seq-Pop Implementation
RNA-Seq-Pop  encompasses a complete workflow for RNA-Sequencing analysis,  from quality  control  and
read trimming, to transcript quantification and differential expression analysis (DEA). However, as well as
conducting traditional differential expression analyses at both the gene and isoform level,  RNA-Seq-Pop
exploits useful, but often ignored sequence data.

RNA-Seq-Pop is  designed for  ease  of  use,  requiring  only  a  sample  metadata  sheet and a  yaml  format
configuration file. A single command in the terminal will automatically install all dependencies and run the
workflow, which is scaled by Snakemake to run on a personal computer, cluster or cloud environment. The
workflow  is  applicable  to  any  Illumina  paired-end  RNA-Sequencing  data,  and  is  flexible,  allowing  for
variation  in  ploidy;  including  haploid,  diploid,  or  pooled  samples.  We  have  written  RNA-Seq-Pop in
accordance with Snakemake best practices (Köster, 2022), and hope that it is an intuitive program, readily
configured by the user to allow reproducible transcriptomic analyses. To increase accessibility RNA-Seq-Pop
is written in python and R, the two most popular programming languages in the life sciences.

Decreasing sequencing costs have facilitated the proliferation of genomic surveillance in infectious disease
research  (Neafsey et al.,  2021). The specific modules within  RNA-Seq-Pop,  which are readily adapted to
other organisms, allow us to investigate novel variants that may be involved in our phenotype of interest

14

Figure 7: Ancestry and karyotyping. Left) A diagram of the mosquito chromosomal arms, including heterochromatin
regions (black). Ancestry informative markers that are indicative of either An. gambiae (red) or An. coluzzii (blue) are
displayed as  vertical  lines.  The major  inversions 2La and 2Rb are displayed,  along with  their  respective average
frequency amongst treatment groups, as called by the program compkaryo. Right) A donut chart of the proportion of
ancestry informative markers that are indicative of either An. gambiae (red) or An. coluzzii  (blue) ancestry for each
sample. The overall proportion of gambiae alleles (%) and the number of called AIMs (n=) per group is labelled.
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(insecticide  resistance),  while  simultaneously  producing  data  on  known  resistance  variants  which  can
provide actionable information for malaria control programme personnel. For An. gambiae s.l, we provide a
versioned variants of interest file in the GitHub repository, which we will update with additional resistance
or  disease transmission-related  variants.  As  well  as  highlighting known variants,  RNA-Seq-Pop  can also

perform genome-wide selections scans, using  Fst (Bhatia et al., 2013) and the Population Branch statistic,
PBS  (Yi et al.,  2010), highlighting known and novel regions of the genome that may be involved in the
phenotype of interest.

For the major malaria  vector,  An. gambiae s.l,  RNA-Seq-Pop can determine the karyotype frequency of
chromosomal inversions, utilising the program  compKaryo (Love  et al.,  2019).  An. gambiae s.l has been
shown to harbour a number of  segregating chromosomal  inversions,  which have been associated with
environmental  heterogeneity,  susceptibility  to  Plasmodium infection,  and  with  insecticide  resistance
(Coluzzii  et  al.,  1979,  Riehle  et  al.,  2017,  Weetman  et  al.,  2018).  Typically,  we  can  only  detect  these
inversions through molecular PCR-based assays (of which many do not exist for the range of inversions
karyotyped by  compKaryo) or laborious and technically challenging cytologic experiments (Coluzzi  et al.,
2002, White et al., 2007), although recent approaches using tagging SNP panels appear promising (Love et
al., 2020). 

We can also  illuminate  the putative  ancestry  of  our  samples.  This  is  of  particular  interest  as  the two
recently-diverged sibling species  An. gambiae and  An. coluzzii, may often hybridise, and have undergone
extensive introgression in the recent past  (Fontaine et al., 2015; Vicente et al., 2017), allowing resistance
alleles to cross from one species to another (Clarkson et al., 2014; Grau-Bové et al., 2020, 2021). Despite
this, molecular assays typically target only a single marker on the X chromosome, ignoring the potential for
admixture elsewhere in the genome (Caputo et al., 2021; Chabi et al., 2019; Santolamazza et al., 2008).

Patterns of resistance in the Busia dataset
The differential expression analysis highlighted a multitude of detoxification genes overexpressed in the
selected  Busia  line,  including  cytochrome  P450s,  carboxylesterases,  chemosensory  proteins,  and  ABC
transporters,  reflecting  the  polygenic  nature  of  insecticide  resistance.  Many  P450  genes  were  ≈2  fold
overexpressed and it is not known whether this is due to constitutive differences between the strains, or
induction  by  deltamethrin  exposure  in  the  G28  Busia  strain.  The  Sap2 gene  in  particular  was  highly
overexpressed (10.7 fold after deltamethrin selections), and thus serves as a strong candidate for pyrethroid
resistance outside of the West African An. coluzzii populations in which it was originally identified (Ingham
et al., 2020).

The fixation of the Vgsc-995S kdr allele following selection is as predicted given its known association with
pyrethroid resistance. Interestingly,  the selected Busia strain shows a much stronger phenotype against
permethrin than deltamethrin, which could partially be a result of this mutation. Earlier studies have shown
a stronger protective effect of the Vgsc-995S allele against permethrin than deltamethrin (Lynd et al., 2010).

In agreement with this shift in Vgsc-995S frequency, we find high Fst in the Vgsc between the parental and
selected Busia colonies. The Vgsc is not differentially expressed between the parental Busia strain and the
selected Busia, meaning this result would have been missed using differential expression analyses alone. 
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During deltamethrin selections, the 2La inversion rose in frequency dramatically, suggesting an association
with deltamethrin resistance in Busia. Associations between the 2La inversion and insecticide resistance
have been previously reported (Weetman et al., 2018). We also find a large shift in Cyp4J5-L43F mutation

frequency, which lies within the 2La inversion and a very high Fst in this gene (0.59). Interestingly, the gene
is  also differentially  expressed,  perhaps suggesting that the 2La  haplotypic  background results  in  over-
transcription of the gene when compared to 2L+a haplotypes. It is not clear whether Cyp4J5 is causative, or
if there are other variants on the 2La haplotype(s) that are driving this shift in 2La. In agreement with this

and the shift in  kdr,  we find high overall  Fst between the parental  and selected Busia lines  on the 2L
chromosomal arm (supplementary Table 8).

Interestingly, RNA-Seq-Pop revealed that the Kisumu reference strain, exhibits a large proportion of putative
An. coluzzii  ancestry. The Kisumu reference strain was colonised from Kisumu, Kenya in 1975 (Williams et
al., 2019) from an area where An. coluzzii has not been recorded. The most parsimonious explanation is that
the colony has been contaminated through hybridization in the insectary during its long colonisation. The X
chromosome is  typically resistant to introgression, and consistent with a theory of a lab contamination
event no  An. coluzzii  variants are found on the X chromosome.  The X chromosome of Kisumu also has a
particularly  low  estimate  of  Watterson’s  Θ  compared  to  the  autosomes,  which  may  reflect  admixture
present  on the autosomes (supplementary  table  7A).  In  addition,  we  also find that  the  Kisumu strain
contains the  Gste2-114T mutation at high frequency. In agreement with this finding, recent data shows
intermittent resistance to DDT in this strain  (Williams et al.,  2019).  We also observe some putative  An.
coluzzii alleles in the two Busia strains. Whilst we cannot rule out other explanations, this set of ancestry
informative  markers  were  derived  from  Mali,  and  therefore  it  is  likely  that  some  may  not  be  truly
informative of ancestry outside of this population. 

Estimated population allele frequencies derived from RNA-Seq data may not accurately reflect DNA-based
allele frequencies. Allele-specific expression is one cause of this, where two or more alleles in a diploid or
polyploid may be expressed at different levels, causing an imbalance. Despite this, previous studies have
shown a strong correlation between expressed and true allele frequencies, particularly at higher sequencing
depth (Jehl et al., 2021; Lopez-Maestre et al., 2016; Oikkonen & Lise, 2017; Quinn et al., 2013). In this study,
we performed RNASeq at a high sequencing depth, and therefore can have more confidence overall in our
genotype calls and subsequent analyses. We recommend generally that for differential expression analyses,
low coverage RNA-Sequencing is  sufficient (10-25 million reads,  or  5-13.5X coverage for  An. gambiae),
whereas for variant analyses, higher coverage is preferred (25-60 million reads, or 13.5-32.4X coverage for
An. gambiae). 

Data accessibility
The workflow is  hosted at  https://github.com/sanjaynagi/rna-seq-  pop  .  We welcome and encourage any
feedback or contributions to  RNA-Seq-Pop.  The variant of interest file is versioned and is included in the
GitHub  repository.  Raw  sequence  data  is  deposited  at  the  ENA  under  BioProject  PRJNA748581.  The
modified version of compKaryo is found here https://github.com/sanjaynagi/compkaryo. 
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