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Molecular replicators studied in-vitro exhibit product inhibition, typically caused by the hybridization
of products into dimer complex that are not able to replicate. As a result, the replication rate and the
selection pressure is reduced, potentially allowing the "survival of everyone". Here, we introduce a
stochastic evolution model of replicating and hybridizing RNA strands to study the effect of product
inhibition on evolution. We found that hybridization, though reducing the rate of replication, can in-
crease the rate of evolution, measured as fitness gain within a period of time. The positive effect has
been observed for a mutation error smaller than half of the error threshold. In this situation, frequency-
dependent competition causes an increased diversity that spreads not only within a neutral network
but also over various neutral networks through a dynamical modulation of the fitness landscape, re-
sulting in a more effective search for better replicators. The underlying model is inspired by RNA virus
replication and the RNA world hypothesis. Further investigations are needed to validate the actual
effect of accelerated evolution through product inhibition in those systems.
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Replication of polymers is central to the reproduction of organisms and viruses(1), a key element1

in major theories of the origin of life(2), and of interest to make synthetic life (3, 4). Enzyme-2

controlled(5) and enzyme-free(6, 7) (self-)replication has been instantiated in-vitro and used to study3

chemical evolution(8, 9) and to implement bio-molecular procedure (10), like the polymerase chain4

reaction (11).5

In in-vitro experiments of molecular replication, it has been observed that accumulation of product6

tends to inhibit the replication process, leading to sub-exponential growth(6, 7). In fact, product7

inhibition causes a reduction of the replication rate and reduction of selection pressure, which can8

lead to the survival of everyone(12).9

For example, von Kiedrowski(6) has observed that the concentration of self-replicating hex-10

adeoxynucleotides does not grow exponentially but sub-exponentially. The reason is the formation of11

hybrids, which act as sinks for single stranded molecules and thus limiting their growth. The effect12

has been theoretically investigated for replicating RNA sequences by Biebricher et al. (13). They13

also showed that different single stranded molecules can coexist without cooperative hypercyclic14

coupling, proposed by Eigen and Schuster(14).15

Experimentally observations by Rohde et al. (15) showed that hybridization leads to a broad16

mutant distribution of an RNA species replicated by Qβ replicase. The models introduced in the17

context of the mentioned studies explain the coexistence of different types of species using rate18

equations where all molecular types are predefined. Such models do not cover how new types19

are formed and how mutation influences the time evolution of the population. In contrast our20

model enables the formation of new types through the simulation of single molecules, here single21

RNA strands. To avoid the problem of defining all molecular types in advance, our model uses an22

improved exact stochastic simulation algorithm similar to the Gillespie algorithm(16) instead of a23

set of ordinary differential equations.24

Although product inhibition supports the "survival of everyone", an additional directed selection25

pressure can lead to certain adaptations(17) and can cause complex patterns of species formation26

(18). For example, Ito et al. (19) showed that adaptive radiation through intraspecific competition27

together with weak directional selection of a quantitative trait can lead to rich macroevolutionary28

patterns involving recurrent adaptive radiations and extinctions. If directional selection is sufficiently29
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weak, evolutionary branching can occur under product inhibition (20). However, because of its30

narrow scope of evolvability, product inhibition and the resulting parabolic replication has been seen31

to be of limited relevance for prebiotic evolution (21), and thus mechanisms circumventing product32

inhibition have been suggested, like compartments (22) or the formation of intramolecular secondary33

structures (23).34

Yet, the quantitative benefit on the fitness gain caused by product inhibition has not been studied35

in detail (21).36

For an explicit simulation of RNA sequences evolution Fontana and Schuster(24) introduced37

a fitness function that uses the secondary structure of an RNA sequence to compute its fitness.38

We follow this approach, because it provides a certain level of realism while the fitness being39

efficiently computable in polynomial O(n3) time (25). The RNA fitness landscape possesses neutral40

networks spanning whole sequence space(26). Typical evolution is characterized by quasispecies41

distributions expanding and drifting on those neutral networks, improving in fitness by contineous42

and discontineous transitions(27, 28).43

RNA viruses profiting from drifting and expanding on neutral networks (29, 30) may also experience44

product inhibition during replication in their hosts. The subsequent question than would be if the45

observed effect of our simulations is transferable to those viruses, contributing to an explanation for46

their high genotypic variance and quick adaption to new environments (29, 30).47

Results48

Model. In our model ∗, a well-stirred population of replicating and hybridizing RNA molecules is49

simulated. Replication requires a substrate S with copy number N(S), initially set to determine50

the maximal possible number of RNA molecules. A single stranded RNA molecule with sequence51

r and copy number N(r) replicates with error by consuming substrate S in volume V at a rate52

α(r)N(r)N(S)
V

, with replication rate constant α(r). A single stranded RNA molecule decays at a53

stochastic rate φN(r), here φ = 1, releasing substrate S. A sequence r represents that sequence as54

well as its complement, simplifying the replication model.55

Two RNA molecules r, r′ can hybridize at a rate β(r, r′)N(r)N(r′)
V

forming a complex. Note that in56

∗
The code of the complete model is at https://git.uni- jena.de/ne78xoy/hr-sim-newgillespie.
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case both sequences r and r′ are equal the rate results from β(r, r′)N(r)(N(r′)−1)
2V (16). Furthermore,57

we assume that the resulting dimer complex cannot replicate and dissolving of the complex back58

into two single strands is slow such that it can be omitted. Thus the formed complex can be ignored.59

To maintain a constant maximal possible number of single stranded RNA molecules the complex is60

replaced by 2S.61

In summary, our model consists of the following reactions for RNA sequences r, r′ ∈ {A,C,G, U}l,62

which are similar to Epstein’s non-reproductive pairing model(31):63

r + S
α(r)−→ r + r′ with r′ = mutate(r) , [1]64

r + r′
β(r,r′)−→ 2S , [2]65

r
φ−→ S . [3]66

Here, we simulate RNA sequences of fixed length l = 76 bases. The function mutate(r) returns a67

mutated copy of r where each site is mutated with probability p. For the replication rate constant68

α(r) we take a standard model of RNA evolution, namely the scaled distance dsec(r, rtarget) of the69

secondary structure of r to a fixed target secondary structure rtarget; an approach that is said to70

provide a relatively realistic fitness landscape. (27):In our case the target secondary structure is the71

shape of a tRNA (see Materials and Methods).72

α(r) = kαfscaled(r), [4]73

fscaled(r) = 0.01
1.01− f(r) , [5]74

f(r) = 1− dsec(fold(r), fold(rtarget))
l

. [6]75

The scaling factor kα is set to 100. The process of folding a sequence r into a secondary structure76

and the secondary structure alignment dsec(., .) are computed by the fold and tree_edit_distance77

functions of the ViennaRNA package(32), respectively.78

The hybridization rate constant β(r, r′) is computed from the hybridizing sequences r, r′ as79

β(r, r′) = kβhscaled(r, r′), [7]80

hscaled(r, r′) = h(r, r′)5

0.555 + h(r, r′)5 . [8]81

Here, the hybridization strength kβ is varied over the values {0, 0.1, 0.3, 1, 3, 4, 10}, where 0 implies82

no hybridization and increasing values lead to a stronger hybridization influence. The hybridization83

coefficient h(r, r′) depends on the hybridizing single strands r and r′. Roughly, the more similar84

they are the more likely they hybridize. Because we assume RNA sequences with a fixed length l,85

we can compute the hybridization coefficient h(r, r′) from the sum of Gibbs free energy contribution86

of each base pair considering the adjacent base pairs (see Methods for details). Note that this leads87

to a more realistic model than using the Hamming distance, because the Watson-Crick base pairs88

CG UT have different contributions as they allow a different amount of hydrogen bonds.89

For simulation, we usually generate a random initial population of N(r) = 50 RNA sequences of90

length l = 76 with N(S) = 50 substrate, allowing a total population of n = 100 RNA sequences, and91

let it evolve by an improved exact stochastic simulation algorithm similar to the Gillespie algorithm92

(for details and a proof of correctness see Methods). The new algorithm is necessary, because the93
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standard Gillespie algorithm cannot cope with the large number of possible hybridization reactions,94

which scale quadratically with n.95

Time t is measured in generations. Technically, t is incremented by one fraction of the current96

population size in each replication event (see Methods).97

Hybridization can accelerate evolution.We measure the rate of evolution by the gain of fitness98

fscaled of the population’s best sequence after a period of time ∆t.99

At a low generation number ∆t the comparison of populations with and without hybridization100

revealed that a higher fitness level is only achievable without hybridization (data not shown). As101

time progresses (∆t = 10000) it is observable that populations with hybridization can have a higher102

efficiency in gaining fitness than populations without hybridization (Fig. 1). This effect is maintained103

over many generations (∆t = 100000) leading to a rising gap in reached fitness between populations104

with and without hybridization, from ≈ 0.01 to ≈ 0.13 a.u. (Fig. 1).105

Hybridization inhibits evolution when mutation is close to the error threshold.The error thresh-106

old perr is a limit of the mutation probability of a base pair above which mutation will destroy107

the sequence information over time(14, 33). In our model, without hybridization (kβ = 0) we have108

perr ≈ 0.02 per base, in line with Kupczok & Dittrich (28).109

Simulations performed with a high mutation rate of p = 0.02 showed that if the mutation110

probability is close to the error threshold, hybridization has always a negative effect on the rate of111

evolution (Fig. 2). This is inline with the fact that hybridization reduces the overall growth rate of112

a sequence and causing a bifurcation from a stable to an unstable regime. We can also see that with113

increasing hybridization strength the effective error threshold decreases.114

Decreasing population density can accelerate evolution under hybridization.As high mutation115

rates have shown to have a negative effect on the fitness development of populations with hybridization,116

moderate mutation rates reveal a more benefiting evolution for populations with hybridization117

compared to populations without hybridization (Fig. 1). For such a moderate mutation rate, there118

is a regime of hybridization strengths (1 < kβ < 4) where increasing the volume leads to an increased119

rate of evolution (Fig. 3). Increasing the volume is equivalent to decreasing the population density120

by keeping the number of sequences and substrate constant. Leading to a decrease of replication121

and hybridization rates while the first order decay rate stays unchanged.122

Improvement by hybridization is caused by a broader mutant spectrum.We measure population123

diversity and structure by Hamming distance among pairs of sequences. With increasing hybridization124

strength kβ = 0 to h kβ = 10 the mean Hamming distance increase roughly linearly from 12 to 40125

bases (Fig. 4). Note that for kβ = 10 the mean Hamming distance is larger than the mean distance126

between two random sequences (38 = l/2). Further note that at such a high hybridization strength127

there is no evolutionary progress anymore (Figs. 1-3).128

So, an improved rate of evolution through hybridization coincides with a a moderately broader129

mutant spectrum. Furthermore, we can see an increased number of clusters in sequence space130

(Fig. 5(b)) than within a population without hybridization (Fig. 5(a)). With its larger mutant131

spectrum the population with hybridization can explore the sequence space more effectively.132

While a population without hybridization usually occupies one neutral network during its ex-133

ploratory phase (27), a population with hybridization might occupy stably more than one neutral134

network (Fig. 5).135
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Fig. 1. Effect of hybridization on the efficiency of evolution at a moderate mutation rate (p = 0.01). Evolution
rate is measured in reached fitness fscaled,best of the best individual under the presence of hybridization kβ > 0
compared to no hybridization kβ = 0. Even in early generations ∆t = 10000 (blue dots) the evolved fitness
in populations with a low hybridization rate kβ <= 1 is at a comparable height to that of populations without
hybridization. Late generations ∆t = 100000 (orange dots) reveal not only an accelerated evolution for pop-
ulations with hybridization kβ > 0 but also a shift from the highest overall achieved fitness from kβ = 0.3 at
generation ∆t = 10000 to kβ = 3 at generation ∆t = 100000. The fitness fscaled,best of the best sequence of
a population is averaged over 25 simulations, with error bars showing the standard error of the mean, using
volume V = 10.
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Fig. 2. Effect of hybridization on the efficiency of evolution at a high mutation rate close to the error threshold
(p = 0.02). Early ∆t = 10000 (blue dots) and late ∆t = 100000 (orange dots) generations reveal upon
increasing hybridization kβ a decrease in efficiency of evolution. For high hybridization kβ >= 1 even no
fitness improvement is observable. Only low hybridization rates kβ = {0.1, 0.3} are able of reaching similar
values for the fitness in late generations. Mean and standard error of the mean shown, based on 25 simulations
each, using volume V = 10.
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Fig. 3. Influence of the volume on the efficiency of evolution. A decrease in volume to V = 1 (blue dots) leads
to an increased fitness fscaled,best for small hybridization rates (kβ < 1). However, for large hybridization rates
(kβ ≥ 1) it has a negative effect. Note that a decrease in volume is equivalent to an increase of the second
order reaction rates (replication and hybridization rates, here). Mean and standard error of the mean shown,
based on 25 simulations each, using volume V = 10, a moderate mutation rate p = 0.01, and ∆t = 100000.
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Fig. 4. Average hamming distance between two sequences in a population depending on the hybridization
strength kβ and generation ∆t. The distance is increasing with the hybridization strength kβ , even at small
generations ∆t = 1000 (blue dots). Note that the decrease of the hamming distance for hybridization strength
kβ = {3, 4} for time ∆t ≥ 1000 is preceded by an increase of the distance (cf. Figure 5(b)). For clarity
∆t < 1000 not shown, here. Mean and standard error of the mean shown, based on 25 simulations each,
using volume V = 10, and a moderate mutation rate p = 0.01.
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(b) Distribution of hamming distances with hybridization, kβ = 3.

Fig. 5. Comparison of the temporal progression of the hamming distance distribution between a population
without (a) and a population with hybridization (b) considering a volume V = 10 and a moderate mutation rate
p = 0.01.
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Fig. 6. Influence of hybridization on the GC content depending selection of sequences. An increased hybridiza-
tion strength increases the selection pressure on the GC content, leading to a decrease in GC level. Depicted
data considers the range of GC level of the sequence with highest fitness of each simulation, with volume
V = 10 and mutation rate p = 0.01, from generation ∆t = 1000 up to generation ∆t = 100000. Coloured
boxes contain quartiles 1 to 3 of the range of the GC level with their whiskers having 1.5 times the length of the
box.
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Fig. 7. Modulation of the effective fitness landscape (effective growth rate) due to hybridization. Neutral
networks vanish under the presence of hybridization events as there are no longer different sequence types
with the same effective growth rate. Depicted data shows the first 26 sequence types ranked by the effective
growth rate in the final populations obtained in Figure 5, with volume V = 10, mutation rate p = 0.01 and
kβ ∈ {0, 3}.

Hybridization adds an additional selection pressure on a sequence’s GC content. Surprisingly136

the minimal difference of parameters of nearest neighbor thermodynamics which are the basis for the137

chances of a hybridization reaction expands selection to the sequence level while pure replication only138

selects for secondary structure (Fig. 6). The observed selection pressure towards lower GC-content139

in order to avoid hybridization increases with rising chances of a hybridization event but scales down140

with increasing volume making it harder for sequences to collide. Note that the sequence of our141

target structure has a high GC-content. So, this selection pressure does not push evolution towards142

this sequence.143

Hybridization dynamically modulates the fitness landscape.Effective fitness of a sequence r with144

respect to a population P is defined as its effective growth rate. It is not only determined by145

its replication and decay rate but also by the effect of hybridization with other sequences of the146

population. Thus, the evolving population dynamically modulates its effective fitness landscape147

through hybridization, while in a population without hybridization the first 26 sequence types show148

the same effective growth rate. In a population with hybridization each sequence type has in general149
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Fig. 8. Comparison of two different hybridization models namely the general sigmoidal (green dots) and the
degressive (yellow dots) scaling of the hybridization coefficient. Only relatively high (kβ = 10) hybridization
rates reveal a significant difference between the two models indicating a greater evolutionary benefit for a
degressive increase of the hybridization coefficient. Mean and standard error of the mean shown, based on 25
simulations each, using volume V = 10, and a moderate mutation rate p = 0.01.

a different effective growth rate (Fig. 7). As a consequence, there are no neutral networks anymore150

because the change in number of one sequence r leads to an individual change in effective fitness in151

all sequences depending on their general probability of hybridizing with that sequence r.152

The observed effects are robust with respect to the chosen hybridization model.The effect of153

improved evolution rate through hybridization has been observed using a hybridization coefficient154

based on the Hamming distance instead of the nearest-neighbor thermodynamics of oligonucleotides155

(34) (data not shown). Furthermore, we varied the scaling. In the results presented so far we applied156

a sigmoidal scaling for mapping the Gibbs free energy to stochastic rate constants for hybridization157

(Eq. 8), allowing for a sharp turning between high and low chances for a hybridization event upon158

colliding sequences. But even for degressive scaling159

h′scaled(r, r′) = h(r, r′)
0.55 + h(r, r′) [9]160
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we can observe a similar accelerated evolution (Fig. 8).161

Discussion162

A novel and proven exact extension of the Gillespie stochastic simulation approached allowed us to163

perform exact stochastic simulations of the evolution of replicating and hybridizing RNA sequences164

†. Simulations showed that hybridization, though reducing the rate of replication, can increase the165

rate of evolution, measured as fitness gain within a period of time.166

The positive effect of hybridization has been observed for a mutation rate p that has a certain167

distance to the error-threshold. For such a "safe" mutation rate, hybridization has lead to an168

improvement of replication rate and thus fitness over the long run, e.g., 10000 generations. With169

hybridization populations are able to expand more freely in sequence space, providing more opportu-170

nities for a benefiting mutation in terms of a higher replication rate. The effect is closely related to171

the limiting similarity principle(35), saying that phenotype difference between two species on the172

scale of the competition width is required for coexistence(36).173

However, we have observed the highest rate of evolution for no hybridization and mutation rate p174

being close to the error threshold. On the other hand a lower p associated with a more conserved175

sequence is in favor to maintain an even longer sequence pattern. Hybridization might be of use176

to limit the exponential growth of sequences with that pattern such that other sequences without177

that particular pattern can still exist and posses the possibility in finding an even better pattern for178

replication.179

But is there a scenario where a lower p is preferable and hybridization would be useful to increase180

the rate of evolution? RNA viruses though replicating with relatively high error compared to their181

hosts (29) have a potential in the observed beneficial effect of hybridization. Using our model,182

further investigations may reveal the actual impact of hybridization in natural evolution.183

Materials and Methods184

Hybridization Coefficient h(r, r′).For a more realistic model of hybridization probability upon colliding185

sequences r and r′ instead of pure sequence similarity the change of Gibbs free energy upon dimer formation186

based on nearest-neighbor thermodynamics of oligonucleotides is used (34).187

h(r, r′) =
∑
i∈R(r,r′) ∆G◦(i)

∆G◦(((GC)l/2, (GC)l/2))
, [10]188

∆G◦(i) = min(0,
10∑
j=1

nij∆G◦(j) + xi∆G◦init w/term G·C +189

(2− xi)∆G◦init w/ term A·T ), [11]190

R(r, r′) = {(rk−m, r′k−m) : k, m ∈ N, 0 < k < m < l,191

d(rk−m, r′k−m = 0, rk−1 6= r′k−1, [12]192

rm+1 6= r′m+1}.193

The hybridization coefficient h(r, r′) itself is thereby the normalized sum of the change of Gibbs free194

energy of the sequence pair (r, r′) compared to the maximal change of Gibbs free energy via the sequence195

pair ((GC)l/2, (GC l/2)) with l being the length of the sequences r and r′. Only matching regions R(r, r′)196

contribute to hybridization through the possible formation of hydrogen bonds. As only substitution197

†
The code of the complete model is at https://git.uni- jena.de/ne78xoy/hr-sim-newgillespie.
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mutations take place the chance of improving matching regions by insertion of gaps is very small such that198

it can be omitted. The change of Gibbs free energy in one region ∆G◦(i) is dependent on the number of199

flanking G · C pairs xi and the numbers of possible base sequences nij with their change of free energy200

parameter is taken correspondingly from table 1 (34).

j sequence parameter, kcal/mol

1 AA/TT -1.00
2 AT/TA -0.88
3 TA/AT -0.58
4 CA/GT -1.45
5 GT/CA -1.44
6 CT/GA -1.28
7 GA/CT -1.30
8 CG/GC -2.17
9 GC/CG -2.24
10 CC/GG -1.84

Init. w/term. G · C 0.98
Init. w/term. A · T 1.03

Table 1. Unified NN-parameters as in (34). Parameter is the energy difference of the given basepair
combination upon hybridization. Basepair combination VW/XY corresponds to sequence sections VW
and YX in 3′-to-5′ orientation. With respect to RNA T is substituted by U for the present model.

201

Target Structure.Like Fontana(27) and Kupczok&Dittrich (28) we used a shape of a tRNA as the target202

secondary structure obtained from the sequence203

rtarget = ”GGGCAGAUAGGGCGUGUGAUAGCCCAUAGCGAACCCCCCGCUGAG204

CUUGUGCGACGUUUGUGCACCCUGUCCCGCU”205

giving206

fold(rtarget) = ((((((...((((........)))).(((((.......))))).....((((.((....)))))).)))))).... .207

Stochastic Simulation.The new algorithm to get stochastic correct trajectories is derived from the Gillespie208

algorithm (16) and can be found in the supplemental text, Section S1. The major difference arises from the209

separation of selecting the reaction type and selecting the explicit educts. This allows the formulation of210

implicit chemical reactions such that not every sequence needs a separate set of replication, hybridization,211

and decay reactions.212

Lemma 1. The developed algorithm is equivalent to the Gillespie algorithm by generating a statistically213

correct trajectory.214

Proof. Both algorithms are equivalent if the following criteria are met:215

1. The probability of choosing a certain sequence is the same in both variants.216

2. The probability of choosing a certain reaction is the same in both variants.217

3. The time interval between two successive reactions is the same in both variants.218

219

These three criteria are proven in the supplemental text, Section S2.220
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S1 Simulation algorithm

1. Initialization:

(a) Set the time variable t = 0.
(b) Specify and store the implicit molecule categories Ssequence and Ssubstrate with their numbers nsequence and nsubstrate.
(c) Specify and store the split into the explicit molecule categories Ssequence,i and Ssubstrate,s with their numbers

nsequence,1, nsequence,2, . . . , nsequence,Lsequence and nsubstrate,s (In this case: nsubstrate,s = 100). The total number of
sequences is computable by nsequence =

∑Lsequence
i=1 nsequence,i.

(d) Specify and store the implicit chemical reactions Rµ with µ ∈ {replication, hybridization, decay} as Ssequence +
Ssubstrate → 2Ssequence (replication), 2Ssequence → 2Ssubstrate (hybridization) and Ssequence → Ssubstrate (decay).

(e) Calculate and store the quantities creplication = kreplication/V, chybridization = khybridization/V, cdecay = kdecay (kµ
corresponds to the rate constant and V is the volume).

(f) Specify and store the calculation rules freplication(Ssequence,i) = 0.01
1.01−f(Ssequence,i)

with f(Ssequence,i) representing the
fitness of the explicit sequence i,
fhybridization(Ssequence,i, Ssequence,j) = h(Ssequence,i,Ssequence,j)p

wp+h(Ssequence,i,Ssequence,j)p with h(Ssequence,i, Ssequence,j) representing the
hybridization coefficient of the explicit sequences i and j, w and p correspond to the turning and exponent of the
sigmoid function, and fdecay(Ssequence,i) = 1 to model the explicit chemical reactions.

(g) Store the maximal achievable values of those calculation rules ereplication = 1, ehybridization = 1 and edecay = 1.
(h) Calculate and store all 3 reaction propensities areplication = creplicationnsequencensubstrateereplication, ahybridization

= chybridizationnsequence
nsequence−1

2 · ehybridization and adecay = cdecaynsequence.
(i) Specify and store a series of sampling times t1 < t2 < · · · , and also a stopping time tstop. (1)

2. Timestep: Generate a random number r1 uniformly distributed on [0, 1] to determine the time interval τ = 1
a0max log( 1

r1
)

with a0max = areplication + ahybridization + adecay.

3. Reaction type:

(a) Calculate the contribution of areplication, ahybridization and adecay to their sum as
ηµ = aµ

areplication+ahybridization+adecay
with µ ∈ {replication, hybridization, decay}.

(b) Proportional selection of the reaction type Rµ based on ηµ.

4. Reaction probability:

(a) Proportional selection of the required sequence/s based on their relative frequency nsequence, i
nsequence

.

(b) Calculate the probability pµ for the chosen reaction type Rµ taking into account the selected sequence/s Ssequence, i,

Ssequence, j via pµ = fµ(Ssequence, i)
eµ

if µ ∈ {replication, decay} else pµ = fµ(Ssequence,i,Ssequence,j)
eµ

.

5. Update:

(a) Advance time t by the random generated time step t = t+ τ in step 2 time step.
(b) Generate a random number r2 uniformly distributed on [0, 1]. If r2 < p remove all educts and add all products of

Rµ else proceed with the next step iteration.

1
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(c) If replication takes place add once the removed sequence and generate a mutated sequence from the explicit sequence.
If the mutated sequence is already present add 1 to nsequence,i of the corresponding sequence Ssequence,i else
Lsequence = Lsequence + 1 and nsequence,Lsequence = 1 with Ssequence,Lsequence being the newly mutated sequence.

(d) Delete all Ssequence,i with nsequence,i = 0. For each deleted Ssequence,i adjust the following indices i+ x with x ∈ N∗
by i+ x− 1 and Lsequence = Lsequence − 1.

(e) Recalculate areplication = creplicationnsequencensubstrateereplication,
ahybridization = chybridizationnsequence

nsequence−1
2 · ehybridization and adecay = cdecaynsequence.

6. Iteration:

(a) If t has just been advanced through one of the sampling times ti, read out the current molecular population values
Ssequence,1, Ssequence,2, . . . , Ssequence,Lsequence .

(b) If t > tstop, or if no more reactions are possible (all aµ = 0), terminate the calculation; otherwise, return to Step 2
time step.

S2 Proof of Lemma 1

For proving Lemma 1 from the main text

Lemma 1. The developed algorithm is equivalent to the Gillespie algorithm by generating a statistically correct trajectory.

we need to prove the following three sub-lemmata:

Lemma 1.1. The probability of choosing a certain sequence is the same in both variants.

Proof. Through the rate equations the following is obtained for the Gillespie algorithm:

areplication(Ssequence,i) = kα
V
fscaled(Ssequence,i)nsequence,insubstrate, [1]

ahybridization(Ssequence,i, Ssequence,i) = kβ
V
hscaled(Ssequence,i, Ssequence,i)nsequence,i

nsequence,i − 1
2 , [2]

ahybridization(i, j) = kβ
V
hscaled(Ssequence,i, Ssequence,j)nsequence,insequence,j , i 6= j, [3]

adecay(Ssequence,i) = kγnsequence,i. [4]

And for the developed algorithm:

areplication = kα
V
fscaled, maxnsequencensubstrate, nsequence =

Lsequence∑
i=1

nsequence,i, [5]

ahybridization = kβ
V
hscaled, maxnsequence

nsequence − 1
2 , [6]

adecay = kγnsequence. [7]

in the developed algorithm only after choosing the reaction type the explicit molecules in this case sequences are randomly
chosen based on their relative abundancies reacting accordingly to their specific reaction parameter (fscaled(Ssequence,i),
hscaled(Ssequence,i, Ssequence,j)), leading to:

areplication(Ssequence,i) = kα
V
fscaled,maxnsequencensubstrate

nsequence,i

nsequence
·

fscaled(Ssequence,i)
fscaled,max

, [8]

ahybridization(Ssequence,i, Ssequence,i) = kβ
V
hscaled,maxnsequence

nsequence − 1
2

nsequence,i

nsequence
·

nsequence,i − 1
nsequence − 1

hscaled(Ssequence,i, Ssequence,i)
hscaled,max

, [9]

ahybridization(i, j) = kβ
V
hscaled,maxnsequence

nsequence − 1
2 ·

nsequence,insequence,j + nsequence,jnsequence,i

nsequence(nsequence − 1) ·

hscaled(Ssequence,i, Ssequence,j)
hscaled,max

, i 6= j, [10]

adecay(Ssequence,i) = kγnsequence
nsequence,i

nsequence
. [11]

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.14.496101doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.14.496101


DRAFT

Since nsequence, fscaled,max and hscaled,max in the equations above cancel each other out the equations of the Gillespie algorithm
are obtained. Thus leading to the conclusion that in both cases a certain sequence has the same probability to undergo a
reaction.

Lemma 1.2. The probability of choosing a certain reaction is the same in both variants.

Proof. The selection of a reaction type in the Gillespie algorithm:

a0 =
Lsequence∑

i=1

areplication(Ssequence,i)

+
Lsequence∑
i=1

adecay(Ssequence,i)

+
Lsequence∑
i=1

i∑
j=1

ahybridization(Ssequence,i, Ssequence,j), [12]

Lsequence∑
i=1

areplication(Ssequence,i) =
Lsequence∑

i=1

kα
V
fscaled(Ssequence,i)nsequence,insubstrate, [13]

Lsequence∑
i=1

ahybridization(i, i) =
Lsequence∑

i=1

kβ
V
hscaled(Ssequence,i, Ssequence,i)

nsequence,i
nsequence,i − 1

2 , [14]
Lsequence∑
i=2

i−1∑
j=1

ahybridization(Ssequence,i, Ssequence,j) =
Lsequence∑

i=2

i−1∑
j=1

kβ
V
hscaled(Ssequence,i, Ssequence,j)

nsequence,insequence,j , [15]
Lsequence∑

i=1

adecay(Ssequence,i) =
Lsequence∑

i=1

kγnsequence,i = kγnsequence ≡ adecay. [16]

On the other hand the selection of a reaction type in the developed algorithm:

a0max = areplication + ahybridization + adecay. [17]

Reshaping the equation of the replication sum in the Gillespie algorithm:
Lsequence∑

i=1

areplication(Ssequence,i) =
Lsequence∑

i=1

kα
V

(fscaled,max − df (Ssequence,i))nsequence,insubstrate,

fscaled(Ssequence,i) = fscaled,max − df (Ssequence,i),

=
Lsequence∑

i=1

kα
V
fscaled,maxnsequence,insubstrate

−
Lsequence∑

i=1

kα
V
df (Ssequence,i)nsequence,insubstrate,

= kα
V
fscaled,maxnsequencensubstrate −

Lsequence∑
i=1

kα
V
df (Ssequence,i)nsequence,insubstrate,

= areplication −
Lsequence∑

i=1

kα
V
df (Ssequence,i)nsequence,insubstrate. [18]
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Respecting the fact of denying a replication in the developed algorithm:

anoreplication(Ssequence,i) = kα
V
fscaled,maxnsequence,insubstrate(1−

fscaled(Ssequence,i)
fscaled,max

),

= kα
V
fscaled,maxnsequence,insubstrate

fscaled,max − fscaled(Ssequence,i)
fscaled,max

,

Lsequence∑
i=1

anoreplication(Ssequence,i) =
Lsequence∑

i=1

kα
V
df (Ssequence,i)nsequence,insubstrate. [19]

Since the obtained equation is equal to the difference of the direct reaction selection between the two algorithms both algorithms
posses the same possibility for a replication event.
Reshaping the hybridization sum for equal sequences of the Gillespie algorithm:
Lsequence∑

i=1

ahybridization(Ssequence,i, Ssequence,i) =
Lsequence∑

i=1

kβ
V

(hscaled,max − dh(Ssequence,i, Ssequence,i) ·

nsequence,i
nsequence,i − 1

2 ,

hscaled(Ssequence,i, Ssequence,i) = hscaled,max − dh(Ssequence,i, Ssequence,i),

=
Lsequence∑

i=1

kβ
V
hscaled,maxnsequence,i

nsequence,i − 1
2 −

l∑
i=1

kβ
V
dh(Ssequence,i, Ssequence,i)nsequence,i

nsequence,i − 1
2 ,

= kβ
V
hscaled,max

∑Lsequence
i=1 n2

sequence,i − nsequence
2 −

Lsequence∑
i=1

kβ
V
dh(Ssequence,i, Ssequence,i)nsequence,i

nsequence,i − 1
2 . [20]

Reshaping the hybridization sum for unequal sequences of the Gillespie algorithm:
Lsequence∑

i=2

i−1∑
j=1

ahybridization(Ssequence,i, Ssequence,j) =
Lsequence∑

i=2

i−1∑
j=1

kβ
V

(hscaled,max − dh(Ssequence,i, Ssequence,j)) ·

nsequence,insequence,j ,

hscaled(Ssequence,i, Ssequence,j) = hscaled,max

−dh(Ssequence,i, Ssequence,j),

=
Lsequence∑

i=2

i−1∑
j=1

kβ
V
hscaled,maxnsequence,insequence,j −

Lsequence∑
i=2

i−1∑
j=1

kβ
V
dh(Ssequence,i, Ssequence,j) ·

nsequence,insequence,j . [21]

A simplified view via adding the terms with hscaled,max of hybridization with equal and unequal sequences leads to:

ahybridization,max = kβ
V
hscaled,max

∑Lsequence
i=1 n2

sequence,i − nsequence
2 + kβ

V
hscaled,max

Lsequence∑
i=2

i−1∑
j=1

nsequence,insequence,j ,

= kβ
V
hscaled,max

n2
sequence − nsequence

2 ,

n2
sequence =

Lsequence∑
i=1

n2
sequence,i + 2

Lsequence∑
i=2

i−1∑
j=1

nsequence,insequence,j

= kβ
V
hscaled,maxnsequence

nsequence − 1
2 ≡ ahybridization. [22]
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The difference between both algorithms immediately after selection of hybridization is the sum of the terms containing
dh(Ssequence,i, Ssequence,j):

kβ
V

Lsequence∑
i=1

dh(Ssequence,i, Ssequence,i)nsequence,i
nsequence,i − 1

2 +

kβ
V

Lsequence∑
i=2

i−1∑
j=1

dh(Ssequence,i, Ssequence,j)nsequence,insequence,j . [23]

Respecting the fact of denying a hybridization after the selection of the explicit sequences in the developed algorithm with
probability 1− phybridization(Ssequence,i, Ssequence,j) = 1− hscaled(Ssequence,i,Ssequence,j)

hscaled,max
:

anohybridization(Ssequence,i, Ssequence,i) = kβ
V
hscaled,maxnsequence,i

nsequence,i − 1
2 ·

(1− hscaled(Ssequence,i, Ssequence,i)
hscaled,max

),

= kβ
V
dh(Ssequence,i, Ssequence,j)nsequence,i ·

nsequence,i − 1
2 , [24]

Lsequence∑
i=1

anohybridization(Ssequence,i, Ssequence,i) = kβ
V

Lsequence∑
i=1

dh(Ssequence,i, Ssequence,i) ·

nsequence,i
nsequence,i − 1

2 [25]

anohybridization(Ssequence,i, Ssequence,j) = kβ
V
hscaled,maxnsequence,insequence,j ·

dh(Ssequence,i, Ssequence,j)
hscaled,max

,

= kβ
V
dh(Ssequence,i, Ssequence,j) ·

nsequence,insequence,j , [26]
Lsequence∑

i=2

i∑
j=1

anohybridization(Ssequence,i, Ssequence,j) = kβ
V

Lsequence∑
i=2

i∑
j=1

dhSsequence,i, Ssequence,j ·

nsequence,insequence,j . [27]

The possibility of denying a hybridization event corresponds to the initial difference between both algorithms leading to an
equal probability for a hybridization event. Thus, in both algorithms the probability for each reaction type is the same.

Lemma 1.3. The time interval between two successive reactions is the same in both variants.

Proof. Contrary to the Gillespie algorithm where each time increment corresponds to a reaction event, in our new algorithm a
time increment is possible without a reaction.
The size of the time step in the Gillespie algorithm is computed by:

τreaction = 1
a0 log( 1

r1
). [28]

In our algorithm we increment m until a reaction happens,i.e., there are m− 1 time steps without a reaction. Then the overall
time step is:

τ ′reaction = m

a0max

m∑
i=1

log( 1
r1,i

),m ∈ N∗. [29]

where r1,i is the i-th random number drawn uniformly from [0, 1]. In the following we show that τreaction and τ ′reaction follow
the same distribution.

The m steps can be seen as sampling with replacement such that either a single reaction with probability p = preaction
takes places or no reaction with probability 1− p takes place. Because replication, hybridization and decay are disjoint events,
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the probability p = preaction is the sum of replication, hybridization and decay probabilities :

preaction = preplication + phybridization + pdecay,

preplication =
∑n

i=1 areplication(Ssequence,i)
a0max

,

phybridization =
∑n

i=1

∑i

j=1 ahybridization(Ssequence,i, Ssequence,j)
a0max

,

pdecay =
∑n

i=1 adecay(Ssequence,i)

a0max
,

↪→ preaction =
∑n

i=1(areplication(Ssequence,i) +
∑i

j=1 ahybridization(Ssequence,i, Ssequence,j) + adecay(Ssequence,i))
a0max

,

↪→ preaction = a0
a0max

.

[30]

Through sampling with replacement, the number of steps m is distributed according to a geometric distribution with expectation
1/p. This leads to an expected number of m = a0max

a0 steps. Since a single time step τ is distributed according to an exponential
distribution with expectation 1

λ
= 1

a0 the sum of m exponential distributed random variables X also has to follow an exponential
distribution with the same expectation. As the pdf of such a random variable Y =

∑m

i=1 Xi is fY (y) = λpe−λpy (2), Y is
exponential distributed with expectation E(Y ) = 1

pλ
.

E(Y ) = 1
pλ
,

= 1
a0

a0max
a0max

, [31]

= 1
a0 .

Because E(Y ) corresponds to 1
a0 , the expectation of the time interval between two reaction events in the Gillespie algorithm, it

can be expected that both algorithms have time intervals of equal length between two reactions.
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