α cAMP-EPAC-PKCε-RIM1α signaling regulates presynaptic

2 long-term potentiation and motor learning

- 3
- 4 Xin-Tai Wang^{1,2†}, Lin Zhou^{1†}, Fang-Xiao Xu¹, De-Juan Wang¹, Xin-Yu Cai¹, Yin Wang³,
- 5 Sheng-Jian Ji,⁴, Martijn Schonewille⁵, J. Julius Zhu^{6,*}, Chris I. De Zeeuw^{5,7,*}, Ying Shen^{1,*}
- 6

¹Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang 7 University School of Medicine, Hangzhou 310058, China; ²Institute of Life Sciences, College of 8 Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; ³Key 9 10 Laboratory of Cranial Cerebral Diseases, Department of Neurobiology of Basic Medical College, Ningxia Medical University, Yinchuan 750004, China; ⁴ Department of Biology, Southern 11 University of Science and Technology, Shenzhen 518055, China; ⁵Department of Neuroscience, 12 Erasmus MC, 3000 DR Rotterdam, The Netherlands; ⁶Department of Pharmacology, University 13 of Virginia, Charlottesville, VA 22904, U.S.A.; ⁷ Netherlands Institute for Neuroscience, Royal 14 15 Academy of Sciences, 1105 BA Amsterdam, The Netherlands. 16 *For correspondence: yshen@zju.edu.cn or c.dezeeuw@erasmusmc.nl or jjz4n@virginia.edu. 17

- [†]These authors contributed equally to this work.
- 19
- 20 Competing interests: The authors declare that no competing interests exist.

21

22 Abstract

23	The cerebellum is involved in learning of fine motor skills, yet whether presynaptic plasticity
24	contributes to such learning remains elusive. Here we report that the EPAC-PKC ϵ module has a
25	critical role in a presynaptic form of long-term potentiation in the cerebellum and motor behavior.
26	Presynaptic cAMP-EPAC-PKCe signaling cascade induces a previously unidentified threonine
27	phosphorylation of RIM1 α , and thereby initiates the assembly of the Rab3A–RIM1 α –Munc13-1
28	tripartite complex that facilitates docking and release of synaptic vesicles. Granule cell-specific
29	blocking of EPAC-PKCE signaling abolishes presynaptic long-term potentiation at the parallel
30	fiber to Purkinje cell synapses and impairs basic performance and learning of cerebellar motor
31	behavior. These results unveil a functional relevance of presynaptic plasticity that is regulated
32	through a novel signaling cascade, thereby enriching the spectrum of cerebellar learning
33	mechanisms.

34 Introduction

35	The cerebellum has historically been viewed as a motor coordination center (Ito, 2005). Recent
36	evidence implicates that the cerebellum is also involved in a variety of learning-dependent
37	high-level behaviors, including motor precision (Wagner and Luo, 2020; De Zeeuw, 2021) as well
38	as cognitive and emotional functions (Schmahmann et al., 2019). The unique capability of the
39	cerebellum to govern fine-tuned motor and cognitive skills at a high temporal resolution critically
40	depends on delicate coordination of multiple forms of plasticity (De Zeeuw, 2021). Indeed, recent
41	studies indicate that, in addition to the renowned postsynaptic long-term depression (LTD) (Ito,
42	2005) and long-term potentiation (LTP) (Schonewille et al., 2010), other forms of synaptic or
43	non-synaptic plasticity may also contribute to cerebellar motor learning (Raymond and Medina,
44	2018; De Zeeuw, 2021). However, the molecular underpinnings of presynaptic plasticity in the
45	cerebellar cortex are merely starting to be explored (Wang et al., 2021a), and more importantly,
46	whether presynaptic plasticity plays a role in cerebellar motor learning remains to be elucidated (Le
47	Guen and De Zeeuw, 2010; De Zeeuw, 2021).

48 In this study, we identified a new presynaptic signaling module that comprises EPAC 49 (exchange protein directly activated by cyclic adenosine monophosphate, cAMP) and PKCE 50 (epsilon isozyme of protein kinase C), which turns out to control threonine phosphorylation of 51 RIM1α, initiate assembly of a Rab3A-RIM1α-Munc13-1 tripartite complex, and thereby facilitate 52 docking and release of synaptic vesicles at parallel fiber (PF) to Purkinje cell (PC) synapses. 53 Importantly, presynaptic ablation of either EPAC or PKCE is sufficient to inhibit presynaptic LTP 54 and impair motor performance and motor learning. These data unveil a new signaling cascade 55 governing presynaptic LTP and for the first time clarify that presynaptic plasticity is required for

56 cerebellar motor learning.

57 **Results**

58 EPAC induces PKC_E-dependent threonine phosphorylation of RIM1a

59	In order to study the function of EPACs at synapses, a series of centrifugations were employed to
60	prepare cerebellar synaptosomes containing a number of synaptic proteins (Figure 1A). We found
61	that most of EPAC1 and EPAC2 overlapped with vesicle glutamate transporter 1 (vGluT1) (Figure
62	1B), which is enriched in PF terminals (Hioki et al., 2013). Co-immunoprecipitation (co-IP)
63	performed using synaptosomes showed that both EPAC1 and EPAC2 were precipitated by the
64	RIM1 antibody (Figure 1C), indicating the ability of EPAC to interact with RIM1. To specify the
65	action of EPAC, RIM1 was extracted from the synaptosomes by anti-RIM1 antibody-based co-IP
66	(Figure 1A). Interestingly, we found that pan-phospho-threonine (p-Thr) antibodies detected only
67	a weak signal in control synaptosomes, but a strong band in synaptosomes treated with 8-pCPT, a
68	specific activator of EPAC (Figure 1D). In contrast, the level of pan-phospho-serine (p-Ser)
69	remained unchanged after 8-pCPT treatment (Figure 1D). These results were confirmed by
70	co-transfecting HA-RIM1 α with Flag-EPAC1 or Flag-EPAC2 in HEK cells, where both types of
71	EPAC as well as RIM1α were preferentially distributed along the cell membrane (Figure 1-figure
72	supplement 1A). Again, HA-RIM1a was precipitated with the HA antibody to characterize p-Ser
73	and p-Thr of RIM1a. Consistent with in vivo assay, neither EPAC1 nor EPAC2 altered serine
74	phosphorylation of RIM1a, but both increased phosphorylation of threonine (Figure 1-figure
75	supplement 1B).

Since EPAC is an effector of cAMP, we wondered whether cAMP also causes the phosphorylation of threonine sites of RIM1, which comprises 27 of such sites (*Figure 1–figure supplement 1C*). Hence, forskolin, an activator of adenylate cyclase, and ESI-09, an inhibitor of

79	EPAC (Gutierrez-Castellanos et al., 2017), were administered to synaptosomes, after which RIM1
80	p-Thr was measured. RIM1 p-Thr was vastly increased by forskolin alone, but not following
81	co-application of both forskolin and ESI-09 (Figure 1E), indicating that cAMP leads to
82	EPAC-dependent threonine phosphorylation of RIM1. We continued to examine the consequences
83	on RIM1 phosphorylation in EPAC1 and EPAC2 double-knockout (Epac ^{dKO}) mice. Using
84	synaptosomes purified from Epac ^{dKO} mice, we found that RIM1 p-Thr was significantly reduced,
85	whereas RIM1 p-Ser was unchanged (Figure 1F). Meanwhile, knockout of Epac did not change
86	the expression of RIM1 (Figure 1F). The difference of RIM1 p-Thr in the Epac ^{dKO} mice was not
87	accompanied by major structural difference, as EPAC deficiency did not interfere with lobule
88	thickness or number of PC spines (Figure 1-figure supplement 2A and B). Together, these data
89	strongly indicate that EPAC is necessary and sufficient to induce threonine phosphorylation of
90	RIM1.
90 91	RIM1. EPAC by itself lacks the kinase activity that is required for phosphorylation (<i>Kawasaki et al.</i> ,
91	EPAC by itself lacks the kinase activity that is required for phosphorylation (Kawasaki et al.,
91 92	EPAC by itself lacks the kinase activity that is required for phosphorylation (<i>Kawasaki et al.,</i> 1998; <i>Cheng et al., 2008</i>), which raises a question how EPAC mediates the phosphorylation of
91 92 93	EPAC by itself lacks the kinase activity that is required for phosphorylation (<i>Kawasaki et al.,</i> 1998; Cheng et al., 2008), which raises a question how EPAC mediates the phosphorylation of RIM1. We hypothesized that EPAC might act on RIM1 through the Rap1-PLCε-PKCε module
91 92 93 94	EPAC by itself lacks the kinase activity that is required for phosphorylation (<i>Kawasaki et al., 1998</i> ; <i>Cheng et al., 2008</i>), which raises a question how EPAC mediates the phosphorylation of RIM1. We hypothesized that EPAC might act on RIM1 through the Rap1-PLCE-PKCE module (<i>Figure 1G</i>), which is shown to be activated by EPAC in neuroblastoma cells (<i>Schmidt et al.,</i>
91 92 93 94 95	EPAC by itself lacks the kinase activity that is required for phosphorylation (<i>Kawasaki et al., 1998</i> ; <i>Cheng et al., 2008</i>), which raises a question how EPAC mediates the phosphorylation of RIM1. We hypothesized that EPAC might act on RIM1 through the Rap1-PLCE-PKCE module (<i>Figure 1G</i>), which is shown to be activated by EPAC in neuroblastoma cells (<i>Schmidt et al., 2001</i>), dorsal root ganglion neurons (<i>Hucho et al., 2005</i>), as well as heart cells (<i>Oestreich et al.,</i>
91 92 93 94 95 96	EPAC by itself lacks the kinase activity that is required for phosphorylation (<i>Kawasaki et al., 1998</i> ; <i>Cheng et al., 2008</i>), which raises a question how EPAC mediates the phosphorylation of RIM1. We hypothesized that EPAC might act on RIM1 through the Rap1-PLC&PKC& module (<i>Figure 1G</i>), which is shown to be activated by EPAC in neuroblastoma cells (<i>Schmidt et al., 2001</i>), dorsal root ganglion neurons (<i>Hucho et al., 2005</i>), as well as heart cells (<i>Oestreich et al., 2009</i>). Our hypothesis was corroborated by several lines of evidence. First, when Flag-EPAC1 and
 91 92 93 94 95 96 97 	EPAC by itself lacks the kinase activity that is required for phosphorylation (<i>Kawasaki et al., 1998</i> ; <i>Cheng et al., 2008</i>), which raises a question how EPAC mediates the phosphorylation of RIM1. We hypothesized that EPAC might act on RIM1 through the Rap1-PLC&PKC& module (<i>Figure 1G</i>), which is shown to be activated by EPAC in neuroblastoma cells (<i>Schmidt et al., 2001</i>), dorsal root ganglion neurons (<i>Hucho et al., 2005</i>), as well as heart cells (<i>Oestreich et al., 2009</i>). Our hypothesis was corroborated by several lines of evidence. First, when Flag-EPAC1 and Flag-EPAC2 were expressed in HEK cells, phosphorylation at PKC&S729 was significantly

101	Western blots showed that phosphorylation at PKC ϵ -S729, but not at PKC α -S657 or PKC α -T638,
102	was increased in cerebellar synaptosomes treated with 8-pCPT, whereas control buffer had no
103	impact (Figure 11). Third, phosphorylation at PKCE-S729 in the synaptosomes was significantly
104	reduced by EPAC ablation ($Epac^{dKO}$ versus WT), whereas phosphorylation at PKCa-S657 or
105	PKC α -T638 was unchanged (<i>Figure 1J</i>). These data indicate that EPAC is able to regulate PKC ϵ
106	activity. We next investigated whether PKC ϵ can phosphorylate RIM1a. HA-RIM1a and
107	His-PKC ϵ were co-transfected into HEK cells and co-IP experiments showed that PKC ϵ can bind
108	to RIM1a (Figure 1-figure supplement 3B). In addition, RIM1a p-Thr was significantly increased
109	in cells transfected with PKCE compared to the control (Figure 1-figure supplement 3C). To
110	confirm in vitro findings, we generated mice with Prkce (the gene coding for PKCE) deletion
111	specifically in cerebellar granule cells (Prkce ^{cKO}) by crossing Math1-Cre (Wang et al., 2021b)
112	with Prkce ^{f/f} mice (Figure 1-figure supplement 2C-F), and Prkce ^{cKO} mice showed normal lobule
113	thickness and number of spines of PCs (Figure 1-figure supplement 2G-H). Subsequently, RIM1
114	phosphorylation was examined in cerebellar synaptosomes derived from Prkce ^{f/f} and Prkce ^{cKO}
115	mice. Similar to the findings in Epac ^{dKO} mice, RIM1 p-Thr was significantly reduced, whereas
116	both RIM1 p-Ser and total RIM1 were unchanged in Prkce ^{cKO} mice (Figure 1K). These data
117	indicate that PKC ϵ is able to regulate RIM1 p-Thr phosphorylation.
118	Finally, several lines of evidence demonstrated the causal relationship between EPAC and
119	PKC ϵ on the phosphorylation of RIM1a. First, we applied 8-pCPT alone or with $\epsilon V1\text{-}2$ (a

121 strongly attenuated RIM1 p-Thr induced by 8-pCPT (*Figure 1_figure supplement 3D*). In contrast,

selective PKCE inhibitor) to WT synaptosomes. The addition of EV1-2 to the synaptosomes

120

122 RIM1 p-Thr was not affected by co-application of Gö6976, a PKC α/β inhibitor (*Figure 1–figure*

supplement 3D). Second, we administered phorbol 12-myristate 13-acetate (PMA), an activator of

124	all PKC isoforms, alone or along with ϵ V1-2 or Gö6976, so as to inhibit PKC ϵ or PKC α/β ,
125	respectively. ϵ V1-2, but not Gö6976, significantly suppressed RIM1 α p-Thr in the synaptosomes
126	(Figure 1-figure supplement 3E). Third, RIM1 phosphorylation was examined in Prkce ^{cKO}
127	synaptosomes, which were treated with either control saline or 8-pCPT. In this scenario, neither
128	p-Thr nor p-Ser of RIM1 was changed (Figure 1L). Overall, these data strongly indicate that
129	EPAC can trigger RIM1 α p-Thr phosphorylation and that this activation requires PKC ϵ .
130	
131	EPAC-PKCε module is critical to vesicle docking and presynaptic release through acting on
132	the Rab3A-RIM1α-Munc13-1 complex

Our finding that the EPAC-PKCε module regulates RIM1 activity through phosphorylation leads
to an interesting question: does the EPAC-PKCε module function on synaptic formation and
function through acting on RIM1? which is known to be critical to organization of the presynaptic
active zone and neurotransmitter release (*Schoch et al.*, 2002; *Han et al.*, 2011; *Kaeser et al.*, 2011;

137 Acuna et al., 2016; Persoon et al., 2019).

123

To address this question, we first visualized PF-PC synapses using transmission electron microscopy (EM), in which PF boutons were identified by their presence of synaptic vesicles as well as their asymmetric synaptic contacts with PC spines (*Figure 2A and B*). No apparent abnormality was found in the size of the postsynaptic density or the synaptic cleft of PF-PC synapses in either $Epac^{dKO}$ (n = 4) or $Prkce^{cKO}$ (n = 4) mice, compared to corresponding WT (n =4) and $Prkce^{f/f}$ (n = 4) mice (*Figure 2A and B*). However, the deletion of *Epac* significantly decreased the number of the docked vesicle pool (WT: 2.0 ± 0.1 vesicles, n = 98 boutons; $Epac^{dKO}$:

145	1.0 ± 0.1 vesicles, $n = 127$ boutons; $p < 0.0001$) (Figure 2A). This difference turned out to be
146	specific to the active zone, as the total number of vesicles in PF terminals (within 100 nm away
147	from active zone) was not affected (WT: 32.8 ± 2.4 vesicles, $n = 98$ boutons; $Epac^{dKO}$: 28.3 ± 1.5
148	vesicles, $n = 127$ boutons; $p = 0.15$). Similarly, the specific deletion of <i>Prkce</i> in granule cells also
149	decreased the number of vesicles in the docked vesicle pool ($Prkce^{f/f}$: 1.6 ± 0.1 vesicles, $n = 60$
150	boutons; $Prkce^{cKO}$: 0.7 ± 0.1 vesicles, $n = 66$ boutons; $p < 0.0001$) (Figure 2B). Meanwhile, the
151	total number of vesicles in PF terminals was also not affected ($Prkce^{f/f}$: 42.1 ± 2.3 vesicles, $n = 57$
152	boutons; $Prkce^{cKO}$: 39.1 ± 2.6 vesicles, $n = 55$ boutons; $p = 0.38$). These data demonstrate that
153	both EPAC and PKC ε are required for the docking of presynaptic vesicles.
154	We next examined the effect of the ablation of EPAC or PKCE on synaptic transmission.
155	Miniature excitatory synaptic currents (mEPSCs) at PF-PC synapses were recorded in cerebellar
156	slices from Math1-Cre;Epac1 ^{f/f} ;Epac2 ^{f/f} (Epac1 ^{cKO} ;Epac2 ^{cKO}) and Prkce ^{cKO} mice, the former of
157	which caused specific deletion of Epac1 and Epac2 in granule cells (Figure 1-figure supplement
158	21-L), while Math1-Cre and Prkce ^{f/f} mice were used as corresponding controls. We found that
159	mEPSC frequency was reduced in PCs from Epac1 ^{cKO} ;Epac2 ^{cKO} mice compared to PCs from
160	Math1-Cre mice, whereas mean amplitude did not differ between two genotypes (Figure 2C).
161	Similarly, the frequency but not the amplitude of mEPSCs was significantly lower in Prkce ^{cKO}
162	mice than corresponding <i>Prkce</i> ^{f/f} mice (<i>Figure 2D</i>). A decrease in mEPSC frequency may be due
163	to a reduction in release probability (Pr). To determine if Pr is affected following deletion of
164	presynaptic Epac and Prkce, we used a repeated stimulation protocol to estimate the readily
165	releasable pool (RRP) size as well as Pr. Compared to Math1-Cre and Prkce ^{f/f} mice, repeated
166	stimulation (20 Hz) revealed significant reductions in both RRP and Pr in Epac1 ^{cKO} ;Epac2 ^{cKO}

167	(<i>Figure 2E</i>) and $Prkce^{cKO}$ mice (<i>Figure 2F</i>). These results indicate that EPAC or PKC ε deficiency
168	reduces Pr of PF-PC synapses, which is in line with the EM experiment demonstrating a reduced
169	number of docked vesicles (Figure 2A and B). Overall, these results indicate that the EPAC-PKCe
170	module is essential to presynaptic transmitter release at PF-PC synapses.
171	We continued to explore how exactly the EPAC-PKC ϵ module modulates synaptic release.
172	An essential process during neurotransmitter release is that Rab3A, RIM1 α and Munc13-1 form a
173	tripartite complex and act in concert to dock synaptic vesicles to a release-competent state (Betz et
174	al., 2001; Wang et al., 2001; Dulubova et al., 2005). Thus, we investigated whether the
175	EPAC-PKC ϵ module acts on the Rab3A-RIM1 α -Munc13-1 complex. By measuring the ratios of
176	IP/input in co-IP assay of synaptosome extracts, we found that both Munc13-1 and Rab3A had
177	significantly weaker binding ability with RIM1a in both $Epac^{dKO}$ (Figure 2G) and Prkce ^{cKO}
178	(Figure 2H) synaptosomes, as compared to WT and Prkce ^{ff} respectively. In contrast, neither Epac
179	nor Prkce ablation changed the expression levels of Rab3A and Munc13 (Figure 2G and H).
180	These data indicate that the deficiency of either EPAC or PKCE impairs protein interactions in the
181	Rab3A-RIM1α-Munc13-1 complex.

In another set of experiments, we studied whether the EPAC-PKC ε module is sufficient to boost protein interactions in the Rab3A-RIM1 α -Munc13-1 complex. First, we treated WT synaptosomes with 8-pCPT and ε V1-2, and measured the amount of Munc13-1 and Rab3A precipitated with RIM1. The quantification showed a significant increment of precipitated Munc13-1 and Rab3A when synaptosomes were incubated with 8-pCPT (*Figure 21*). Second, we measured the amounts of precipitated Munc13-1 and Rab3A in WT synaptosomes treated with FR236924, a selective activator of PKC ε . We found that precipitations of Munc13-1 and Rab3A

189	were both increased (<i>Figure 2J</i>). These data indicate that either EPAC or PKC ε is sufficient to
190	promote the formation of the tripartite complex. In parallel experiments, PKC ϵ inhibitor ϵ V1-2
191	prevented the increase of precipitated Munc13-1 and Rab3A induced by 8-pCPT (Figure 21),
192	while FR236924 failed to induce more precipitations of Munc13-1 and Rab3A in Prkce ^{cKO}
193	synaptosomes (Figure 2K). In summary, these data demonstrate that the EPAC-PKC ε module
194	regulates synaptic organization and transmitter release by regulating the stability of
195	Rab3A-RIM1α-Munc13-1 complex.
196	

197 Presynaptic PF-PC LTP depends on EPAC and PKCε

198 Repetitive stimuli of PF terminals result in an increased Pr of neurotransmitters, leading to the

199 expression of presynaptic LTP (Salin et al., 1996; Kimura et al., 1998; van Beugen et al., 2013;

200 Hirano et al., 2016; Kaeser et al., 2008; Yang and Calakos, 2010; Martín et al., 2020). If the

201 EPAC-PKC module determines transmitter release through regulating the phosphorylation level

202 of RIM1α, it is reasonable to hypothesize that this cascade controls presynaptic PF-PC LTP.

- To test this hypothesis, presynaptic LTP at PF-PC synapses was induced by a tetanus stimulation (8 Hz for 5 min) at voltage-clamp mode (-70 mV) (*Figure 3A*). The potentiation of EPSCs reached $131 \pm 6\%$ of baseline in WT mice (t = 38-40 min; n = 13; p < 0.001; *Figure 3B*
- 206 and C), consistent with previous work (Salin et al., 1996; Kaeser et al., 2008). Concomitantly,
- 207 paired-pulse facilitation (PPF) ratio decreased to $84 \pm 4\%$ (t = 38-40 min; n = 13; p < 0.001; 208 *Figure 3C*), indicating a presynaptic contribution to this form of LTP (*Salin et al., 1996*). Next, we 209 preincubated WT slices with forskolin for 20 min to ensure the effect of forskolin. In this 210 condition, the tetanus stimulation for presynaptic LTP failed to induce synaptic potentiation in PCs

211 (Figure 3-figure supplement 1A and B), indicating that presynaptic LTP at PF-PC synapses occurs

212 upon a rise in the cellular level of cAMP.

213	Next, we examined presynaptic PF-PC LTP in acute slices from $Epac^{dKO}$ and
214	Epac1 ^{cKO} ; Epac2 ^{cKO} mice. We made whole-cell recordings from PCs and found that 8-Hz
215	stimulation failed to induce potentiation of EPSCs in $Epac^{dKO}$ mice (104 ± 5% of baseline at t =
216	38-40 min; $n = 11$; $p = 0.66$) (<i>Figure 3–figure supplement 1C and D</i>). This finding was confirmed
217	in recordings from slices of <i>Epac1</i> ^{cKO} ; <i>Epac2</i> ^{cKO} mice, in which <i>Epac</i> is deleted from the granule
218	cells innervating the PCs, showing that presynaptic PF-PC LTP was also blocked (93 \pm 4% of
219	baseline at t = 38-40 min; $n = 9$; $p = 0.059$) (Figure 3F and G). In control experiments using
220	<i>Math1</i> -Cre mice, the potentiation of EPSCs reached $120 \pm 5\%$ of baseline (t = 38-40 min; $n = 10$;
221	p = 0.004; Figure 3D and E). These results indicate that presynaptic EPAC is required for
222	presynaptic LTP.

223 To find out whether presynaptic PKCE is also required for presynaptic LTP, we recorded 8-Hz stimulation-induced EPSC potentiation in Prkce^{ff} and Prkce^{cKO} mice. Similar to WT and 224 225 *Math1*-Cre mice, the potentiation of PF-EPSCs evoked by 8-Hz stimulation reached $120 \pm 3\%$ of 226 baseline in control $Prkce^{ff}$ mice (t = 38-40 min; n = 7; p = 0.004; Figure 3H and I). However, 227 presynaptic ablation of PKC ε completely blocked the induction of this form of LTP (99 ± 5%; n =228 10; p = 0.065; Figure 3J and K), suggesting that presynaptic PF-PC LTP also requires PKCE. Here 229 too, the PPF ratio was unaffected (p = 0.77 at t = 38-40 min; n = 10; Figure 3K). This conclusion 230 was further confirmed following chemical inhibition of PKC_E by continuously administering 231 ε V1-2 to cerebellar slices from WT mice, as ε V1-2 completely blocked the induction of 232 presynaptic PF-PC LTP ($101 \pm 4\%$; n = 9; p = 0.59; Figure 3-figure supplement 1E and F).

233	On the basis of our e	experiments in PC	s from mice w	ith presynaptic	specific	deletion	of EPAC
-----	-----------------------	-------------------	---------------	-----------------	----------	----------	---------

- 234 and PKC_E, we conclude that the presynaptic EPAC-PKC_E module is critical for presynaptic PF-PC
- LTP in the cerebellum.
- 236

237 EPAC and PKC^E mediate cAMP-triggered EPSC potentiation

cAMP is also required for presynaptic LTP induced by electrical stimulation (*Salin et al., 1996; Le*

239 Guen and De Zeeuw, 2010), and its agonists are enough to produce a prominent increase in

240 glutamate release (Weisskopf et al., 1994; Salin et al., 1996). However, it remains unclear which

241 downstream effector, EPAC or PKA (Cheng et al., 2008), is responsible for cAMP-induced

242 potentiation. In particular, the central role of PKA in presynaptic LTP has been argued by studies

showing that presynaptic LTP can still be intact when serine phosphorylation of RIM1 by PKA is

244 interrupted (Kaeser et al., 2008; Yang and Calakos, 2010; also see Lonart et al., 2003). Therefore,

245 we investigated whether the EPAC-PKC module mediates cAMP-triggered EPSC potentiation.

We made whole-cell recordings from PCs and evoked PF-EPSCs every 30s in Math1-Cre, 246 Epac1^{cKO}; Epac2^{cKO} and Prkce^{cKO} mice. In Math1-Cre control mice, external application of 247 248 forskolin produced a long-lasting elevation in PF-EPSC amplitude (Figure 4A and B), with a peak 249 potentiation of $366 \pm 25\%$ (at 48-50 min; n = 15; Figure 4C). In contrast, simultaneous ablation of 250 *Epac1* and *Epac2* at presynaptic sites prominently affected the synaptic potentiation induced by 251 forskolin application (162 \pm 18% at 48-50 min; n = 12; Figure 4A-C). Next, we incubated Epac1^{cKO}; Epac2^{cKO} PCs along with PKA antagonist KT5720 and again examined 252 253 forskolin-induced EPSC potentiation. In this case, we found that combined blockade of EPAC and 254 PKA completely eliminated the action of forskolin on EPSC potentiation ($106 \pm 4\%$ at 48-50 min;

255	$n = 12$; Figure 4A-C). We continued to examine the effect of PKC ε on cAMP-triggered EPSC
256	potentiation using Prkce ^{cKO} mice. Similar to Epac1 ^{cKO} ; Epac2 ^{cKO} mice, the forskolin-induced
257	potentiation in $Prkce^{cKO}$ PCs was significantly attenuated (198 ± 5% at 48-50 min; $n = 12$; Figure
258	4A-C). Again, the remaining potentiation was further blocked by the addition of KT5720 ($101 \pm 3\%$
259	at 48-50 min; $n = 12$; Figure 4A-C). Thus, these results indicate that EPAC, PKC ε and PKA all
260	mediate cAMP-induced potentiation of transmitter release. In parallel with the observation of
261	EPSC amplitude, PPF was monitored during the whole cell recordings. Forskolin application led
262	to a significant reduction in PPF ratio of PF-EPSCs in Math1-Cre mice (Figure 4C). However, this
263	reduction was significantly less when presynaptic of both types of EPAC as well as PKC ϵ were
264	ablated and KT5720 was added (Figure 4C), further highlighting that EPAC and PKCE work
265	synergically on the synaptic release at PF-PC synapses.
266	We next assessed the impact of the EPAC-PKC ϵ module on the strength of PF-EPSCs by
267	directly applying EPAC agonist 8-pCPT. In line with previous work (Kaneko and Takahashi, 2004;
268	Gekel and Neher, 2008), the administration of 8-pCPT was sufficient to potentiate PF-EPSCs by
269	$179 \pm 18\%$ and reduce their PPF ratio by $17 \pm 3\%$ in WT PCs ($n = 6$; at 18-20 min) (<i>Figure 4D</i>).
270	Two lines of evidence confirm that the potentiation of PF-EPSCs by EPAC is mediated by PKCE.
271	First, 8-pCPT-induced potentiation of PF-EPSCs was diminished in <i>Prkce</i> ^{cKO} mice, as shown by
272	unchanged PF-EPSCs and PPF (<i>Figure 4E</i>). Second, co-application of ε V1-2 effectively prevented
273	the 8-pCPT-induced synaptic potentiation and change in PPF (Figure 4F).
274	In summary, we conclude that EPAC-PKC ϵ module and PKA are both downstream effectors
275	of cAMP, but the EPAC-PKC ϵ module plays the most prominent role in cAMP-triggered EPSC
276	potentiation.

277

278 Presynaptic EPAC and PKC_e are not involved in postsynaptic forms of plasticity 279 The mechanisms for postsynaptic LTP and LTD at PF-PC synapses can be complicated, in that 280 they may depend not only on postsynaptic processes, but sometimes also on presynaptic events 281 (Le Guen and De Zeeuw, 2010; Wang et al., 2014; Schonewille et al., 2021). For example, an 282 endocannabinoid-triggered reduction of synaptic release is required by the induction of 283 postsynaptic LTD (Kreitzer et al., 2002). As both EPAC and PKCE regulate Pr of PF-PC synapses, 284 we wondered whether the EPAC-PKC module also regulates postsynaptic LTP and LTD. 285 After acquiring stable EPSCs in voltage-clamp mode (-70 mV), we induced postsynaptic LTP 286 by stimulating PFs at 1 Hz for 5 min in current-clamp mode (Figure 5A). In WT mice, this tetanus 287 stimulation induced an increase of PF-EPSCs (131 \pm 5% of baseline at t = 38-40 min; n = 13; p < 100288 0.001) (Figure 5B and C), while PPF was not changed (Figure 5D). When this protocol was applied at PF-PC synapses in Epac^{dKO} mice, we did not find any sign of potentiation of PF-EPSCs 289 290 $(106 \pm 6\% \text{ of baseline at t} = 38-40 \text{ min; } n = 13; p = 0.26)$ (Figure 5B-D). While these results were 291 consistent with our previous observation that EPAC is required for postsynaptic LTP 292 (Gutierrez-Castellanos et al., 2017), we had yet to specify the cellular site of action for EPAC. 293 Therefore, we repeated the induction protocol for postsynaptic LTP in Math1-Cre and *Epac1*^{cKO}; *Epac2*^{cKO} mice. In this case, the protocol successfully induced PF-PC LTP in both types 294 295 of mice (Figure 5E and F), while PPF was not altered (Figure 5G), suggesting that this is a 296 postsynaptic form of LTP. We continued to examine the expression of postsynaptic PF-PC LTP in Prkce^{ff} and Prkce^{cKO} mice. Similar to Epac1^{cKO}; Epac2^{cKO} mice, Prkce^{ff} and Prkce^{cKO} PCs 297 298 exhibited robust PF-PC LTP when 1 Hz stimulation was delivered to PFs (Figure 5H and I) with

299 unaltered PPF (Figure 5J), confirming the postsynaptic site of LTP.

300	Next, we investigated whether the expression of postsynaptic PF-PC LTD is affected by
301	ablation of EPAC and PKCE. PF-PC LTD was induced by giving repetitive PF stimulation at 100
302	Hz for 100 ms paired with a depolarization of the PCs involved (Figure 6A) (Steinberg et al., 2006;
303	Zhou et al., 2015). As shown by example responses (Figure 6B), Epac ^{dKO} PCs showed robust
304	PF-PC LTD (t = 38-40 min: $59 \pm 4\%$ of baseline; $n = 13$; <i>Figure 6C</i>), while the PPF ratio was not
305	changed ($p = 0.26$ at t = 38-40 min; $n = 13$; Figure 6D). Likewise, PF-PC LTD could be
306	successfully induced in <i>Math1</i> -Cre and <i>Epac1</i> ^{cKO} ; <i>Epac2</i> ^{cKO} mice (<i>Figure 6E and F</i>), while PPF
307	was not altered (Figure 6G). Moreover, we found that the same protocol could induce PF-PC LTD
308	in <i>Prkce</i> ^{ff} and <i>Prkce</i> ^{cKO} mice (<i>Figure 6H and I</i>) without affecting PPF (<i>Figure 6J</i>).
309	Overall, our results suggest that presynaptic EPAC and PKCE are not required for the
310	induction of postsynaptic forms of LTP and LTD.
311	

312 The EPAC-PKC module is essential for motor performance and motor learning

Even though plastic changes in the granular layer of the cerebellum have been suggested to contribute to procedural memory formation (*Le Guen and De Zeeuw, 2010*), the evidence thus far is limited (*Andreescu et al., 2011; Galliano et al., 2013*). Therefore, we investigated whether the EPAC-PKCe module, which is critical to presynaptic PF-PC LTP, contributes to performance and adaptation of compensatory eye movements mediated by the vestibulo-cerebellum (*Schonewille et al., 2010; Grasselli et al., 2020*).

Basic performance parameters included amplitude (gain) and timing (phase) of the
optokinetic response (OKR), vestibulo-ocular reflex (VOR), and visually enhanced VOR (VVOR)

321	(Figure 7A). We found that basic motor performance was impaired in $Epac^{dKO}$ mice in that they
322	showed significant deficits in the amplitude and timing of their OKR ($p = 0.009$ and $p = 0.004$,
323	respectively; ANOVA for repeated measurements) and VOR ($p = 0.001$ and $p = 0.02$, respectively;
324	ANOVA for repeated measurements) (Figure 7-figure supplement 1A and B). In contrast, no
325	significant differences were observed in the VVOR ($p = 0.66$ and $p = 0.68$ for gain and phase
326	values, respectively; Figure 7-figure supplement 1C).
327	The same compensatory eye movements were also tested in $Epac1^{cKO}$; $Epac2^{cKO}$ and $Prkce^{cKO}$
328	mice as well as their littermate controls. Basic eye movement performance was also affected in
329	Epac1 ^{cKO} ; Epac2 ^{cKO} mice in that their OKR gains were significantly lower than those of
330	Math1-Cre littermates ($p = 0.003$; ANOVA for repeated measurements) (Figure 7B), that their
331	VOR gains were significantly greater than those of <i>Math1</i> -Cre littermates (VOR: $p = 0.027$;
332	ANOVA for repeated measurements) (Figure 7C), and that the phase values during both OKR and
333	VOR were significantly lagging those of the <i>Math1</i> -Cre littermates (OKR: $p = 0.001$; VOR: $p =$
334	0.047; ANOVA for repeated measurements) (Figure 7B and C). No significant differences were
335	observed between $Epac1^{cKO}$; $Epac2^{cKO}$ and $Math1$ -Cre mice in the VVOR ($p = 0.69$ and $p = 0.75$
336	for gain and phase values, respectively) (Figure 7D). Moreover, Prkce ^{cKO} mice shared the same
337	defects with Epac1 ^{cKO} ; Epac2 ^{cKO} mice in their basic motor performance. OKR gain values of
338	$Prkce^{cKO}$ mice were significantly lower than those of $Prkce^{ff}$ littermates ($p = 0.013$; ANOVA for
339	repeated measurements) (Figure 7E), whereas their VOR gain values were greater than those of
340	control littermates ($p = 0.034$; ANOVA for repeated measurements) (<i>Figure 7F</i>). Meanwhile, OKR
341	and VOR phase values of Prkce ^{cKO} mice were both significantly lagging those of the Math1-Cre
342	littermates (OKR: $p = 0.015$; VOR: $p = 0.044$; ANOVA for repeated measurements) (<i>Figure 7E</i>

343	and F). No significant differences were observed between $Prkce^{ff}$ and $Prkce^{cKO}$ mice in the
344	VVOR ($p = 0.93$ and $p = 0.50$ for gain and phase values, respectively) (<i>Figure 7G</i>). Altogether,
345	our data suggest that presynaptic ablation of EPAC and/or PKCE mice profoundly influences
346	motor performance when visual and vestibular systems are separated, but not when they are
347	engaged simultaneously, as occurs under natural conditions or during visuo-vestibular training.
348	Next, we tested the VOR phase-reversal protocol, which is considered the type of motor
349	learning sensitive to the perturbation to the vestibulo-cerebellum (Wulff et al., 2009; Badura et al.,
350	2016; Peter et al., 2016). VOR phase reversal aims to reverse the direction of the VOR using
351	retinal slip caused by a screen rotation in the same direction (i.e., in phase) as head rotation and
352	with increasing amplitude as the training progresses (Figure 7H). During the initial days of
353	gain-decrease training, all three control mouse lines (WT, Math1-Cre and Prkce ^{f/f}) exhibited gain
354	reductions similar to previous work (Wulff et al., 2009; Badura et al., 2016; Gutierrez-Castellanos
355	et al., 2017). Gain reductions were smaller in Epac ^{dKO} (Figure 7-figure supplement 1D),
356	<i>Epac1</i> ^{cKO} ; <i>Epac2</i> ^{cKO} (<i>Figure 71</i>), as well as <i>Prkce</i> ^{cKO} (<i>Figure 7J</i>) mice, but the deficit varied across
357	days between the different mouse lines (in $Epac^{dKO}$ mice, Day 1: $p = 0.043$; Day 2: $p = 0.008$; Day
358	3: $p = 0.002$; Day 4: $p = 0.007$; Day 5: $p = 0.004$; in <i>Epac1</i> ^{cKO} ; <i>Epac2</i> ^{cKO} mice, Day 1: $p = 0.079$;
359	Day 2: $p = 0.036$; Day 3: $p = 0.011$; Day 4: $p = 0.22$; Day 5: $p = 0.061$; and in <i>Prkce</i> ^{cKO} mice, Day
360	1: <i>p</i> = 0.047; Day 2: <i>p</i> = 0.004; Day 3: <i>p</i> = 0.004; Day 4: <i>p</i> = 0.084; Day 5: <i>p</i> = 0.15). WT (<i>Figure</i>
361	7-figure supplement 1D), Math1-Cre (Figure 7I) as well as Prkce ^{f/f} (Figure 7J) mice showed a
362	proper reversal of the phase of their VOR, highlighting their ability to invert the direction of an
363	innate reflex (Wulff et al., 2009; Badura et al., 2016; Peter et al., 2016; Grasselli et al., 2020).
364	Whereas the VOR phase values were not significantly affected in the Epac ^{dKO} ,

365 $Epac1^{cKO}; Epac2^{cKO}$, and $Prkce^{cKO}$ mouse lines during the first day (WT versus $Epac^{dKO}$, p = 0.15;

366 *Math1*-Cre versus
$$Epac1^{cKO}$$
; $Epac2^{cKO}$, $p = 0.087$; $Prkce^{f/f}$ versus $Prkce^{cKO}$, $p = 0.52$), they were so

367 during sessions on days 2-5 (WT versus $Epac^{dKO}$: Day 2, p = 0.003; Day 3, p = 0.002; Day 4, p < 0.002; Day 4,

368 0.001; Day 5,
$$p < 0.001$$
; Math1-Cre versus Epac1^{cKO}; Epac2^{cKO}: Day 2, $p < 0.001$; Day 3, $p < 0$

- 369 0.001; Day 4, p < 0.001; Day 5, p < 0.001; $Prkce^{ff}$ versus $Prkce^{cKO}$: Day 2, p = 0.01; Day 3, p = 0.01; Da
- 370 0.048; Day 4, p < 0.001; Day 5, p < 0.001). Therefore, we conclude that $Epac^{dKO}$,
- 371 Epac1^{cKO}; Epac2^{cKO} and Prkce^{cKO} mice had prominent deficits in phase-reversal learning of their

372 VOR.

373 Discussion

374	In the current study we demonstrate that triggering EPAC induces PKCE activation and threonine
375	phosphorylation of RIM1 α , which in turn facilitates the assembly of the Rab3A-RIM1 α -Munc13-1
376	tripartite complex and thereby docking and release of synaptic vesicles at active zones of PF-PC
377	synapses (Figure 7-figure supplement 2). The form of presynaptic LTP at these synapses that
378	requires activation of the EPAC-PKCE module can be induced by either tetanic stimulation or
379	forskolin at PF terminals (Figure 7-figure supplement 2). Via its presynaptic actions, the
380	EPAC-PKCε module contributes to adaptation of compensatory eye movements, a motor learning
381	task that depends on the vestibule-cerebellum.
382	
383	Threonine phosphorylation of RIM1 α by the EPAC-PKC ϵ module
384	Our finding that the EPAC-PKC ε module can phosphorylate RIM1 α raises a simple but

385 fascinating mechanistic concept that the phosphorylation level of RIM1a determines presynaptic 386 release. RIM1a specifically interacts with a number of presynaptic proteins, such as Munc13-1, 387 liprin- α and ELKS, so as to form a scaffold complex regulating homeostatic release of synaptic 388 vesicles (Südhof, 2004). RIM1a can be phosphorylated at two serine residues by PKA and 389 CaMKII (Lonart et al., 2003; Sun et al., 2003), which promotes its interaction with 14-3-3 protein 390 (Sun et al., 2003). The current work advances on this concept by showing that RIM1 α can also be 391 phosphorylated at its threonine sites by PKCE. Moreover, our data demonstrate the functional 392 implication consequence of threonine phosphorylation of RIM1a at PF-PC synapses: it promotes 393 the assembly of the Rab3A-RIM1 α -Munc13-1 complex and is essential for the induction of 394 presynaptic PF-PC LTP, suggesting that a fast switch between phosphorylation and

danhaghamilation of DIM1 a may regulate presumentia notantials during dynamic sympatic events

393	dephosphorylation of Knyrta may regulate presynaptic potentials during dynamic synaptic events.
396	This new mechanistic concept is in line with the notion that synaptic vesicle proteins, such as
397	RIM1a, often exhibit stimulation-dependent changes in phosphorylation (Kohansal-Nodehi et al.,
398	2016). It remains to be elucidated how threonine and serine phosphorylations of RIM1 α may exert
399	distinct downstream effects. For instance, one could speculate that the threonine loci of RIM1 α
400	lead to more prominent conformational changes, allowing RIM1 α to bind to active zone proteins.
401	

402 Distinct roles of EPAC and PKA at synapses

205

403 cAMP-mediated signaling pathways that are mediated by EPAC and PKA regulate a multitude of 404 physiological and pathological processes (Cheng et al., 2008). EPAC shares homologous 405 cAMP-binding domains with PKA, but also possesses domains absent in PKA, such as the Ras 406 exchange motif, the Ras association domain, and the CDC25-homology domain (Cheng et al., 407 2008). Indeed, the specific domains endow EPAC and PKA with different and even opposite 408 functions. For example, in contrast to PKA, EPAC can activate small GTPase Rap1 (de Rooij et 409 al., 1998) and increase PKB phosphorylation (Mei et al., 2002). Our current work bolsters the 410 differences, showing that EPAC can phosphorylate PKCe and RIM1a threonine sites at synapses. 411 This highlights the question as to how EPAC and PKA operate in an integrated manner to control 412 the net physiological effect of cAMP-signaling pathways at synapses. Some studies indicate that 413 presynaptic potentiation depends predominantly on PKA (Salin et al., 1996; Linden and Ahn, 1999; 414 Lev-Ram et al., 2002), whereas others advocate a more critical role for EPAC (Kaneko and 415 Takahashi, 2004; Fernandes et al., 2015; Martín et al., 2020). Our results highlight that ablation 416 of either EPAC or PKCe by itself is not sufficient to block forskolin-induced synaptic potentiation,

417	but that supplementing this with a blockage of PKA causes a complete blockage. These results
418	demonstrate that EPAC and PKA can conjunctively regulate synaptic potentiation. Even so, our
419	results clarify that the impact of EPAC on cAMP-induced EPSC potentiation is dominant, as it has
420	the strongest contribution to the forskolin-induced increase of EPSC amplitude. Alternatively,
421	PKA warrants a minimum level of potentiation that may be required under particular
422	circumstances when EPAC is not active.

423

424 The EPAC-PKC module is required for synaptic release and presynaptic LTP

Our EM analysis shows that the number of docked vesicles at the PF terminals of $Epac^{dKO}$ and 425 Prkce^{cKO} mutants is reduced, whereas the general structure of PF-PC synapses is unchanged. As 426 427 ablation of either EPAC or PKCE attenuated protein interactions in the the 428 Rab3A-RIM1α-Munc13-1 complex, which is required for the docking and priming of presynaptic 429 vesicles (Schoch et al. 2002; Südhof, 2004; Ferrero et al., 2013), the reduction in docked vesicles in *Epac*^{dKO} and *Prkce*^{cKO} mice can be readily explained. In parallel with our observations at the 430 ultrastructural level, we found that mice with presynaptic deletion of *Epac* and *Prkce*^{cKO} displayed 431 432 obvious defects in synaptic release at the electrophysiological level. Although EPAC1 and EPAC2 433 have been shown to be involved in synaptic release in the hippocampus and cerebellum (Yang et 434 al., 2012; Zhao et al., 2013; Martín et al., 2020), our finding that PKCE acts as the downstream 435 effector of EPAC and regulates presynaptic release is novel. Furthermore, we demonstrate for the 436 first time that presynaptic PKCe is required for presynaptic LTP at PF-PC synapses. These 437 findings expand the repertoire of forms of PC plasticity that are driven by cAMP signaling.

438 The role of the cAMP-PKA cascade in presynaptic LTP has been extensively debated. Early

439	studies claimed that PKA and RIM1 α serine phosphorylation are critical for the induction of
440	presynaptic LTP at PF-PC synapses (Salin et al., 1996; Lonart et al., 2003). However, this
441	conclusion was challenged by follow-up studies, demonstrating that RIM1 α S413A mutant mice
442	exhibit normal presynaptic LTP in both cerebellum and hippocampus (Kaeser et al., 2008; Yang
443	and Calakos, 2010). In our opinion, a couple of caveats must be considered regarding the function
444	of PKA in presynaptic LTP. First, cAMP analogs (Rp-8-CPT-cAMP-S and Sp-8CPT-cAMP-S)
445	used in two studies advocating that PKA mediates presynaptic PF-PC LTP (Salin et al., 1996;
446	Lonart et al., 2003) are able to regulate Rap1 (Roscioni et al., 2009), which is a direct substrate of
447	EPAC (de Rooij et al., 1998). Therefore, these cAMP analogs may also act through the
448	EPAC-PKC ϵ module. Second, KT5720 at 10 μ m, a concentration used by Lonart et al. (Lonart et
449	al., 2003), can alter a range of protein kinases, including phosphorylase kinase, mitogen-activated
450	protein kinase kinase, PKB α , glycogen synthase kinase 3 β , as well as AMP-activated protein
451	kinase (Brushia and Walsh, 1999; Davies et al., 2000; Murray, 2008). Thus, KT5720 at this
452	concentration has numerous side-effects next to its ability to inhibit PKA. In contrast, our results
453	derived from cell-specific mouse lines consistently converge on the concept that presynaptic
454	PF-PC LTP depends on the EPAC-PKCE module. More specifically, our data demonstrate that
455	repetitive 8-Hz PF stimulation increases the level of cAMP and consequently activates EPAC and
456	PKC ϵ , which in turn induces threonine phosphorylation of RIM1 α , suggesting a phospho-switch
457	machinery that can tune presynaptic PF-PC LTP.
458	Our finding that the EPAC-PKC ϵ module is a central component for synaptic release and
459	presynaptic LTP may not stand on its own. In fact, EPAC is involved in cellular processes like cell
460	adhagian call call innotion formation anontagic and connection call differentiation on well as call

460 adhesion, cell-cell junction formation, exocytosis and secretion, cell differentiation, as well as cell

461	proliferation (Cheng et al., 2008), while PKCE is necessary for sperm exocytosis in the testis
462	(Lucchesi et al., 2016). Together, these lines of evidence suggest that the EPAC-PKCE module
463	might be a widespread mechanism controlling not only synaptic release in nerve cells, but also
464	granule secretion in endocrine or proliferating cells.

465

466 Role of presynaptic LTP in motor behavior

Many studies have explored the potential functional role of postsynaptic plasticity at PC synapses,
in particular that of PF-PC LTP and PF-PC LTD (*Gao et al., 2012; Raymond and Medina, 2018*).

469 The picture emerging from these studies is that postsynaptic PF-PC LTP and PF-PC LTD play an 470 important role in forms of learning that are mediated by the so-called upbound and downbound 471 modules (De Zeeuw, 2021). Whereas VOR adaptation is mainly mediated by upbound microzones 472 in the vestibulo-cerebellum that increase the simple spike frequency during learning 473 (Gutierrez-Castellanos et al., 2017; Voges et al., 2017), eyeblink conditioning is predominantly 474 regulated by downbound microzones in lobule simplex that decrease simple spikes during learning 475 (Ten Brinke et al., 2015; Wu et al., 2019). Yet, what is the role of presynaptic LTP at PF to PC 476 synapses? Even though it has been suggested more than a decade ago that the functional role of

477 presynaptic plasticity at PF-PC synapses during learning can be expected to align with that of

478 postsynaptic plasticity (Le Guen and De Zeeuw, 2010), evidence has been largely lacking.

479 Here, we found that $Epac1^{cKO}$; $Epac2^{cKO}$ and $Prkce^{cKO}$ mice, which showed reduced PF-PC 480 transmission and lack presynaptic LTP, exhibit deficits in basic motor performance, in the form of 481 an affected OKR and VOR, as well as in gain-decrease and phase reversal learning of their VOR 482 (*Figure 7–figure supplement 2*). Similarly, presynaptic ablation of EPACs or PKC ε results in

483	altered gain and phase values of their OKR and VOR. Interestingly, the impairments in OKR and
484	VOR caused by deletion of <i>Epac1/Epac2</i> or <i>Prkce</i> in granule cells were similar to those caused by
485	global deletion of <i>Epac</i> . This finding raises the possibility that presynaptic EPAC is in fact more
486	critical for basic motor performance than postsynaptic EPAC. This possibility is compatible with
487	previous work showing that mice with a PC-specific deletion of GluA3, which leads to a lack of
488	postsynaptic LTP mediated by EPAC, have hardly any significant deficit in basic motor
489	performance (Gutierrez-Castellanos et al., 2017). By the same argument, the contribution of
490	presynaptic LTP to phase reversal learning might be more in line with that of postsynaptic PF-PC
491	LTP in that <i>Epac1</i> ^{cKO} ; <i>Epac2</i> ^{cKO} and <i>Prkce</i> ^{cKO} mice showed similar deficits as PC-specific GluA3
492	knockouts. The prediction that the impact of presynaptic plasticity at PF-PC synapses during
493	learning operates in a synergistic fashion with that of postsynaptic plasticity (Le Guen and De
494	Zeeuw, 2010), does in this respect hold.

495 Materials and Methods

496 Animals

497	Original breeding pairs of Epac ^{dKO} and Math1-Cre mice were obtained from Youmin Lu
498	(Huazhong University of Science and Technology, Wuhan, China) and Wei Mo (Xiamen
499	University, Xiamen, China), respectively. Epac1 ^{f/f} , Epac2 ^{f/f} and Prkce ^{f/f} mice were made by us
500	with the assistance of GemPharmatech (Soochow, Jiangsu, China) and Nanjing Biomedical
501	Research Institute (Nanjing, Jiangsu, China). The resulting offspring were genotyped using PCR
502	of genomic DNA. Mice were kept at the Experimental Animal Center of Zhejiang University
503	under temperature-controlled condition on a 12:12 h light/dark cycle. All experiments were
504	performed blind to genotypes in age-matched littermates of either sex.

505

506 Antibodies and Reagents

507 Antibodies against RIM1 (Cat# 140013, RRID:AB 2238250 and Cat# 140023, 508 RRID:AB 2177807), Rab3 (Cat# 107011, RRID:AB 887768) and Munc13-1 (Cat# 126102, 509 RRID:AB_887734) were from Synaptic Systems (Gottingen, Germany). Antibodies against 510 phosphor-threonine (Cat# 9381, RRID:AB_330301), EPAC1 (Cat# 4155, RRID:AB_1903962) 511 and EPAC2 (Cat# 4156, RRID:AB_1904112) were from Cell Signaling (Danvers, MA). The 512 antibody to phosphor-serine (Cat# AB1603, RRID:AB 390205) was from Millipore (Billerica, 513 MA). Antibodies against HA (Cat# M20003, RRID:AB 2864345), Flag (Cat# M20008, 514 RRID:AB 2713960) and His (Cat# M30111, RRID:AB 2889874) were from Abmart (Shanghai, 515 China). Antibody against PKCa (Cat# P4334, RRID:AB 477345) was from sigma (St. Louis, 516 MO). Antibodies against PKCα-pS657 (ab23513, RRID:AB 2237450), PKCα-pT638 (Cat#

517	ab32502, RRID:AB_777295), PKC&pSer729 (Cat# ab63387, RRID:AB_1142277), EPAC1 (Cat#
518	ab21236, RRID:AB_2177464, for immunostaining), EPAC2 (Cat# ab124189,
519	RRID:AB_10974926, for immunostaining), anti-mouse IgG for IP (HRP) (Cat# ab131368,
520	RRID:AB_2895114) and VeriBlot for IP Detection Reagent (HRP) (Cat# ab131366,
521	RRID:AB_2892718) were from Abcam (Cambridge, UK). Antibody against β -tubulin (Cat#
522	sc-5274, RRID:AB_2288090) was from Santa Cruz (Dallas, TX). Antibody against PKCE (Cat#
523	MA5-14908, RRID:AB_10985232), Goat anti-mouse IgG horseradish peroxidase
524	(HRP)-conjugated (Cat# 31446, RRID:AB_228318), Goat anti-rabbit IgG horseradish peroxidase
525	(HRP)-conjugated (Cat# 31460, RRID:AB_228341) were from Thermo Fisher Scientific
526	(Waltham, MA). Anti-vGluT1 antibody was a gift from Dr. Masahiko Watanabe (Hokkaido
527	University, Sapporo, Japan). The antibody against PKCe (Cat# 20877-1-AP, RRID:AB_10697812,
528	for immunostaining) was from Proteintech (Rosemont, IL). Mouse IgG (Cat# A7028,
529	RRID:AB_2909433) and rabbit IgG (Cat# A7016, RRID:AB_2905533) were from Beyotime
530	(Shanghai, China). Protease inhibitor cocktail (04693132001) was from Roche (Mannheim,
531	Germany). Gö6976 (2253), 8-pCPT (4853) and FR236924 (3091) were from Tocris (Bristol, UK).
532	Dulbecco's modified Eagle's medium (DMEM, 11885-084), Penicillin-Streptomycin (15140-122),
533	Sodium Pyruvate (11360-070), Fetal Bovine Serum (FBS, 10099-133), lipofectamine 2000
534	(11668-019), OPTI-MEM (31985-062), and Alexa Fluor-conjugated secondary antibodies were
535	from Invitrogen (Carlsbad, CA). GammaBind Plus Sepharose (17-0886-01) was from GE
536	healthcare. Other chemicals were from Sigma (St. Louis, MO) unless stated otherwise.
537	

538 Plasmid construction

539	The construction of plasmids was performed according to previous work (Wang et al., 2015).
540	HA-RIM1a, Flag-EPAC1, Flag-EPAC2, and His-PKCE, were constructed based on the coding
541	sequence of rat <i>RIM1a</i> gene (GenBank# NM_052829.1), rat <i>EPAC1</i> gene (GenBank#
542	NM_021690.1), rat EPAC2 gene (GenBank# XM_017592164.1), and rat Prkce gene (GenBank#
543	NM_017171.1), respectively. All constructs were verified by DNA sequencing.
544	
545	RT-PCR
546	RT-PCR was used to determine the mRNA level of EPAC1, EPAC2 and PKCE in granule cells.
547	The contents of individual granule cells (P21) were harvested as described in previous work (Zhou
548	et al., 2017). The harvested contents were subjected to RT-PCR using OneStep Kit (210212,
549	Qiagen, Hilden, Germany). Forward (F) and reverse (R) primers used for amplification were as
550	follows: <i>Epac1</i> , F: 5'- GCT TGT TGA GGC TAT GGC-3'; R: 5'- ACA CAG TTC CTG CCT
551	TGC-3'. Epac2, F: 5'- CAT TCT CTC TCG AGC TCC-3'; R: 5' TGG TTG AGG ACA CCA
552	TCT-3'. Prkce, F: 5'- ATT GAC CTG GAG CCA GAA -3'; R: 5'- CTT GTG GCC ATT GAC
553	CTG-3'. Gapdh, F: 5'-GGT GAA GGT CGG TGT GAA CG-3'; R: 5'-CTC GCT CCT GGA AGA
554	TGG TG-3'.
555	
556	HEK cell culture
557	HEK cells were cultured in DMEM supplemented with 10% FBS, 1 mM sodium pyruvate, 100
558	U/ml penicillin, and 10 μ g/ml streptomycin and stored in an incubator (95% O ₂ /5% CO ₂ ; 37°C).
559	The plasmids were transfected to HEK cells in OPTI-MEM using lipofectamine 2000 (Invitrogen)

560 at 70-80% confluency.

28

561

562 **Purification of synaptosomes**

563	Synaptosomes were purified according to previous work (Ferrero et al., 2013). Cerebellar tissues
564	from mice (P21) were homogenized in a medium (pH7.4) containing sucrose (320 mM) and
565	protease inhibitors. The homogenate was centrifuged $2,000 \times g$ (4°C for 2 min) and the supernatant
566	was spun again at 9,500× g (4°C for 12 min). The compacted white layer containing the majority
567	of synaptosomes was gently resuspended in sucrose (320 mM) supplemented with protease
568	inhibitors, and an aliquot of synaptosomal suspension (2 ml) was placed onto a 3-ml Percoll
569	discontinuous gradient (GE Healthcare) containing (in mM) 320 sucrose, 1 EDTA, 0.25
570	DL-dithiothreitol, and 3, 10, or 23% Percoll. After centrifugation at 25,000× g (4°C for 10 min),
571	synaptosomes were recovered from between 10% and 23% bands and diluted in a medium (in mM)
572	(140 NaCl, 5 KCl, 5 NaHCO ₃ , 1.2 NaH ₂ PO ₄ , 1 MgCl ₂ , 10 glucose, 10 HEPES; pH 7.4)
573	supplemented with protease inhibitors. The synaptosomes good for experiments were harvested
574	from the pellet after the final centrifugation at 22,000× g (4°C for 10 min).

575

576 Immunocytochemistry

For immunocytochemistry, synaptosomes were added to a medium containing 0.32 M sucrose (pH 7.4), allowed to attach to polylysine-coated coverslips for 1 h, and fixed for 10 min in 4% paraformaldehyde in 0.1 M phosphate buffer (PB) (pH 7.4) at room temperature. Following several washes with PB (pH 7.4), synaptosomes were incubated for 1 h in 10% normal goat serum diluted in PBS (pH 7.4) containing 0.2% Triton X-100. Subsequently, they were incubated for 24 h with primary antiserum for EPAC1 (1:500), EPAC2 (1:500), PKCε (1:500) and vGluT1 (1:500).

- 583 After washing in PBS, synaptosomes were incubated with secondary antibodies for 2 h.
- 584 Coverslips were mounted with Prolong Antifade Kit (Molecular Probes) and synaptosomes were
- 585 viewed using a confocal microscope (Nikon A1R) with a ×100 objective.
- 586

587 Co-immunoprecipitation

- 588 After measuring protein concentration using the BCA assay, a tenth of lysis supernatant derived
- 589 from synaptosomes or cultured cells was used for input and the remainder were incubated with
- 590 anti-RIM1 or anti-HA antibody, which was precoupled to GammaBind Plus Sepharose at 5-10 μg
- antibody/1 ml beads for 3 h. Proteins on the beads were extracted with 2× SDS sample buffer plus
- 592 protease inhibitors and boiled for 5 min before Western blot.
- 593

594 Western blotting

595 The protein concentration was determined using BCA protein assay. Equal quantities of proteins 596 were loaded and fractionated on SDS-PAGE, transferred to PVDF membrane (Immobilon-P, 597 Millipore), immunoblotted with antibodies, and visualized by enhanced chemiluminescence 598 (Thermo). The dilutions of primary antibodies were 1:1,000 for RIM1, Munc13-1, PKCα-pS657, 599 EPAC1, EPAC2, p-Thr, p-Ser, β -tubulin, and PKC ϵ -pSer729; 1:2,000 for Rab3A and PKC ϵ ; 600 1:5,000 for PKCα-pT638; 1:10,000 for HA, His, Flag, GAPDH, and PKCα. Secondary antibodies 601 were goat anti-rabbit (1:10,000), goat anti-mouse (1:10,000), anti-mouse IgG for IP (HRP) 602 (1:1,000), VeriBlot for IP Detection Reagent (HRP) (1:1,000). Film signals were digitally scanned 603 and quantified using ImageJ 1.42q (NIH, Bethesda, MD).

604

605 Electron microscopy

606	After anesthetic mice (P21) were transcardially perfused with saline and ice-cold fixative, brains
607	were removed and stored at 4°C for 2.5 h in fixative. Sagittal slices of vermis (200 $\mu m)$ were
608	prepared and rectangular molecular layer sections from lobules IV-V were dissected. The samples
609	were dehydrated and embedded in an epoxy resin. Ultrathin sections (90 nm) were cut using an
610	ultra-microtome (Leica), stained with 2% uranyl acetate and lead solution, and mounted on grids.
611	EM images were captured at 30,000× magnification using a Tecnai transmission electron
612	microscope (FEI, Hillsboro, OR). PF-PC synapses were identified by asymmetrical and short
613	contacts, which were distinct from GABAergic or climbing fiber synapses (Ichikawa et al., 2016).
614	ImageJ was used to count the numbers of total and docked vesicles per bouton.
615	
616	Golgi staining and spine density analysis
617	Golgi staining was performed using Rapid Golgi Stain Kit (FD NeuroTech Inc., Ellicott, MD)
618	according to the manufactory's instruction. PCs at the apical region were imaged using a bright
619	field microscope (Zeiss, Germany). ImageJ was used to count the spine number and dendrites
620	length of PCs with manual assistant.

622 Electrophysiology

Sagittal slices of cerebellar vermis (250 μm) were prepared from anesthetic mice (P21) using a
vibrating tissue slicer (Leica VT1000S) and ice-cold standard artificial cerebrospinal fluid (aCSF)
containing (in mM): 125 NaCl, 2.5 KCl, 1.25 NaH₂PO₄, 1 MgCl₂, 2 CaCl₂, 26 NaHCO₃ and 25
D-glucose, bubbled with 95% O₂/5% CO₂. After recovery for 30 min at 37°C, slices were placed

627 in a submerged chamber that was perfused at 2 ml/min with aCSF supplemented with GABAzine

628 (10 μ M) during recordings.

629	PCs were visualized under an upright microscope (BX51, Olympus) equipped with a $40 \times$
630	water-immersion objective and infrared differential interference contrast enhancement. Whole-cell
631	recordings were made on PCs from lobules IV-V with a MultiClamp 700B amplifier (Molecular
632	Devices). Currents were digitized at 10 kHz and filtered at 3 kHz. Patch electrodes (3-5 M Ω) were
633	filled with an intracellular solution containing (in mM) 135 Cs-methanesulfonate, 10 CsCl, 10
634	HEPES, 0.2 EGTA, 4 Na ₂ ATP, and 0.4 Na ₃ GTP (pH 7.3, OSM 290). PCs were held at -70 mV to
635	prevent spontaneous spikes that might escape clamp. For PF stimulation, standard patch pipettes
636	were filled with aCSF and placed in middle third of molecular layer. Presynaptic PF-PC LTP was
637	induced by stimulating PF input 120 times at 8 Hz (Salin et al., 1996; Kaeser et al., 2008).
638	Postsynaptic PF-PC LTP was obtained when PFs were stimulated at 1 Hz for 5 min in parallel
639	with current-clamp of recording PC (Wang et al., 2014). PF-LTD was induced by a conjunction of
640	5 PF-pulses at 100 Hz and a 100-ms long depolarization of PC to 0 mV, which was repeated 30
641	times with an interval of 2 s (Zhou et al., 2015). mEPSCs were recorded in whole-cell
642	configuration in the presence of tetrodotoxin (0.5 μ M) and an offline analysis was conducted using
643	a sliding template algorithm (ClampFit 10, Molecular Device) according to previous work (Zhou
644	et al., 2017). To estimate the RRP size and release Pr, a repeated 20 Hz train stimulation protocol
645	was used to evoke 40 EPSCs. The RRP size was calculated by linear interpolating the linear
646	portion of the cumulative EPSC amplitude plot to virtual stimulus 0. The release Pr was calculated
647	as the mean amplitude of the 1st EPSC during the repeated train stimulations divided by the RRP
648	size (<i>He et al., 2019</i>).

649

650 Compensatory eye movement test

651	Mice (P60) were surgically prepared for head-restrained recordings of compensatory eye
652	movements. A pedestal was attached to the skull after shaving and opening the skin overlaying it,
653	using Optibond primer and adhesive (Kerr, Bioggio, Switzerland) and under isoflurane anesthesia
654	in O2 (induction with 4% and maintained at 1.5% concentration). Mice were administered
655	xylocaine and an injection with bupivacaine hydrochloride (2.5 mg/ml, bupivacaine actavis) to
656	locally block sensation. The pedestal consisted of a brass holder (7 \times 4 mm base plate) with a
657	neodymium magnet (4 \times 4 \times 2 mm) and a screw hole for fixation. After a recovery period of at
658	least 3 days, mice were placed in a mouse holder, using the magnet and a screw to fix the pedestal
659	to a custom-made restrainer, and the mouse was placed with the head in the center on a turntable
660	(diameter 60 cm) in the experimental setup. A drum (diameter 63 cm) surrounded the mouse
661	during the experiment. The recording camera was calibrated by moving the camera left-right by
662	20° peak to peak at different light levels. Compensatory eye movement performance was
663	examined by recording the OKR, VOR, and VVOR using a sinusoidal rotation of the drum in light
664	(OKR), rotation of the table in the dark (VOR), or rotation of the table (VVOR) in the light. These
665	reflexes were evoked by rotating the table and/or drum at 0.1 to 1 Hz (20 to 8 cycles, each
666	recorded twice) with a fixed 5° amplitude. In order to evaluate motor learning, a mismatch
667	between visual and vestibular input was used to adapt the VOR. The ability to perform VOR phase
668	reversal was tested using a 5-day paradigm, consisting of six 5-minute training sessions every day
669	with VOR recordings before, between, and after the training sessions. On the first day during
670	training, the visual and vestibular stimuli rotated in phase at 0.6 Hz and at the same amplitude,

671	inducing a decrease of gain. On the subsequent days, the drum amplitude was increased relative to
672	the table and induced the phase reversal of the VOR, resulting in a compensatory eye movement
673	in the same direction as the head rotation instead of the normal compensatory opposite direction
674	(all days vestibular 5° rotation, visual day 2: 5°; day 3, 7.5°; days 4-5, 10°). Between recording
675	sessions, mice were kept in the dark to avoid unlearning of the adapted responses.
676	Eye movements were recorded with a video-based eye-tracking system (hard- and software,
677	ETL-200; ISCAN systems, Burlington, MA). Recordings were always taken from the left eye. The
678	eye was illuminated during the experiments using two table-fixed infrared emitters (output 600
679	mW, dispersion angle 7°, peak wavelength 880 nm) and a third emitter that was mounted to the
680	camera, aligned horizontally with the optical axis of the camera, which produced the tracked
681	corneal reflection. Pupil size and corrected (with corneal reflection) vertical and horizontal pupil
682	positions were determined by the ISCAN system, filtered (CyberAmp; Molecular Devices, San
683	Jose, CA), digitized (CED, Cambridge, UK) and stored for offline analysis. All eye movement
684	signals were calibrated, differentiated to obtain velocity signals, and high-pass-filtered to
685	eliminate fast phases, and then cycles were averaged. Gain-the ratio of eye movement amplitude
686	to stimulus amplitude-and phase values-time difference between eye and stimulus expressed in
687	degrees-of eye movements were calculated using custom-made MATLAB routines (The
688	MathWorks, Natick, MA).
(90	

689

690 Statistical analysis

Experimenters who performed experiments and analyses were blinded to the genotypes until alldata were integrated. Data were analyzed using Igor Pro 6.0 (Wavemetrics, Lake Oswego, OR),

693	Graphpad Prism (San Diego, CA), SPSS 16.0 (IBM, Chicago, IL), and MATLAB. No statistical
694	methods were used to pre-determine sample sizes, which were based on our previous studies. All
695	data sets were tested for the assumptions of normality of distribution. No data were excluded
696	except electrophysiological recordings with $\geq 15\%$ variance in series resistance, input resistance,
697	or holding current. Standard deviations for control were calculated from the average of all control
698	data. Statistical differences were determined using unpaired two-sided Student's t test for
699	two-group comparison, or one-way ANOVA followed by Tukey's post hoc post hoc test for
700	multiple comparisons, or repeated measures ANOVA for repeated measures. The accepted level of
701	significance was $p < 0.05$. "n" represents the number of preparations or cells. Data in the text and
702	figures are presented as mean \pm SEM.

703 References

704	Acuna C, Liu X, Südhof TC. 2016. How to make an active zone: unexpected universal functional
705	redundancy between RIMs and RIM-BPs. Neuron 91:792-807. DOI:
706	10.1016/j.neuron.2016.07.042, PMID: 27537484.
707	Andreescu CE, Prestori F, Brandalise F, D'Errico A, De Jeu MT, Rossi P, Botta L, Kohr G, Perin P,
708	D'Angelo E, et al. 2011. NR2A subunit of the N-methyl D-aspartate receptors are required for
709	potentiation at the mossy fiber to granule cell synapse and vestibulo-cerebellar motor
710	learning. Neuroscience 176:274-283. DOI: 10.1016/j.neuroscience.2010.12.024, PMID:
711	21185357
712	Badura A, Clopath C, Schonewille M, De Zeeuw CI. 2016. Modeled changes of cerebellar
713	activity in mutant mice are predictive of their learning impairments. Scientific Reports
714	6 :36131. DOI: 10.1038/srep36131, PMID: 27805050.
715	Betz A, Thakur P, Junge HJ, Ashery U, Rhee JS, Scheuss V, Rosenmund C, Rettig J, Brose N.
716	2001. Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic
717	vesicle priming. Neuron 30:183-196. DOI: 10.1016/s0896-6273(01)00272-0, PMID:
718	11343654.
719	Brushia RJ, Walsh DA. 1999. Phosphorylase kinase: the complexity of its regulation is reflected
720	in the complexity of its structure. Frontiers in Bioscience 4:D618-641. DOI: 10.2741/brushia,
721	PMID: 10487978.
722	Cheng X, Ji Z, Tsalkova T, Mei F. 2008. Epac and PKA: a tale of two intracellular cAMP
723	receptors. Acta Biochim Biophys Sin 40:651-662. DOI: 10.1111/j.1745-7270.2008.00438.x,
724	PMID: 18604457.

725	Davies MS, Cox JW, Berners-Price SJ, Barklage W, Qu Y, Farrell N. 2000. Equilibrium and
726	kinetic studies of the aquation of the dinuclear platinum complex
727	[[trans-PtCl(NH3)2]2(mu-NH2(CH2)6NH2)]2+: pKa determinations of aqua ligands via
728	[1H,15N] NMR spectroscopy. Inorganic Chemistry 39:1710–1715. DOI: 10.1021/ic991104h,
729	PMID: 12526558.
730	de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL. 1998.
731	Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature
732	396 :474–477. DOI: 10.1038/24884, PMID: 9853756.
733	De ZeeuW CI. 2021. Bidirectional learning in upbound and downbound microzones of the
734	cerebellum. Nature Reviews Neuroscience 22, 92-110. DOI: 10.1038/s41583-020-00392-x,
735	PMID: 33203932.
736	Dulubova I, Lou X, Lu J, Huryeva I, Alam A, Schneggenburger R, Südhof TC, Rizo J. 2005. A
737	Munc13/RIM/Rab3 tripartite complex: from priming to plasticity? EMBO Journal

738 **24**:2839–2850. DOI: 10.1038/sj.emboj.7600753, PMID: 16052212.

739 Fernandes HB, Riordan S, Nomura T, Remmers CL, Kraniotis S, Marshall JJ, Kukreja L, Vassar

740 R, Contractor A. 2015. Epac2 mediates cAMP-dependent potentiation of neurotransmission

741 in the hippocampus. Journal of Neuroscience 35:6544-6553. DOI:

742 10.1523/JNEUROSCI.0314-14.2015, PMID: 25904804.

743 Ferrero JJ, Alvarez AM, Ramírez-Franco J, Godino MC, Bartolomé-Martín D, Aguado C, Torres

744 M, Luján R, Ciruela F, Sánchez-Prieto J. 2013. β-Adrenergic receptors activate exchange

745 protein directly activated by cAMP (Epac), translocate Munc13-1, and enhance the

746 Rab3A-RIM1α interaction to potentiate glutamate release at cerebrocortical nerve terminals.

	747	Journal of Biological	Chemistrv	288:31370-31385. DOI:	10.1074/jbc.M113.463877, H	PMID
--	-----	-----------------------	-----------	-----------------------	----------------------------	------

24036110.

- 749 Galliano E, Gao Z, Schonewille M, Todorov B, Simons E, Pop AS, D'Angelo E, van den
- 750 Maagdenberg AM, Hoebeek FE, De Zeeuw CI. 2013. Silencing the majority of cerebellar
- 751 granule cells uncovers their essential role in motor learning and consolidation. Cell Reports
- 752 **3**:1239–1251. DOI: 10.1016/j.celrep.2013.03.023, PMID: 23583179.
- 753 Gao Z, van Beugen BJ, De Zeeuw CI. 2012. Distributed synergistic plasticity and cerebellar
- 154 learning. Nature Reviews Neuroscience 13:619–635. DOI: 10.1038/nrn3312, PMID:
- 22895474.
- 756 Gekel I, Neher E. 2008. Application of an Epac activator enhances neurotransmitter release at
- 757 excitatory central synapses. *Journal of Neuroscience* 28:7991–8002. DOI:
 758 10.1523/JNEUROSCI.0268-08.2008, PMID: 18685024.
- 759 Grasselli G, Boele HJ, Titley HK, Bradford N, van Beers L, Jay L, Beekhof GC, Busch SE, De
- 760 Zeeuw CI, Schonewille M, et al. 2020. SK2 channels in cerebellar Purkinje cells contribute
- to excitability modulation in motor-learning-specific memory traces. *PLoS Biology*

762 **18**:e3000596. DOI: 10.1371/journal.pbio.3000596, PMID: 31905212.

763 Gutierrez-Castellanos N, Da Silva-Matos CM, Zhou K, Canto CB, Renner MC, Koene LMC,

- 764 Ozyildirim O, Sprengel R, Kessels HW, De Zeeuw CI. 2017. Motor learning requires
- 765 Purkinje cell synaptic potentiation through activation of AMPA-receptor subunit GluA3.
- 766 *Neuron* **93**:409–424. DOI: 10.1016/j.neuron.2016.11.046, PMID: 28103481.
- Han Y, Kaeser PS, Südhof TC, Schneggenburger R. 2011. RIM determines Ca²⁺ channel density
 and vesicle docking at the presynaptic active zone. *Neuron* 69:304–316. DOI:

769 10.1016/j.neuron.2010.12.014, PMID: 21262468.

770 He Y, Wei M, Wu Y, Qin H, Li W, Ma X, Cheng J, Ren J, Shen Y, Chen Z, et al. 2019. Amyloid f
--

- 771 oligomers suppress excitatory transmitter release via presynaptic depletion of
- phosphatidylinositol-4,5-bisphosphate. *Nature Communication* **10**:1193. DOI:
- 773 10.1038/s41467-019-09114-z, PMID: 30867420.
- 774 Hioki H, Fujiyama F, Taki K, Tomioka R, Furuta T, Tamamaki N, Kaneko T. 2003. Differential
- 775 distribution of vesicular glutamate transporters in the rat cerebellar cortex. *Neuroscience*
- 776 **117**:1–6. DOI: 10.1016/s0306-4522(02)00943-0, PMID: 12605886.
- Hirano T, Yamazaki Y, Nakamura Y. 2016. LTD, RP, and motor learning. *Cerebellum* 15:51–53.
- 778 DOI: 10.1007/s12311-015-0698-0, PMID: 26160222.
- 779 Hucho TB, Dina OA, Levine JD. 2005. Epac mediates a cAMP-to-PKC signaling in
- 780 inflammatory pain: an isolectin B4(+) neuron-specific mechanism. Journal of Neuroscience

781 **25**:6119–6126. DOI: 10.1523/JNEUROSCI.0285-05.2005, PMID: 15987941.

- 782 Ichikawa R, Hashimoto K, Miyazaki T, Uchigashima M, Yamasaki M, Aiba A, Kano M,
- 783 Watanabe M. 2016. Territories of heterologous inputs onto Purkinje cell dendrites are
- 784 segregated by mGluR1-dependent parallel fiber synapse elimination. Proc. Natl. Acad. Sci.

785 U.S.A. 113:2282–2287. DOI: 10.1073/pnas.1511513113, PMID: 26858447.

- Ito M. 2005. Bases and implications of learning in the cerebellum-adaptive control and internal
 model mechanism. *Progress in Brain Research* 148:95–109. DOI:
 10.1016/S0079-6123(04)48009-1, PMID: 15661184.
- Kaeser PS, Deng L, Wang Y, Dulubova I, Liu X, Rizo J, Südhof TC. 2011. RIM proteins tether
 Ca²⁺ channels to presynaptic active zones via a direct PDZ-domain interaction. *Cell*

791	144:282-295.	DOI: 10.	1016/j.cell.	2010.12.029,	PMID: 21241895.

792	Kaeser PS, Kwon HB, Blundell J, Chevaleyre V, Morishita W, Malenka RC, Powell CM, Castillo
793	PE, Südhof TC. 2008. RIM1alpha phosphorylation at serine-413 by protein kinase A is not
794	required for presynaptic long-term plasticity or learning. Proc. Natl. Acad. Sci. U.S.A.
795	105:14680–14685. DOI: 10.1073/pnas.0806679105, PMID: 18799741.
796	Kaneko M, Takahashi T. 2004. Presynaptic mechanism underlying cAMP-dependent synaptic
797	potentiation. Journal of Neuroscience 24:5202–5208. DOI:
798	10.1523/JNEUROSCI.0999-04.2004, PMID: 15175390.
799	Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE,
800	Graybiel AM. 1998. A family of cAMP-binding proteins that directly activate Rap1. Science
801	282 :2275–2279. DOI: 10.1126/science.282.5397.2275, PMID: 9856955.
802	Kimura S, Uchiyama S, Takahashi HE, Shibuki K. 1998. cAMP-dependent long-term
803	potentiation of nitric oxide release from cerebellar parallel fibers in rats. Journal of
804	<i>Neuroscience</i> 18 :8551–8558. DOI: 10.1523/JNEUROSCI.18-21-08551.1998, PMID:
805	9786963.
806	Kohansal-Nodehi M, Chua JJ, Urlaub H, Jahn R, Czernik D. 2016. Analysis of protein

- phosphorylation in nerve terminal reveals extensive changes in active zone proteins upon
 exocytosis. *Elife* 5:e14530. DOI: 10.7554/eLife.14530, PMID: 27115346.
- 809 Kreitzer AC, Carter AG, Regehr WG. 2002. Inhibition of interneuron firing extends the spread of
- 810 endocannabinoid signaling in the cerebellum. *Neuron* 34:787–796. DOI:
 811 10.1016/s0896-6273(02)00695-5, PMID: 12062024.
- 812 Le Guen M-C, De Zeeuw CI. 2010. Presynaptic plasticity at cerebellar parallel fiber terminals.

814	Lev-Ram	V.	Wong	ST.	Storm	DR.	Tsien	RY.	2002.	Α	new	form	of	cerebellar	long-term

- 815 potentiation is postsynaptic and depends on nitric oxide but not cAMP. Proc. Natl. Acad. Sci.
- 816 U.S.A. **99**:8389–8393. DOI: 10.1073/pnas.122206399, PMID: 12048250.
- 817 Linden DJ, Ahn S. 1999. Activation of presynaptic cAMP-dependent protein kinase is required
- 818 for induction of cerebellar long-term potentiation. *Journal of Neuroscience* **19**:10221–10227.
- 819 DOI: 10.1523/JNEUROSCI.19-23-10221.1999, PMID: 10575019.
- 820 Lonart G, Schoch S, Kaeser PS, Larkin CJ, Südhof TC, Linden DJ. 2003. Phosphorylation of
- RIM1alpha by PKA triggers presynaptic long-term potentiation at cerebellar parallel fiber
 synapses. *Cell* 115:49–60. DOI: 10.1016/s0092-8674(03)00727-x, PMID: 14532002.
- 823 Lucchesi O, Ruete MC, Bustos MA, Quevedo MF, Tomes CN. 2016. The signaling module
- 824 cAMP/Epac/Rap1/PLCe/IP3 mobilizes acrosomal calcium during sperm exocytosis.
- 825 Biochimica Biophysica Acta 1863:544–561. DOI: 10.1016/j.bbamcr.2015.12.007, PMID:
- 826 26704387.
- 827 Martín R, Garcia-Font N, Suarez-Pinilla AS, Bartolome-Martin D, Ferrero JJ, Lujan R, Torres M,
- 828 Sanchez-Prieto J. 2020. beta-adrenergic receptors/Epac signaling increases the size of the
- readily releasable pool of synaptic vesicles required for parallel fiber LTP. Journal of
- 830 *Neuroscience* **40**:8604–8617. DOI: 10.1523/JNEUROSCI.0716-20.2020, PMID: 33046543.
- Mei FC, Qiao J, Tsygankova OM, Meinkoth JL, Quilliam LA, Cheng X. 2002. Differential
 signaling of cyclic AMP: opposing effects of exchange protein directly activated by cyclic
 AMP and cAMP-dependent protein kinase on protein kinase B activation. *Journal of*
- 834 *Biological Chemistry* 277:11497–11504. DOI: 10.1074/jbc.M110856200, PMID: 11801596.

835	Murray AJ.	2008.	Pharmacological	PKA	inhibition:	all	may	not	be	what	it	seems.	Science
-----	------------	-------	-----------------	-----	-------------	-----	-----	-----	----	------	----	--------	---------

836	Signaling 1:re4. DOI: 10.1126/scisignal.122re4, PMID: 18523239.
837	Oestreich EA, Malik S, Goonasekera SA, Blaxall BC, Kelley GG, Dirksen RT, Smrcka AV. 2009.
838	Epac and phospholipase Cepsilon regulate Ca ²⁺ release in the heart by activation of protein
839	kinase Cepsilon and calcium-calmodulin kinase II. Journal of Biological Chemistry
840	284:1514–1522. DOI: 10.1074/jbc.M806994200, PMID: 18957419.
841	Persoon CM, Hoogstraaten RI, Nassal JP, van Weering JRT, Kaeser PS, Toonen RF, Verhage M.
842	2019. The RAB3-RIM pathway is essential for the release of neuromodulators. Neuron
843	104:1065–1080. DOI: 10.1016/j.neuron.2019.09.015, PMID: 31679900.
844	Peter S, Ten Brinke MM, Stedehouder J, Reinelt CM, Wu B, Zhou H, Zhou K, Boele HJ, Kushner
845	SA, Lee MG, et al. 2016. Dysfunctional cerebellar Purkinje cells contribute to autism-like
846	behaviour in Shank2-deficient mice. Nature Communication 7:12627. DOI:
847	10.1038/ncomms12627, PMID: 27581745.
848	Raymond JL, Medina JF. 2018. Computational principles of supervised learning in the
849	cerebellum. Annual Review of Neuroscience 41 :233–253. DOI:
850	10.1146/annurev-neuro-080317-061948, PMID: 29986160.

851 Roscioni SS, Kistemaker LEM, Menzen MH, Elzinga CRS, Gosens R, Halayko AJ, Meurs H,

- Schmidt, M. 2009. PKA and Epac cooperate to augment bradykinin-induced interleukin-8
 release from human airway smooth muscle cells. *Respiratory Research* 10:88. DOI:
- 854 10.1186/1465-9921-10-88, PMID: 19788733.
- 855 Salin PA, Malenka RC, Nicoll RA. 1996. Cyclic AMP mediates a presynaptic form of LTP at
 856 cerebellar parallel fiber synapses. *Neuron* 16:797–803. DOI:

857	10.1016/s0896-6273(00)80099-9, PMID: 8607997.
-----	---

858	Schmahmann JD, Guell X, Stoodley CJ, Halko MA. 2019. The theory and neuroscience of
859	cerebellar cognition. Annual Review of Neuroscience 42:337–364. DOI:
860	10.1146/annurev-neuro-070918-050258, PMID: 30939101.
861	Schmidt M, Evellin S, Weernink PA, von Dorp F, Rehmann H, Lomasney JW, Jakobs KH. 2001.
862	A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap
863	GTPase. Nature Cell Biology 3:1020–1024. DOI: 10.1038/ncb1101-1020, PMID: 11715024.
864	Schoch S, Castillo PE, Jo T, Mukherjee K, Geppert M, Wang Y, Schmitz F, Malenka RC, Südhof
865	TC. 2002. RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the
866	active zone. Nature 415:321–326. DOI: 10.1038/415321a, PMID: 11797009.
867	Schonewille M, Belmeguenai A, Koekkoek SK, Houtman SH, Boele HJ, van Beugen BJ, Gao Z,
868	Badura A, Ohtsuki G, Amerika WE, et al. 2010. Purkinje cell-specific knockout of the protein
869	phosphatase PP2B impairs potentiation and cerebellar motor learning. Neuron 67:618-628.
870	DOI: 10.1016/j.neuron.2010.07.009, PMID: 20797538.
871	Schonewille M, Girasole AE, Rostaing P, Mailhes-Hamon C, Ayon A, Nelson AB, Triller A,
872	Casado M, De Zeeuw CI, Bouvier G. 2021. NMDARs in granule cells contribute to parallel
873	fiber-Purkinje cell synaptic plasticity and motor learning. Proc. Natl. Acad. Sci. U.S.A.
874	118:e2102635118. DOI: 10.1073/pnas.2102635118, PMID: 34507990.
875	Steinberg JP, Takamiya K, Shen Y, Xia J, Rubio ME, Yu S, Jin W, Thomas GM, Linden DJ,
876	Huganir RL. 2006. Targeted in vivo mutations of the AMPA receptor subunit GluR2 and its
877	interacting protein PICK1 eliminate cerebellar long-term depression. Neuron 49:845-860.
878	DOI: 10.1016/j.neuron.2006.02.025, PMID: 16543133.

879 Südhof TC. 2004. The synaptic vesicle cycle. Annual Review of Neuroscience 27:509–547. DOI:

- 880 10.1146/annurev.neuro.26.041002.131412, PMID: 15217342.
- 881 Sun L, Bittner MA, Holz RW. 2003. Rim, a component of the presynaptic active zone and
- 882 modulator of exocytosis, binds 14-3-3 through its N terminus. Journal of Biological
- 883 *Chemistry* **278**:38301–38309. DOI: 10.1074/jbc.M212801200, PMID: 12871946.
- ten Brinke MM, Boele HJ, Spanke JK, Potters JW, Kornysheva K, Wulff P, IJpelaar AC,
- 885 Koekkoek SK, De Zeeuw CI. 2015. Evolving models of Pavlovian conditioning: cerebellar
- 886 cortical dynamics in awake behaving mice. Cell Reports 13:1977-1988. DOI:
- 887 10.1016/j.celrep.2015.10.057, PMID: 26655909.
- van Beugen BJ, Gao Z, Boele HJ, Hoebeek F, De Zeeuw CI. 2013. High frequency burst firing of
- granule cells ensures transmission at the parallel fiber to purkinje cell synapse at the cost of
- temporal coding. Frontiers in Neural Circuits 7:95. DOI: 10.3389/fncir.2013.00095, PMID:
- 891 23734102.
- 892 Voges K, Wu B, Post L, Schonewille M, De Zeeuw CI. 2017. Mechanisms underlying
- 893 vestibulo-cerebellar motor learning in mice depend on movement direction. *Journal of*

894 *Physiology* **595**:5301–5326. DOI: 10.1113/JP274346, PMID: 28586131.

Wagner MJ, Luo L. 2020. Neocortex-cerebellum circuits for cognitive processing. *Trends in Neuroscience* 43, 42–54. DOI: 10.1016/j.tins.2019.11.002, PMID: 31787351.

- 897 Wang CC, Weyrer C, Fioravante D, Kaeser PS, Regehr WG. 2021a. Presynaptic short-term
- 898 plasticity persists in the absence of PKC phosphorylation of Munc18-1. Journal of
- 899 *Neuroscience* **41**:7329–7339. DOI: 10.1523/JNEUROSCI.0347-21.2021, PMID: 34290081.
- 900 Wang DJ, Su LD, Wang YN, Yang D, Sun CL, Zhou L, Wang XX, Shen Y. 2014. Long-term

901	potentiation at cerebellar parallel fiber-Purkinje cell synapses requires pre- and postsynaptic
902	signaling cascades. Journal of Neuroscience 34:2355-2364. DOI: 10.1152/jn.00175.2018,
903	PMID: 29668384.
904	Wang X, Hu B, Zimmermann B, Kilimann MW. 2001. Rim1 and rabphilin-3 bind Rab3-GTP by
905	composite determinants partially related through N-terminal alpha-helix motifs. Journal of
906	Biological Chemistry 276:32480-32488. DOI: 10.1074/jbc.M103337200, PMID: 11431472.
907	Wang XT, Zhou L, Cai XY, Xu FX, Xu ZH, Li XY, Shen Y. 2021b. Deletion of Mea6 in
908	cerebellar granule cells impairs synaptic development and motor performance. Frontiers in
909	Cell & Development Biology 8:627146. DOI: 10.3389/fcell.2020.627146, PMID: 33718348.
910	Weisskopf MG, Castillo PE, Zalutsky RA, Nicoll RA. 1994. Mediation of hippocampal mossy
911	fiber long-term potentiation by cyclic AMP. Science 265:1878-1882. DOI:
912	10.1126/science.7916482, PMID: 7916482.
913	Wu B, Blot FG, Wong AB, Osório C, Adolfs Y, Pasterkamp RJ, Hartmann J, Becker EB, Boele H
914	J, De Zeeuw CI, Schonewille M. 2019. TRPC3 is a major contributor to functional
915	heterogeneity of cerebellar Purkinje cells. <i>eLife</i> 8:e45590. DOI: 10.7554/eLife.45590, PMID:
916	31486767.
917	Wulff P, Schonewille M, Renzi M, Viltono L, Sassoè-Pognetto M, Badura A, Gao Z, Hoebeek FE,
918	van Dorp S, Wisden W, et al. 2009. Synaptic inhibition of Purkinje cells mediates

- 919 consolidation of vestibulo-cerebellar motor learning. *Nature Neuroscience* **12**:1042–1049.
- 920 DOI: 10.1038/nn.2348, PMID: 19578381.
- Yang Y, Calakos N. 2010. Acute in vivo genetic rescue demonstrates that phosphorylation of
 RIM1alpha serine 413 is not required for mossy fiber long-term potentiation. *Journal of Neuroscience* 30:2542–2546. DOI: 10.1523/JNEUROSCI.4285-09.2010, PMID: 20164339.

924	Yang Y, Shu X, Liu D, Shang Y, Wu Y, Pei L, Xu X, Tian Q, Zhang J, Qian K, et al. 2012. EPAC
925	null mutation impairs learning and social interactions via aberrant regulation of miR-124 and
926	Zif268 translation. Neuron 73:774–788. DOI: 10.1016/j.neuron.2012.02.003, PMID:
927	22365550.

- 928 Zhao K, Wen R, Wang X, Pei L, Yang Y, Shang Y, Bazan N, Zhu LQ, Tian Q, Lu Y. 2013.
- 929 EPAC inhibition of SUR1 receptor increases glutamate release and seizure vulnerability.
- 930 *Journal of Neuroscience* **33**:8861–8865. DOI: 10.1523/JNEUROSCI.5686-12.2013, PMID:
- 931 23678128.
- 932 Zhou JH, Wang XT, Zhou L, Zhou L, Xu FX, Su LD, Wang H, Jia F, Xu FQ, Chen GQ, et al.
- 933 2017. Ablation of TFR1 in Purkinje cells inhibits mGlu1 trafficking and impairs motor
- 934 coordination, but not autistic-like behaviors. *Journal of Neuroscience* **37**:11335–11352. DOI:
- 935 10.1523/JNEUROSCI.1223-17.2017, PMID: 29054881.
- 936 Zhou L, Yang D, Wang DJ, Xie YJ, Zhou JH, Zhou L, Huang H, Han S, Shao CY, Li HS, et al.
- 937 2015. Numb deficiency in cerebellar Purkinje cells impairs synaptic expression of
- 938 metabotropic glutamate receptor and motor coordination. Proc. Natl. Acad. Sci. U.S.A.
- 939 **112**:15474–15479. DOI: 10.1073/pnas.1512915112, PMID: 26621723.

940 Acknowledgements

941	We thank Drs. Jia-Dong Chen and Yan Gu for their comments on this work, Drs. You-Min Lu and
942	Wei Mo for providing Epac ^{dKO} and Math1-Cre mice, Dr. Lan Bao for providing assistance in
943	electron microscopy, Drs. Min Wu and Jun Xia for their participation at the beginning of this work,
944	and the Core Facilities of Zhejiang University Institute of Neuroscience for technical assistance.
945	This work was supported by grants from National Natural Science Foundation of China
946	(81625006 to Y.S., 31820103005 to Y.S., 32000692 to X.T.W., 32160192 to Y.W., 32100791 to
947	F.X.X., 31900741 to L.Z., 32170976 to L.Z.), National Key Research and Development Program
948	of the Ministry of Science and Technology of China (2020YFB1313500 to L.Z.), Science and
949 950	Technology Innovation Commission of Shenzhen Municipal Government (JCYJ20160331115633182 to S.J.J.), Ningxia Key Research and Development Program
951	(2021BEG03097 to Y.W.), ERC-Stg (680235 to M.S.), the Dutch Organization for Medical
952	Sciences (C.I.D.Z.), Life Sciences (C.I.D.Z.), and ERC-adv and ERC-POC of the EU (C.I.D.Z.),
953	INTENSE (C.I.D.Z.), and the NIN Vriendenfonds for albinism (C.I.D.Z.).
954	

955 Ethics

956 All of the animals were handled according to approved protocol of the Animal Experimentation

957 Ethics Committee of Zhejiang Universi	ty (ZJU17067).
---	----------------

958 Figure legends

960	Figure 1. Threonine phosphorylation of RIM1 by EPAC and PKCE. (A) Schematic showing
961	purification of cerebellar synaptosomes and phophorylation assay of RIM1. (B) Immunostaining
962	of EPAC1 or EPAC2 along with vGluT1 (arrowheads) in cerebellar synaptosomes. Scale bars, 5
963	μ m. (C) Precleared synaptosomes (WT) were immunoprecipitated with anti-RIM1 antibody and
964	probed with antibodies to EPAC1, EPAC2 and RIM1. Rabbit IgG was negative control. $n = 4$. (D)
965	WT synaptosomes were treated with control buffer (Ctrl) or 8-pCPT (20 μ M, 30 min) and p-Thr
966	and p-Ser of RIM1 were analyzed. Arrowheads mark non-RIM1 proteins. p-Thr and p-Ser were
967	normalized to corresponding RIM1 and percentage changes relative to Ctrl are plotted. p-Thr: 100
968	\pm 8% (Ctrl) and 179 \pm 18% (8-pCPT; $p = 0.0019$). p-Ser: 100 \pm 6% (Ctrl) and 97 \pm 11% (8-pCPT;
969	p = 0.77). Unpaired t test. $n = 5$ for all groups. ** $p < 0.01$. (E) p-Thr and p-Ser of RIM1 in WT
970	synaptosomes treated with control buffer, forskolin (FSK; 20 µM, 30 min), or FSK+ESI-09 (50
971	μ M, 30 min) (FSK+ESI). Arrowhead marks nonspecific protein. p-Thr: 100 ± 8% (Ctrl), 205 ± 18%
972	(FSK; $p < 0.001$ vs. Ctrl), and 101 ± 14% (FSK+ESI; $p = 0.98$ vs. Ctrl; $p < 0.001$ vs. FSK).
973	One-way ANOVA test. $n = 5$ for all groups. *** $p < 0.001$. (F) Phosphorylation of synaptosomal
974	RIM1 from WT and $Epac^{dKO}$ mice. RIM1: 100 ± 4% (WT) and 95 ± 4% ($Epac^{dKO}$; $p = 0.41$).
975	p-Thr: $100 \pm 3\%$ (WT) and $65 \pm 6\%$ (<i>Epac</i> ^{dKO} ; $p = 0.0003$). p-Ser: $100 \pm 5\%$ (WT) and $95 \pm 9\%$
976	(<i>Epac</i> ^{dKO} ; $p = 0.67$). Unpaired t test. $n = 6$ for all groups. *** $p < 0.001$. (G) Schematic depiction
977	of proposed working model. (H) Immunostaining of PKCE and vGluT1 (arrowheads) in cerebellar
978	synaptosomes. Scale bar, 5 μ m. (I) WT synaptosomes were treated with control buffer or 8-pCPT
979	(20 $\mu M,$ 30 min). The phosphorylations of PKC ϵ and PKC α were normalized to β -tubulin and

percentage changes relative to control are plotted. pPKC ϵ : 100 ± 5% (Ctrl) and 142 ± 7% (8-pCPT;

981	p = 0.0007). PKCa-pSer: 100 ± 8% (Ctrl) and 113 ± 11% (8-pCPT; $p = 0.31$). PKCa-pThr: 100 ±
982	7% (Ctrl) and 93 ± 10% (8-pCPT; $p = 0.54$). Unpaired t test. $n = 5$ for all groups. *** $p < 0.001$. (J)
983	Phosphorylation of synaptosomal PKC ϵ and PKC α in WT and $Epac^{dKO}$ mice. pPKC ϵ , PKC α -pSer
984	and PKC α -pThr were normalized to β -tubulin and their percentage changes relative to WT are
985	plotted. pPKCe: $100 \pm 5\%$ (WT) and $64 \pm 7\%$ (<i>Epac</i> ^{dKO} ; $p = 0.0013$). PKC α -pSer: $100 \pm 4\%$ (WT)
986	and $103 \pm 8\%$ (<i>Epac</i> ^{dKO} ; $p = 0.70$). PKC α -pThr: $100 \pm 6\%$ (WT) and $103 \pm 7\%$ (<i>Epac</i> ^{dKO} ; $p =$
987	0.73). Unpaired t test. $n = 6$ for all groups. ** $p < 0.01$. (K) Phosphorylation of synaptosomal
988	RIM1 in $Prkce^{f/f}$ and $Prkce^{cKO}$ mice. RIM1: 100 ± 6% (WT) and 99 ± 6% ($Epac^{dKO}$; $p = 0.88$).
989	p-Thr: $100 \pm 3\%$ (<i>Prkce</i> ^{f/f}) and $65 \pm 6\%$ (<i>Prkce</i> ^{cKO} ; $p = 0.0028$). p-Ser: $100 \pm 5\%$ (<i>Prkce</i> ^{f/f}) and 95
990	\pm 9% (<i>Prkce</i> ^{cKO} ; $p = 0.57$). Unpaired t test. $n = 6$ for all groups. ** $p < 0.01$. (L) Synaptosomes
991	(<i>Prkce</i> ^{cKO}) were treated wi/wo 8-pCPT (20 μ M, 30 min) and RIM1 phosphorylation was analyzed.
992	p-Thr: $100 \pm 8\%(Prkce^{cKO})$ and $108 \pm 10\%$ (<i>Prkce</i> ^{cKO} +8-pCPT; $p = 0.55$). p-Ser: $100 \pm 7\%$
993	(<i>Prkce</i> ^{cKO}) and $106 \pm 6\%$ (<i>Prkce</i> ^{cKO} +8-pCPT; $p = 0.57$). Unpaired t test. $n = 6$ for all groups.

994	Figure 2. EPAC and PKCe act on vesicle docking, synaptic release, and Rab3-RIM1-Munc13
995	complex. (A) Representative EM (23,000×) of PF-PC synapses of WT and $Epac^{dKO}$ mice. Scale
996	bars: 200 nm. The inserts show docked vesicles. Unpaired t test. **** $p < 0.0001$. (B)
997	Representative EM of PF-PC synapses of <i>Prkce^{f/f}</i> and <i>Prkce^{cKO}</i> mice. Scale bars: 200 nm.
998	Unpaired t test. **** $p < 0.0001$. (C) Example PC mEPSCs in <i>Math1</i> -Cre and <i>Epac1</i> ^{cKO} ; <i>Epac2</i> ^{cKO}
999	mice. Lower: statistics of inter-event interval and amplitude. Grey dots indicate individual data
1000	points. Frequency: 2.0 ± 0.2 Hz (<i>Math1</i> -Cre) and 1.4 ± 0.2 Hz (<i>Epac1</i> ^{cKO} ; <i>Epac2</i> ^{cKO} ; $p = 0.0036$).
1001	Amplitude: 18.3 ± 1.3 pA (<i>Math1</i> -Cre) and 18.5 ± 1.3 pA (<i>Epac1</i> ^{cKO} ; <i>Epac2</i> ^{cKO} ; $p = 0.46$).
1002	Unpaired t test. $n =$ for all groups. ** $p < 0.01$. (D) Example PC mEPSCs from $Prkce^{f/f}$ and
1003	$Prkce^{cKO}$ mice. Frequency: 1.9 ± 0.1 Hz ($Prkce^{f/f}$; $n = 19$) and 1.3 ± 0.1 Hz ($Prkce^{cKO}$; $n = 20$; $p = 20$
1004	0.00059). Amplitude: 17.9 \pm 1.2 pA (<i>Prkce</i> ^{f/f} ; <i>n</i> = 19) and 17.5 \pm 1.1 pA (<i>Prkce</i> ^{cKO} ; <i>n</i> = 20; <i>p</i> =
1005	0.39). Unpaired t test. *** $p < 0.001$. (E) Representative responses of <i>Math1</i> -Cre and
1006	Epac1 ^{cKO} ; Epac2 ^{cKO} PCs to 20-Hz PF stimulation. RRP size was defined as the y-intercept of the
1007	linear portion of cumulative amplitude curve. For cumulative amplitude, $Mathl$ -Cre: 5617 ± 358
1008	pA; $Epac1^{cKO}$; $Epac2^{cKO}$: 4971 ± 424 pA; $p = 0.037$, unpaired t test. Pr was calculated as mean
1009	EPSC amplitude (mean value of 1st EPSCs) divided by RRP size (<i>Math1</i> -Cre: 0.068 ± 0.015 ;
1010	<i>Epac 1</i> ^{cKO} ; <i>Epac 2</i> ^{cKO} : 0.044 \pm 0.010; $p = 0.048$, unpaired t test). $n = 10$ for all groups. * $p < 0.05$. (F)
1011	Representative responses of <i>Prkce^{f/f}</i> and <i>Prkce^{cKO}</i> PCs to 20-Hz PF stimulation. Cumulative
1012	amplitude: $Prkce^{t/f}$, 5125 ± 461 pA, $n = 11$; $Prkce^{cKO}$, 3996 ± 316 pA, $n = 12$; $p = 0.041$; Unpaired
1013	<i>t</i> test. Pr: $Prkce^{t/f}$, 0.077 ± 0.011, $n = 11$; $Prkce^{cKO}$, 0.048 ± 0.006, $n = 12$; $p = 0.02$; Unpaired <i>t</i> test.
1014	* $p < 0.05$. (G) Cerebellar synaptosomes from WT and $Epac^{dKO}$ mice were immunoprecipitated by
1015	anti-RIM1 antibody, and the immunoprecipitates were probed with antibodies to Munc13-1,

1016	Rab3A, and RIM1. Rabbit IgG was negative control. Ratios of immunoprecipitated Munc13-1 or
1017	Rab3A vs. RIM1 were normalized to WT. Munc13-1: $100 \pm 6\%$ (WT) and $62 \pm 8\%$ (<i>Epac</i> ^{dKO} ; $p =$
1018	0.0081, $n = 4$). Rab3A: 100 ± 5% (WT) and 63 ± 10% (<i>Epac</i> ^{dKO} ; $p = 0.019$, $n = 4$). Total Rab3A
1019	and RIM1 were normalized to WT. Munc13-1: $100 \pm 2\%$ (WT) and $98 \pm 4\%$ (<i>Epac</i> ^{dKO} ; $p = 0.73$, n
1020	= 6). Rab3A: 100 ± 5% (WT) and 98 ± 4% (<i>Epac</i> ^{dKO} ; $p = 0.77$, $n = 6$). Unpaired <i>t</i> test. * $p < 0.05$.
1021	** $p < 0.01$. (H) Immunoprecipitation of Munc13-1 and Rab3A with RIM1 in cerebellar
1022	synaptosomes from Prkce ^{f/f} and Prkce ^{cKO} mice. Ratios of immunoprecipitated Munc13-1 or
1023	Rab3A vs. RIM1 were normalized to WT. Munc13-1: $100 \pm 2\%$ (<i>Prkce</i> ^{f/f}) and $70 \pm 8\%$ (<i>Prkce</i> ^{cKO} ;
1024	p = 0.0030). Rab3A: 100 ± 2% (<i>Prkce</i> ^{f/f}) and 89 ± 4% (<i>Prkce</i> ^{cKO} ; $p = 0.019$). Total Rab3A and
1025	RIM1 were normalized to $Prkce^{f/f}$. Munc13-1: 100 ± 3% ($Prkce^{f/f}$) and 96 ± 5% ($Prkce^{cKO}$; $p =$
1026	0.46). Rab3A: $100 \pm 7\%$ (<i>Prkce</i> ^{f/f}) and $106 \pm 5\%$ (<i>Prkce</i> ^{cKO} ; $p = 0.52$). $n = 6$ for all groups.
1027	Unpaired t test. * $p < 0.05$. ** $p < 0.01$. (I) Cerebellar synaptosomes (WT) mice were incubated in
1028	control buffer or 8-pCPT (20 $\mu M,$ 30 min) and $\epsilon V1\text{-}2$ (5 $\mu M,$ 30min) and immunoprecipitated.
1029	Ratios of immunoprecipitated Munc13-1 or Rab3A vs. RIM1 were normalized to control.
1030	Munc13-1: $100 \pm 8\%$ (Ctrl); $138 \pm 12\%$ (8-pCPT; $p = 0.041$ vs. Ctrl); $96 \pm 12\%$ (8-pCPT+ ϵ V1-2;
1031	p = 0.97 vs. Ctrl; $p = 0.029$ vs. 8-pCPT). Rab3A: 100 ± 5% (Ctrl); 168 ± 12% (8-pCPT; $p =$
1032	0.0011 vs. Ctrl); $133 \pm 12\%$ (8-pCPT+ ϵ V1-2; $p = 0.069$ vs. Ctrl; $p = 0.046$ vs. 8-pCPT). One-way
1033	ANOVA test. $n = 4$ for all groups. * $p < 0.05$. ** $p < 0.01$. (J) Cerebellar synaptosomes (WT) were
1034	treated with control buffer or FR236924 (FR) (200 nM, 30 min) and immunoprecipitated. Ratios
1035	of immunoprecipitated Munc13-1 or Rab3A vs. RIM1 were normalized to Ctrl. Munc13-1: 100 \pm
1036	4% (Ctrl) and 144 \pm 16% (FR; $p = 0.041$). Rab3A: 100 \pm 4% (Ctrl) and 175 \pm 13% (FR; $p =$
1037	0.0016). Unpaired t test. $n = 4$ for all groups. * $p < 0.05$. ** $p < 0.01$. (K) Cerebellar synaptosomes

- 1038 (Prkce^{cKO}) were treated with control buffer or FR236924 and immunoprecipitated. Ratios of
- 1039 immunoprecipitated Munc13-1 or Rab3A vs. RIM1 were normalized to Prkce^{cKO}. Munc13-1: 100
- 1040 \pm 3% (*Prkce*^{cKO}; *n* = 4) and 100 \pm 12% (*Prkce*^{cKO}+FR; *p* = 0.99; *n* = 4). Rab3A: 100 \pm 2%
- 1041 (*Prkce*^{cKO}; n = 8) and $108 \pm 9\%$ (*Prkce*^{cKO}+FR; p = 0.37; n = 8). Unpaired *t* test.

1042	Figure 3. EPAC and PKCE are required for presynaptic PF-PC LTP. (A) Schematic showing the
1043	induction of presynaptic LTP. (B, D, F, H, J) Example PF-EPSCs for baseline (1) and after LTP
1044	induction (2) in WT (B), <i>Math1</i> -Cre (D), <i>Epac1</i> ^{cKO} ; <i>Epac2</i> ^{cKO} (F), <i>Prkce</i> ^{ff} (H), and <i>Prkce</i> ^{cKO} (J)
1045	mice. (C) Percentage changes of PF-EPSC amplitudes (WT). (1): $101 \pm 4\%$; (2): $131 \pm 6\%$; $n = 13$;
1046	$p < 0.001$. Percentage changes of PPF ratios from cells shown above. (1): $101 \pm 3\%$; (2): $84 \pm 4\%$;
1047	n = 13; $p < 0.001$. Unpaired t test. *** $p < 0.001$. (E) Left: percentage changes of PF-EPSC
1048	amplitudes (<i>Math1</i> -Cre). (1): 100 \pm 2%; (2): 120 \pm 5%; $n = 10$; $p = 0.004$. Right: percentage
1049	changes of PPF ratios. (1): $102 \pm 2\%$; (2): $83 \pm 2\%$; $n = 10$; $p < 0.001$. Unpaired t test. ** $p < 0.01$.
1050	*** $p < 0.001$. (G) Left: percentage changes of PF-EPSC amplitudes (<i>Epac1</i> ^{cKO} ; <i>Epac2</i> ^{cKO}). (1): 99
1051	$\pm 2\%$; (2): 93 $\pm 4\%$; $n = 9$; $p = 0.059$. Right: percentage changes of PPF ratios. (1): 101 $\pm 3\%$; (2):
1052	$101 \pm 5\%$; $n = 9$; $p = 0.07$. Unpaired t test. (I) Left: percentage changes of PF-EPSC amplitudes
1053	(<i>Prkce</i> ^{f/f}). (1): $99 \pm 4\%$; (2): $120 \pm 3\%$; $n = 7$; $p = 0.004$. Right: percentage changes of PPF ratios.
1054	(1): $100 \pm 5\%$; (2): $86 \pm 4\%$; $n = 7$; $p < 0.001$. Unpaired t test. ** $p < 0.01$. *** $p < 0.001$. (K) Left:
1055	percentage changes of PF-EPSC amplitudes ($Prkce^{cKO}$). (1): 101 ± 4%; (2): 99 ± 5%; $n = 10$; $p =$
1056	0.065. Right: percentage changes of PPF ratios. (1): $101 \pm 3\%$; (2): $100 \pm 2\%$; $n = 10$; $p = 0.77$.
1057	Unpaired <i>t</i> test.

1058	Figure 4. cAMP-triggered PF facilitation is dependent on EPAC and PKCE. (A) The facilitation of
1059	PF-EPSCs by forskolin (FSK) (20 μM) in <i>Math1</i> -Cre, <i>Epac1</i> ^{cKO} ; <i>Epac2</i> ^{cKO} and <i>Prkce</i> ^{cKO} mice. (B)
1060	Example traces for baseline (1) and after potentiation (2) shown in (A). (C) Left: percent changes
1061	of EPSC amplitude. <i>Math1</i> -Cre: $366 \pm 25\%$ ($n = 15$); <i>Epac1</i> ^{cKO} ; <i>Epac2</i> ^{cKO} : $162 \pm 18\%$ ($n = 12$; $p < 100\%$)
1062	0.001 vs. Math1-Cre); $Epac1^{cKO}$; $Epac2^{cKO}$ +KT: 106 ± 4% ($n = 12$; $p < 0.001$ vs. Math1-Cre; $p = 0.001$ vs. Math1-Cre;
1063	0.046 vs. $Epac1^{cKO}$; $Epac2^{cKO}$); $Prkce^{cKO}$: 198 ± 5% ($n = 12$; $p < 0.001$ vs. Math1-Cre);
1064	$Prkce^{cKO}$ +KT: 101 ± 3% (n = 12; p < 0.001 vs. Math1-Cre; p = 0.0034 vs. Prkce ^{cKO}). Right:
1065	percent changes of PPF. <i>Math1</i> -Cre: 77 ± 2% ($n = 15$); <i>Epac1</i> ^{cKO} ; <i>Epac2</i> ^{cKO} : 90 ± 1% ($n = 12$; $p < 10^{-10}$
1066	0.001 vs. Math1-Cre); $Epac1^{cKO}$; $Epac2^{cKO}$ +KT: 94 ± 1% ($n = 12$; $p < 0.001$ vs. Math1-Cre; $p = 12$
1067	0.049 vs. $Epac1^{cKO}$; $Epac2^{cKO}$); $Prkce^{cKO}$: 85 ± 2% ($n = 12$; $p < 0.001$ vs. Math1-Cre);
1068	$Prkce^{cKO}$ +KT: 95 ± 1% (<i>n</i> = 12; <i>p</i> < 0.001 <i>vs. Math1</i> -Cre; <i>p</i> = 0.025 <i>vs. Prkce^{cKO}</i>). One-way
1069	ANOVA test. * $p < 0.05$. *** $p < 0.001$. (D) Bath application of 8-pCPT (20 μ M) caused PF-EPSC
1070	potentiation in WT mice. Left: example traces before (1) and after potentiation (2). Middle: time
1071	course of PF facilitation. Right: percent changes of EPSC amplitude ($179 \pm 18\%$; $n = 6$; $p < 0.001$)
1072	and PPF (83 ± 3%; $n = 6$; $p < 0.001$) at 18-20 min vs. baseline (0-2 min). Unpaired t test. *** $p < 0.001$
1073	0.001. (E) 8-pCPT failed to induce PF-EPSC potentiation in <i>Prkce</i> ^{cKO} mice. Left: example traces
1074	for baseline (1) and after potentiation (2). Middle: time course of PF facilitation. Right: percent
1075	changes of EPSC amplitude (101 ± 6%; $n = 6$; $p = 0.35$) and PPF (98 ± 4%; $n = 6$; $p = 0.45$) at
1076	18-20 min vs. baseline (0-2 min). Unpaired t test. (F) Co-application of 8-pCPT and ε V1-2 (5 μ M)
1077	failed to produce PF potentiation in WT mice. Left: example traces for baseline (1) and after
1078	potentiation (2). Middle: time course of PF-EPSCs. Right: percent changes of EPSC amplitude
1079	$(101 \pm 4\%; n = 6; p = 0.78)$ and PPF $(101 \pm 3\%; n = 6; p = 0.67)$ at 18-20 min vs. baseline (0-2

1080 min). Unpaired *t* test.

1081	Figure 5. Postsynaptic PF-PC LTP is intact upon presynaptic deletion of EPAC or PKCE. (A)
1082	Schematic showing the induction of postsynaptic LTP. (B, E, H) Example PF-EPSCs for baseline
1083	(1) and after induction (2) in WT and <i>Epac</i> ^{dKO} PCs (B), <i>Math1</i> -Cre and <i>Epac1</i> ^{cKO} ; <i>Epac2</i> ^{cKO} PCs
1084	(E), and <i>Prkce</i> ^{f/f} and <i>Prkce</i> ^{cKO} PCs (H). (C) Percentage changes of PF-EPSC amplitude. In WT,
1085	$101 \pm 5\%$ for (1) and $131 \pm 5\%$ for (2) ($p < 0.001$). In $Epac^{dKO}$, $100 \pm 5\%$ for (1) and $106 \pm 6\%$ for
1086	(2) ($p = 0.26$). Unpaired t test. $n = 13$ for both groups. *** $p < 0.001$. (D) Percentage changes of
1087	PPF ratios of cells shown in (C). In WT, $100 \pm 2\%$ for (1) and $100 \pm 3\%$ for (2) ($p = 0.63$). In
1088	$Epac^{dKO}$, $101 \pm 3\%$ for (1) and $99 \pm 4\%$ for (2) ($p = 0.74$). Unpaired t test. $n = 13$ for both groups.
1089	(F) Percentage changes of PF-EPSC amplitudes. In <i>Math1</i> -Cre, $100 \pm 5\%$ for (1) and $123 \pm 3\%$
1090	for (2) ($p < 0.001$). In $Epac1^{cKO}$; $Epac2^{cKO}$, 98 ± 5% for (1) and 119 ± 4% for (2) ($p < 0.001$).
1091	Unpaired <i>t</i> test. $n = 7$ for both groups. *** $p < 0.001$. (G) Percentage changes of PPF ratios of cells
1092	shown in (C). In <i>Math1</i> -Cre: $100 \pm 2\%$ for (1) and $96 \pm 3\%$ for (2) ($p = 0.26$). In
1093	<i>Epac 1</i> ^{cKO} ; <i>Epac 2</i> ^{cKO} : $98 \pm 3\%$ for (1) and $95 \pm 3\%$ for (2) ($p = 0.28$). Unpaired t test. $n = 7$ for both
1094	groups. (I) Percentage changes of PF-EPSC amplitude. In $Prkce^{f/f}$, 99 ± 4% for (1) and 121 ± 4%
1095	for (2) ($p < 0.0001$). In $Prkce^{cKO}$: 97 ± 5% for (1) and 118 ± 5% for (2) ($p < 0.0001$). Unpaired t
1096	test. $n = 7$ for both groups. **** $p < 0.0001$. (J) Percentage changes of PPF ratios from cells shown
1097	in (I). In $Prkce^{f/f}$, $102 \pm 2\%$ for (1) and $101 \pm 2\%$ for (2) ($p = 0.73$). In $Prkce^{cKO}$, $98 \pm 2\%$ and 100
1000	

 $\pm 2\%$ for (2) (p = 0.78). Unpaired t test. n = 7 for both groups.

1099	Figure 6. PF-LTD is unaltered by presynaptic deletion of EPAC or PKCE. (A) A scheme showing
1100	the induction of postsynaptic LTD. (B, E, H) Example PF-EPSCs for baseline (1) and after LTD
1101	induction (2) in WT and EPAC ^{dKO} PCs (B), <i>Math1</i> -Cre and <i>Epac1</i> ^{cKO} ; <i>Epac2</i> ^{cKO} PCs (E), and
1102	$Prkce^{f/f}$ and $Prkce^{cKO}$ PCs (H). (C) Percentage changes of PF-EPSC amplitude. In WT, $101 \pm 3\%$
1103	for (1) and 59 \pm 5% for (2) ($p < 0.001$). In EPAC ^{dKO} , 100 \pm 3% for (1) and 59 \pm 4% for (2) (<
1104	0.001). Unpaired t test. $n = 13$ for both groups. *** $p < 0.001$. (D) Percentage changes of PPF
1105	ratios of cells shown in (C). In WT, $100 \pm 3\%$ for (1) and $100 \pm 5\%$ for (2) ($p = 0.49$). In EPAC ^{dKO} ,
1106	$100 \pm 5\%$ for (1) and $100 \pm 5\%$ for (2) ($p = 0.26$). Unpaired t test. $n = 13$ for both groups. (F)
1107	Percentage changes of PF-EPSC amplitude. In <i>Math1</i> -Cre, $100 \pm 4\%$ for (1) and $61 \pm 3\%$ for (2)
1108	(p < 0.0001). In <i>Epac 1</i> ^{cKO} ; <i>Epac 2</i> ^{cKO} , 101 ± 3% for (1) and 65 ± 4% for (2) $(p < 0.0001)$. Unpaired
1109	<i>t</i> test. $n = 7$ for both groups. **** $p < 0.0001$. (G) Percentage changes of PPF ratios of cells shown
1110	in (F). In <i>Math1</i> -Cre, $100 \pm 2\%$ for (2) and $100 \pm 3\%$ for (2) ($p = 0.40$). In <i>Epac1</i> ^{cKO} ; <i>Epac2</i> ^{cKO} ,
1111	$101 \pm 3\%$ for (2) and 99 ± 4% for (2) ($p = 0.61$). Unpaired t test. $n = 7$ for both groups. (I)
1112	Percentage changes of PF-EPSC amplitude. In $Prkce^{f/f}$, 99 ± 2% for (1) and 66 ± 4% for (2) ($p <$
1113	0.0001). In <i>Prkce</i> ^{cKO} , baseline: $101 \pm 2\%$ for (1) and $64 \pm 6\%$ for (2) ($p < 0.0001$). Unpaired t test.
1114	n = 7 for both groups. **** $p < 0.0001$. (J) Percentage changes of PPF ratios of cells shown in (I).
1115	In $Prkce^{f/f}$, $101 \pm 2\%$ for (1) and $101 \pm 2\%$ for (2) ($p = 0.56$). In $Prkce^{cKO}$, $100 \pm 2\%$ for (1) and

1116 $102 \pm 2\%$ for (2) (p = 0.54). Unpaired t test. n = 7 for both groups.

1117	Figure 7. VOR baseline and adaptation in <i>Math1</i> -Cre, <i>Epac1</i> ^{cKO} ; <i>Epac2</i> ^{cKO} , <i>Prkce</i> ^{f/f} and <i>Prkce</i> ^{cKO}
1118	mice. (A) Pictograms depicted compensatory eye movements driven by visual stimulus (OKR),
1119	vestibular stimulus (VOR) or both (VVOR). (B) OKR gain (measure of eye movement amplitude)
1120	and phase (measure of timing) were smaller in $Epac1^{cKO}$; $Epac2^{cKO}$ ($n = 16$) mice compared to
1121	<i>Math1</i> -Cre ($n = 10$) mice. (C) VOR was affected in <i>Epac1</i> ^{cKO} ; <i>Epac2</i> ^{cKO} mice. (D) The
1122	combination of vestibular and visual input by rotation of the mouse in the light evoked the VVOR
1123	in <i>Math1</i> -Cre and <i>Epac1</i> ^{cKO} ; <i>Epac2</i> ^{cKO} mice. (E) OKR gain and phase were smaller in $Prkce^{cKO}$ (<i>n</i>
1124	= 11) mice compared to $Prkce^{t/f}$ (n = 10) mice. (F) VOR was affected in $Prkce^{cKO}$ mice. (G)
1125	VVOR gain and phase in <i>Prkce^{f/f}</i> and <i>Prkce^{cKO}</i> mice. (H) Mismatched visual and vestibular input
1126	was used to trigger adaptation of the eye movements in order to test motor learning ability. This
1127	training induced a reversal of VOR phase probed by VOR recordings in the dark. (I) Both
1128	gain-decrease learning and phase learning of $Epac 1^{cKO}$; $Epac 2^{cKO}$ were impaired. * $p < 0.05$. *** p
1129	< 0.001. (J) Both gain-decrease learning and phase learning of $Prkce^{cKO}$ were impaired. * $p < 0.05$.
1130	** $p < 0.01$. *** $p < 0.001$.

1131	Figure 1-figure supplement 1. Threonine phosphorylation of RIM1 by EPAC in vitro. (A)
1132	Co-transfection of HA-RIM1 α with Flag-EPAC1 or Flag-EPAC2 in HEK cells. Arrowheads show
1133	the co-localization of RIM1a and EPACs. Scale bars: 100 $\mu m.$ (B) HA-RIM1a (Ctrl) or
1134	HA-RIM1 α with Flag-EPACs was transfected into HEK cells and p-Thr and p-Ser of RIM1 α were
1135	measured. Arrowhead marks non-RIM1 protein. p-Thr: 100 \pm 7 (Ctrl), 179 \pm 17% (EPAC1; p =
1136	0.0011 vs. Ctrl), and 160 \pm 13% (EPAC2; $p = 0.010$ vs. Ctrl). p-Ser: 100 \pm 5 (Ctrl), 111 \pm 12%
1137	(EPAC1; $p = 0.69 vs.$ Ctrl), and $107 \pm 10\%$ (EPAC2; $p = 0.87 vs.$ Ctrl). One-way ANOVA test. $n =$
1138	6 for all groups. * $p < 0.05$. ** $p < 0.01$. (C) Potential theronine phosphorylation sites by PKC in

- 1139 RIM1 α were determined using the NetPhos 3.1 server (Technical University of Denmark; http://
- 1140 www.cbs.dtu.dk/services/NetPhos/). Dashed line: threshold for phosphorylation potential.

1141	Figure 1-figure supplement 2. Generation of <i>Prkce^{cKO}</i> and <i>Epac1^{cKO}</i> ; <i>Epac2^{cKO}</i> mice and							
1142	cerebellar cytology. (A) Nissl staining in the cerebellum from WT and Epac ^{dKO} mice. Scale bars,							
1143	100 μ m. (B) Golgi staining showing apical PC spines. Scale bars, 2 μ m. Average numbers of							
1144	spines per 10 µm were 15.5 ± 0.6 (WT; $n = 19$ cells) and 14.3 ± 0.5 (<i>Epac</i> ^{dKO} ; $n = 19$ cells). $p =$							
1145	0.13. Unpaired t test. (C) The construction of $Prkce^{f/f}$ mice. LoxP sites were inserted before and							
1146	after exon 2 and further excised by Math1-Cre. (D) Native tdTomato fluorescence in the brain of							
1147	Math1-Cre;Ai9 mouse. Scale bars: 1 mm. (E) Granule cell contents of Prkce ^{f/f} and Prkce ^{cKO} mice							
1148	were harvested using glass micropipettes and subjected to RT-PCR. Prkce (165 bp) was absent in							
1149	$Prkce^{cKO}$ granule cells. **** $p < 0.0001$. (F) PKC ε expression in the cerebellum from $Prkce^{f/f}$ and							
1150	<i>Prkce</i> ^{cKO} mice. Percentage changes of PKC ε : 100 ± 2% (<i>Prkce</i> ^{f/f} ; <i>n</i> = 6) and 34 ± 4% (<i>Prkce</i> ^{cKO} ; <i>n</i>							
1151	= 6). Unpaired t test. **** $p < 0.001$. (G) Nissl staining in the cerebellum. Scale bars, 100 µm.							
1152	GCL thickness: $111.0 \pm 4.9 \ \mu m \ (Prkce^{f/f})$ and $111.6 \pm 5.4 \ \mu m \ (Prkce^{cKO}), p = 0.93$, unpaired t test.							
1153	ML thickness: $151.7 \pm 5.3 \ \mu m \ (Prkce^{f/f})$ and $148.4 \pm 5.3 \ \mu m \ (Prkce^{cKO})$, $p = 0.64$, unpaired t test. n							
1154	= 7 for all groups. (H) Golgi staining showing apical PC spines in $Prkce^{f/f}$ and $Prkce^{cKO}$ mice.							
1155	Scale bars, 2 µm. Average numbers of spines per 10 µm: 15.8 ± 0.6 (<i>Prkce</i> ^{f/f} ; $n = 29$ cells) and							
1156	15.7 ± 0.6 (<i>Prkce</i> ^{cKO} ; $n = 28$ cells), $p = 0.88$, unpaired t test. (I) The construction of $Epac2^{i'f}$ mice.							
1157	LoxP sites were inserted between exons 6 and 9 and further excised by Math1-Cre. (J) Granule							
1158	cell contents of <i>Epac2</i> ^{f/f} and <i>Epac2</i> ^{cKO} mice were harvested and subjected to RT-PCR. <i>Epac2</i> (180							
1159	bp) was absent in $Epac2^{cKO}$ granule cells. **** $p < 0.001$. (K) The construction of $Epac1^{t/f}$ mice.							
1160	LoxP sites were inserted between exons 3 and 18 and further excised by Math1-Cre. (L) Granule							
1161	cell contents of <i>Epac1</i> ^{ff} and <i>Epac1</i> ^{cKO} mice were harvested and subjected to RT-PCR. <i>Epac1</i> (218							
1162	bp) was absent in $Epac l^{cKO}$ granule cells. **** $p < 0.001$.							

1164	Figure 1-figure supplement 3. 8-pCPT-induced RIM1 phosphorylation is blocked by PKCE						
1165	inhibitor. (A) Flag-RIM1 α (Ctrl) or Flag-RIM1 α with HA-EPACs was transfected into HEK cells,						
1166	and the phosphorylation and expression of PKC ϵ and PKC α were normalized to $\beta\text{-actin.}$ For						
1167	percentage change, pPKC ε was 100 ± 5% (Ctrl), 179 ± 13% (EPAC1; $p = 0.0003$ vs. Ctrl), and						
1168	$160 \pm 12\%$ (EPAC2; $p = 0.003$ vs. Ctrl); PKC ε was $100 \pm 6\%$ (Ctrl), $99 \pm 8\%$ (EPAC1; $p = 0.96$ vs.						
1169	Ctrl), and 101 \pm 8% (EPAC2; $p = 0.92$ vs. Ctrl); PKC α -pS was 100 \pm 7% (Ctrl), 101 \pm 10%						
1170	(EPAC1; $p = 0.94 vs.$ Ctrl), and $96 \pm 8\%$ (EPAC2; $p = 0.67 vs.$ Ctrl); and PKC α -pT was $100 \pm 6\%$						
1171	(Ctrl), $97 \pm 10\%$ (EPAC1; $p = 0.81$ vs. Ctrl), and $101 \pm 8\%$ (EPAC2; $p = 0.90$ vs. Ctrl). One-way						
1172	ANOVA test. $n = 6$ for all groups. ** $p < 0.01$. *** $p < 0.001$. (B) Precleared synaptosomes from						
1173	WT mice were immunoprecipitated with anti-RIM1 antibody and probed with antibodies to PKC ϵ						
1174	and RIM1. $n = 4$. (C) HA-RIM1 α (Ctrl) or HA-RIM1 α with His-PKC ϵ was transfected into HEK						
1175	cells and p-Thr and p-Ser of RIM1 α were analyzed. p-Thr and p-Ser were normalized to HA and						
1176	percentage changes relative to Ctrl are plotted. p-Thr was $100 \pm 8\%$ (Ctrl) and $179 \pm 18\%$ (PKC ε ;						
1177	$p = 0.0021$). p-Ser was $100 \pm 11\%$ (Ctrl) and $118 \pm 13\%$ (PKC ε ; $p = 0.26$). $n = 5$ for all groups.						
1178	Unpaired t test. ** $p < 0.01$. (D) Synaptosomes (WT) were treated with control buffer, 8-pCPT (20						
1179	$\mu M,$ 30 min), 8-pCPT+ $\epsilon V1\text{-}2$ (5 $\mu M,$ 30min) and 8-pCPT+Gö (10 $\mu M,$ 30 min). p-Thr was						
1180	normalized to RIM1 and percentage changes relative to Ctrl are plotted. Ctrl: $100 \pm 8\%$. 8-pCPT:						
1181	$280 \pm 35\%$ (<i>p</i> = 0.0016 vs. Ctrl). 8-pCPT+ ε V1-2: 147 ± 19% (<i>p</i> = 0.58 vs. Ctrl; <i>p</i> = 0.015 vs.						
1182	8-pCPT). 8-pCPT+Gö: 276 \pm 31 (p = 0.0019 vs. Ctrl; p = 0.99 vs. 8-pCPT; p = 0.017 vs.						
1183	8-pCPT+ ϵ V1-2). One-way ANOVA test. $n = 4$ for all groups. * $p < 0.05$. ** $p < 0.01$. (E)						
1184	Synaptosomes (WT) were treated with control buffer, PMA (1 μ M, 30 min), PMA+ ϵ V1-2 (5 μ M,						
1185	30min) and PMA+Gö (10 μ M, 30 min). RIM1 p-Thr was normalized to RIM1, and percentage						

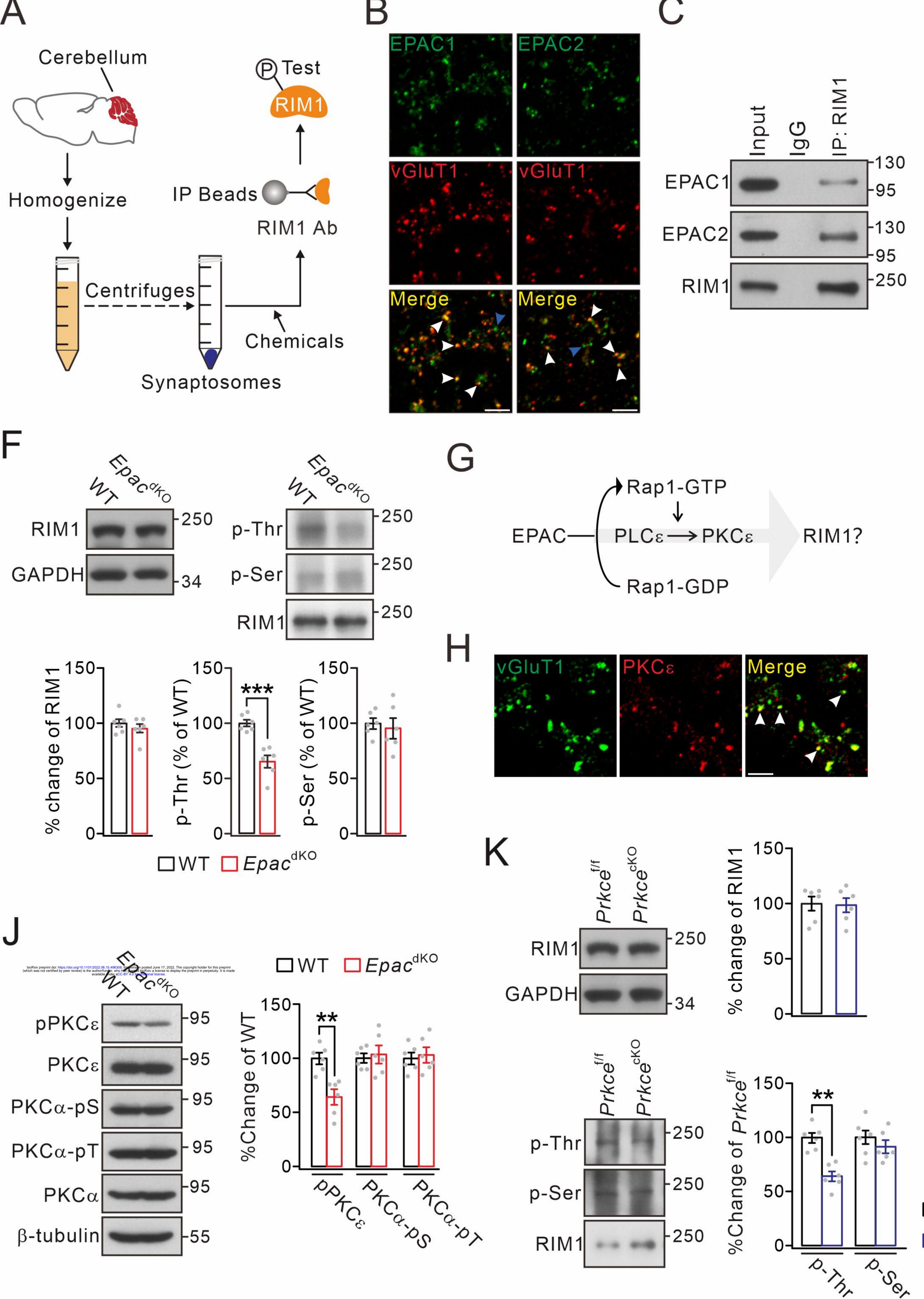
- 1186 changes relative to Ctrl are plotted. Ctrl: $100 \pm 8\%$. PMA: $208 \pm 19\%$ (p = 0.0041 vs. Ctrl).
- 1187 PMA+ ε V1-2: 134 ± 13% (p = 0.55 vs. Ctrl; p = 0.043 vs. PMA). PMA+Gö: 214 ± 24% (p = 0.55 vs. Ctrl; p = 0.043 vs. PMA).
- 1188 0.0029 vs. Ctrl; p = 0.99 vs. PMA; p = 0.030 vs. PMA+ ϵ V1-2). One-way ANOVA test. n = 4 for
- 1189 all groups. *p < 0.05. **p < 0.01.

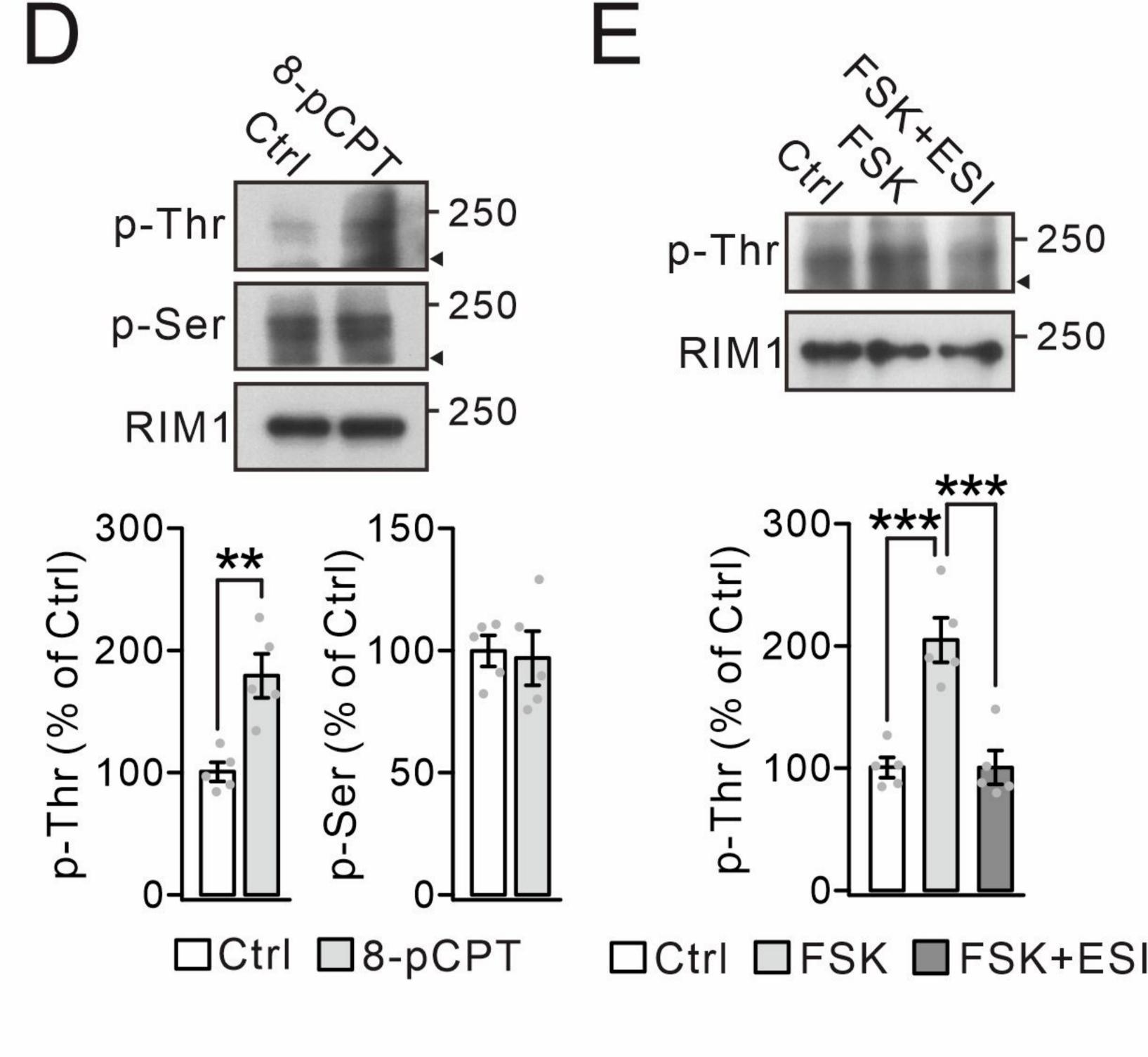
1190	Figure 3-figure supplement 1. Presynaptic PF-PC LTP is blocked by forskolin incubation, EPAC				
1191	ablation, or ε V1-2 application. (A) Example PF-EPSCs for baseline (1) and after LTP induction (2)				
1192	in a WT PC perfused with forskolin (20 μ M). (B) Percentage changes of PF-EPSC amplitude with				
1193	forskolin treatment in WT mice: $99 \pm 3\%$ (1) and $101 \pm 5\%$ (2); $n = 11$; $p = 0.63$. PPF ratios from				
1194	cells shown in the left panel: $100 \pm 5\%$ (1) and $102 \pm 4\%$ (2); $n = 11$; $p = 0.72$. Unpaired <i>t</i> test. (C)				
1195	Example PF-EPSCs for baseline and after LTP induction in an Epac ^{dKO} PC. (D) Percentage				
1196	changes of PF-EPSC amplitude in $Epac^{dKO}$ mice: $100 \pm 3\%$ (1) and $104 \pm 5\%$ (2); $n = 11$; $p = 0.66$.				
1197	PPF ratios from cells shown in the left panel: $99 \pm 5\%$ (1) and $104 \pm 5\%$ (2); $n = 11$; $p = 0.58$.				
1198	Unpaired t test. (E) Example PF-EPSCs for baseline and after LTP induction in a WT PC perfused				
1199	with $\epsilon V1\text{-}2$ (5 μM). (F) Percentage changes of PF-EPSC amplitude in WT mice: 100 \pm 3% (1) and				
1200	$101 \pm 4\%$ (2); $n = 9$; $p = 0.59$. PPF ratios from cells shown in the left panel: $101 \pm 4\%$ (1) and 102				
1201	\pm 5% (2); <i>n</i> = 9; <i>p</i> = 0.22. Unpaired <i>t</i> test.				

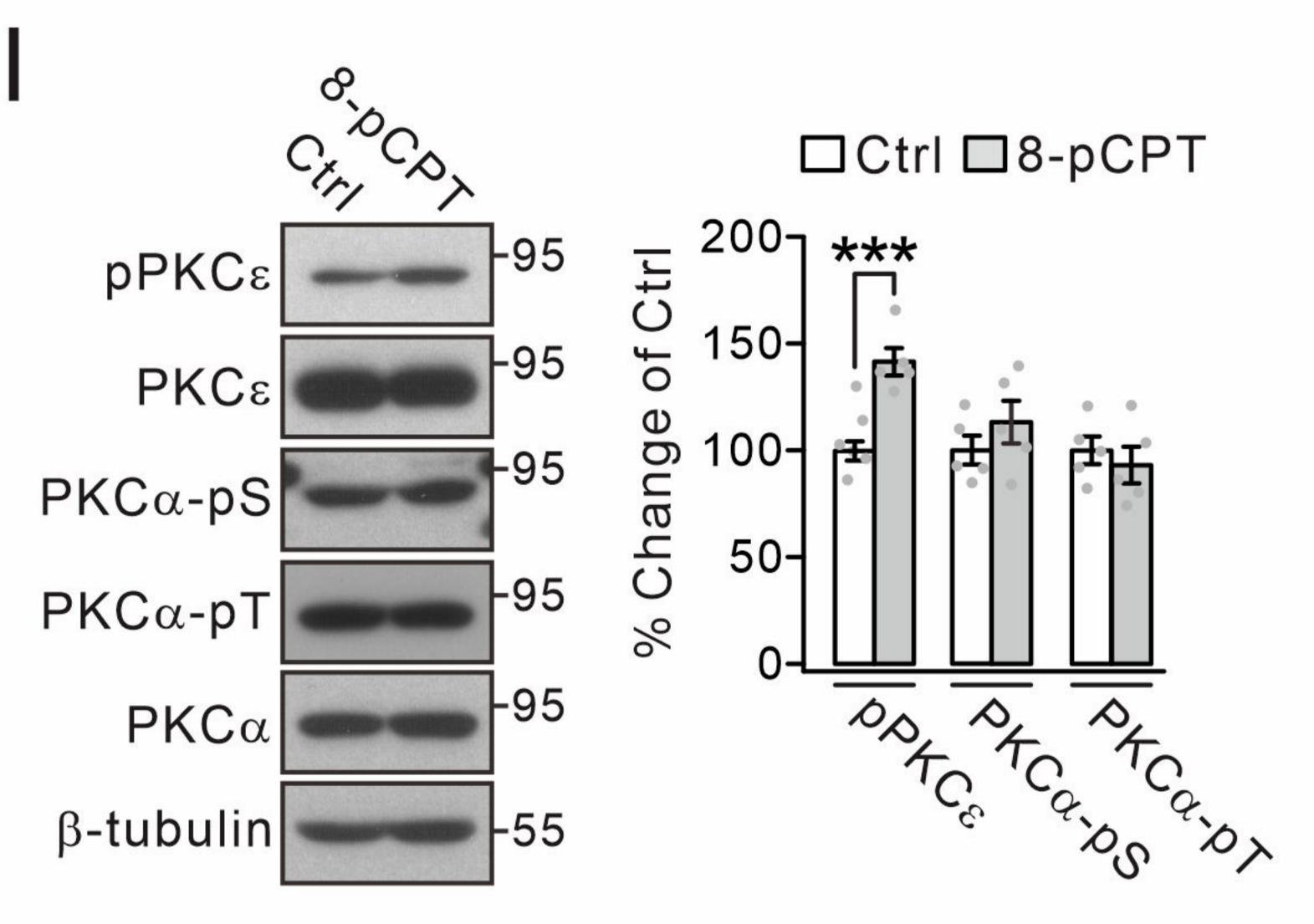
1202	Figure 7–figure supplement	1. Impaired	VOR learning in	<i>Epac</i> ^{dKO} mice.	(A) Gain and pha	ase
------	----------------------------	-------------	-----------------	----------------------------------	------------------	-----

1203 values of WT (n = 10) and $Epac^{dKO}$ (n = 10) mice during OKR evoked by visual stimulation. **p

1204 < 0.01. (B) Gain and phase values of WT and $Epac^{dKO}$ mice evoked by vestibular stimulation in

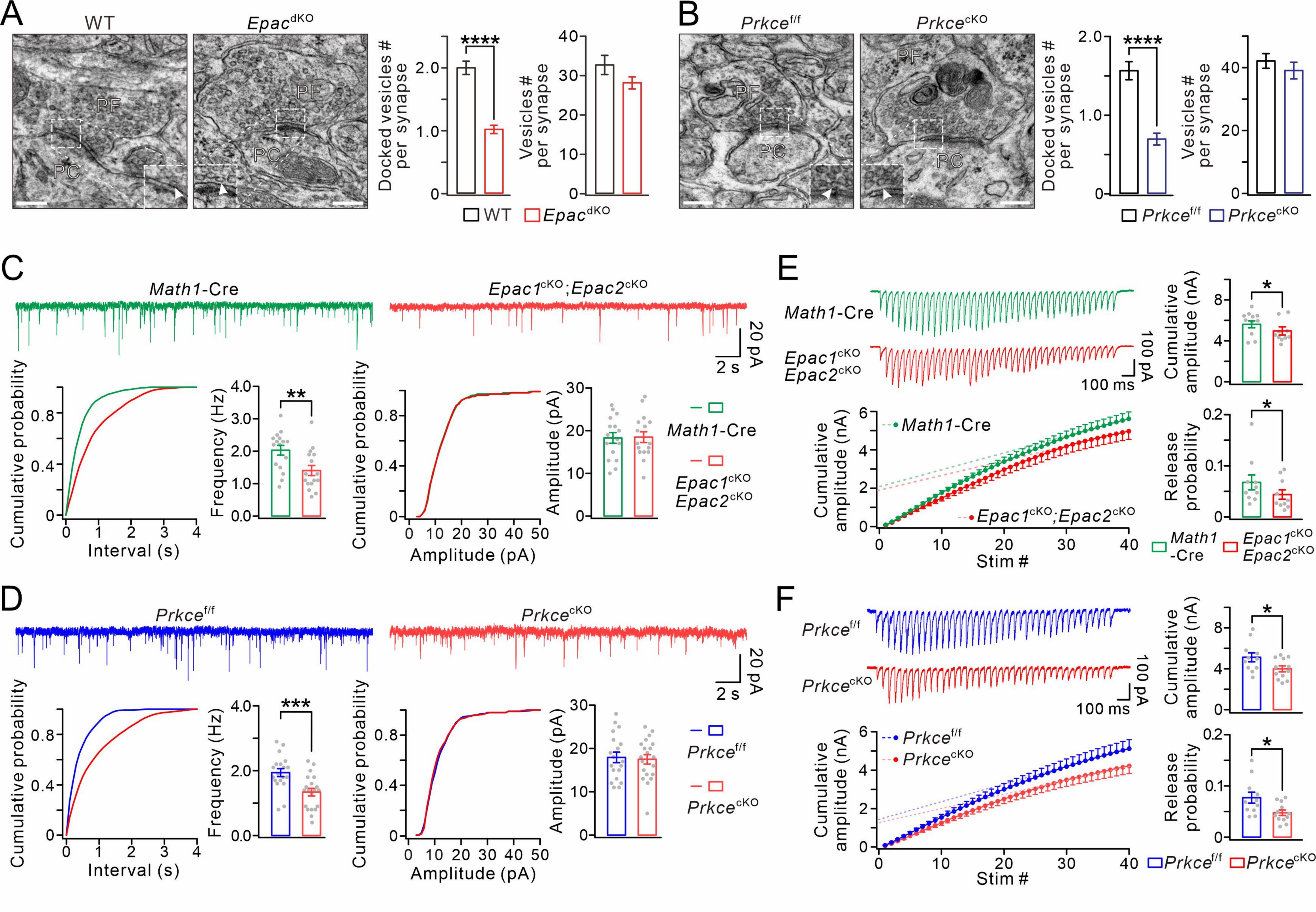

1205 the dark. *p < 0.05. **p < 0.01. (C) Gain and phase values of WT and $Epac^{dKO}$ mice during

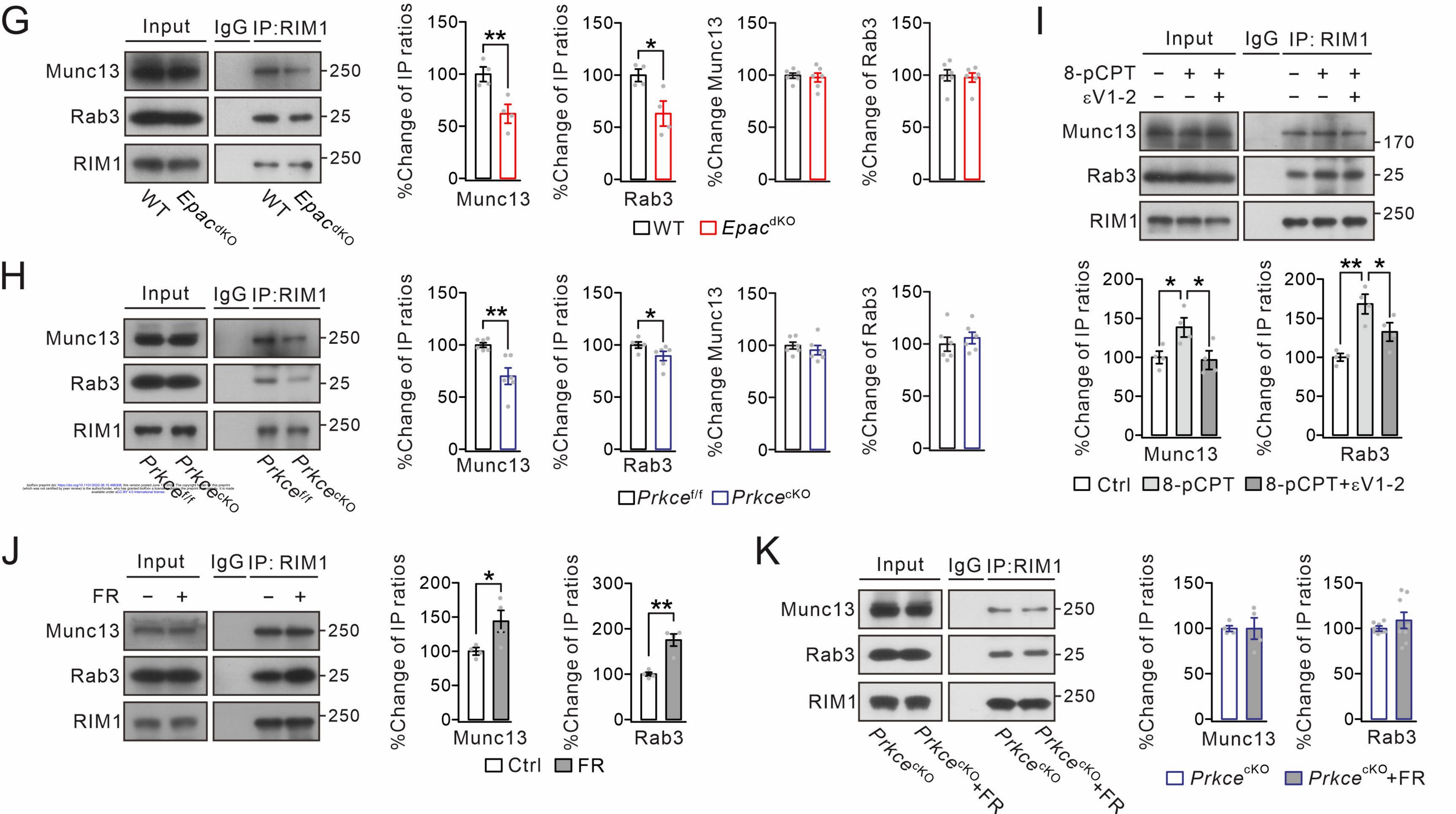

1206 VVOR in the light. With visual input, the VOR deficits in *Epac*^{dKO} were no longer present. (D)

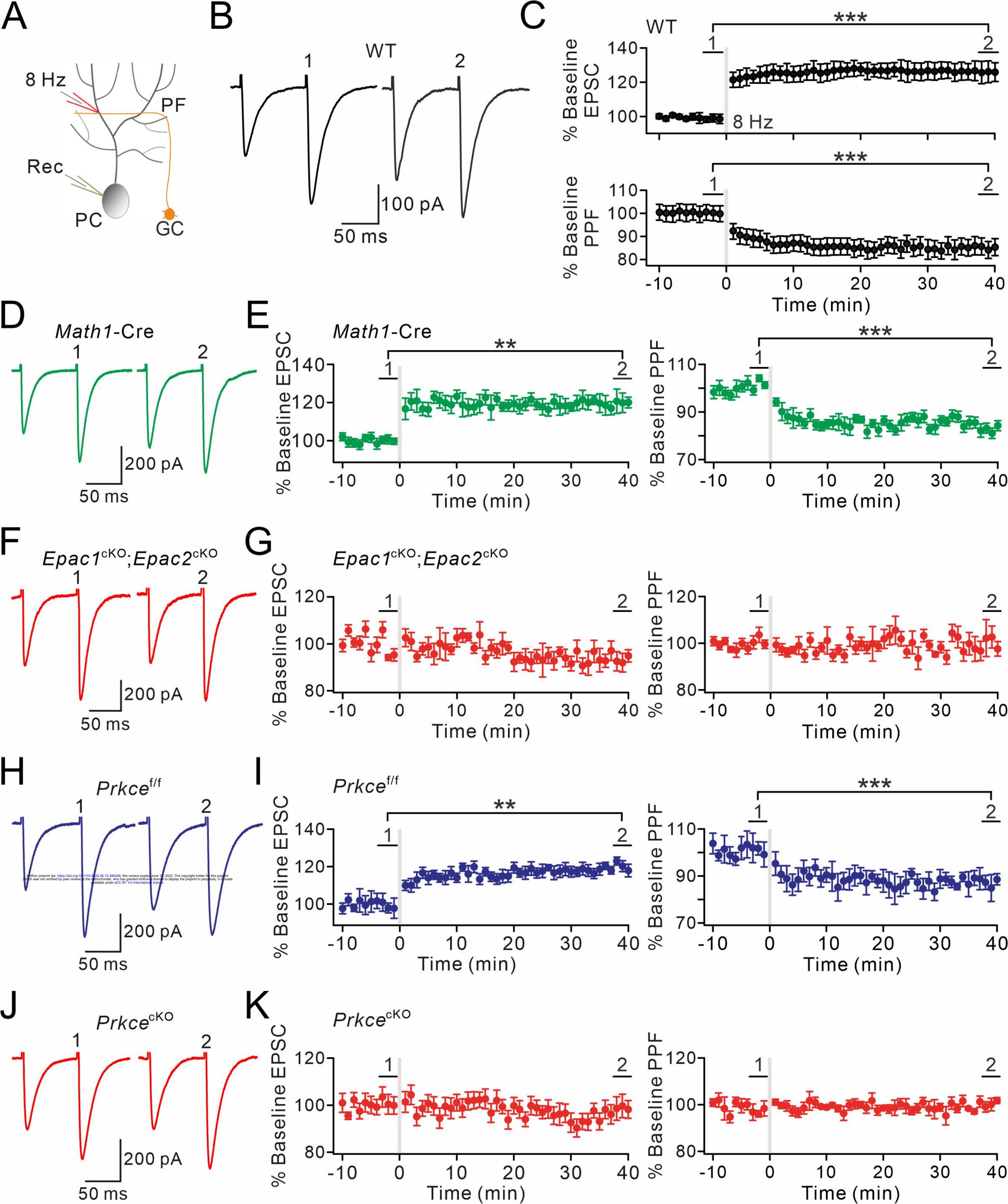

1207 VOR recordings in the dark revealed a reversal of VOR phase in WT and $Epac^{dKO}$ mice. *p < 0.05.

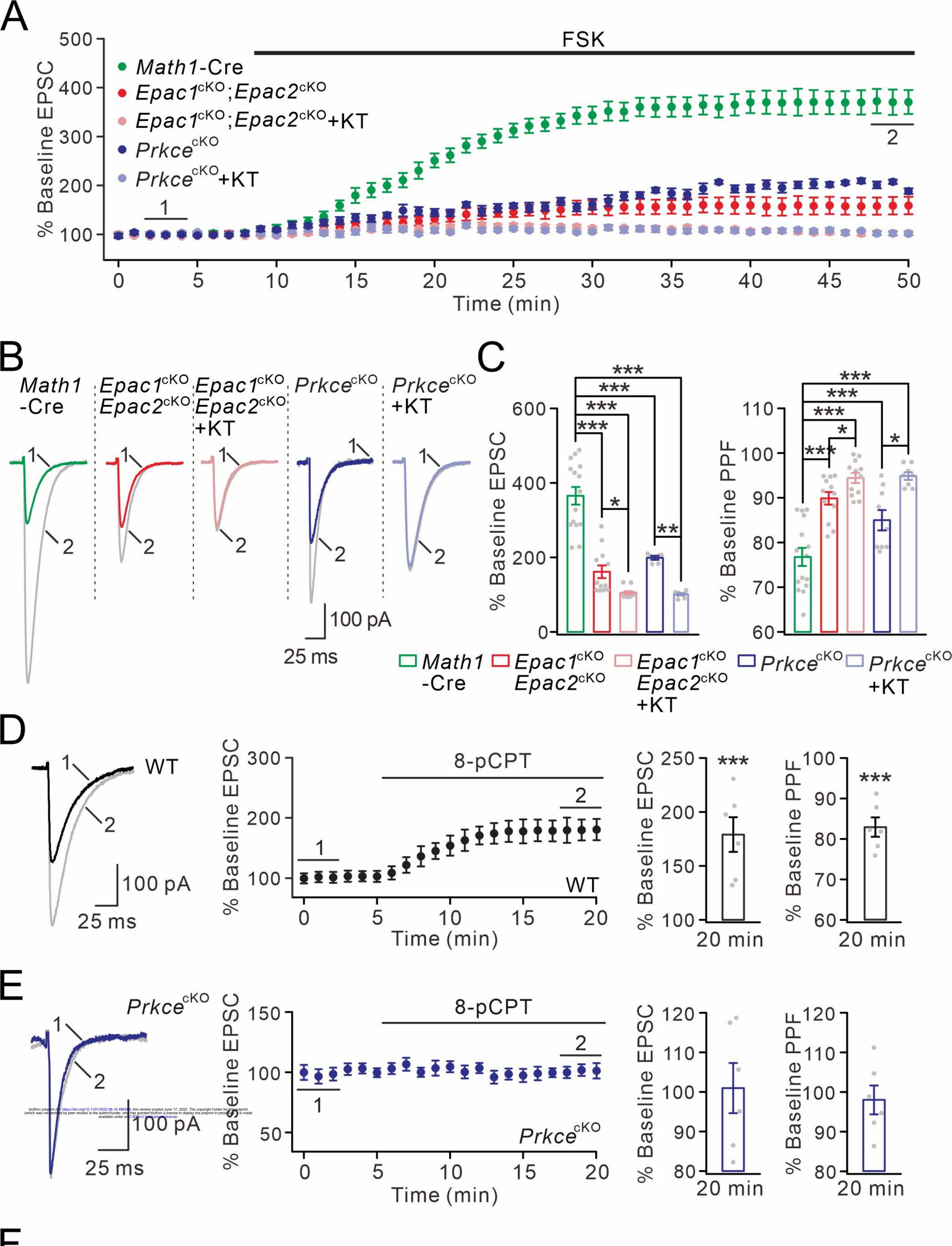
1208 **p < 0.01. ***p < 0.001.

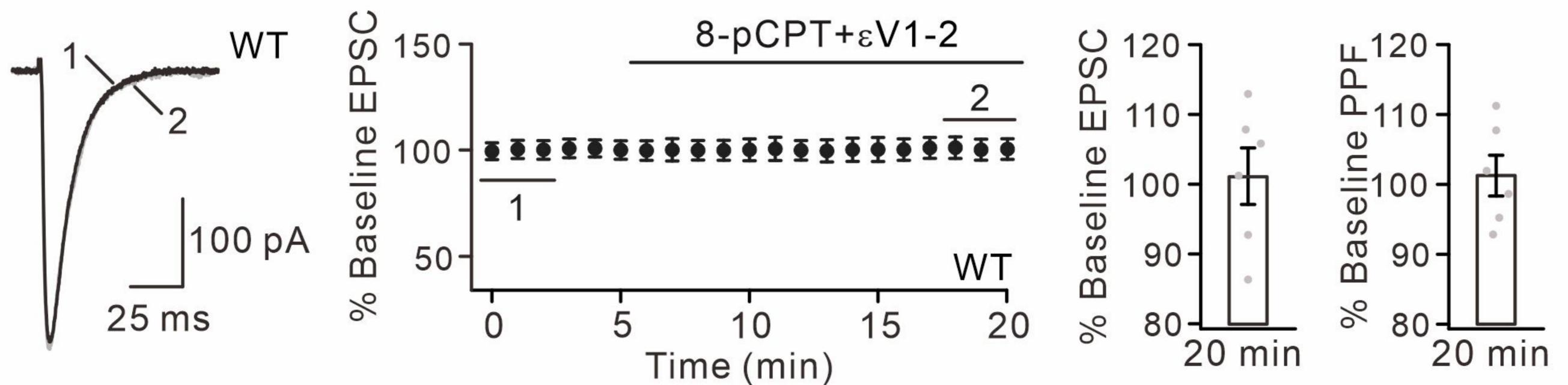
- 1209 Figure 7-figure supplement 2. Proposed schematic model for the function of EPAC-PKCE
- 1210 module in presynaptic LTP and motor learning. In this model, EPAC activation by forskolin or
- 1211 presynaptic tetanus stimulation promotes PKCe activation and phosphorylation threonine of RIM1,
- 1212 which further facilitates the assembly of Rab3A-RIM1-Munc13-1 tripartite complex and the
- 1213 docking of vesicles at active zones. All these events are required for the induction of presynaptic
- 1214 LTP. Importantly, presynaptic LTP is essential to VOR phase adaptation learning.

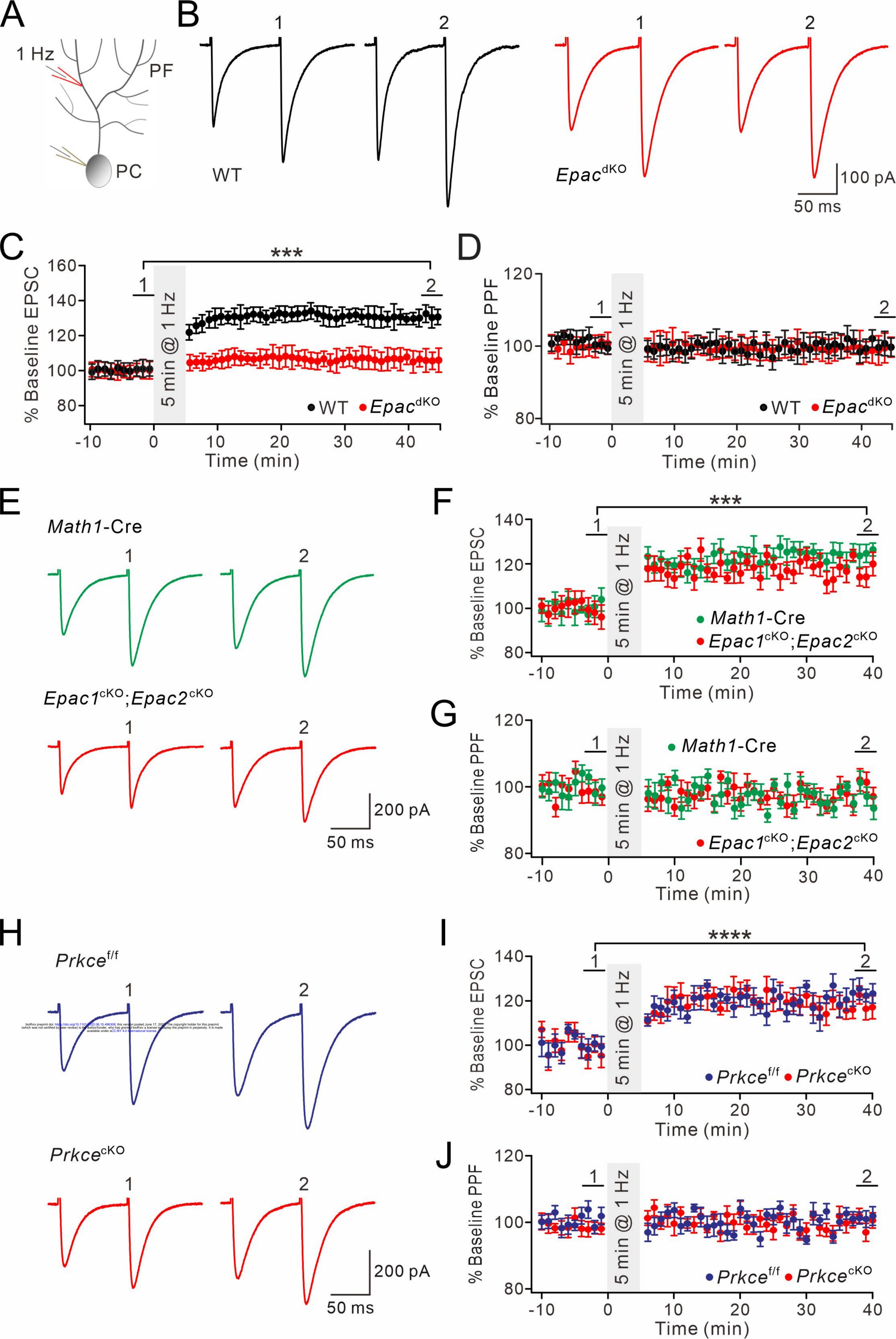


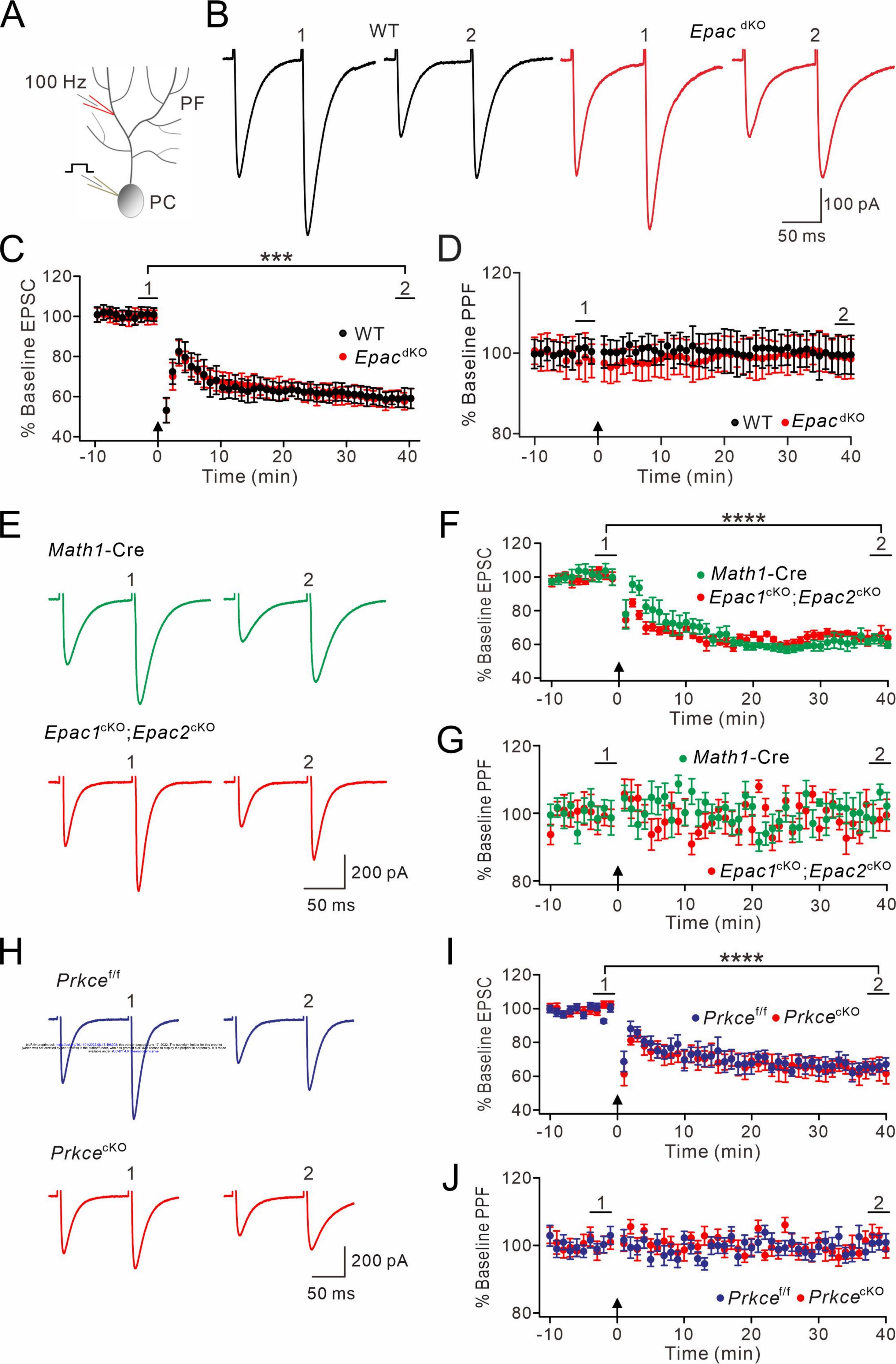


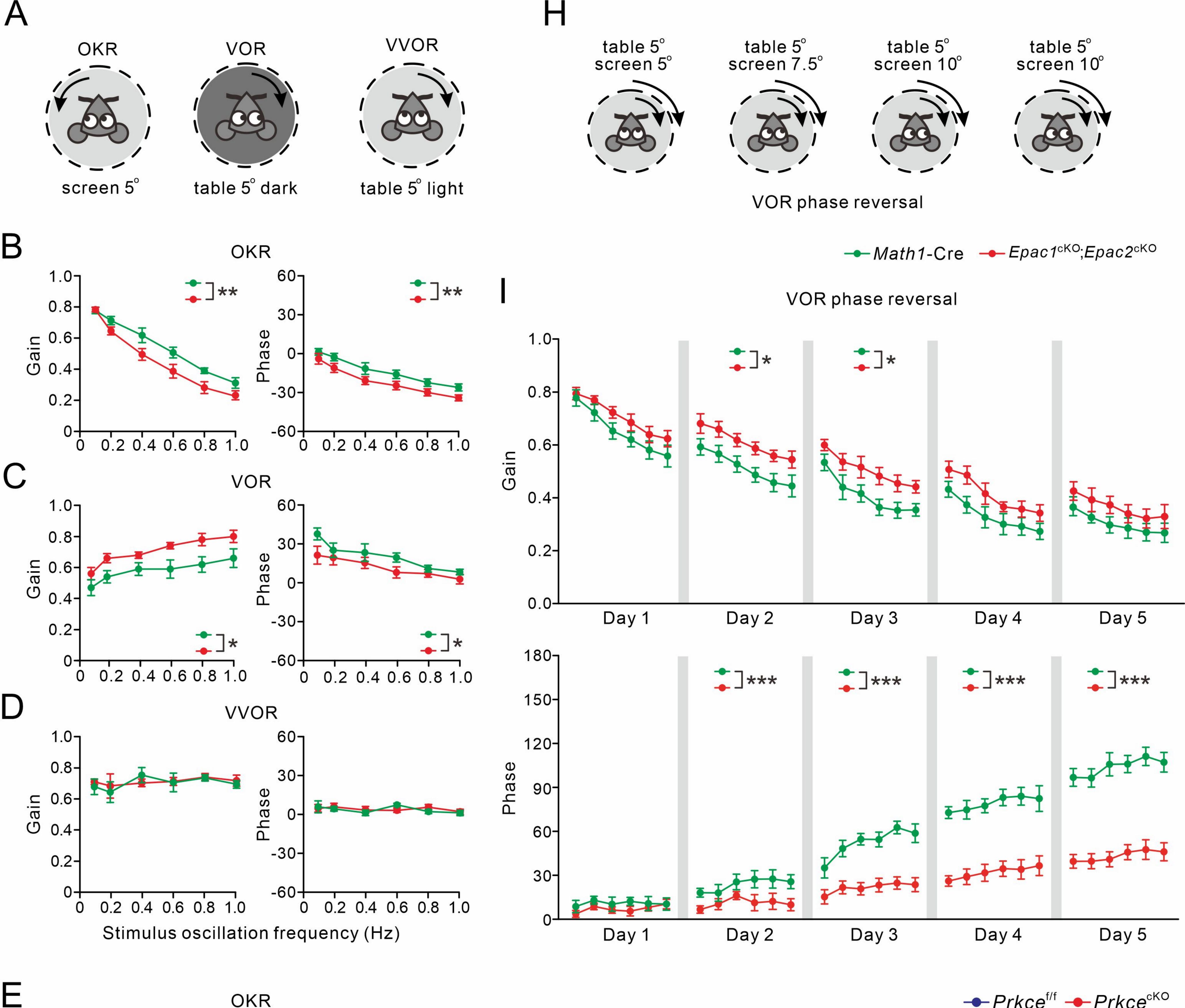

□ Prkce^{f/f}

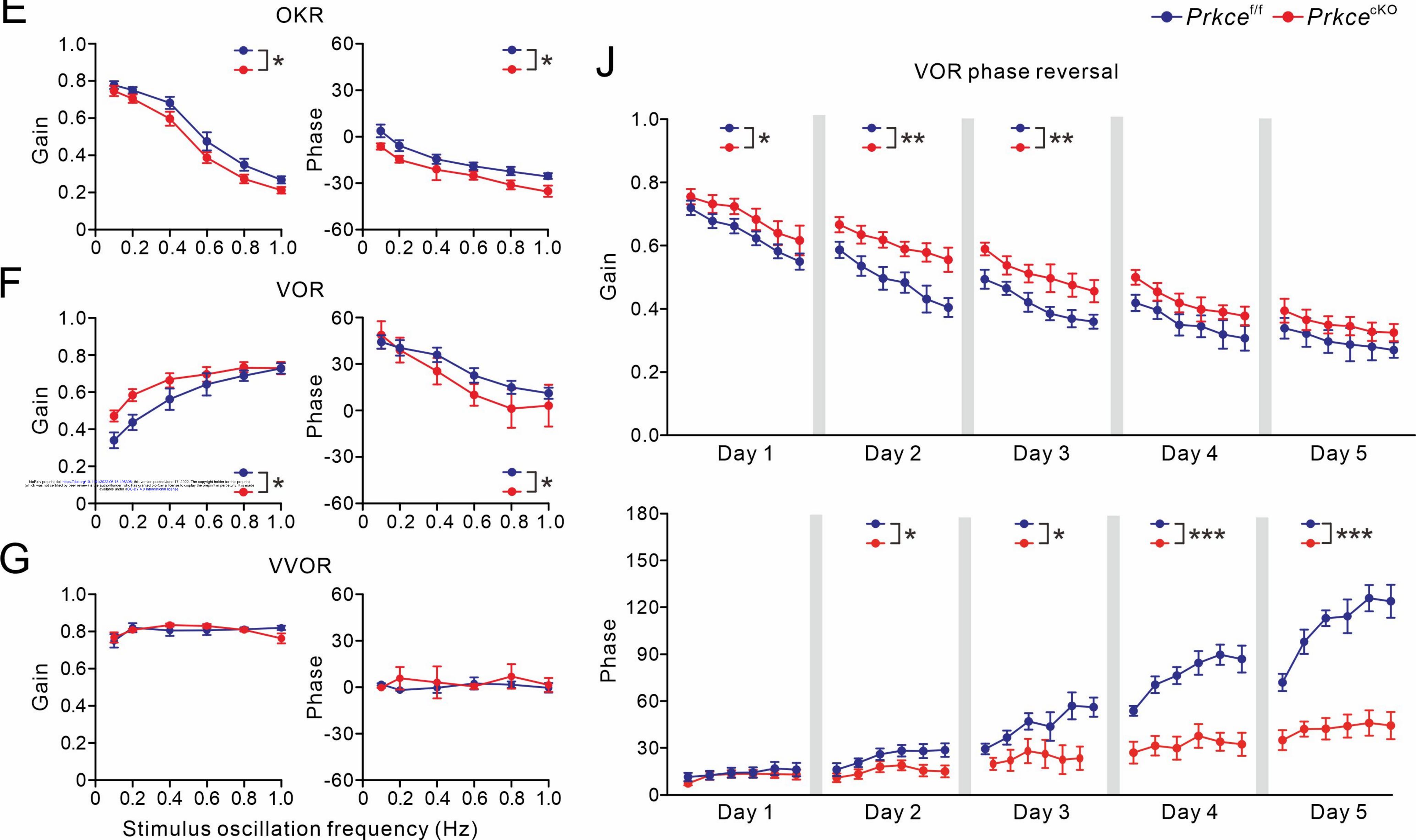

D Prkce^{cKO}

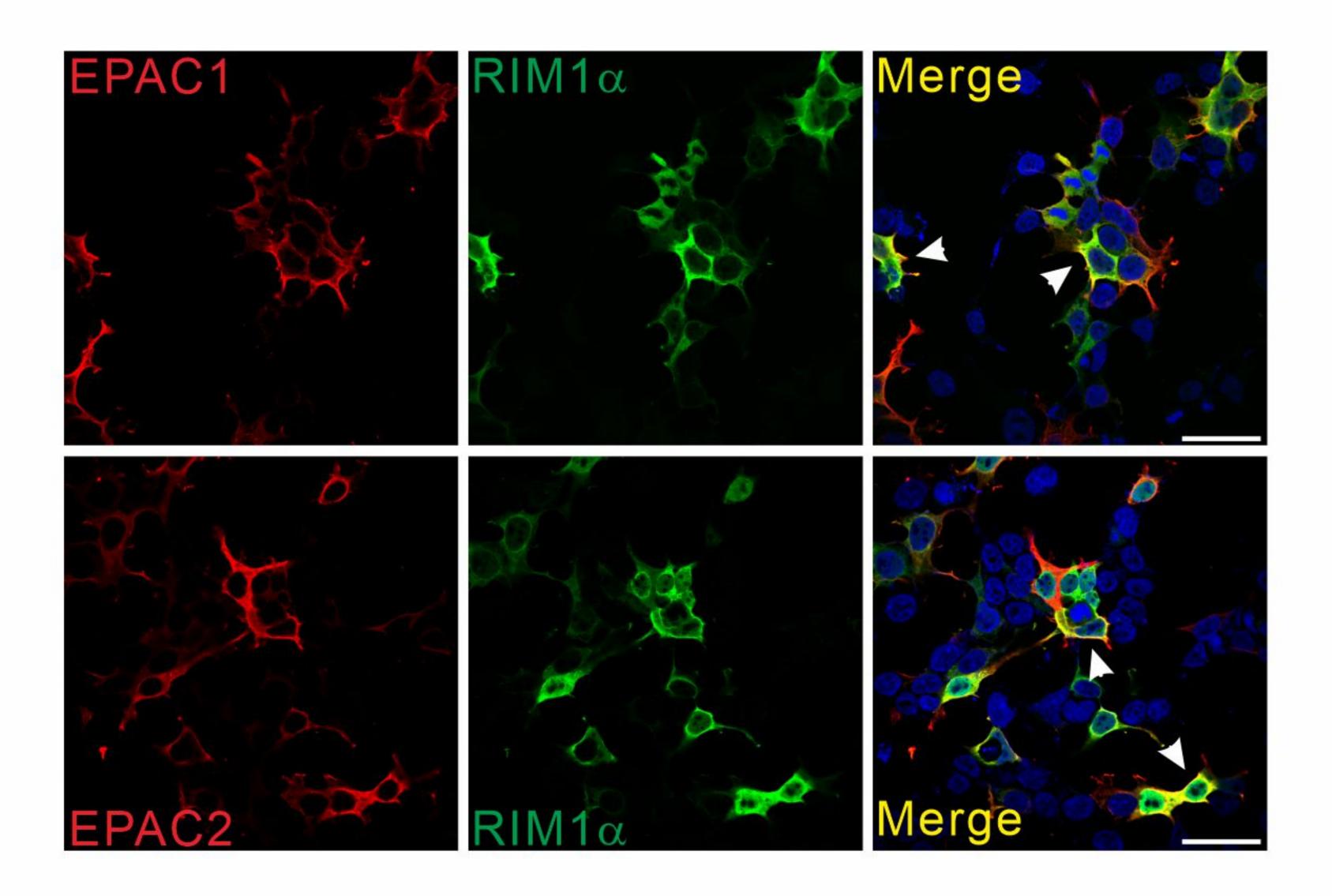

□*Prkce*^{cKO} □*Prkce*^{cKO}+8-pCPT

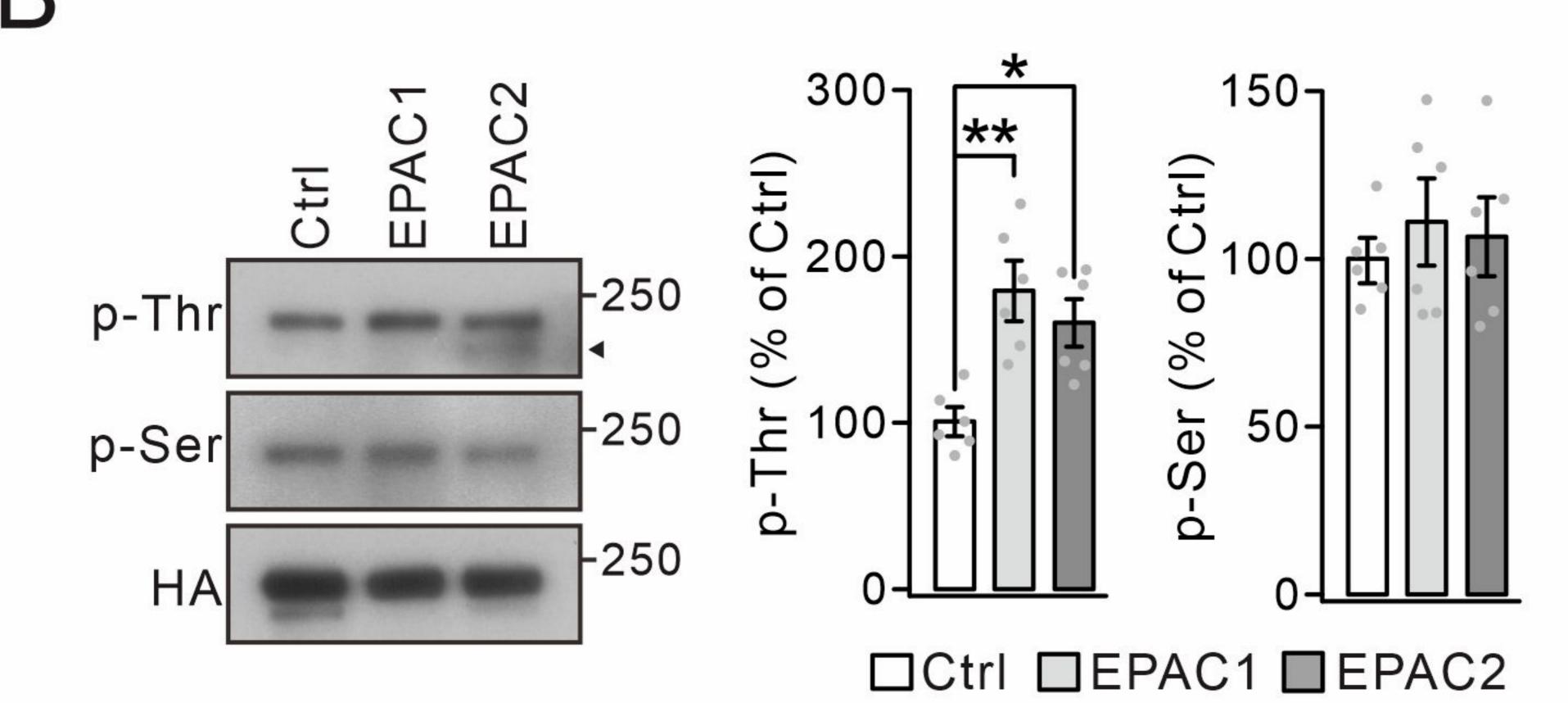








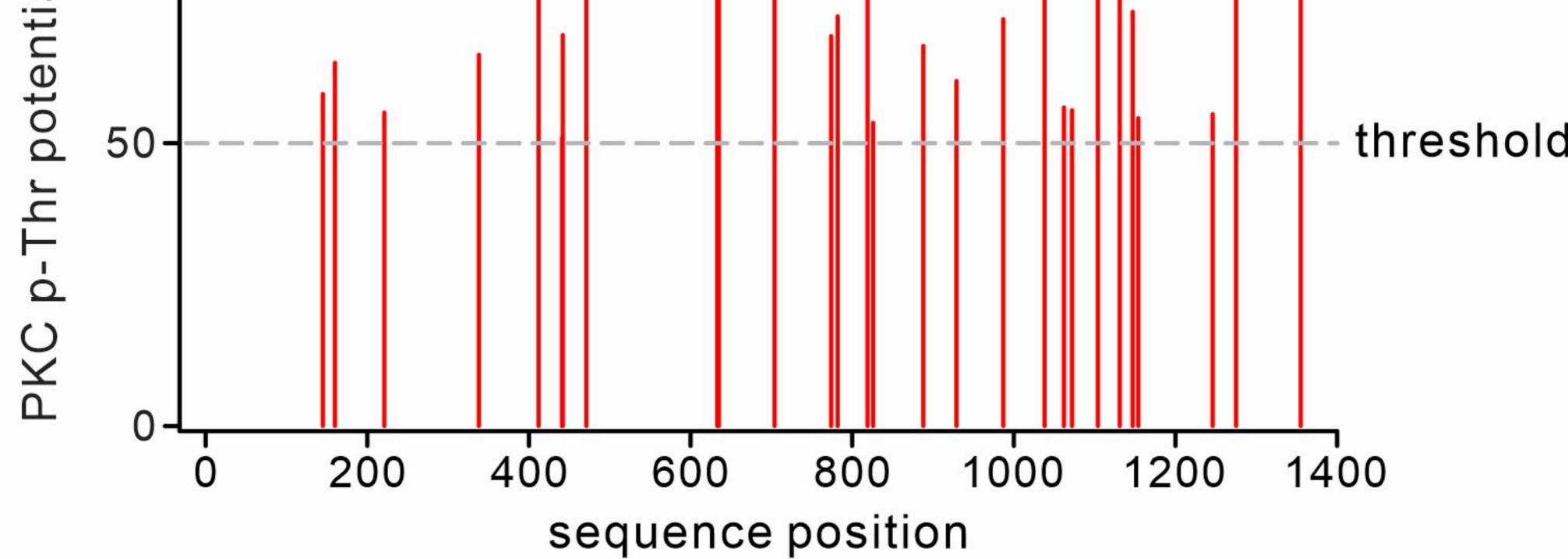




A

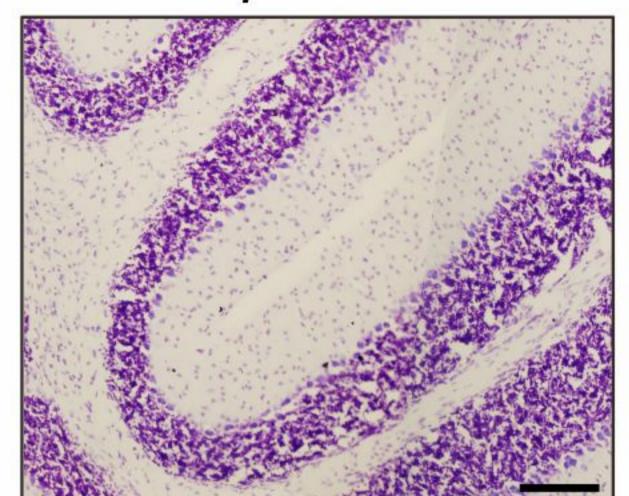
R

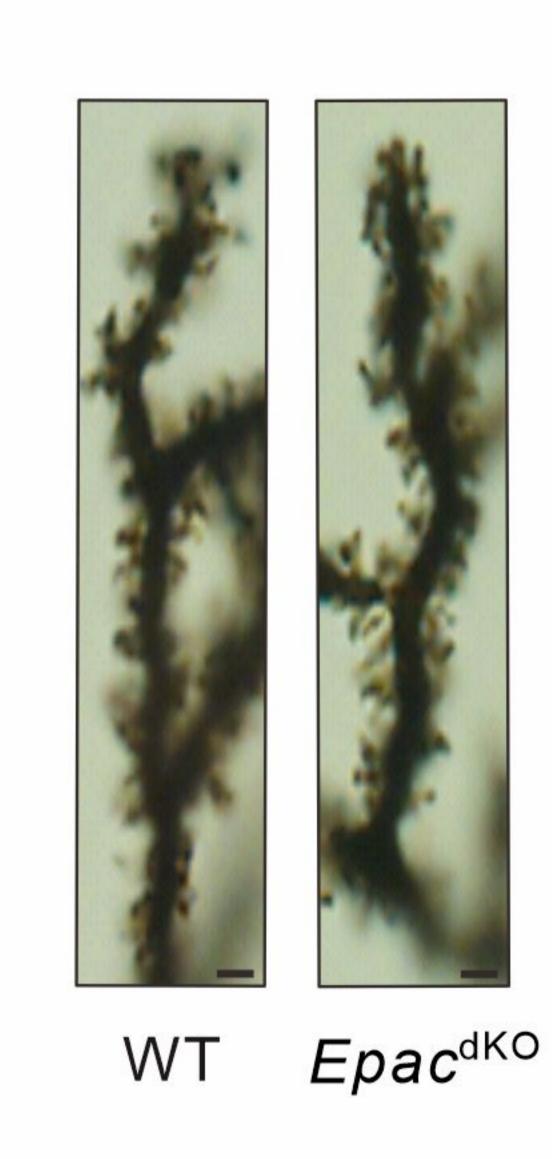
С

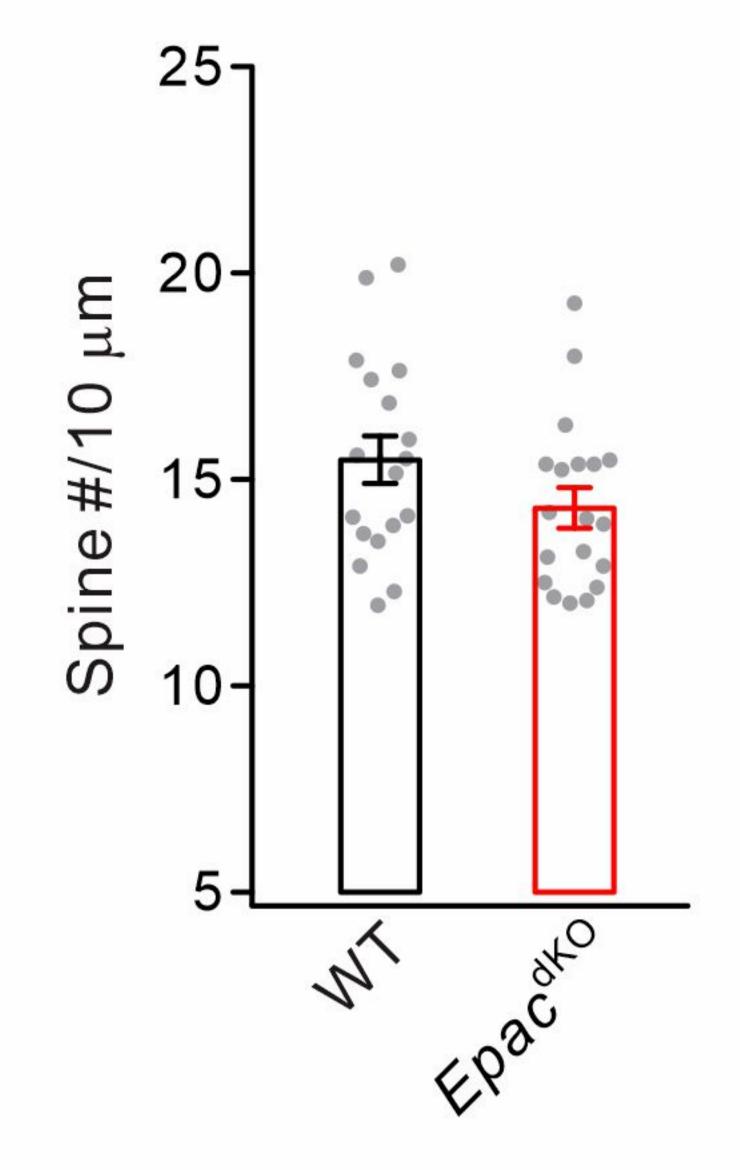


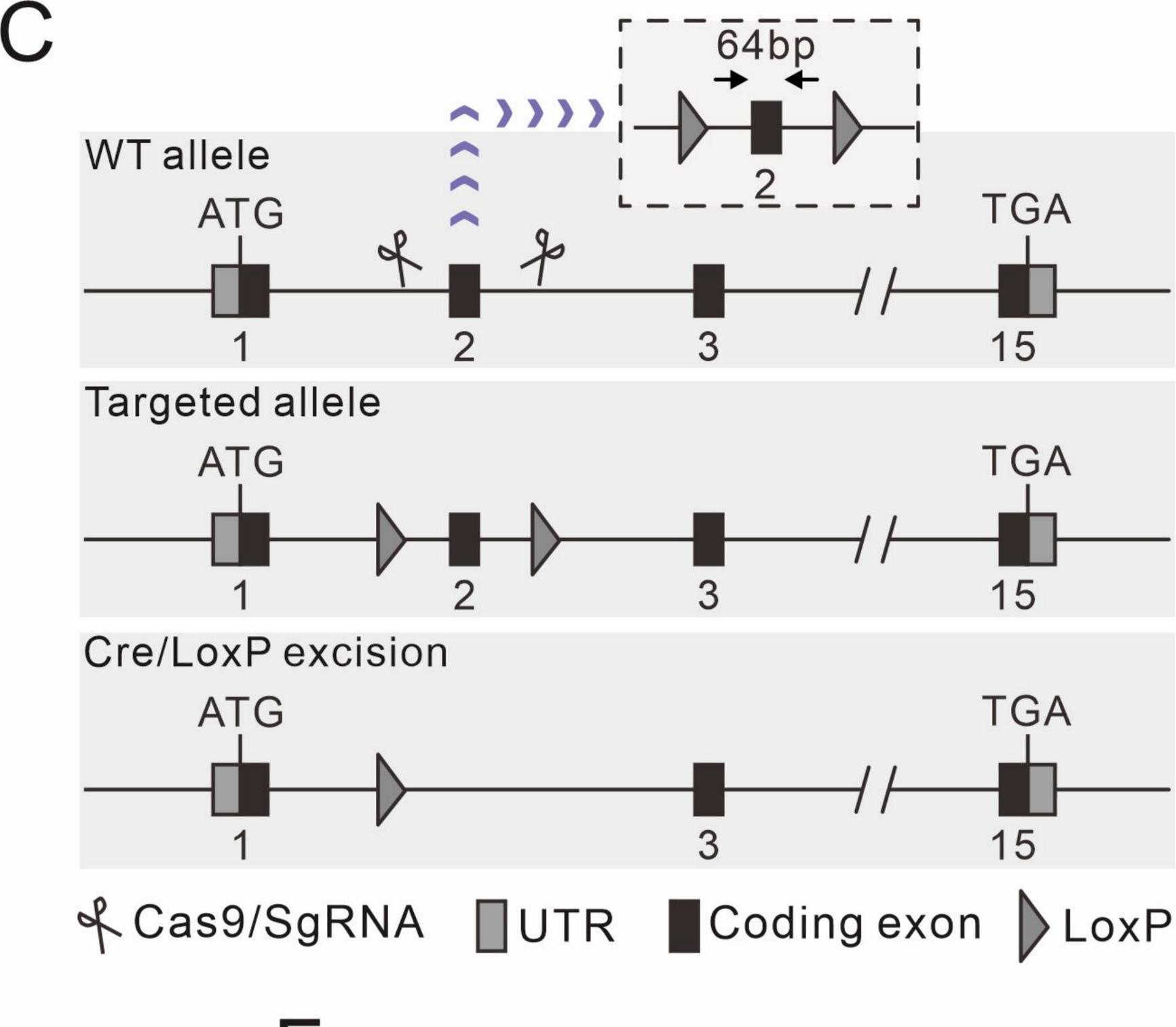
bioRxiv preprint doi: https://doi.org/10.1101/2022.06.15.496308; this version posted June 17, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

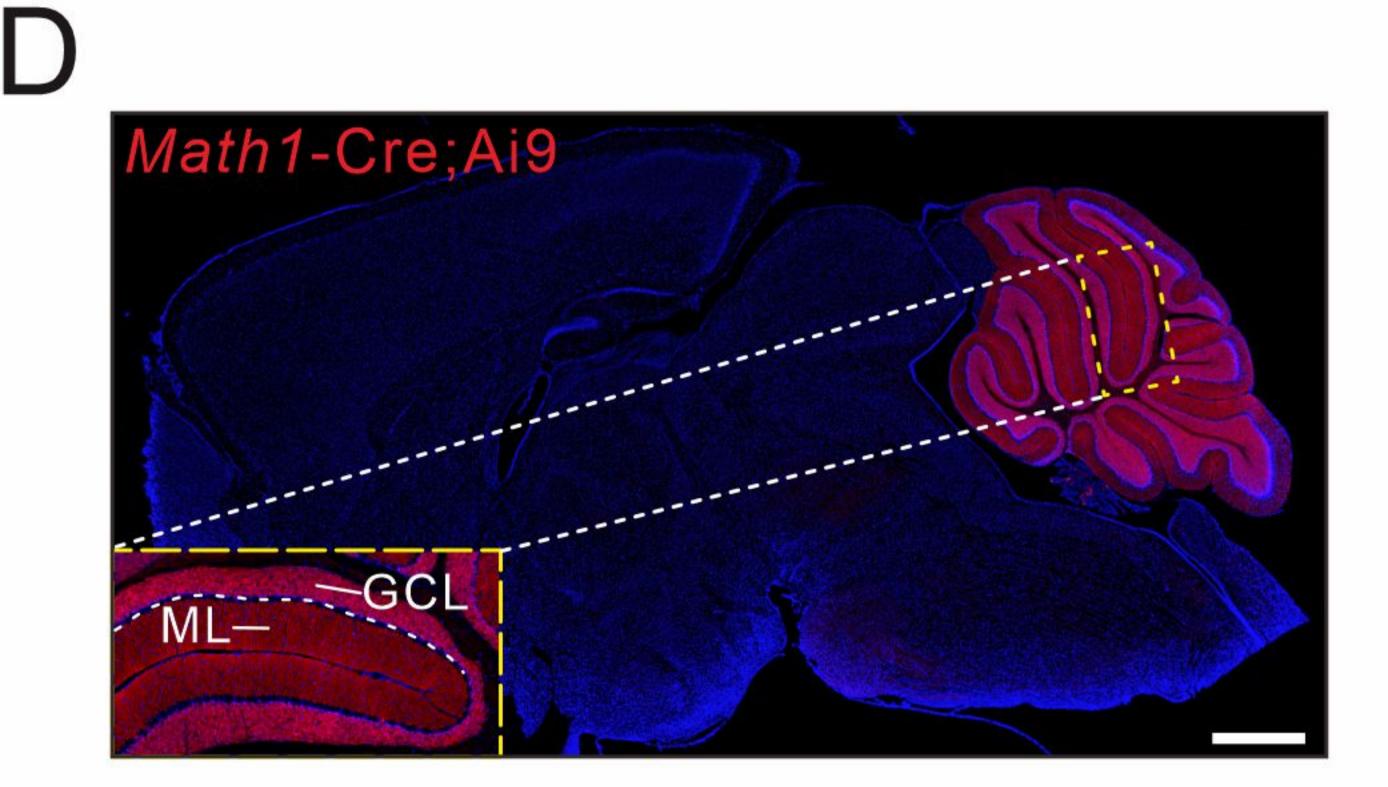
al (%)

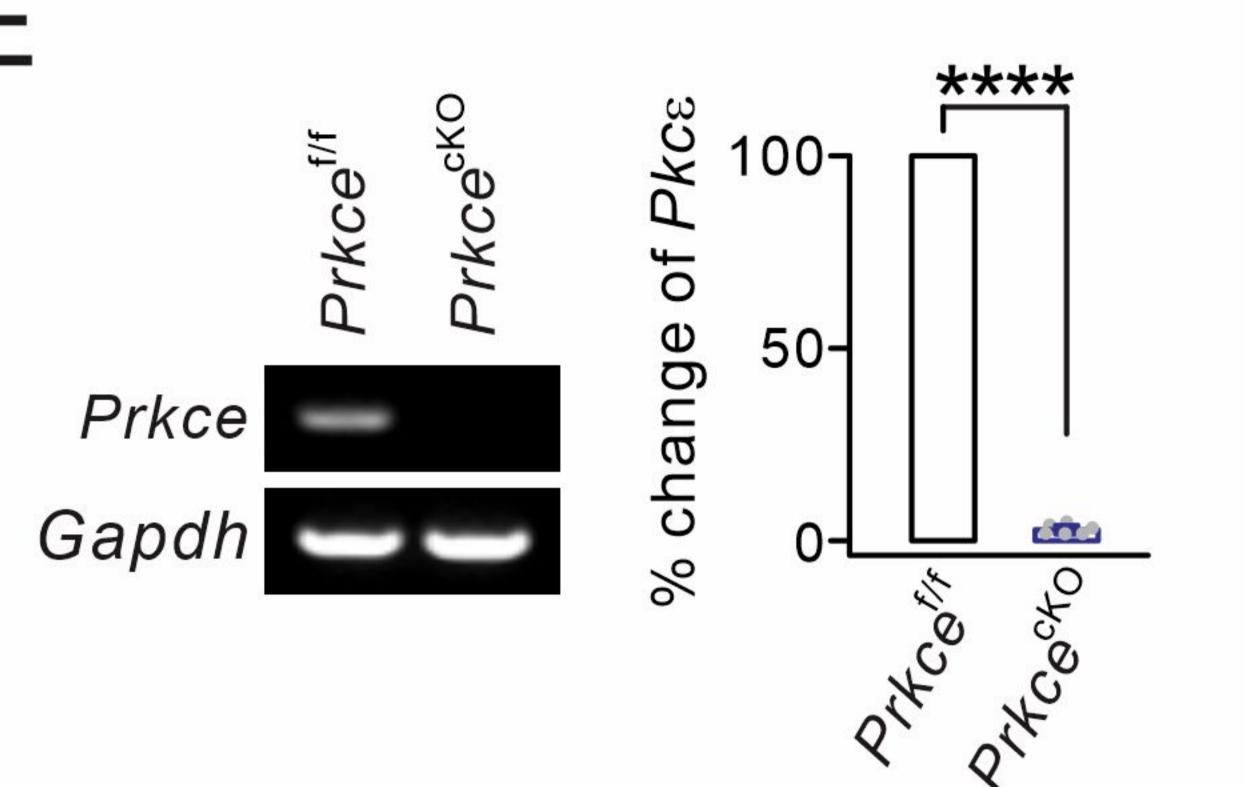

. .

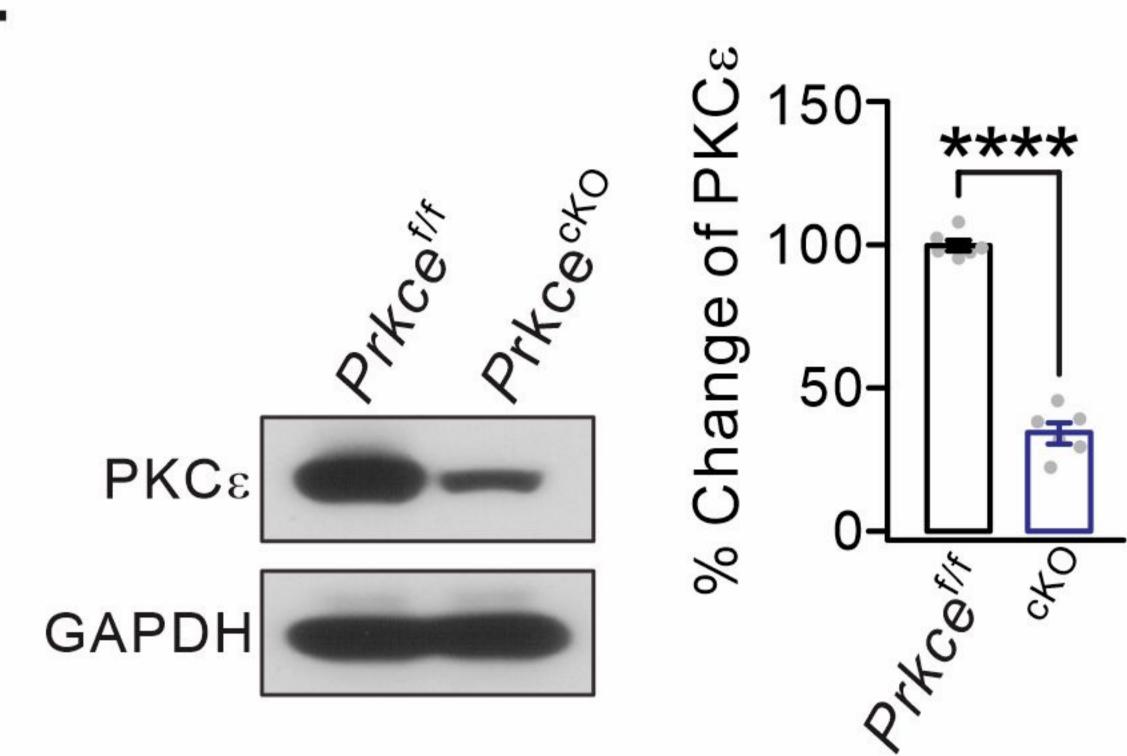

T. T.



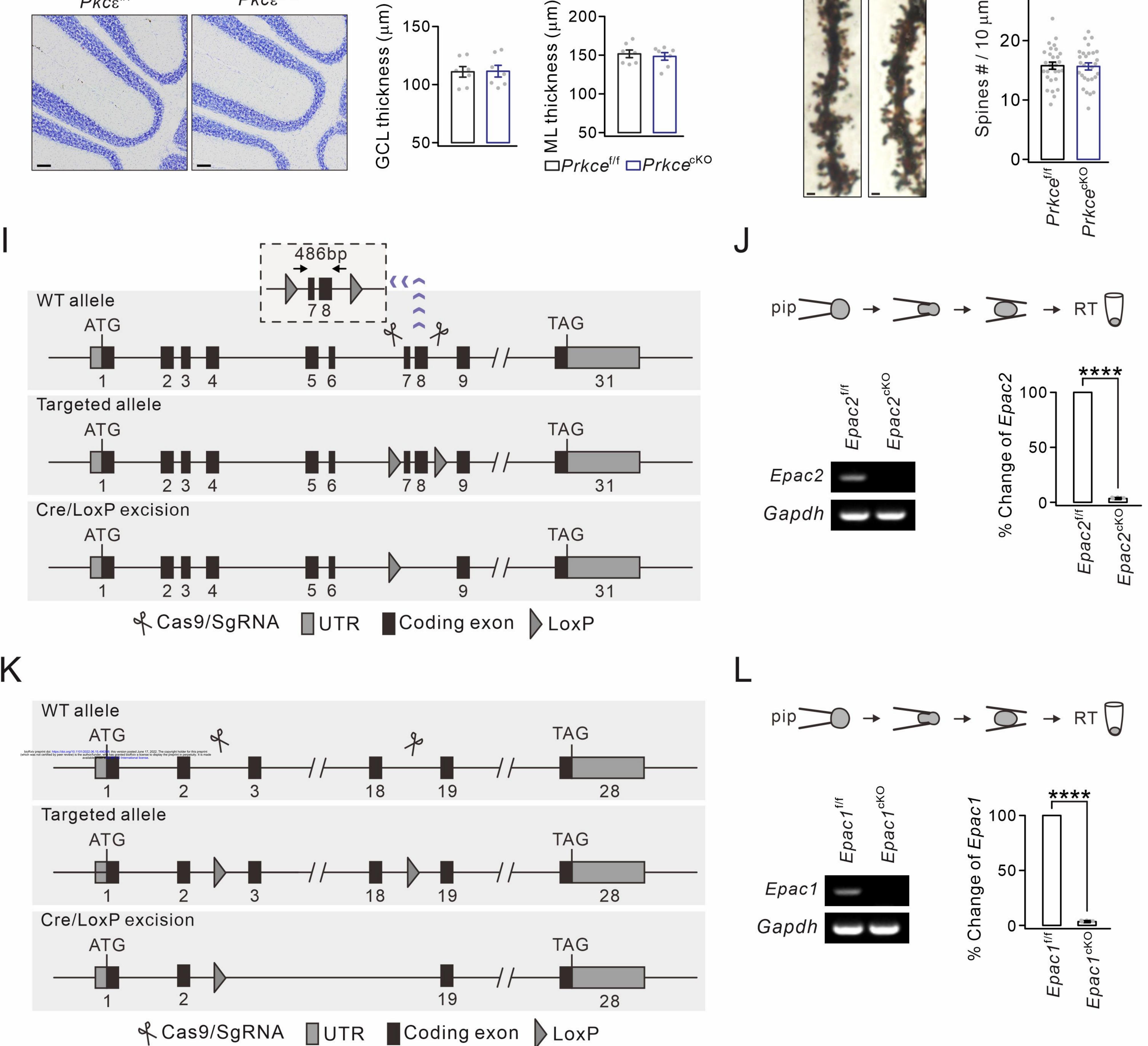

Α WT

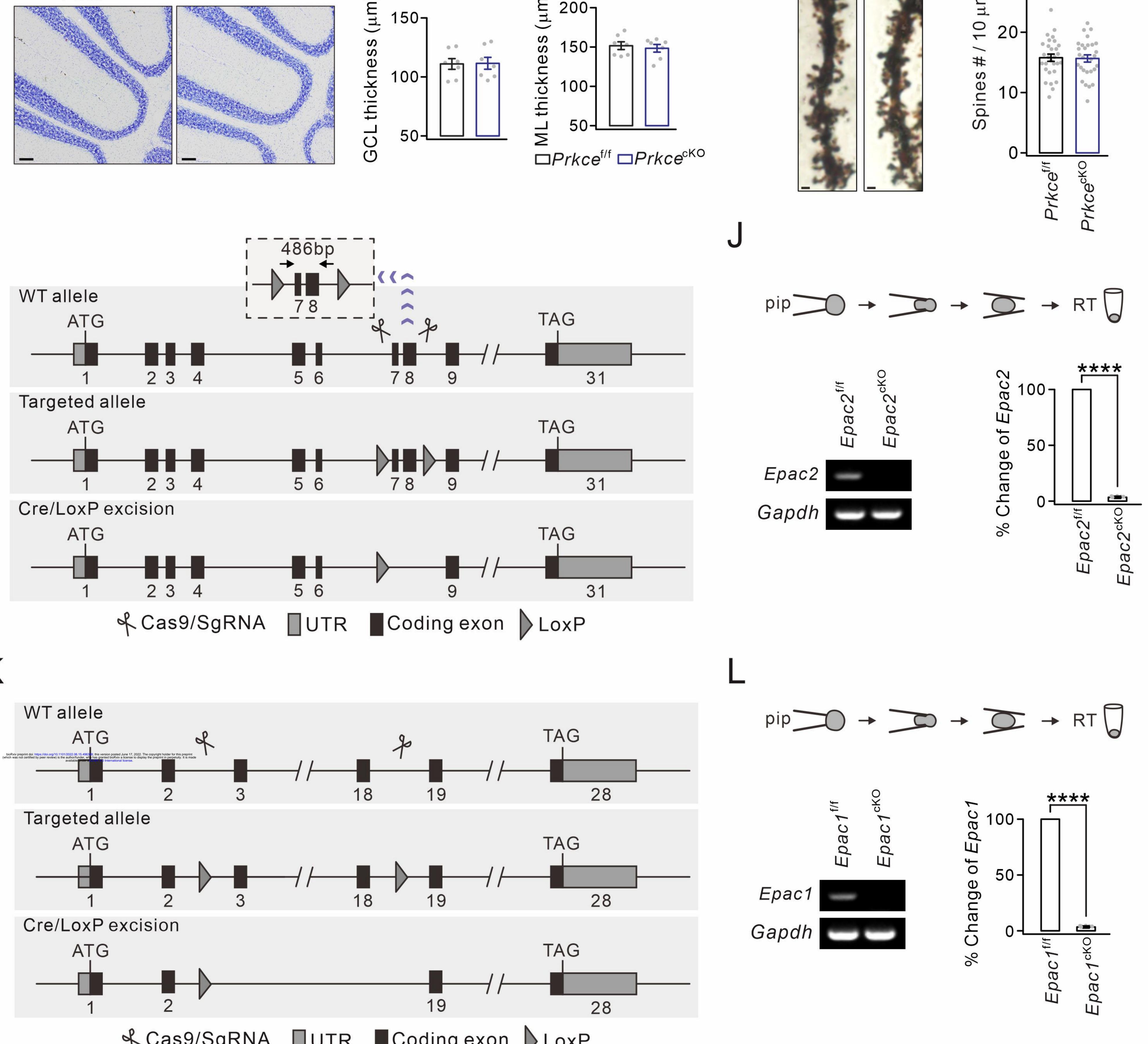

Ерас^{ско}

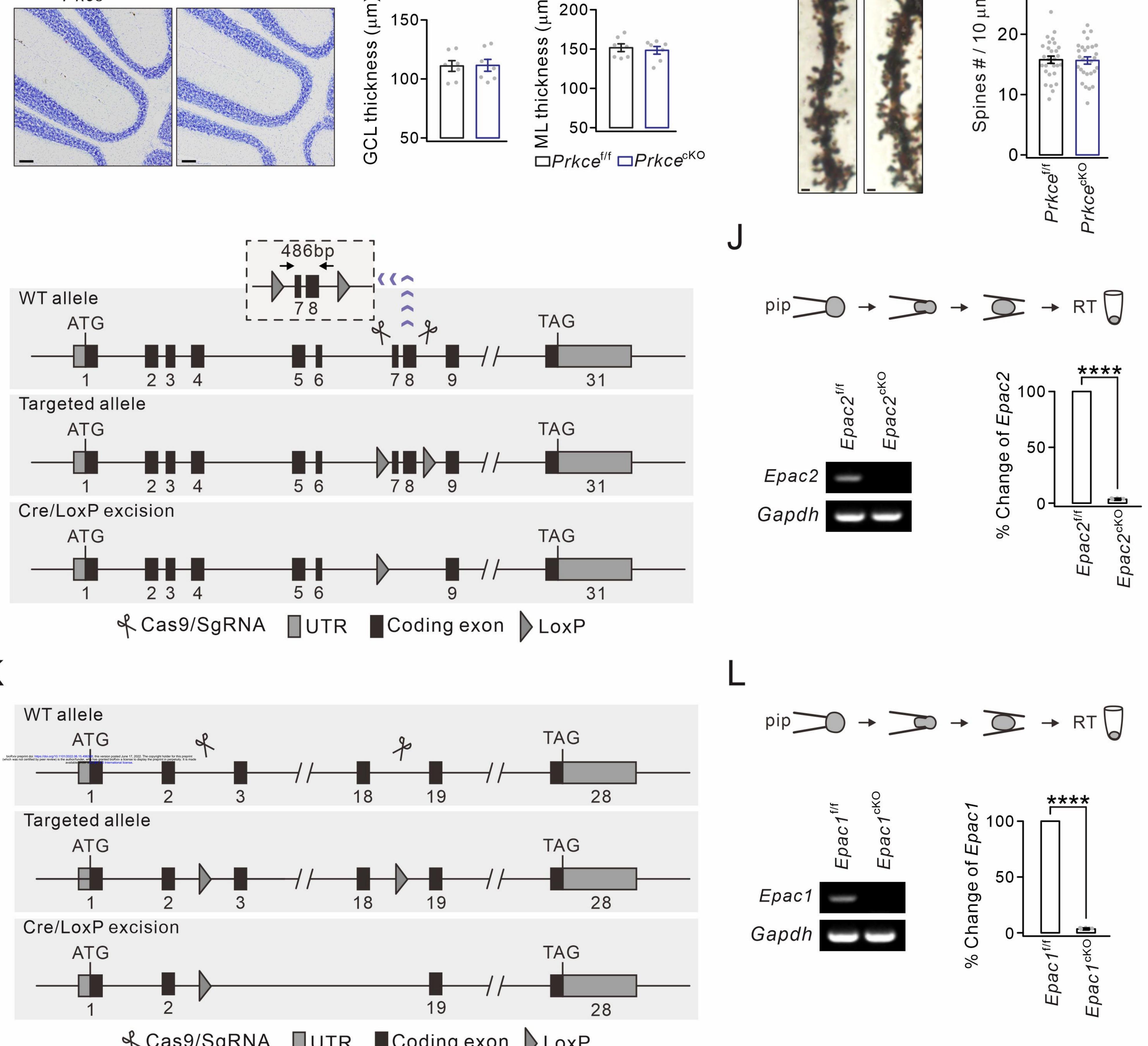


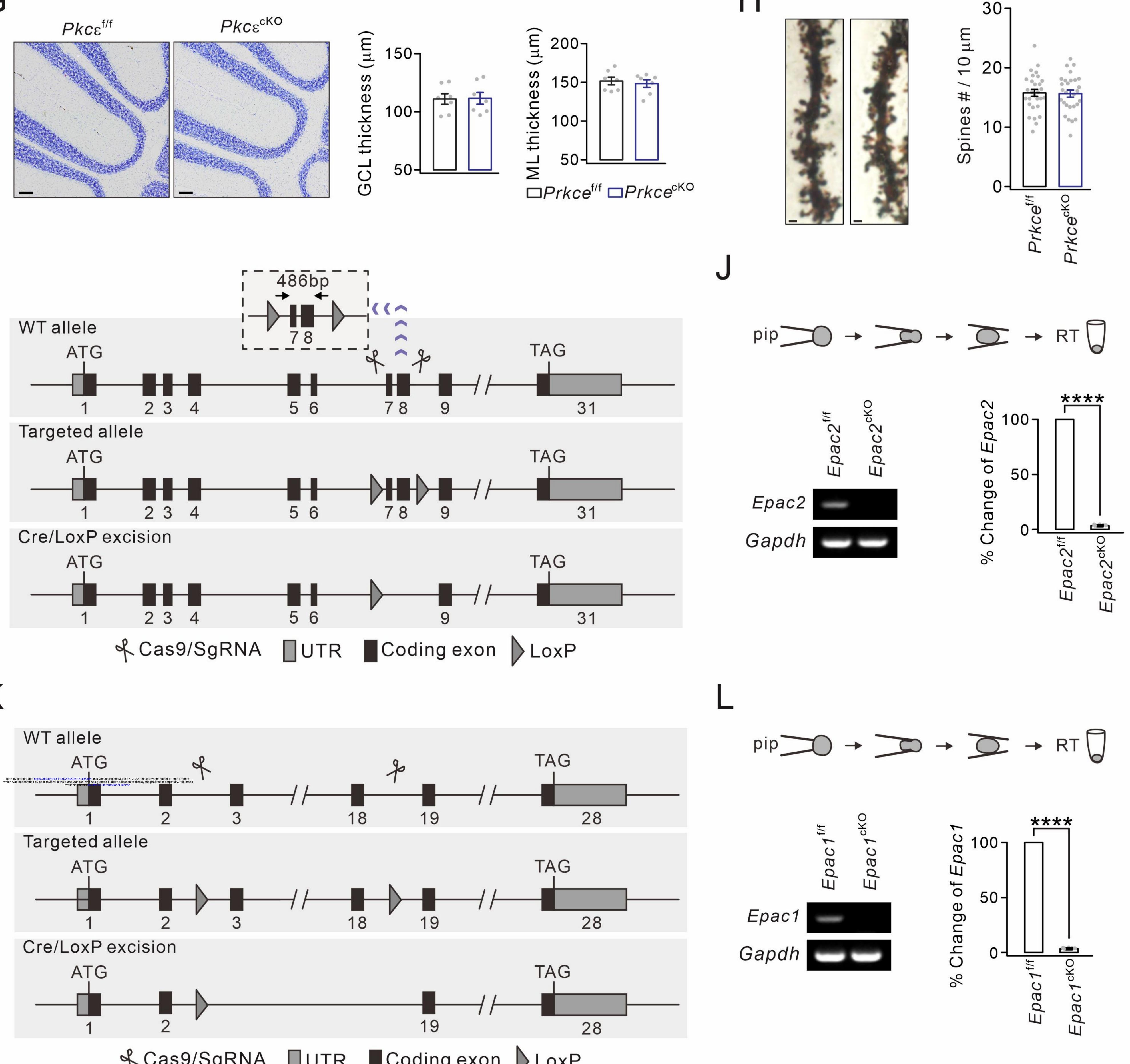


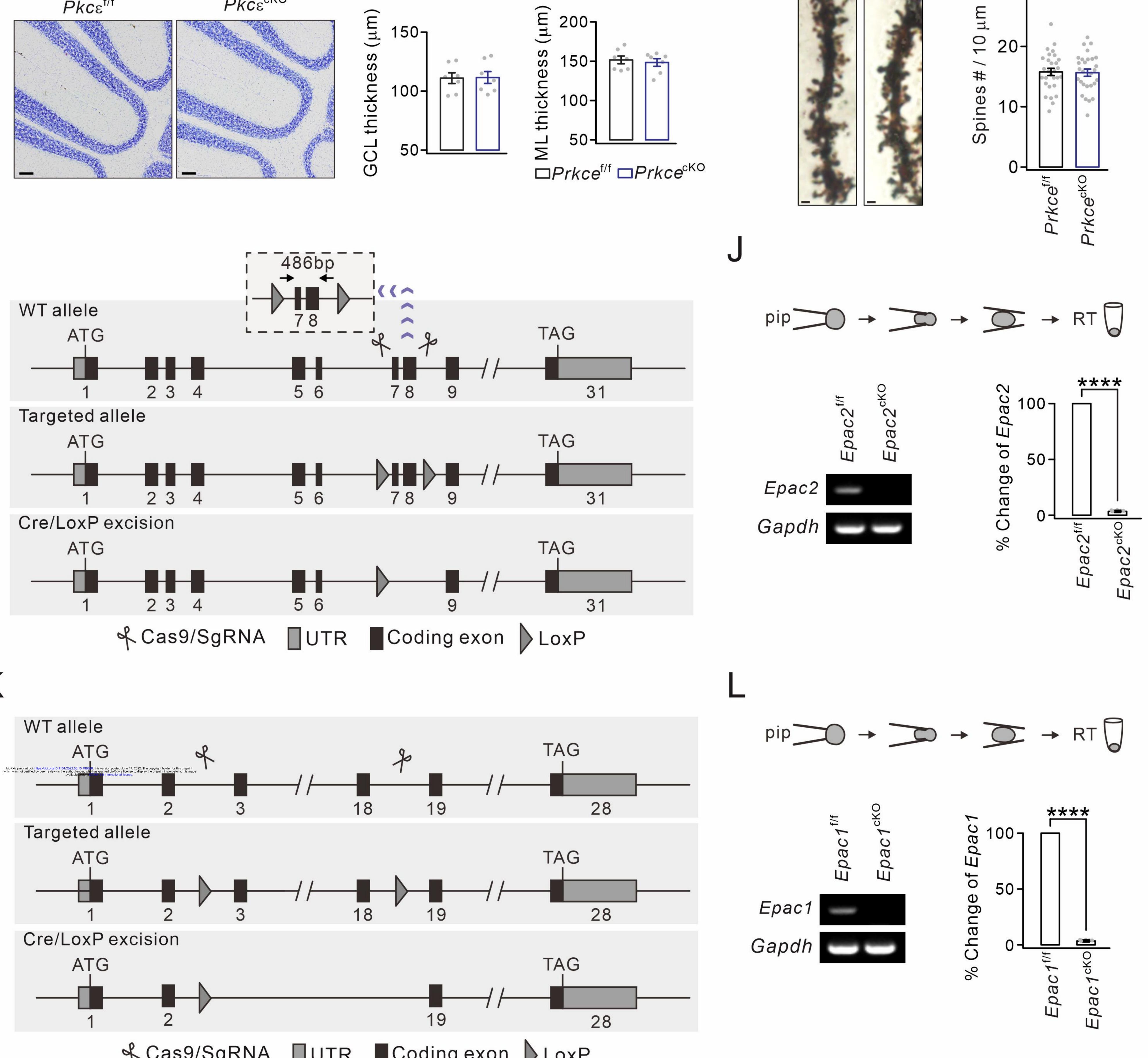


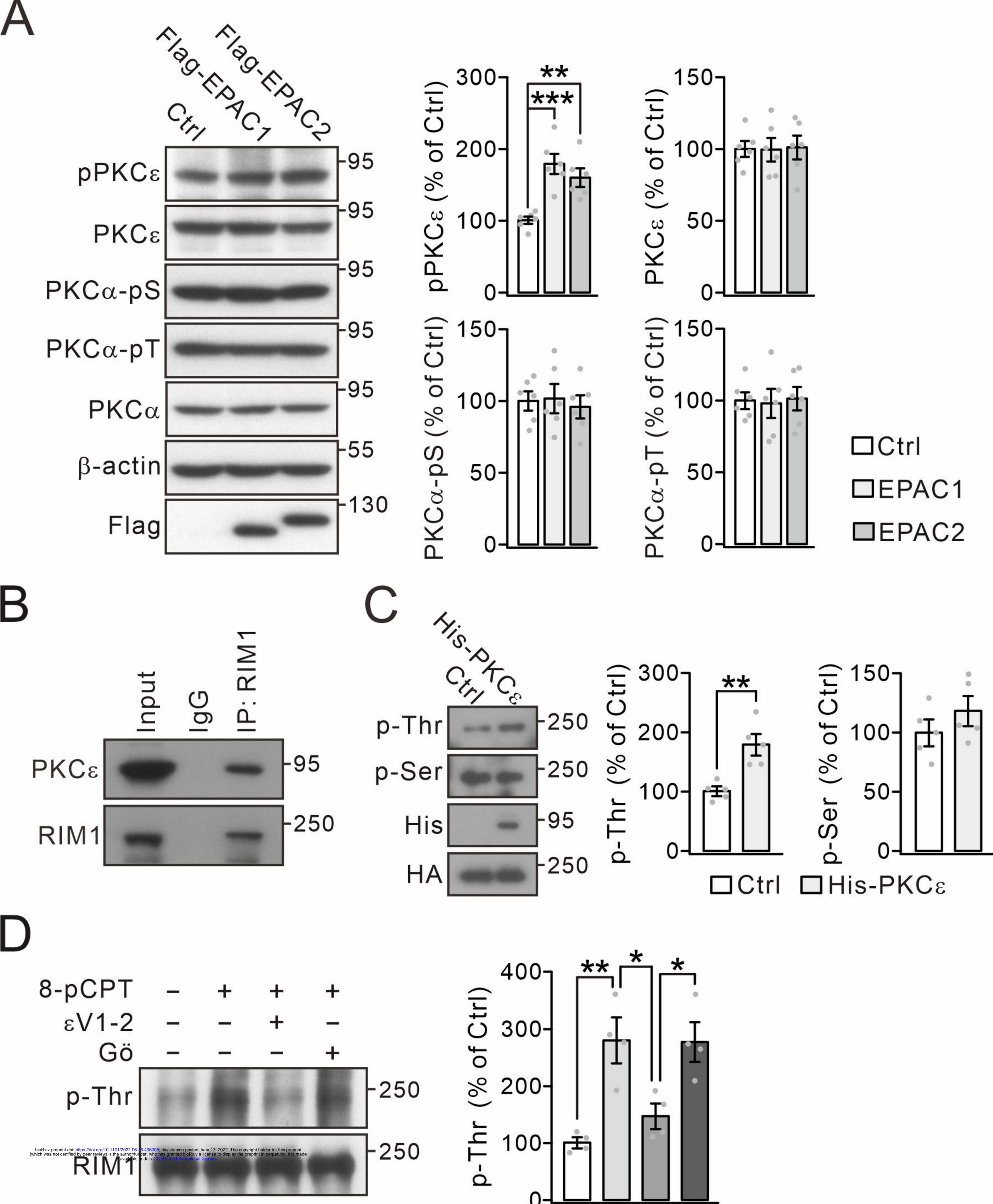


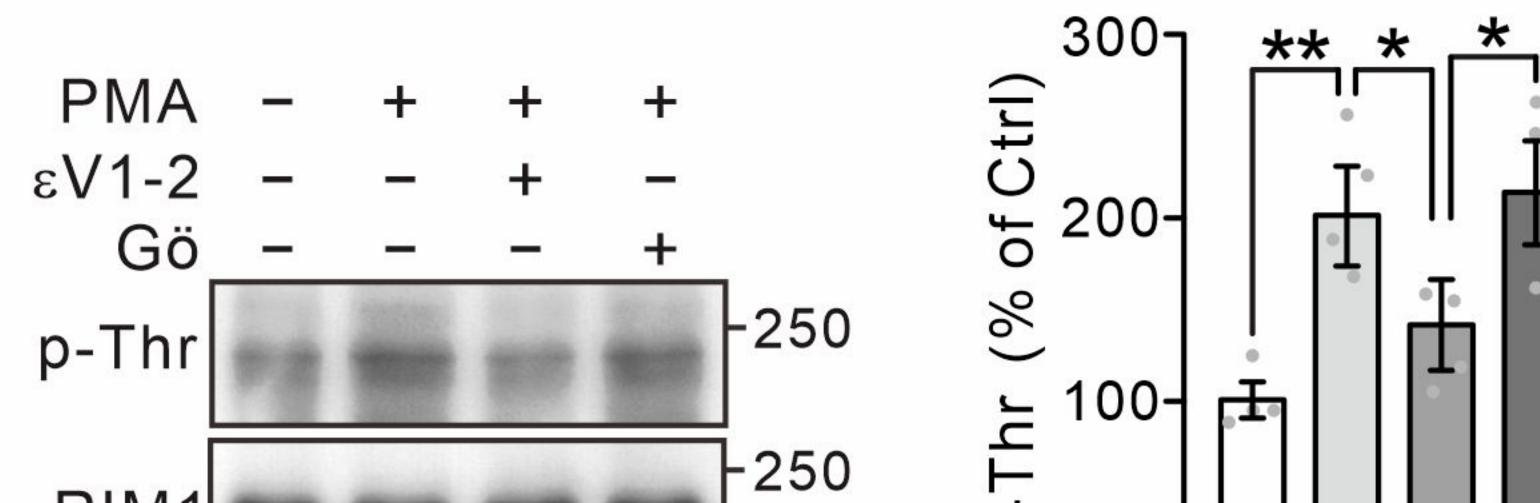


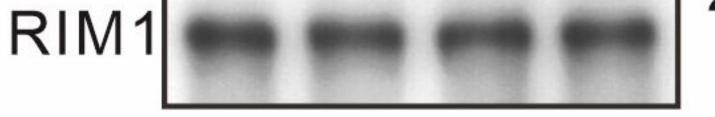

11

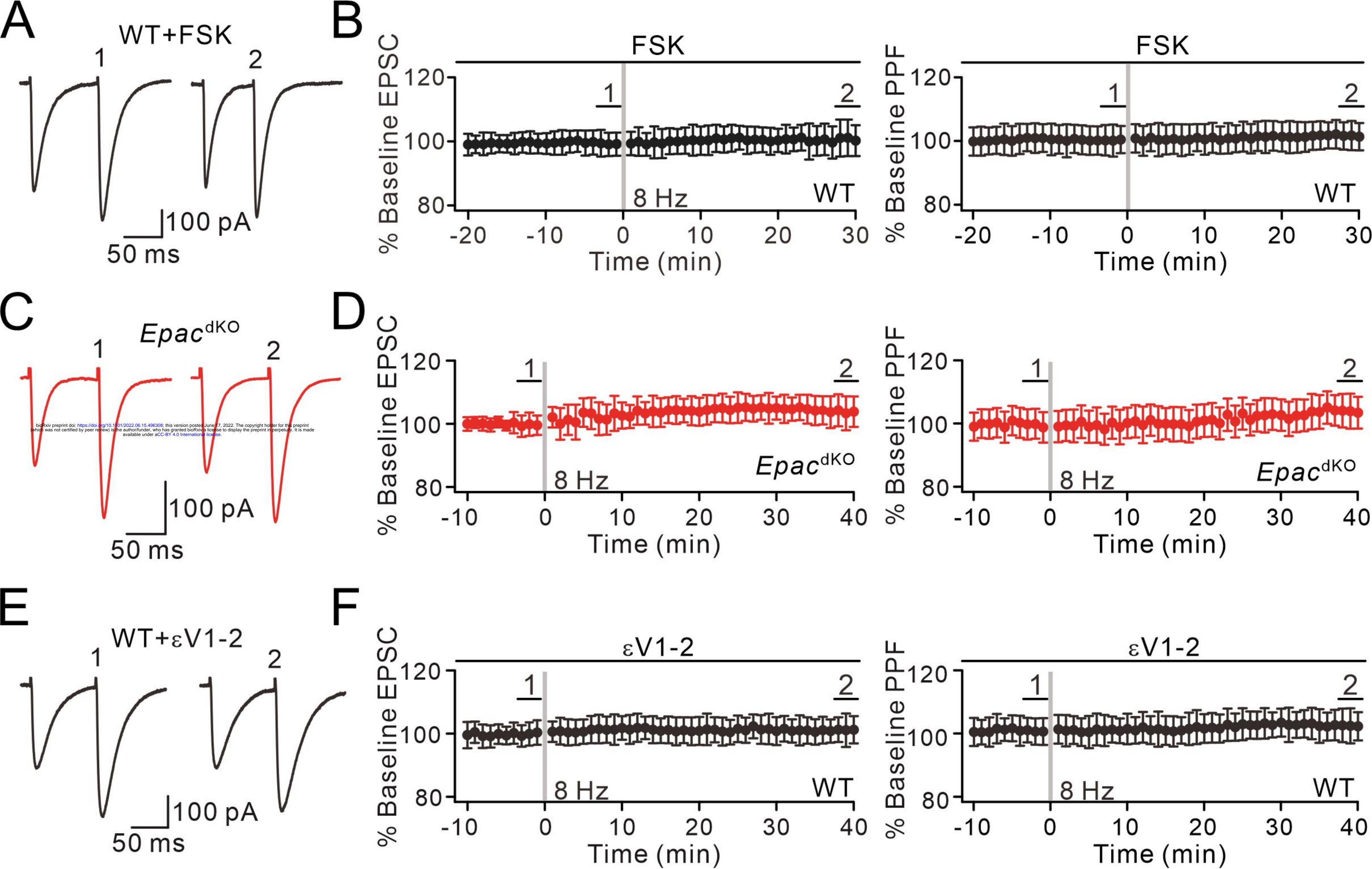


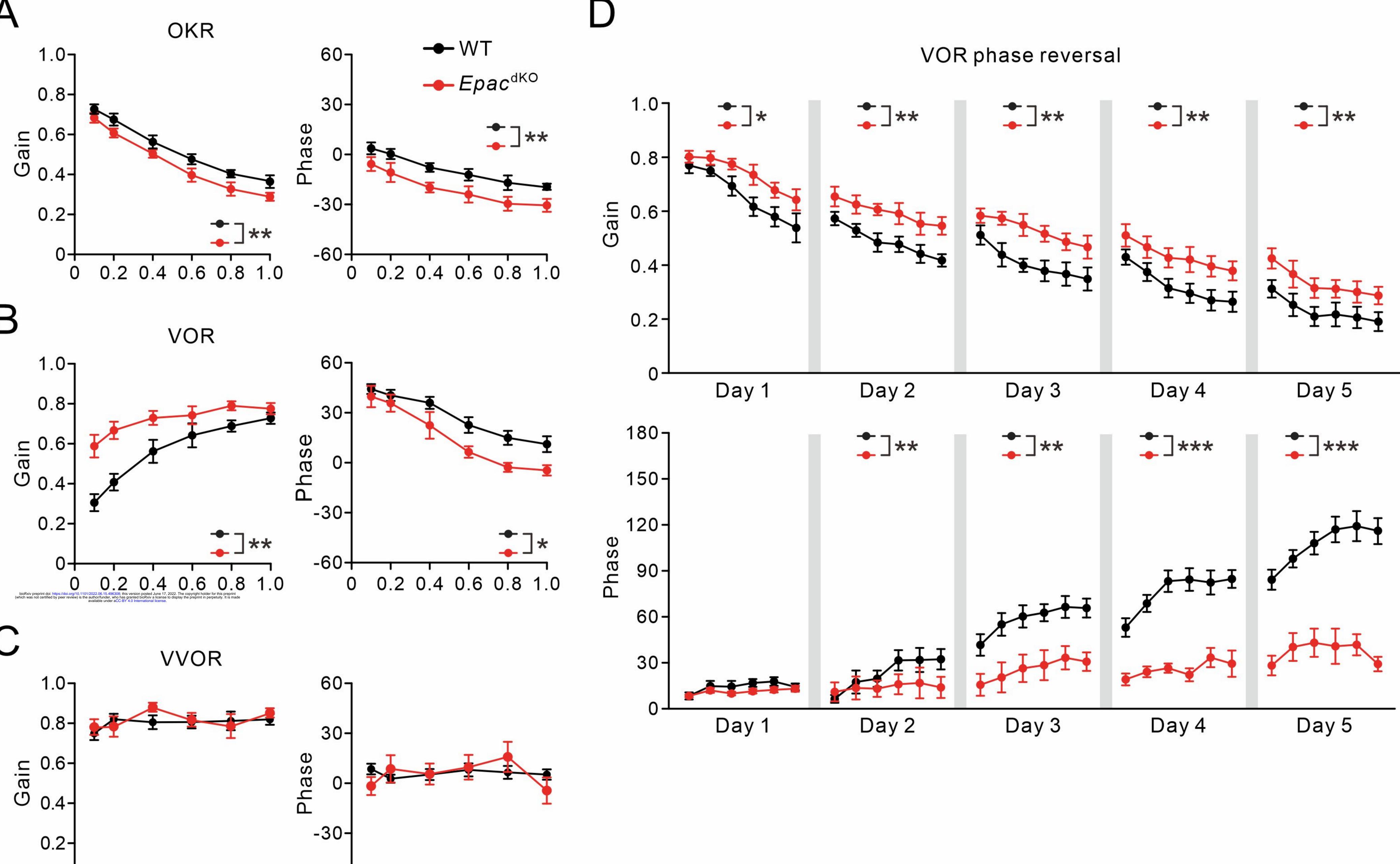


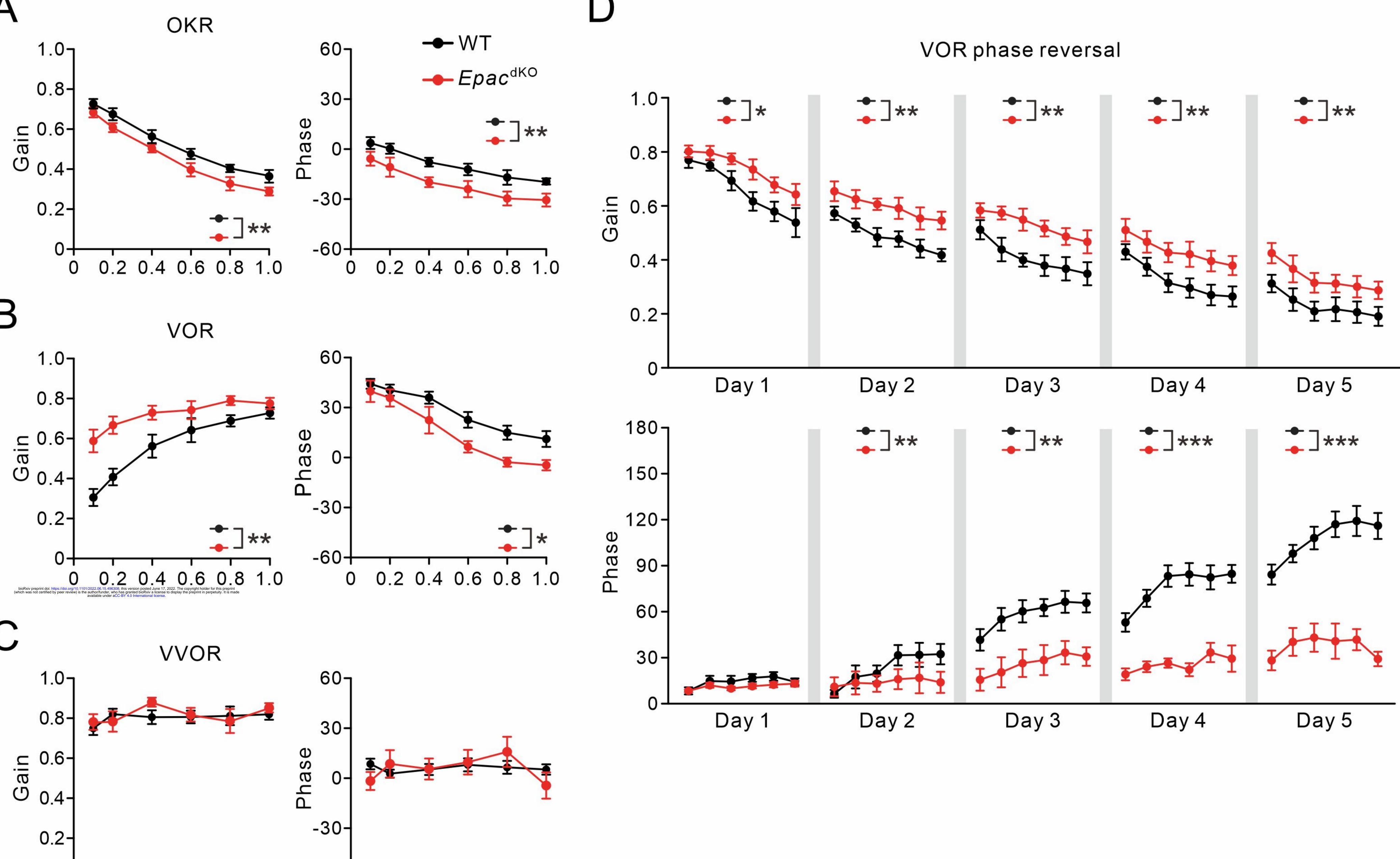


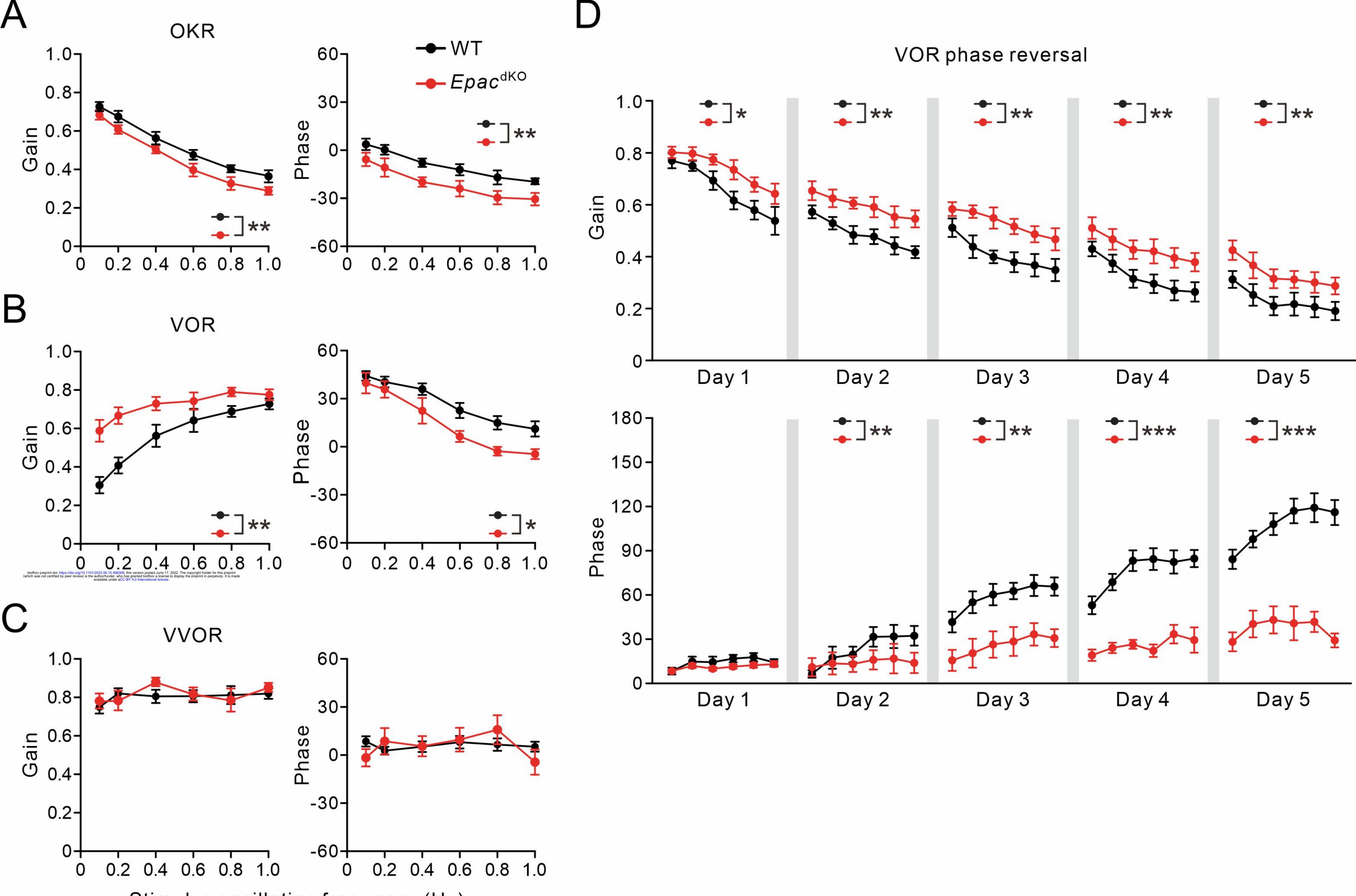


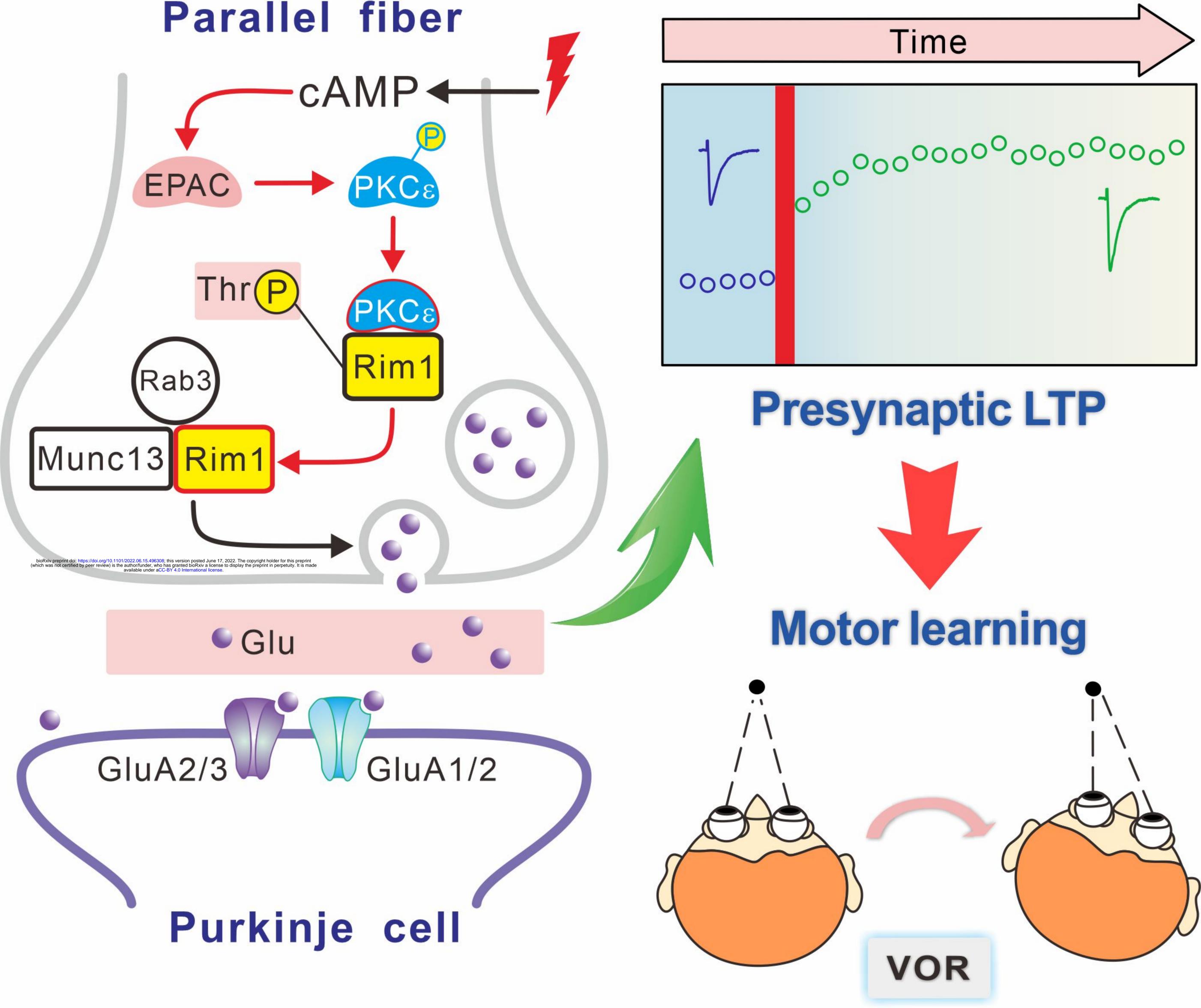



 \Box Ctrl \Box 8-pCPT \Box 8-pCPT+ ε V1-2 \Box 8-pCPT+Gö









Stimulus oscillation frequency (Hz)

