1	A library of promoter-gfp fusion reporters for studying systemic
2	expression pattern of cyclic-di-GMP metabolism-related genes in
3	Pseudomonas aeruginosa
4	
5	Dejian Liu ^{1, 2} , Di Wang ¹ , Qing Wei ¹ , Yu Zhang ¹ , Luyan Z Ma ^{1, 2*}
6	
7	¹ State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese
8	Academy of Sciences, Beijing 100101, China
9	² University of Chinese Academy of Sciences, Beijing 100049, China
10	
11	*Correspondence author: Luyan Z. Ma, <u>luyanma27@im.ac.cn</u>
12 13	
14	
15	
16	
17	
18	
19	
20	
21	
22	

24 Abstract

25 The opportunistic pathogen *Pseudomonas aeruginosa* is an environmental 26 microorganism, which is notorious for its resistance or tolerance to antibiotics due to 27 the formation of biofilms. Cyclic diguanosine monophosphate (c-di-GMP) is a 28 bacterial second messenger that plays critical roles in biofilm formation. P. 29 aeruginosa contains 41 genes that encode enzymes to participate in the metabolism of 30 c-di-GMP (biosynthesis or degradation), yet it lacks tools to investigate the systemic 31 expression pattern of those genes. Here, we constructed a promoter-gfp transcriptional 32 fusion reporters' library that consists of 41 reporter plasmids. Each plasmid contains a 33 promoter of corresponding c-di-GMP metabolism-related (CMR) genes from P. 34 aeruginosa PAO1 strain, thus each promoter-Gfp fusion reporter can be used to detect 35 the promotor' activity as well as the transcription of corresponding gene. The 36 promoters' activity was tested in *P. aeruginosa* and Escherichia coli 37 respectively. Among the 41 genes, the promoter of 26 genes showed activity in both P. 38 aeruginosa and E. coli. The library was applied to determine the influence of different 39 temperatures, growth media, and sub-inhibitory concentrations of antibiotics on 40 transcriptional profile of the 41 CMR genes in P. aeruginosa. The results showed 41 different growth conditions did impact different genes' transcription, while the 42 promoter' activity of a few genes kept at the same level under several different growth 43 conditions. In summary, we provided a promoter-gfp fusion reporters' library for

systemic monitoring or study of the regulation of CMR genes in *P. aeruginosa* and
the functional promoters can also be used as a bio-brick for synthetic biology studies.

46

47 Importance

48 The opportunistic pathogen *P. aeruginosa* can cause acute and chronic infections 49 in humans and it is one of main pathogens in nosocomial infections. Biofilm 50 formation is one of most important causes for P. aeruginosa to persist in hosts and 51 evade immune and antibiotic attacks. c-di-GMP is an important second messenger to 52 control biofilm formation. In P. aeruginosa, there are 41 genes that are predicted to 53 participate in the making and breaking this dinucleotide. A major missing information 54 in this field is the systemic expression profile of those genes in response to changing 55 environment. Toward this goal, we constructed a promoter-gfp transcriptional fusion 56 reporters' library that consists of 41 reporter plasmids, each of which contains a 57 promoter of corresponding c-di-GMP metabolism-related genes in P. aeruginosa. 58 This library provides a helpful tool to understand the complex regulation network 59 related to c-di-GMP and to discover potential therapeutic targets.

60

Keywords: *Pseudomonas aeruginosa*; biofilm; c-di-GMP; promoter-*gfp* fusion
library, phosphodiesterase, diguanylate cyclases, transcriptional profile

65 Introduction

66	Biofilms are termed as communities of microorganisms embedded in
67	extracellular polymeric substances (EPS) (1). Biofilms can form on biotic and abiotic
68	surfaces and exist as non-surface-attached aggregates(2-4), which protect
69	microorganisms from harsh conditions and are a key feature of chronic and persistent
70	infections(5). The second messenger bis-(3'-5')-cyclic guanosine monophosphate
71	(c-di-GMP) plays an important role in biofilm formation (6, 7). In general, a high
72	level of c-di-GMP stimulates the biosynthesis of adhesins and exopolysaccharides to
73	promote biofilm formation, whereas low level of c-di-GMP is associated with an
74	increase in motility and virulence (8, 9). C-di-GMP is synthesized from two GTP
75	molecules by diguanylate cyclases (DGC) that usually harbor a conserved GGDEF
76	domain and is hydrolyzed by c-di-GMP specific phosphodiesterases (PDE) with
77	conserved EAL or HD-GYP domains, which degrade c-di-GMP to pGpG(8). In some
78	bacteria, such as Pseudomonas aeruginosa, there are multiple genes that were
79	predicted to have a conserved GGDEF domain and/or EAL or HD-GYP domains(10).
80	It remains largely unclear about the systemic expression pattern of those genes due to
81	lack of available tools.

P. aeruginosa is a Gram-negative gamma-proteobacterium that can grow in
diverse habitats and acts as an opportunistic pathogen over a wide range of hosts
including human, animals and plants(11). The success of *P. aeruginosa* infections

85	relies on both the production of acute virulence factors and the ability to form
86	biofilms (12). This opportunistic pathogen has become a model bacterium for biofilm
87	research. There are 41 genes in P. aeruginosa, whose encoding proteins were
88	predicted to be involved in the synthesis and degradation of c-di-GMP, including 17
89	different proteins with a GGDEF domain, 8 with a EAL or HD-GYP domain, and 16
90	with both types of domains (10). Except for PA0290, PA0338, PA1851, PA2072,
91	PA2572, PA3258, PA4396 and PA5442, the other 33 genes were functional
92	characterized to encode a DGC or PDE(13-44). The enzymes with both GGDEF and
93	EAL domains, are usually have only one catalytic activity, either PDE or DGC
94	activity. However, enzymes encoded by PA0861 (rbdA), PA1727 (mucR) or PA4601
95	(morA) were found to conditionally switch between the two activities (35, 45-48).
96	Intracellular c-di-GMP level in P. aeruginosa relies on the expression of those 41
97	<u>c</u> -di-GMP <u>m</u> etabolisms- <u>r</u> elated (CMR) genes. However, it remains a mystery about
98	how <i>P. aeruginosa</i> controls the expression of those c-di-GMP metabolism enzymes.
99	P. aeruginosa is a ubiquitous microorganism, which is able to survive in a
100	variety of environments. Its' optimum growth temperature is 37°C. Growth occurs at
101	temperatures as high as 42°C, but not at 4°C (49, 50). It has been reported that
102	temperatures regulate biofilm formation of <i>P. aeruginosa</i> and the
103	temperature-dependent changes in biofilm formation might be mediated by c-di-GMP
104	(51). Henrik Almblad et al. have discovered a temperature-regulated DGC that
105	coordinates temperature-dependent biofilm formation, motility, and virulence factor

106	expression in P. aeruginosa CF39S, a strain isolated from the sputum of patients with
107	chronic pulmonary cystic fibrosis (CF) (52, 53). Many environmental factors (such as
108	oxygen levels, nitric oxide, iron, and nutrients etc.) and small chemical compounds,
109	have been reported to trigger biofilm dispersion(35, 54-56). Studies have shown that
110	sub-inhibitory concentrations of antibiotics can induce biofilm formation of P.
111	aeruginosa (40, 57, 58). A systemic tool will be a great help for a deep understanding
112	about how P. aeruginosa regulates the 41 CMR genes in response to various
113	environmental temperatures, signals and antibiotics. A few reports have focused on
114	the comprehensive and systemic features of those c-di-GMP related genes or proteins
115	in bacteria (15, 17, 59-62), while those studies are mainly focused on the functions of
116	genes or enzymes. Therefore, a systemic transcriptional profile of the 41 CMR genes
117	in P. aeruginosa remains lacking.

118 In this study, we provide a promoter-*gfp* transcriptional fusion reporters' library 119 of the 41 genes that related to c-di-GMP metabolisms in P. aeruginosa for systemic 120 transcriptional profile analysis. The plasmid pProbe-AT' was selected as the vector to 121 construct promoter-gfp transcriptional fusions because owing to its a broad-host range, 122 high stability without antibiotic selection, and low background levels of expression in 123 multiple taxa (63). More importantly, this promotor-probe vector is able to detect 124 weak or moderate promoters. We have tested this CMR genes' promoter-gfp 125 transcriptional fusion reporters' library in P. aeruginosa by different temperatures, 126 growth media, and antibiotics. Each condition did exhibit a distinctive expression

127	profile	of	CMR	genes.	Meanwhile,	our	results	also	revealed	that	some	genes
-----	---------	----	-----	--------	------------	-----	---------	------	----------	------	------	-------

- 128 expression can be enhanced by a certain condition, which would provide the novel
- 129 targets for the investigation and therapeutic on *P. aeruginosa* in the future.
- 130

131 Material and methods

- 132 Bacterial strains and growth conditions
- 133 P. aeruginosa strain PAO1 was cultured in Luria-Bertani (LB) medium (64), or
- 134 Jensen's medium(65), or M63 medium (66), or Artificial Sputum Medium (ASM) (67).
- 135 Escherichia coli DH5a (Tsingke Biotechnology Co., Beijing, China) was inoculated

136 in LB medium at 37°C, 200 rpm. The chemical composition of all media used in this

- 137 study is shown in Table S1. When necessary, antibiotics were added at the following
- 138 final concentrations: 300 µg/mL carbenicillin for P. aeruginosa; 100 µg/mL
- 139 ampicillin for *E. coli*. The sub-inhibitory concentrations of antibiotics was applied as
- 140 30 μ g/mL of erythromycin (68), or 2 μ g/mL of azithromycin (69), or 0.3 μ g/mL of
- 141 tobramycin (40), or 0.0625 μg/mL of ciprofloxacin (70).

142 Construction of promoter-*gfp* transcriptional fusion reporter plasmid

The plasmids constructed in this study are shown in Figure 1. The pProbe-AT' (Ap^r) was used as a vector for promoter-Gfp transcriptional fusions (63). The websites (http://www.phisite.org/ and https://services.healthtech.dtu.dk/ and https://www.fruitfly.org/seq_tools/promoter.html) were used to predict the promoter region and RBS (ribosome binding site) region of target genes (71-73). The

148	information of cloned promoter regions and their corresponding genes and PA# was
149	also listed in Figure 1. The cloned promoter sequences consist of the entire intergenic
150	region, together with 0-500 bp upstream genes and 0-138 bp of the coding region of
151	corresponding ORFs (open reading frames). All promoters were amplified from the
152	genome DNA of <i>P. aeruginosa</i> PAO1 and then cloned into the <i>Eco</i> RI- <i>Bam</i> HI sites of
153	pProbe-AT'. The cloned regions in each corresponding plasmid were all confirmed by
154	sequencing. The promoter-Gfp fusion plasmid was introduced into the P. aeruginosa
155	strain by chemical transformation in order to determine the promoter's activity in P .
156	aeruginosa.

157 Isolation of total RNA and qRT-PCR

158 PAO1 was cultivated in Jensen's medium at 37°C, 200 rpm until the OD₆₀₀ 159 reached 3.0, at which point 1 mL of cells were harvested and RNA samples were 160 extracted using the RNAprep Pure Bacteria Kit (Tiangen Co., Beijing, China). Total 161 cDNA was generated from 500 ng of total template RNA using the HiScript III 162 All-in-one RT SuperMix Perfect for qPCR (Vazyme Co., Nanjing, China). The 163 ChamQ Universal SYBR qPCR Master Mix (Vazyme Co., Nanjing, China) and 164 gene-specific primers were used to perform quantitative reverse transcription-PCR 165 (qRT-PCR) on 5 ng/µL cDNA in a Real-Time PCR System (Applied Biosystems 166 ViiA 7, USA). Table S2 lists the primers used in qRT-PCR. Real-time PCR data were 167 analyzed, validated, and calculated according to the instructions of the manufacturer. 168 All samples were normalized to constitutively produced *rpsL* transcripts.

169 Measurement of fluorescence intensity

170	To determine the fluorescence intensity of the promoter, The overnight cultures
171	of the plasmid-carrying strains grown in Jensen's medium with carbenicillin or
172	ampicillin, were inoculated at 1% into 200 μL of Jensen's medium (unless otherwise
173	specified) containing carbenicillin or ampicillin in 96-well plates (NEST Co., Wuxi,
174	China) and grow with shaking at 700 rpm in a constant temperature microplate shaker
175	(MIULAB Co., Hangzhou, China) at 37°C (unless other specific temperature was
176	required) until the time for measurement (8 hours for exponential phase culture for 24
177	hours for stationary phase culture). Fluorescence of GFP was measured on a Synergy
178	H4 hybrid reader (BioTek, USA) at excitation wavelength at 488 nm and emission
179	wavelength of 520 nm with gain 50. Biomass was determined at 600 nm with gain 20
180	as scattered light (14). Fluorescence signal value was normalized to OD_{600} , and
181	fluorescence derived from pPROBE-AT' was subtracted to account for background
182	fluorescence. All experiments were performed with a minimum of three biological
183	triplicates. Statistically significant differences were determined using a two-tailed
184	Student's t-test ($P < 0.05$).

185

186 **Results**

187 Construction of a promoter-Gfp transcriptional fusion reporters' library for
 188 monitoring transcriptional profile of 41 CMR genes in *P. aeruginosa*

The promoter regions of 41 genes that are (or are predicted to be) involved in c-di-GMP metabolism in *P. aeruginosa* PAO1 were cloned into the vector pPROBE-AT' respectively, resulting in a library of promoter-Gfp transcriptional fusion reporter plasmids (Figure 1), which can monitor the expression of the corresponding genes in *P. aeruginosa*.

To evaluate whether the cloned promoter regions were functional, each 194 195 promoter-Gfp fusion plasmid was transformed into PAO1, respectively. Their 196 fluorescence intensity was measured in Jensen's medium at 37°C. The fluorescence 197 intensity of these reporters was varied from hundreds to over 10 thousand, indicating 198 that all promoters can initiate the transcription of gfp. Among the 41 genes, the 199 promoter of PA2818 (arr) showed the highest fluorescence intensity (Figure 2A). 200 PA2818 encodes a PDE named Arr, which is responsible for aminoglycoside 201 antibiotics-induced biofilm formation (40). Moreover, fluorescence intensity of the 202 other five genes, namely PA4843 (gcbA), PA4781, PA0861 (rbdA), PA2072, and 203 PA3311 (nbdA), is also above 10,000. Among these five genes, PA4843 encodes a 204 DGC GcbA (25), PA4781 and PA3311 (*nbdA*) both encode functional PDE, PA0861 205 (rbdA) has intrinsic GTP-stimulated PDE activity as well as DGC activity (38, 45), 206 while the function of PA2072 encoding enzyme has not determined so far (25, 74). 207 Except for PA2818 (arr), the fluorescence intensity of stationary phase culture is 208 higher than that of the exponential phase culture (Figure 2A), which is consistent with 209 the stability of Gfp. According to previous publications (15, 75), the two key DGCs,

210	SadC and SiaD showed stronger effects on intracellular c-di-GMP concentration than
211	other DGCs of P. aeruginosa, yet our results indicated their transcriptional level was
212	relatively low among DGCs (Figure 1). We then selected five genes, PA0169 (siaD),
213	PA2818 (arr), PA4332 (sadC), PA4601 (morA), and PA4843 (gcbA), to detect their
214	transcription by qRT-PCR. As shown in Figure S1, the transcriptional level of these
215	genes is consistent with the results of promoter-Gfp, indicating that the library can be
216	used to monitor the expression pattern of the corresponding genes. Given that
217	pPROBE-AT' is a stable plasmid, we compared fluorescence intensity of the 41
218	plasmids with and without the addition of antibiotics. Without antibiotics, the
219	fluorescence intensity of reporters showed some decrease but not significant, except
220	for that of a few genes (especially those with fluorescence intensity over 10-thousand),
221	suggesting that the library could be used without antibiotics in growth medium
222	(Figure 2A) or <i>in vivo</i> study.

To test whether the 41 promoters could function in *E. coli*, the fluorescence intensity of promoter-Gfp fusion plasmids in *E. coli* strains were also measured under the same culture conditions. As shown in Figure 2B, the promoters of four genes, namely PA4843 (*gcbA*), PA2818 (*arr*), PA0861 (*rbdA*), and PA3311 (*nbdA*), keep high activity in *E. coli*, while their fluorescence intensity are approximately 10-fold less than that in *P. aeruginosa*. The promoters of 15 genes (Figure 2B, marked with number) showed baseline level of fluorescence intensity, suggesting that these genes'

- 231 transcription might be *Pseudomonas*-specific. The other 22 genes' promoters showed
- lower expression level (approximately \geq 50) (Figure 2B).
- 233

234 Effects of temperature on the transcriptional profile of CMR genes in P.

235 aeruginosa

236 P. aeruginosa can live in diverse ecological niches. Therefore, we investigated 237 whether temperature affected the transcription of genes that were involved in 238 c-di-GMP metabolism in PAO1. The 41 strains containing corresponding plasmids 239 were cultured at 25°C or 30°C, and their fluorescence intensity was compared to that 240 of their corresponding culture grown at 37°C. As shown in Figure 3, PA2567 241 exhibited a higher expression at both 25°C and 30°C, which is the only gene that has 242 high-level of transcription at 25°C, suggesting that this gene might be important for 243 biofilm formation at lower temperatures. Overall, the transcription levels of most 244 genes were relatively low at 25°C or 30°C compared to that of 37°C, while there are 245 10 genes, namely PA0338, PA3177, PA3343 (hsbD), PA4843 (gcbA), PA2818 (arr), 246 PA1433 (lapD), PA4367 (bifA), PA4601 (morA), PA4959 (fimX), and PA5295 (proE), 247 have similar transcriptional levels at three tested temperatures (Figure 3, marked with 248 red number). Among these 10 genes, PA3177 and PA3343 (hsbD) encode DGCs (21, 249 22), PA2818 (arr), PA4367 (bifA), PA4959 (fimX) and PA5295 (proE) encode PDEs 250 (36, 37, 39, 40), while PA4601 (morA) functions as both DGC and PDE. Furthermore, 251 MorA is conserved among diverse *Pseudomonas* species (47, 48). In addition, 7 genes

252	exhibited lower-level expression at 25°C, yet had similar expression level at 30°C
253	when compared to the corresponding samples at 37 $^{\circ}$ C (Figure 3, marked with black
254	number). Taken together, our results showed that lower temperature generally reduced
255	the expression of genes involved in c-di-GMP metabolism with some exceptions, and
256	suggesting that the gene with high level transcription at lower temperature might be
257	important for the survival of <i>P. aeruginosa</i> in environment.

259 Effects of different media on the transcriptional profile of CMR genes in *P*.
260 *aeruginosa*.

To investigate whether nutrient affects the transcriptome of genes related to intracellular c-di-GMP metabolism, we examined 41 genes' expression in four media, minimal medium M63, chemical defined Jensen's medium, rich medium LB, and artificial sputum media (ASM), respectively (see Table S1 for chemical composition). The fluorescence intensity of each promoter-Gfp fusion reporter was normalized to its corresponding value in Jensen's medium grown at 37°C (Figure 4).

The promoter activities (or expression levels of corresponding gene) significantly decreased in M63 minimal medium compared to Jensen's medium, except for PA2818 (*arr*) and PA4396, which kept the same level in M63 as in Jensen's medium (Figure 4, marked in red). In the LB medium, most genes exhibited similar (16 out of 41 genes) expression level or reduced level (24 out of 41 genes) compared to that in Jensen's medium, while PA0169 (*siaD*), as an important DGC,

273	showed a significantly increased expression (Figure 4, indicated with a red star).
274	However, in ASM, PA2818 (arr) and PA4396 showed increased expression (Figure 4,
275	marked by a red star), 12 out of 41 genes (PA2870, PA3343, PA4332, PA5487,
276	PA2200, PA3947, PA0285, PA1727, PA3258, PA4959, PA5295 and PA5442) have
277	similar expression level, and the other 27 genes' expression decreased compared to
278	that in Jensen's medium.
279	Strikingly, the promoters of PA2818 (arr) and PA4396 exhibited the highest
280	activity in the Jensen's medium (Figure 1), which remained at the same level in either
281	M63 or LB, and even higher level in ASM. These results suggested the importance of
282	these two genes. In addition, there are four genes, PA2870, PA3343 (hsbD), PA5487
283	(dgcH) and PA5442 (marked with blue color), whose promoter activities were only
284	reduced in M63 and kept the same level in the other three media. PA5487 (dgcH) was
285	reported to be a conserved DGC that its expression is highly invariable, which is
286	consistent with our results (14).
287	

288 Effects of sub-inhibitory concentrations of antibiotics on the expression pattern 289 of CMR genes.

290 Previous reports showed that sub-inhibitory concentrations of aminoglycoside 291 antibiotics induced the biofilm formation of *P. aeruginosa* (40). We then examined 292 the effect on our reporter' library by three types of antibiotics at sub-inhibitory 293 concentrations, including aminoglycoside antibiotics tobramycin, fluoroquinolone

294	antibiotics ciprofloxacin, macrolide antibiotics erythromycin and azithromycin,
295	respectively. Our results showed that tobramycin increased the expression of PA2818
296	(arr) (Figure 5A), which is consistent with the previous report about the contribution
297	of PA2818 on the tobramycin-induced biofilm formation (40). The expression of two
298	genes, PA5295 (proE) and PA5442 are also induced under sub-inhibitory
299	concentrations of tobramycin (Figure 5A). ProE is a very active PDE with high
300	enzymatic activity in the degradation of c-di-GMP and plays an important role in
301	regulating EPS production in P. aeruginosa PAO1 (39), and the function of PA5442
302	is not determined. The transcription of 7 genes (PA1107, PA4332, PA4396, PA4781,
303	PA4601, PA4959, PA5017) were not changed by tobramycin. The other 28 genes'
304	expression were significantly reduced in the presence of tobramycin.
305	Among the four antibiotics, ciprofloxacin induces the expression of a large
306	number of genes, as shown in Figure 5B, 18 genes' expression was significantly
307	elevated, while 8 genes' expression was decreased, and 15 genes' expression showed
308	no changes. It is worth noting that expression of PA2818 (arr), PA5295 (proE), and
309	PA5442, were enhanced by both tobramycin and ciprofloxacin.
310	For erythromycin and azithromycin, they both repressed transcription of most
311	c-di-GMP metabolism genes, only a few genes' expression is enhanced (Figure 5C).
312	PA0285 (<i>pipA</i>) is the only gene whose transcription is enhanced by both erythromycin
313	and azithromycin. The transcription of PA1727 (mucR) is enhanced by azithromycin,
314	but reduced by erythromycin.

316 **Discussion**

317 C-di-GMP is an important second messenger involved in bacterial switching 318 from motile to sessile lifestyles. It is critical for bacteria to control the intracellular 319 c-di-GMP level in response to changing environments. The opportunistic pathogen P. 320 aeruginosa can live in diverse ecological niches. Consistently, it has 41 genes that are 321 predicted to encode proteins for the synthesis or degradation of c-di-GMP. Extensive 322 studies have been done to study their functions in respect to biofilm formation and 323 motilities. However, it remains a mystery about when and where those genes will be 324 transcribed and there is still a paucity of information concerning the systemic 325 expression pattern of those genes. In this study, we have constructed a promoter-gfp 326 transcriptional fusion reporters' library for systemic investigating the transcription or 327 regulation of the 41 c-di-GMP's metabolism-related genes.

328 We have examined this c-di-GMP metabolism-related (CMR) 329 genes' promoter-Gfp fusion library by different growth conditions, including different 330 media, temperatures, or antibiotics. Each condition does affect different genes' 331 transcription and some genes' transcription are induced in a typical condition. For 332 example, the expression of PA2567 is enhanced by lower temperature 333 $(25^{\circ}C>30^{\circ}C>37^{\circ}C)$. The sub-inhibitory concentrations of tobramycin induce the 334 transcription of the three genes: PA2818 (arr), PA5295 (proE) and PA5442 335 respectively. A previous study has showed that PA2818 (arr) is important for biofilm

formation induced by aminoglycoside antibiotics(40), whereas the functions of
PA5295(*proE*) and PA5442 have not been linked with antibiotics. Our results have
shown that this library is not only helpful for studying the systemic expression pattern
of CMR genes, but also can reveal the new roles of those genes.

It is worth noting that PA2818 (*arr*) has the highest transcription among the 41 CMR genes. Moreover, its transcript is consistently stable in several tested conditions and elevated when grown in artificial sputum media or in the presence of sub-inhibitory concentrations of aminoglycoside antibiotics. These results suggested that PA2818 (*arr*) might play a key role in biofilm-related persistent infections caused by *P. aeruginosa*. Given that *P. aeruginosa* can cause life-threatening lung infections in cystic fibrosis patients, our results have also provided a therapeutic target.

The promoter-probe vector pProbe-AT' used in this study is a broad-host range vector, thus we have examined the promotor's activity in both *P. aeruginosa* and *E. coli.* The promotors of 26 genes can initiate the transcription of *gfp* in *E. coli.*, suggesting these promoters might function in Gram-negative bacteria. Therefore, this promoter-*gfp* library also provide a library of bio-bricks for synthetic biology.

In summary, the CMR gene' promoter-*gfp* transcriptional fusion reporters' library we have constructed in this study is a versatile and helpful tool. The library can be used in the following aspects: i, investigating the systemic expression pattern and regulatory network of CMR genes in *P. aeruginosa*; ii, determining the regulatory mechanism of any factor that affects intracellular c-di-GMP in *P. aeruginosa*; iii,

- 357 discovering compounds or drugs that target at the intracellular c-di-GMP of P.
- 358 *aeruginosa*; iv, elucidating the role of CMR genes and their regulated pathways; V, a
- 359 promoter library for future applications in synthetic biology.
- 360 **Competing financial interests**
- 361 The authors declare that they have no competing financial interests.

362 Acknowledgements

- 363 Authors thank Dr. Xi Liu in the Institute of Microbiology, Chinese Academy of
- 364 Sciences, for critical reading on manuscript, Zhenyu Zhang and Qi Zhou for help in
- 365 figure making. This work is supported by the National Key R&D Program of China
- 366 (2021YFA0909500, 2019YFC804104, and 2019YFA0905501), the National Natural
- 367 Science Foundation of China (91951204, 32070033). The funders had no role in the
- 368 study design, data collection and interpretation, or the decision to submit the work for
- 369 publication.
- 370

371 **References**

- Wei Q, Ma LZ. 2013. Biofilm matrix and its regulation in *Pseudomonas aeruginosa*. Int J Mol Sci 14:20983-1005.
- Römling U, Kjelleberg S, Normark S, Nyman L, Uhlin BE, Åkerlund B. 2014.
 Microbial biofilm formation: a need to act. Journal of Internal Medicine
 276:98-110.
- Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S.
 2016. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol
 14:563-75.
- Sønderholm M, Kragh KN, Koren K, Jakobsen TH, Darch SE, Alhede M,
 Jensen P, Whiteley M, Kühl M, Bjarnsholt T. 2017. *Pseudomonas aeruginosa* Aggregate Formation in an Alginate Bead Model System Exhibits In

383		Vivo-Like Characteristics. Appl Environ Microbiol 83.
384	5.	Lyczak JB, Cannon CL, Pier GB. 2002. Lung infections associated with cystic
385	5.	fibrosis. Clin Microbiol Rev 15:194-222.
386	6.	Römling U, Galperin MY, Gomelsky M. 2013. Cyclic di-GMP: the first 25
387	0.	years of a universal bacterial second messenger. Microbiol Mol Biol Rev
388		77:1-52.
389	7.	Lee CK, Schmidt WC, Webster SS, Chen JW, O'Toole GA, Wong GCL. 2022.
390	7.	Broadcasting of amplitude- and frequency-modulated c-di-GMP signals
3 91		facilitates cooperative surface commitment in bacterial lineages. Proc Natl
392		Acad Sci U S A 119.
393	8.	Hengge R. 2009. Principles of c-di-GMP signalling in bacteria. Nat Rev
394	0.	Microbiol 7:263-73.
395	9.	Ha DG, O'Toole GA. 2015. c-di-GMP and its Effects on Biofilm Formation
396).	and Dispersion: a <i>Pseudomonas aeruginosa</i> Review. Microbiol Spectr
397		3:Mb-0003-2014.
398	10.	Banerjee P, Sahoo PK, Sheenu, Adhikary A, Ruhal R, Jain D. 2021. Molecular
399	10.	and structural facets of c-di-GMP signalling associated with biofilm formation
400		in <i>Pseudomonas aeruginosa</i> . Mol Aspects Med 81:101001.
401	11.	Neves PR, McCulloch JA, Mamizuka EM, Lincopan N. 2014.
402		PSEUDOMONAS <i>Pseudomonas aeruginosa</i> , p 253-260. In Batt CA,
403		Tortorello ML (ed), Encyclopedia of Food Microbiology (Second Edition)
404		doi:https://doi.org/10.1016/B978-0-12-384730-0.00283-4. Academic Press,
405		Oxford.
406	12.	Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ. 2012.
407		The multiple signaling systems regulating virulence in <i>Pseudomonas</i>
408		aeruginosa. Microbiol Mol Biol Rev 76:46-65.
409	13.	Colley B, Dederer V, Carnell M, Kjelleberg S, Rice SA, Klebensberger J. 2016.
410		SiaA/D Interconnects c-di-GMP and RsmA Signaling to Coordinate Cellular
411		Aggregation of Pseudomonas aeruginosa in Response to Environmental
412		Conditions. Front Microbiol 7:179.
413	14.	Wei Q, Leclercq S, Bhasme P, Xu A, Zhu B, Zhang Y, Zhang M, Wang S, Ma
414		LZ. 2019. Diguanylate Cyclases and Phosphodiesterases Required for
415		Basal-Level c-di-GMP in Pseudomonas aeruginosa as Revealed by
416		Systematic Phylogenetic and Transcriptomic Analyses. Appl Environ
417		Microbiol 85.
418	15.	Bhasme P, Wei Q, Xu A, Naqvi STA, Wang D, Ma LZ. 2020. Evaluation and
419		characterization of the predicted diguanylate cyclase-encoding genes in
420		Pseudomonas aeruginosa. Microbiologyopen 9:e975.
421	16.	Zhang Y, Guo J, Zhang N, Yuan W, Lin Z, Huang W. 2019. Characterization
422		and analysis of a novel diguanylate cyclase PA0847 from Pseudomonas
423		aeruginosa PAO1. Infect Drug Resist 12:655-665.
424	17.	Merritt JH, Ha DG, Cowles KN, Lu W, Morales DK, Rabinowitz J, Gitai Z,

425		O'Toole GA. 2010. Specific control of Pseudomonas aeruginosa
426		surface-associated behaviors by two c-di-GMP diguanylate cyclases. mBio 1.
427	18.	Ueda A, Wood TK. 2009. Connecting quorum sensing, c-di-GMP, pel
428		polysaccharide, and biofilm formation in Pseudomonas aeruginosa through
429		tyrosine phosphatase TpbA (PA3885). PLoS Pathog 5:e1000483.
430	19.	Chen Y, Liu S, Liu C, Huang Y, Chi K, Su T, Zhu D, Peng J, Xia Z, He J, Xu S,
431		Hu W, Gu L. 2016. Dcsbis (PA2771) from Pseudomonas aeruginosa is a
432		highly active diguanylate cyclase with unique activity regulation. Sci Rep
433		6:29499.
434	20.	Kulasakara H, Lee V, Brencic A, Liberati N, Urbach J, Miyata S, Lee DG,
435		Neely AN, Hyodo M, Hayakawa Y, Ausubel FM, Lory S. 2006. Analysis of
436		Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals
437		a role for bis-(3'-5')-cyclic-GMP in virulence. Proc Natl Acad Sci U S A
438		103:2839-44.
439	21.	Poudyal B, Sauer K. 2018. The PA3177 Gene Encodes an Active Diguanylate
440		Cyclase That Contributes to Biofilm Antimicrobial Tolerance but Not Biofilm
441		Formation by <i>Pseudomonas aeruginosa</i> . Antimicrob Agents Chemother 62.
442	22.	Valentini M, Laventie BJ, Moscoso J, Jenal U, Filloux A. 2016. The
443		Diguanylate Cyclase HsbD Intersects with the HptB Regulatory Cascade to
444		Control <i>Pseudomonas aeruginosa</i> Biofilm and Motility. PLoS Genet
445		12:e1006354.
446	23.	De N, Pirruccello M, Krasteva PV, Bae N, Raghavan RV, Sondermann H. 2008.
447	23.	Phosphorylation-independent regulation of the diguanylate cyclase WspR.
448		PLoS Biol 6:e67.
449	24.	Merritt JH, Brothers KM, Kuchma SL, O'Toole GA. 2007. SadC reciprocally
450		influences biofilm formation and swarming motility via modulation of
451		exopolysaccharide production and flagellar function. J Bacteriol 189:8154-64.
452	25.	Petrova OE, Cherny KE, Sauer K. 2014. The <i>Pseudomonas aeruginosa</i>
453	20.	diguanylate cyclase GcbA, a homolog of P. fluorescens GcbA, promotes initial
454		attachment to surfaces, but not biofilm formation, via regulation of motility. J
455		Bacteriol 196:2827-41.
456	26.	Basu Roy A, Sauer K. 2014. Diguanylate cyclase NicD-based signalling
457	20.	mechanism of nutrient-induced dispersion by <i>Pseudomonas aeruginosa</i> . Mol
458		Microbiol 94:771-93.
459	27.	Cai YM, Yu KW, Liu JH, Cai Z, Zhou ZH, Liu Y, Wang TF, Yang L. 2022. The
460	21.	c-di-GMP Phosphodiesterase PipA (PA0285) Regulates Autoaggregation and
460 461		Pf4 Bacteriophage Production in <i>Pseudomonas aeruginosa</i> PAO1. Appl
462	20	Environ Microbiol doi:10.1128/aem.00039-22:e0003922.
463	28.	Okegbe C, Fields BL, Cole SJ, Beierschmitt C, Morgan CJ, Price-Whelan A,
464		Stewart RC, Lee VT, Dietrich LEP. 2017. Electron-shuttling antibiotics
465 466		structure bacterial communities by modulating cellular levels of c-di-GMP.
466		Proc Natl Acad Sci U S A 114:E5236-e5245.

467	29.	Bouffartigues E, Moscoso JA, Duchesne R, Rosay T, Fito-Boncompte L,
468		Gicquel G, Maillot O, Bénard M, Bazire A, Brenner-Weiss G, Lesouhaitier O,
469		Lerouge P, Dufour A, Orange N, Feuilloley MG, Overhage J, Filloux A,
470		Chevalier S. 2015. The absence of the Pseudomonas aeruginosa OprF protein
471		leads to increased biofilm formation through variation in c-di-GMP level.
472		Front Microbiol 6:630.
473	30.	Pesavento C, Becker G, Sommerfeldt N, Possling A, Tschowri N, Mehlis A,
474		Hengge R. 2008. Inverse regulatory coordination of motility and
475		curli-mediated adhesion in Escherichia coli. Genes Dev 22:2434-46.
476	31.	Newell PD, Monds RD, O'Toole GA. 2009. LapD is a bis-(3',5')-cyclic
477		dimeric GMP-binding protein that regulates surface attachment by
478		Pseudomonas fluorescens Pf0-1. Proc Natl Acad Sci U S A 106:3461-6.
479	32.	Cai YM, Hutchin A, Craddock J, Walsh MA, Webb JS, Tews I. 2020.
480		Differential impact on motility and biofilm dispersal of closely related
481		phosphodiesterases in <i>Pseudomonas aeruginosa</i> . Sci Rep 10:6232.
482	33.	Rao F, Qi Y, Chong HS, Kotaka M, Li B, Li J, Lescar J, Tang K, Liang ZX.
483		2009. The functional role of a conserved loop in EAL domain-based cyclic
484		di-GMP-specific phosphodiesterase. J Bacteriol 191:4722-31.
485	34.	Petrova OE, Schurr JR, Schurr MJ, Sauer K. 2012. Microcolony formation by
486		the opportunistic pathogen Pseudomonas aeruginosa requires pyruvate and
487		pyruvate fermentation. Mol Microbiol 86:819-35.
488	35.	Li Y, Heine S, Entian M, Sauer K, Frankenberg-Dinkel N. 2013. NO-induced
489		biofilm dispersion in Pseudomonas aeruginosa is mediated by an MHYT
490		domain-coupled phosphodiesterase. J Bacteriol 195:3531-42.
491	36.	Kuchma SL, Brothers KM, Merritt JH, Liberati NT, Ausubel FM, O'Toole GA.
492		2007. BifA, a cyclic-Di-GMP phosphodiesterase, inversely regulates biofilm
493		formation and swarming motility by Pseudomonas aeruginosa PA14. J
494		Bacteriol 189:8165-78.
495	37.	Kazmierczak BI, Lebron MB, Murray TS. 2006. Analysis of FimX, a
496		phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa.
497		Mol Microbiol 60:1026-43.
498	38.	Roy AB, Petrova OE, Sauer K. 2012. The phosphodiesterase DipA (PA5017)
499		is essential for Pseudomonas aeruginosa biofilm dispersion. J Bacteriol
500		194:2904-15.
501	39.	Feng Q, Ahator SD, Zhou T, Liu Z, Lin Q, Liu Y, Huang J, Zhou J, Zhang LH.
502		2020. Regulation of Exopolysaccharide Production by ProE, a Cyclic-Di-GMP
503		Phosphodiesterase in Pseudomonas aeruginosa PAO1. Front Microbiol
504		11:1226.
505	40.	Hoffman LR, D'Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI.
506		2005. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature
507		436:1171-5.
508	41.	Bellini D, Horrell S, Hutchin A, Phippen CW, Strange RW, Cai Y, Wagner A,

509		Webb JS, Tews I, Walsh MA. 2017. Dimerisation induced formation of the
510		active site and the identification of three metal sites in
511		EAL-phosphodiesterases. Scientific reports 7:42166-42166.
512	42.	Rao F, Yang Y, Qi Y, Liang ZX. 2008. Catalytic mechanism of cyclic
513		di-GMP-specific phosphodiesterase: a study of the EAL domain-containing
514		RocR from Pseudomonas aeruginosa. J Bacteriol 190:3622-31.
515	43.	Stelitano V, Giardina G, Paiardini A, Castiglione N, Cutruzzolà F, Rinaldo S.
516		2013. C-di-GMP hydrolysis by Pseudomonas aeruginosa HD-GYP
517		phosphodiesterases: analysis of the reaction mechanism and novel roles for
518		pGpG. PLoS One 8:e74920.
519	44.	Ryan RP, Lucey J, O'Donovan K, McCarthy Y, Yang L, Tolker-Nielsen T, Dow
520		JM. 2009. HD-GYP domain proteins regulate biofilm formation and virulence
521		in Pseudomonas aeruginosa. Environ Microbiol 11:1126-36.
522	45.	Liu C, Liew CW, Wong YH, Tan ST, Poh WH, Manimekalai MSS, Rajan S,
523		Xin L, Liang ZX, Grüber G, Rice SA, Lescar J. 2018. Insights into Biofilm
524		Dispersal Regulation from the Crystal Structure of the PAS-GGDEF-EAL
525		Region of RbdA from Pseudomonas aeruginosa. J Bacteriol 200.
526	46.	Hay ID, Remminghorst U, Rehm BH. 2009. MucR, a novel
527		membrane-associated regulator of alginate biosynthesis in Pseudomonas
528		aeruginosa. Appl Environ Microbiol 75:1110-20.
529	47.	Phippen CW, Mikolajek H, Schlaefli HG, Keevil CW, Webb JS, Tews I. 2014.
530		Formation and dimerization of the phosphodiesterase active site of the
531		Pseudomonas aeruginosa MorA, a bi-functional c-di-GMP regulator. FEBS
532		Lett 588:4631-6.
533	48.	Choy WK, Zhou L, Syn CK, Zhang LH, Swarup S. 2004. MorA defines a new
534		class of regulators affecting flagellar development and biofilm formation in
535		diverse Pseudomonas species. J Bacteriol 186:7221-8.
536	49.	Wu W, Jin Y, Bai F, Jin S. 2015. Chapter 41 - Pseudomonas aeruginosa, p
537		753-767. In Tang Y-W, Sussman M, Liu D, Poxton I, Schwartzman J (ed),
538		Molecular Medical Microbiology (Second Edition)
539		doi: <u>https://doi.org/10.1016/B978-0-12-397169-2.00041-X</u> . Academic Press,
540		Boston.
541	50.	Bennik MHJ. 1999. PSEUDOMONAS Pseudomonas aeruginosa, p
542		1867-1871. In Robinson RK (ed), Encyclopedia of Food Microbiology
543		doi: <u>https://doi.org/10.1006/rwfm.1999.1295</u> . Elsevier, Oxford.
544	51.	Kim S, Li X-H, Hwang H-J, Lee J-H. 2020. Thermoregulation of
545		Pseudomonas aeruginosa Biofilm Formation. Applied and environmental
546		microbiology 86:e01584-20.
547	52.	Almblad H, Randall TE, Liu F, Leblanc K, Groves RA, Kittichotirat W,
548		Winsor GL, Fournier N, Au E, Groizeleau J, Rich JD, Lou Y, Granton E,
549		Jennings LK, Singletary LA, Winstone TML, Good NM, Bumgarner RE,
550		Hynes MF, Singh M, Stietz MS, Brinkman FSL, Kumar A, Brassinga AKC,

551 Parsek MR, Tseng BS, Lewis IA, Yipp BG, MacCallum JL, Harrison JJ. 2021. 552 Bacterial cyclic diguanylate signaling networks sense temperature. Nature 553 communications 12:1986-1986. Starkey M, Hickman JH, Ma L, Zhang N, De Long S, Hinz A, Palacios S, 554 53. 555 Manoil C, Kirisits MJ, Starner TD, Wozniak DJ, Harwood CS, Parsek MR. 556 2009. Pseudomonas aeruginosa rugose small-colony variants have adaptations 557 that likely promote persistence in the cystic fibrosis lung. J Bacteriol 558 191:3492-503. 559 54. Nair HAS, Subramoni S, Poh WH, Hasnuddin NTB, Tay M, Givskov M, 560 Tolker-Nielsen T, Kjelleberg S, McDougald D, Rice SA. 2021. Carbon 561 starvation of Pseudomonas aeruginosa biofilms selects for dispersal 562 insensitive mutants. BMC Microbiol 21:255. 563 55. Andersen JB, Hultqvist LD, Jansen CU, Jakobsen TH, Nilsson M, Rybtke M, 564 Uhd J, Fritz BG, Seifert R, Berthelsen J, Nielsen TE, Qvortrup K, Givskov M, 565 Tolker-Nielsen T. 2021. Identification of small molecules that interfere with 566 c-di-GMP signaling and induce dispersal of *Pseudomonas aeruginosa* biofilms. 567 NPJ biofilms and microbiomes 7:59-59. 568 56. Paiardini A, Mantoni F, Giardina G, Paone A, Janson G, Leoni L, Rampioni G, 569 Cutruzzolà F, Rinaldo S. 2018. A novel bacterial l-arginine sensor controlling 570 c-di-GMP levels in Pseudomonas aeruginosa. Proteins 86:1088-1096. 571 57. Davarzani F, Yousefpour Z, Saidi N, Owlia P. 2021. Different effects of 572 sub-minimum inhibitory concentrations of gentamicin on the expression of 573 genes involved in alginate production and biofilm formation of Pseudomonas 574 aeruginosa. Iranian journal of microbiology 13:808-816. 575 Gupta P, Chhibber S, Harjai K. 2016. Subinhibitory concentration of 58. 576 ciprofloxacin targets quorum sensing system of Pseudomonas aeruginosa 577 causing inhibition of biofilm formation & reduction of virulence. The Indian 578 journal of medical research 143:643-651. 579 59. Kulasekara H, Lee V, Brencic A, Liberati N, Urbach J, Miyata S, Lee DG, 580 Neely AN, Hyodo M, Hayakawa Y, Ausubel FM, Lory S. 2006. Analysis of 581 Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals 582 a role for bis-(3'-5')-cyclic-GMP in virulence. Proc Natl Acad Sci USA 583 103:2839-44. 584 Massie JP, Reynolds EL, Koestler BJ, Cong JP, Agostoni M, Waters CM. 2012. 60. 585 Quantification of high-specificity cyclic diguanylate signaling. Proc Natl Acad 586 Sci U S A 109:12746-51. 587 Ha DG, Richman ME, O'Toole GA. 2014. Deletion mutant library for 61. 588 investigation of functional outputs of cyclic diguanylate metabolism in 589 Pseudomonas aeruginosa PA14. Appl Environ Microbiol 80:3384-93. 590 Liberati Nicole T, Urbach Jonathan M, Miyata S, Lee Daniel G, Drenkard E, 62. 591 Wu G, Villanueva J, Wei T, Ausubel Frederick M. 2006. An ordered, 592 nonredundant library of Pseudomonas aeruginosa strain PA14 transposon

593		insertion mutants. Proceedings of the National Academy of Sciences
594		103:2833-2838.
595	63.	Miller WG, Leveau JH, Lindow SE. 2000. Improved gfp and inaZ
596	0.5.	broad-host-range promoter-probe vectors. Mol Plant Microbe Interact
597		13:1243-50.
598	64.	Bertani G. 1951. Studies on lysogenesis. I. The mode of phage liberation by
599	01.	lysogenic Escherichia coli. J Bacteriol 62:293-300.
600	65.	Jensen SE, Fecycz IT, Campbell JN. 1980. Nutritional factors controlling
601	05.	exocellular protease production by <i>Pseudomonas aeruginosa</i> . J Bacteriol
602		144:844-7.
603	66.	Zhang Y, Guo J, Zhang N, Yuan W, Lin Z, Huang W. 2019. Characterization
604	00.	and analysis of a novel diguanylate cyclase PA0847 from <i>Pseudomonas</i>
605		<i>aeruginosa</i> PAO1. Infection and drug resistance 12:655-665.
606	67.	Neve RL, Carrillo BD, Phelan VV. 2021. Impact of Artificial Sputum Medium
607	07.	Formulation on <i>Pseudomonas aeruginosa</i> Secondary Metabolite Production. J
608		Bacteriol 203:e0025021.
609	68.	Gbian DL, Omri A. 2021. The Impact of an Efflux Pump Inhibitor on the
610	00.	Activity of Free and Liposomal Antibiotics against <i>Pseudomonas aeruginosa</i> .
611		Pharmaceutics 13:577.
612	69.	Kikuchi Y, Tateda K, Fuse ET, Matsumoto T, Gotoh N, Fukushima J, Takizawa
613	07.	H, Nagase T, Standiford TJ, Yamaguchi K. 2009. Hyperoxia exaggerates
614		bacterial dissemination and lethality in <i>Pseudomonas aeruginosa</i> pneumonia.
615		Pulmonary Pharmacology & Therapeutics 22:333-339.
616	70.	Otoupal PB, Eller KA, Erickson KE, Campos J, Aunins TR, Chatterjee A.
617	70.	2021. Potentiating antibiotic efficacy via perturbation of non-essential gene
618		expression. Commun Biol 4:1267.
619	71.	Klucar L, Stano M, Hajduk M. 2010. phiSITE: database of gene regulation in
620	/1.	bacteriophages. Nucleic Acids Research 38:D366-D370.
620	72.	Knudsen S. 1999. Promoter2.0: for the recognition of PolII promoter
622	12.	sequences. Bioinformatics 15:356-61.
623	73.	Reese MG. 2001. Application of a time-delay neural network to promoter
624	15.	annotation in the Drosophila melanogaster genome. Comput Chem 26:51-6.
625	74.	Gaspar MC, Couet W, Olivier JC, Pais AA, Sousa JJ. 2013. <i>Pseudomonas</i>
626	/ 1.	<i>aeruginosa</i> infection in cystic fibrosis lung disease and new perspectives of
627		treatment: a review. Eur J Clin Microbiol Infect Dis 32:1231-52.
628	75.	Zhu B, Liu C, Liu S, Cong H, Chen Y, Gu L, Ma LZ. 2016. Membrane
629	13.	association of SadC enhances its diguarylate cyclase activity to control
630		exopolysaccharides synthesis and biofilm formation in <i>Pseudomonas</i>
631		<i>aeruginosa</i> . Environ Microbiol 18:3440-3452.
632		ucrugutosu. Environ interestor 10.5770-5752.
633		
055		

635 Figure legends

636

637	Fig 1. The information of 41 plasmids in the library of <u>c</u> -di-GMP <u>m</u> etabolism- <u>r</u> elated
638	(CMR) genes' promoter-Gfp transcriptional fusion reporters and corresponding genes.
639	+1, the first base of the start codon ; ND, not determined; F.I., fluorescence intensity;
640	PA#, corresponding locus number in genome of <i>P. aeruginosa</i> PAO1; *, the function
641	is not fully identified; FIG, <u>Fluorescence</u> intensity of <u>G</u> FP. Shown is the average
642	fluorescence intensity value per OD_{600} of the corresponding sample grown in Jensen's
643	medium at 37°C for 24 hours.

644

645 Fig 2. The fluorescence intensity of CMR' gene promoter-Gfp fusion reporter library 646 in P. aeruginosa or E. coli and detecting the transcription of selected genes by 647 qRT-PCR. FIG, Fluorescence intensity of GFP. A, the fluorescence intensity CMR' 648 promoter-Gfp fusion reporter in P. aeruginosa cultures at exponential phase with 649 carbenicillin, stationary phase with carbenicillin, and stationary phase without 650 carbenicillin were examined and the fluorescence intensities was normalized by 651 corresponding OD₆₀₀. B, the fluorescence intensity of CMR' promoter-Gfp fusion 652 reporters in *E. coli*. the fluorescence intensity of CMR' promoter-Gfp fusion reporters 653 of E. coli stationary phase cultures. FIG, Fluorescence intensity of GFP. The 654 fluorescence intensities were normalized by corresponding OD_{600} .

655 Shown were the fluorescence intensities of stationary phase cultures normalized by 656 corresponding OD_{600} .

657

658 Fig 3. Effects of different temperatures on the promoter activity of each CMR gene in 659 P. aeruginosa PAO1. Blue column, 25°C; orange column, 30°C. The value was 660 normalized to the fluorescence intensity per OD_{600} of the corresponding strain grown 661 in Jensen's medium at 37°C; Red numbers indicated the genes that their promoter 662 activity did not change at these three temperatures; Black numbers marked the genes 663 that their promoter activity at 30°C were similar as that at 37°C; Small asterisk, 664 significantly decreased; Large asterisk, significantly increased. *, P < 0.05. Error bars 665 were calculated from three independent experiments.

666

667

668 Fig 4. Effects of different growth media on the promoter activity or expression of 669 CMR' genes in P. aeruginosa PAO1 background. The value was normalized to the 670 fluorescence intensity per OD₆₀₀ of the corresponding strain grown in Jensen's 671 medium at 37°C. Black asterisks represent significantly reduced; Red asterisks 672 represent significantly elevated. Genes highlighted in red were significantly elevated 673 in ASM with no change in the other media; Genes highlighted in blue, significantly 674 reduced in M63 with no change in the other media. Shown were averages with 675 standard division calculated from three independent experiments. *, P < 0.05.

677	Fig 5. Effects of sub-inhibitory concentrations of antibiotics on the promoter activity
678	or expression of CMR' genes in <i>P. aeruginosa</i> PAO1. A-D, the results of tobramycin,
679	ciprofloxacin, erythromycin, and azithromycin treatment, respectively. Each value
680	was normalized to the corresponding sample without antibiotic treatment. The genes
681	with promoter activity significantly elevated in more than 2 antibiotics were indicated
682	with arrows; Small asterisks marked the genes with significantly reduced level and
683	large asterisk indicated those with significantly increased level. Error bars were
684	calculated from three independent experiments. *, $P < 0.05$.
685	
686	Figure S1. The relative transcriptional level of PA0169 (siaD), PA4332 (sadC),
686 687	Figure S1. The relative transcriptional level of PA0169 (siaD), PA4332 (sadC), PA4601 (morA), PA4843 (gcbA), and PA2818 (arr) to PAO1 was quantified by
687	PA4601 (morA), PA4843 (gcbA), and PA2818 (arr) to PAO1 was quantified by

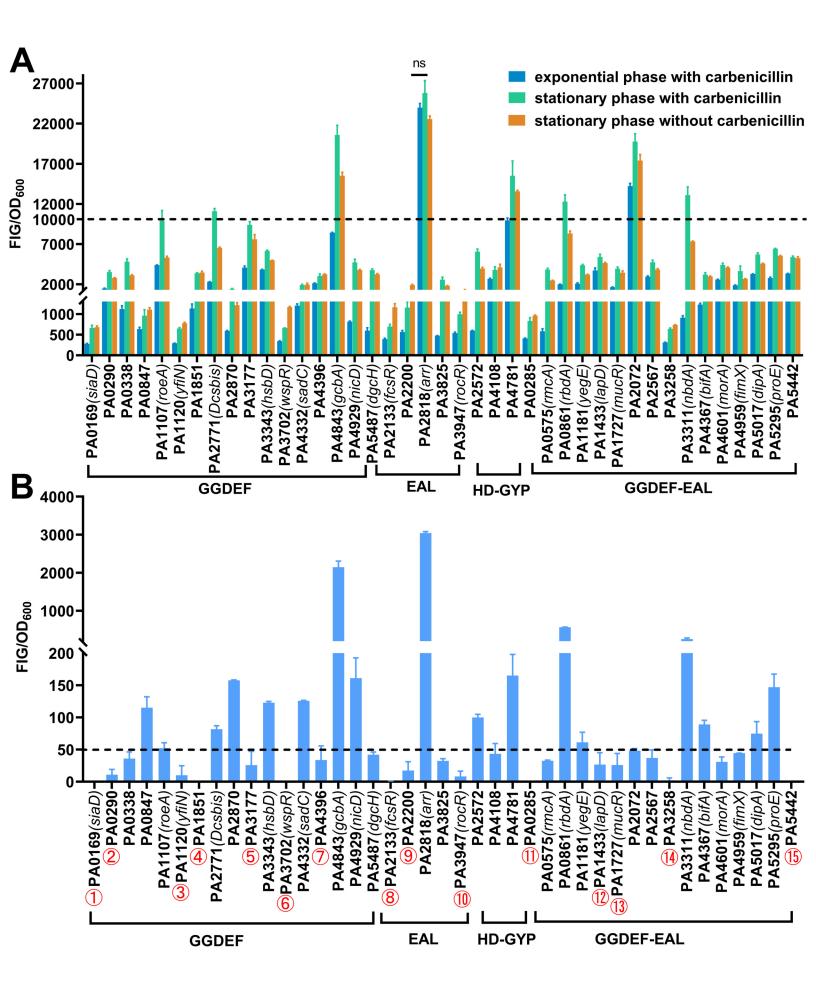
691

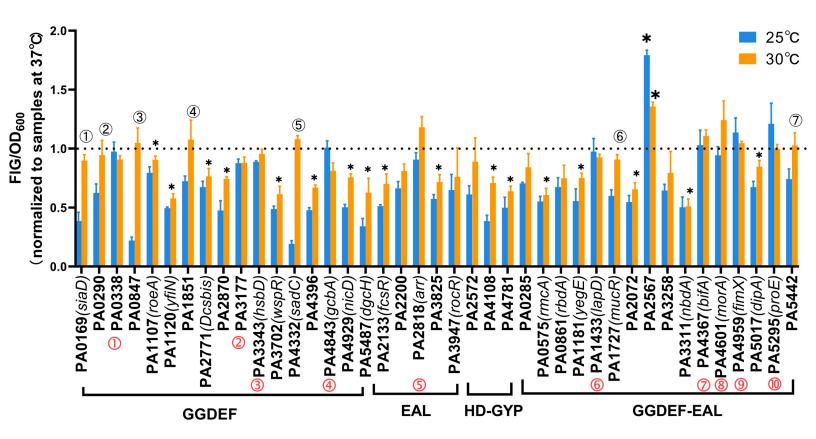
Medium	Component	Mass to	Notes/sterilization method		
T D	Component	add(g/L)			
LB	Tryptone	10	Adjust pH to 7.0,		
	Yeast extract	5	sterilization at 121°C for 30 min.		
	NaCl	10			
M63	KH ₂ PO ₄	13.608			
	КОН	4.21			
	$(NH4)_2SO_4$	1.98	Sterilization at 115°C for 30 min		
	MgSO ₄ ·7H ₂ O	0.25			
	FeSO ₄ ·7H ₂ O	0.001			
	Glucose·H ₂ O	3.96			
Jensen's	NaCl	5			
	K ₂ HPO ₄	2.51			
	Glutamic acid	15.56			
	Valine	2.81			
	Phenylalanine	1.32	Adjust pH to 7.3,		
	Glucose·H ₂ O	13.87	sterilization at 115°C for 30 min.		
	MgSO ₄ ·7H ₂ O	1.65			
	$CaCl_2 \cdot 2H_2O$	0.105			
	FeSO ₄ ·7H ₂ O	0.0055			
	$ZnSO_4 \cdot 7H_2O$	0.012			
Artificial	L-alanine	0.1585802	0.2 μm filter		
Sputum	L-arginine HCl	0.04339596	0.2 μm filter		
Medium	L-aspartic	0.1433268	prepare in 0.5 M NaOH, 0.2 µm		
(ASM)	acid·Na·H ₂ O		filter		
	L-cysteine HCl	0.0252192	make fresh, 0.2 µm filter		
	L-glutamic acid·HCl	0.28458	0.2 μm filter		
	glycine·HCl	0.13428212	0.2 μm filter		
	histidine HCl·H ₂ O	0.1090076	make fresh, 0.2 µm filter		
	L-isoleucine	0.1469216	0.2 μm filter		
	L-leucine	0.2111998	0.2 μm filter		
	L-lysine HCl	0.3886792	0.2 μm filter		
	methionine	0.09459914	0.2 μm filter		
	L-phenylalanine	0.0875507	make fresh, 0.2 µm filter		
	proline	0.19134606	0.2 μm filter		
	serine	0.1531314	0.2 μm filter		
	L-threonine	0.12769664	make fresh, 0.2 μm filter		
	tryptophan	0.00265499	prepare in 0.2 M NaOH, 0.2 µm		

692 Table S1. The chemical composition of media used in this study.

		filter
	0.1806104	prepare in 1.0 M NaOH, 0.2 µm
L-tyrosine 2Na H ₂ O		filter
L-valine	0.1309737	0.2 μm filter
L-ornithine HCl	0.1129754	0.2 μm filter
NaCl	3.02795172	0.2 μm filter
KCl	1.1084094	0.2 μm filter
NaH ₂ PO ₄	0.000179387	0.2 μm filter
Na ₂ HPO ₄ ·12H ₂ O	0.000447663	0.2 μm filter
KNO ₃	0.0321498	0.2 μm filter
K_2SO_4	0.04722446	0.2 μm filter
NH ₄ Cl	0.12198	0.2 μm filter
MOPS	2.3125	0.2 μm filter
CaCl ₂	0.25785554	0.2 μm filter
MgCl ₂ .6H ₂ O	0.1231998	0.2 μm filter
FeSO ₄ .7H ₂ O	0.001000836	make fresh, 0.2 µm filter
Dextrose	0.54048	0.2 μm filter
L-Lactic Acid	0.837744	Adjust pH to 7.0, 0.2 µm filter

693

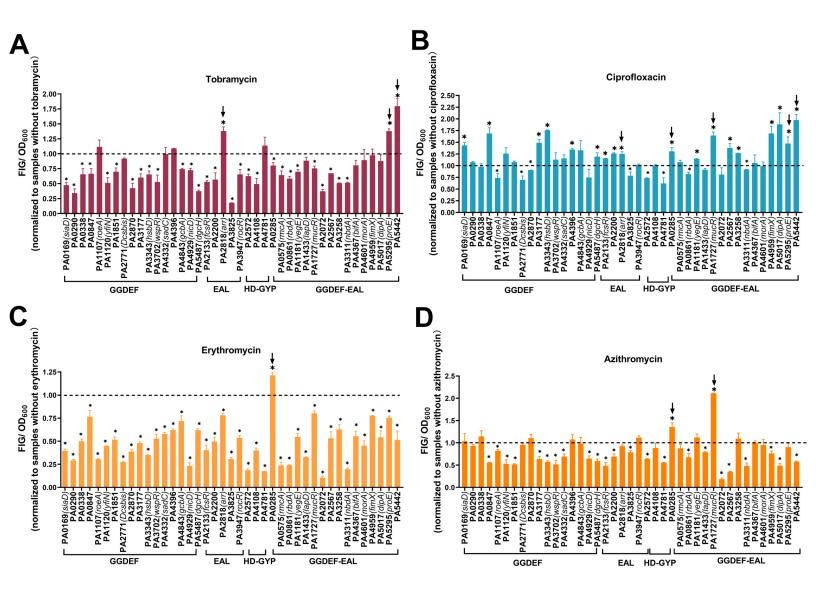

694 Table S2. Primers used for qRT-PCR in this study.


Primers	Sequence (5'→3')
RT-rpsL-F	GTAAGGTATGCCGTGTACG
RT-rpsL-R	CACTACGCTGTGCTCTTG
RT-PA0169-F	GATGGACATCCTCGACCTGC
RT-PA0169-R	CGGCTCATCGTCGGCTACT
RT-PA2818-F	GCTCGTCCTGGTCTCCTTTACT
RT-PA2818-R	CCCGGAACGAATCTTACCC
RT-PA4332-F	GCGTGTTGTCCTTGGTGTTCT
RT-PA4332-R	GGATCGTCACCGTGTTCGTC
RT-PA4601-F	GCATACCCTGGAGCAGATGTT
RT-PA4601-R	CGGCTGTCGAGGCACTTT
RT-PA4843-F	GCACAAAGGCACCCACCA
RT-PA4843-R	AGAGCGTCGCTGCGAATG

695

696

GGDEF only				GGDEF-EAL							
No.	Plasmid	Promoter region	FIG	PA#	Encoded enzyme	No.	Plasmid	Promoter region	FIG	PA#	Encoded enzyme
1	pPA0169	-500 500 bp -1 GFP	661	PA0169 (siaD)	DGC(13)	21	pPA0285	-289 +46	832	PA0285 (<i>pipA</i>)	PDE(27)
2	pPA0290	-230 +100	3510	PA0290	DGC*(14)	22	pPA0575	-239 +36 275 bp GFP	3821	PA0575 (<i>rmcA</i>)	PDE(28)
3	pPA0338	-200 +60	4819	PA0338	DGC*(15)	23	pPA0861	-358 +24 GFP	12297	PA0861 (<i>rbdA)</i>	PDE/DGC (38,45)
4	pPA0847	-500 500 bp -1	958	PA0847	DGC(16)	24	p PA1181	-196 +96 <u>292 bp</u> GFP	4382	PA1181 (<i>yegE</i>)	DGC(29,30)
5	pPA1107	-214 +58	9917	PA1107 (<i>roeA</i>)	DGC(17)	25	pPA1433	-500 500 bp -1	5413	PA1433 (<i>lapD</i>)	EP(31)
6	pPA1120	-281 -1 281 bp GFP	648	PA1120 (<i>yfiN</i>)	DGC(18)	26	pPA1727	-383 +61 444 bp GFP	3932	PA1727 (<i>mucR</i>)	PDE/DGC (35,46)
7	pPA1851	-309 +90	3372	PA1851	DGC*(15)	27	pPA2072	-500 +9	19773	PA2072	DGC*(32)
8	pPA2771	-492 +9 ↓ GFP	11101	PA2771 (<i>Dcsbis</i>)	DGC(19)	28	pPA2567	-406 466 bp +63	4724	PA2567	PDE(33)
9	pPA2870	-199 +33	1426	PA2870	DGC(20)	29	pPA3258	-231 +64	639	PA3258	PDE*(34)
10	pPA3177	-500 511 bp +11 GFP	9409	PA3177	DGC(21)	30	p PA 3311	-242 359 bp +117	13097	PA3311 (<i>nbdA</i>)	PDE(35)
11	pPA3343	-323 +114 437 bp GFP	6363	PA3343 (<i>hsbD</i>)	DGC(22)	31	pPA4367	-286 +87	3213	PA4367 (<i>bifA</i>)	PDE(36)
12	pPA3702	-169 +102 ↓ 271bp ↓	663	PA3702 (<i>wspR</i>)	DGC(23)	32	pPA4601	-288 +113 401 bp GFP	4402	PA4601 (<i>morA</i>)	PDE/DGC (47,48)
13	pPA4332	-499 499 bp -1 GFP	1897	PA4332 (sadC)	DGC(24)	33	pPA4959	-260 +58	3645	PA4959 (<i>fimX</i>)	PDE(37)
14	pPA4396	-345 483 bp +138	3035	PA4396	DGC*(15)	34	pPA5017	-282 +60	5711	PA5017 (<i>dipA</i>)	PDE(38)
15	pPA4843	-317 +73 390bp GFP	20597	PA4843 (gcbA)	DGC(25)	34	pPA5295	-359 +85 444 bp GFP	6410	PA5295 (<i>proE</i>)	PDE(39)
16	pPA4929	-325 +108 433 bp GFP	4718	PA4929 (<i>nicD</i>)	DGC(26)	36	pPA5442	-336 +36	5356	PA5442	ND
17	pPA5487	-500 500 bp -1 GFP GFP	3748	PA5487 (<i>dgcH</i>)	DGC(14)			EAL on	ly		
		HD-GYP o	only			No.	Plasmid	Promoter region	FIG	PA#	Encoded enzyme
No.	Plasmid	Promoter region	FIG	PA#	Encoded enzyme	37	pPA2133	-310 +18	695	PA2133 (<i>fcsR</i>)	PDE(20)
18	pPA2572	-206 +39	6067	PA2572	PDE* (44,61)	38	pPA2200	-500 512 bp +12 GFP	1156	PA2200	PDE(20)
19	pPA4108	-440 491 bp +51	3787	PA4108	PDE (43,44)	39	pPA2818	-206 +12	25796	PA2818 (<i>arr</i>)	PDE(40)
20	pPA4781	-283 +18 301 bp GFP	15502	PA4781	PDE (43,44)	40	pPA3825	-265 +105 GFP	2568	PA3825	PDE(20,41)
						41	pPA3947	-358 +81 439 bp GFP	993	PA3947 (<i>rocR</i>)	PDE(42)



		M63	Jensen's	LB	ASM
	PA5442 -	0.62±0.03*	1.00	1.00±0.07	1.08±0.02
	PA5295(proE)	0.53±0.01*	1.00	0.55±0.02*	1.13±0.10
	PA5017(dipA)	0.64±0.06*	1.00	0.72±0.07*	0.87±0.02*
	PA4959(fimX)-	0.64±0.08*		0.64±0.10*	1.09±0.13
	PA4601(morA)-	0.41±0.03*	1.00 1.00	0.55±0.02*	0.82±0.01*
5	PA4367(bifA)	0.37±0.04*	1.00	0.29±0.01*	0.71±0.02*
5	PA3311(nbdA)	0.42±0.09*	1.00	0.62±0.21*	0.58±0.03*
П	PA3258-	0.43±0.05*	1.00	0.75±0.07*	1.13±0.04
GGUEF-EAL	PA2567	0.51±0.04*	1.00	0.49±0.03*	0.66±0.06*
ų	PA2072	0.34±0.07*	1.00	0.86±0.12	0.48±0.04*
AL	PA1727(mucR)	0.62±0.01*	1.00	0.71±0.07*	1.14±0.08
	PA1433(lapD)	0.59±0.03*	1.00	0.74±0.24*	0.66±0.08*
	PA1181(yegE)	0.61±0.08*	1.00	1.22±0.20	0.86±0.03*
	PA0861(rbdA)	0.30±0.03*		0.85±0.41	0.61±0.06*
	PA0575(rmcA)	0.35±0.05*	1.00		0.00 ± 0.03
		0.78±0.06*	1.00	0.58±0.16*	1.11±0.04 0.66±0.03*
	PA0285-	0.78+0.06*	1.00	0.63±0.01*	1 11+0 04
I		0.4010.00		0.0010.02	
HD-GYP	PA4108 PA4781	0.46±0.08*	1.00	0.65±0.02*	0.76±0.05 0.74±0.04*
Ū	PA25/21 PA4108-	0.34±0.06*	1.00	0.54±0.06*	0.76±0.05 [*]
Ч Т	PA2572-	0.41±0.05*	1.00	0.38±0.10*	0.65±0.03*
•					
-	PA3947(rocR)-	0.49±0.08*	1.00	0.56±0.03*	0.87±0.14
LAL	PA3825-	0.45±0.06*	1.00	0.83±0.12	0.59±0.07*
Ļ	PA2818(arr)	0.89±0.08	1.00	0.93±0.12	1.46±0.02*
	PA2200-	0.49±0.03*	1.00	0.52±0.02*	0.90±0.05
	PA2133 (fcsR)-	0.36±0.03*	1.00	0.80±0.04*	0.67±0.02*
l	PA5487 (dgcH)	0.53±0.07*	1.00	0.88±0.10	1.02±0.11
	PA4929(nicD)-	0.30±0.01*	1.00	0.70±0.06*	0.63±0.09*
	PA4843(gcbA)-	0.56±0.07*	1.00	0.77±0.02*	0.75±0.12*
	PA4396-	0.94±0.07	1.00	1.05±0.09	1.79±0.13 [*]
	PA4332(sadC)-	0.72±0.10*	1.00	0.56±0.04*	0.94±0.06
	PA3702(wspR)-	0.52±0.03*	1.00	1.20±0.26	0.74±0.06*
'	PA3343(hsbD)-	0.83±0.06*	1.00	1.05±0.18	1.08±0.04
2	PA3177-	0.57±0.10*	1.00	0.80±0.24	0.55±0.07*
5	PA2870	0.56±0.05*	1.00	0.88±0.13	0.93±0.06
	PA2771(Dcsbis)-	0.26±0.08*	1.00	0.73±0.15	0.42±0.04*
	PA1851-	0.52±0.07*	1.00	0.92±0.07	0.68±0.06*
	PA1120(yfiN)-	0.28±0.03*	1.00	0.51±0.04*	0.79±0.05 [*]
	PA1107(roeA)-	0.48±0.09*	1.00	0.67±0.06*	0.72±0.05*
	PA0847-	0.31±0.05*	1.00	0.69±0.08*	0.63±0.02*
	PA0338-	0.35±0.03*	1.00	0.91±0.06	0.47±0.02*
	PA0290-	0.50±0.09*	1.00	0.93±0.08	0.48±0.07*
	PA0169(siaD)	0.50±0.01*	1.00	1.44±0.10*	0.63±0.05*

1.0

1.5

0.5

