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Abstract

Humans learn internal models of the environment that support efficient planning and flexible
generalization in complex, real-world domains. Yet it remains unclear how such internal models
are represented and learned in the brain. We approach this question within the framework of
theory-based reinforcement learning, a strong form of model-based reinforcement learning in which
the model is an intuitive theory – a rich, abstract, causal model of the environment built on a
natural ontology of physical objects, intentional agents, relations, and goals. We used a theory-
based reinforcement learning model to analyze brain data from human participants learning to play
different Atari-style video games while undergoing functional MRI. Theories inferred by the theory-
based model explained the signal in inferior frontal gyrus and other prefrontal areas better than
several alternative models. Brain activity increased in response to theory update events in inferior
frontal gyrus, occipital cortex, and fusiform gyrus, with separate learning signals for different
theory components. This corresponded with a transient strengthening of theory representations
in those regions. Finally, the effective connectivity pattern during theory updating suggests that
information flows top-down from theory-coding regions in the prefrontal cortex to theory updating
regions in occipital and temporal cortex. These results are consistent with a neural architecture in
which top-down theory representations originating in prefrontal regions shape sensory predictions
in visual areas, where factorized theory prediction errors are computed and in turn trigger bottom-
up updates of the theory. This initial sketch provides a foundation for understanding of the neural
representations and computations that support efficient theory-based reinforcement learning in
complex, naturalistic environments.

Keywords: reinforcement learning, program induction, intuitive theories, fMRI, Bayesian
inference

1. Introduction

Reinforcement learning (RL) is a normative framework prescribing how agents ought to act in
order to maximize rewards in the environment (Sutton and Barto, 2018). In the field of artificial
intelligence, RL has allowed artificial agents to reach and surpass human-level performance across a
variety of domains previously beyond the capabilities of computers (Mnih et al., 2015; Silver et al.,
2017, 2018; Schrittwieser et al., 2020). In the fields of psychology and neuroscience, RL has offered
a compelling account of behavioral and brain data across a number of species and experimental
paradigms (Schultz et al., 1997; Daw et al., 2006; Niv, 2009; Cross et al., 2021). Most of this work
has focused on model-free RL, a kind of RL in which the agent directly learns a mapping from
different states in the environment to actions and/or values. Model-based RL, on the other hand,
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posits that the agent learns an internal model of the environment which is used to simulate the
outcomes of different actions. Behavioral and neural studies have found evidence for both kinds of
RL (Gläscher et al., 2010; Daw et al., 2011; Lee et al., 2014; Kool et al., 2018), yet model-based RL
has received relatively less attention and is often studied using simple toy environments with small
state spaces. This is largely owing to the relative scarcity of powerful model-based RL algorithms
capable of matching human learning in complex domains (Tsividis et al., 2017), leaving open the
question of what the “model” in model-based RL is and how it is learned and represented by the
brain.

One possible answer from cognitive science is theory-based RL (Pouncy et al., 2021; Tsividis
et al., 2021; Pouncy and Gershman, 2022), a strong form of model-based RL in which the model is
an intuitive theory—an abstract causal model of world dynamics rooted in core cognitive concepts
such as physical objects, intentional agents, relations, and goals (Figure 1). Building on findings in
developmental psychology, theory-based RL posits that the agent learns the theory from experience
using probabilistic inference and uses it together with an internal simulator to predict and evaluate
the outcomes of different action sequences generated by an internal planner. Theory-based RL
has captured patterns of human learning (Pouncy and Gershman, 2022; Tsividis et al., 2021),
exploration (Tsividis et al., 2021), and generalization (Pouncy et al., 2021) in complex domains
where model-free and simpler model-based RL approaches fail or learn rather differently. This has
provided strong support for theory-based RL as a concrete realization of human model-based RL.

Building on this work, our study aims to identify brain regions involved in theory-based RL and
how they map to its constituent processes. To achieve this, we used a particular formalization of
theory-based RL (Tsividis et al., 2021) to analyze functional magnetic resonance imaging (fMRI)
data collected from human participants while they learned to play Atari-style games designed to
mirror some of the richness and complexity of real-world tasks. Our analyses revealed evidence
that theory representations in inferior frontal gyrus and other prefrontal regions are activated and
updated in response to theory prediction errors—discrepancies between theoretical predictions and
actual observations—which are in turn computed in occipital and ventral stream regions such as
the fusiform gyrus. We also found evidence that, much like in our theory-based RL model, theory
updating in the brain is factorized into updating of objects, relations, and goals, suggesting key
differences between these cognitive components. Finally, analyses of effective connectivity suggest
that theory inference involves both feedforward and feedback processing reminiscent of hierarchical
predictive coding (Rao and Ballard, 1999; Friston, 2005). Together these results present the first
direct evidence for theory-based RL in the brain and establish a foundation for understanding its
underlying neural processes.

2. Results

We scanned 32 human participants using fMRI while they played six Atari-style games (Fig-
ure 2A). Each game had nine levels of increasing complexity and had to be learned from experience
without any visual hints or prior information about the rules. For data analysis purposes, games
were interleaved and balanced across pairs of runs (Figure 2B).

As a particular instantiation of theory-based RL, we used the Explore, Model, Plan Agent
(EMPA; Figure 1) proposed by Tsividis et al. (2021). Theories are formalized as symbolic, prob-
abilistic program-like descriptions of game dynamics that specify the different object kinds, the
outcomes of interactions between them, and the win/loss conditions. EMPA performs Bayesian
inference over the space of theories and uses the most likely theory to run internal simulations
and search for rewarding action sequences. Tsividis et al. (2021) showed that EMPA exhibits
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Figure 1: EMPA architecture. Symbolic descriptions of game frames are fed to an inference engine which updates
the most likely theory, θ∗, using an approximation of Bayesian inference. The theory consists of objects (sprites),
relations (interactions), and goals (termination conditions). Exploitative (win) and exploratory goals based on the
theory are fed to a planner which uses a theory-based internal simulator and an intrinsic reward function to search
for rewarding action sequences. The agent then takes actions in the environment according to the best plan. Reused
with permission from Tsividis et al. (2021).
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Figure 2: Study design and behavioral results.
A. Participants played different Atari-style games. The game names, colors, and textures shown were randomized
for each participant and were unrelated to the game rules (but were consistent across different levels of the same
game for each participant).
B. Example scan session for single participant. Runs were paired into balanced data partitions, with blocks shuffled
within each partition.
C. Behavioral results from participants (green) and generative play by EMPA (blue) and pretrained DDQN (red).
Each colored dot represents a single real or simulated participant, respectively. White dots depict medians, box
plots depict upper and lower quartiles, horizontal lines across kernel density estimates depict means. ns - not
significant, ********** - p < 10−10 (two-sided Wilcoxon rank sum test).
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human-level learning efficiency in a large suite of Atari-style games, including those used in our
study. They also showed that EMPA exhibits human-like object-oriented exploratory behaviors.
In contrast, model-free RL agents failed on both counts, learning orders of magnitude more slowly
and exploring much more randomly than humans. Consistent with these results, we found that
EMPA performed similarly to our participants (Figure 2C; no significant difference, two-sided
Wilcoxon rank sum test based on simulated and actual expected bonus payouts), while both hu-
mans and EMPA performed significantly better than a pretrained deep RL network, the double
DQN (DDQN; p < 10−10), a powerful model-free RL algorithm (van Hasselt et al., 2016), variants
of which have been put forward as accounts of human model-free RL in complex domains (Cross
et al., 2021).

3. Theory representations in prefrontal cortex

The central component of theory-based RL is the theory that the agent continuously infers
from experience. To identify brain regions representing the inferred theory, we replayed each
participant’s gameplay through EMPA and used the inferred theory sequences to predict the
blood-oxygen-level-dependent (BOLD) signal in each voxel using a linear encoding model fit with
Gaussian process (GP) regression (Figure 3A, Figure S3A,C), a generalization of the more com-
monly used ridge regression (Williams and Rasmussen, 2006). In order to embed the symbolic
theories in a vector space for the encoding model, we used holographic reduced representations
(HRRs; Plate, 1995), a method for encoding complex compositional structure in distributed form.
Similarly to previous work (Schrimpf et al., 2021; Cross et al., 2021), we correlated the cross-
validated predicted and actual BOLD timecourses; we then Fisher z-transformed the resulting
Pearson correlation coefficients to compute a predictivity score for each voxel. Predictivity scores
were aggregated across voxels using t-tests. The resulting group level t-maps were thresholded
at p < 0.001 and whole-brain cluster family-wise error (FWE) corrected at α = 0.05. This re-
vealed significant predictivity scores across a distributed bilateral network of regions (Figure 3B,
Table S1). In prefrontal cortex, we found bilateral clusters in inferior frontal gyrus, as well as
unilateral clusters in middle and superior frontal gyrus and the supplementary motor area. In
posterior areas, we found a large bilateral cluster starting from early visual regions in occipital
cortex, extending into higher visual regions and then further into the ventral and dorsal streams,
including fusiform gyrus and middle temporal gyrus in temporal cortex and inferior parietal gyrus
and angular gyrus in parietal cortex.

We performed the same analysis using three control models (Cross et al., 2021): DDQN agents
pretrained on corresponding games to control for model-free RL representations (also used as a be-
havioral control in Tsividis et al., 2021), principal component analysis (PCA) to control for low-level
visual features (Olshausen and Field, 1996; Chang and Tsao, 2017), and a variational autoencoder
(VAE) to account for high-level visual and state features (Mohamed and Jimenez Rezende, 2015;
Watter et al., 2015; Higgins et al., 2017). Similarly to Cross et al. (2021), we compared models
using a posteriori bilateral anatomical regions of interest (ROIs) based on cross-referencing the
t-maps from all models with the automated anatomical labelling atlas (AAL3 atlas; Rolls et al.,
2020). We compared models separately in each ROI based on the fraction of voxels with a sig-
nificant correlation (α = 0.05) between predicted and actual BOLD signal. In prefrontal regions,
EMPA largely outperformed all three control models, specifically in the triangular and opercular
parts of inferior frontal gyrus, as well as in the middle and superior frontal gyri. Additionally,
EMPA outperformed all three control models in precuneus and middle temporal gyrus. This sug-
gests that the effects of theory representation in those regions are not simply due to visual or
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Figure 3: Theory representations map to regions in prefrontal cortex and ventral/dorsal streams.
A. Encoding model analysis pipeline. State-action sequences ((a1, s1), (s2, a2), (s3, a3), ...) from human gameplay
were replayed through EMPA. Inferred theory sequences (θ1, θ2, θ3, ...) were embedded in a vector space, convolved
with the hemodynamic response function, and subsampled to get feature vectors (x1,x2,x3, ...). Preprocessed
BOLD signal from each voxel (y1, y2, y3, ...) was regressed onto feature vectors using GP regression. Resulting
predictivity scores z were aggregated across participants using two-sided t-tests. Resulting t-maps were thresholded
at p < 0.001 and whole-brain cluster FWE corrected at α = 0.05. Analogous analyses were performed with control
models (DDQN, PCA, VAE).
B. Group-level t-maps from A. ROIs are noted as IFGtriang, IFGoperc (inferior frontal gyrus, triangular and
opercular parts), MFG, SFG (middle and superior frontal gyri), PreCG (precentral gyrus), SMA (supplementary
motor area), PoCG (postcentral gyrus), IPG (inferior parietal gyrus), AG (angular gyrus), SMG (supramarginal
gyrus), ROL (rolandic operculum), PCUN (precuneus), IOG, MOG, SOG (inferior, middle, superior orbital gyri),
FFG (fusiform gyrus), MTG (middle temporal gyrus), LING (lingual gyrus), CAL (calcarine fissure), CUN (cuneus).
C. Fraction of voxels with significant correlation (α = 0.05) between predicted and actual BOLD in anatomical
ROIs. Medians with boxes representing top and bottom quartiles and whiskers representing data range, excluding
outliers (outliers plotted in Figure S3A and included in all statistical tests). * - p < 0.05, ** - p < 0.01, *** -
p < 0.001, **** - p < 0.0001 (two-sided Wilcoxon signed rank tests).
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model-free RL confounds. We also repeated the analysis using different components of the EMPA
theory – objects, relations, and goals – but did not find any systematic differences (Figure S3B,D).

4. Theory update signals in inferior frontal gyrus, occipital gyri, and fusiform gyrus

After identifying regions representing the inferred theory, we next sought to identify brain
regions involved in theory inference. Based on our previous work (Tomov et al., 2018), we reasoned
that such regions might show greater activity during theory updating, reflecting the temporary
increase in computational demands. Since theory updates are triggered by surprising events which
violate theoretical predictions, such an increase in neural activity could also be interpreted as a
kind of theory prediction error. We used a general linear model (GLM) with impulse regressors at
theory update events – frames at which EMPA switched from one most likely theory to another
based on the participant’s gameplay (Figure 4A, Table S2). The group-level contrast for theory
updating (Figure 4B, Table S3; thresholded at p < 0.001 and whole-brain cluster FWE corrected
at α = 0.05) revealed a distributed bilateral network of regions that largely overlapped with the
regions from our theory representation analysis. Most notably, in prefrontal cortex, we found
bilateral clusters in inferior frontal gyrus, in addition to unilateral clusters in superior frontal
gyrus, orbital frontal cortex, and the supplementary motor area. We also found a large bilateral
posterior cluster covering early and late visual regions in occipital cortex, extending into angular
gyrus and precuneus in the dorsal stream, and extending into fusiform gyrus in the ventral stream.

To control for potential confounds, we included a number of nuisance regressors in the GLM
for events of non-interest, including visual changes, key presses, and game events relevant for
theory updating (Table S2). A confirmatory analysis using anatomical ROIs from the theory
updating contrast revealed that some nuisance regressors also show a significant effect (Figure S4).
To directly compare the neural responses to different event types, we generated peri-event time
histograms (PETHs) from the baseline-adjusted BOLD signal following theory updates and other
control events (Figure 4C, D) in bilateral anatomical ROIs with a significant theory update effect
(Figure S4). We found that, in contrast to other control events, the increase in BOLD signal was
larger and more sustained after theory updates in inferior frontal gyrus, all three occipital gyri,
and fusiform gyrus (two-sided t-tests in Figure 4C, paired t-tests in Figure 4D). These results
suggest that these regions respond specifically to theory updating, pointing to their potential
involvement in computing theory prediction errors – discrepancies between the perceived world
state and the predicted world state based on the theory – or in performing the theory update
computation in response to such errors. It is also noteworthy that these regions also appear in the
theory representation brain maps (Figure 3B), with inferior frontal gyrus specifically representing
the learned theory (Figure 3C).

5. Separate update signals for different theory components

The EMPA theory consists of three components: a set of object types and their physical
and/or intentional properties (since they could be other agents), a set of relations between objects
describing the outcomes of object-object interactions, and a set of goals that the agent pursues.
For tractability, EMPA factorizes theory inference into separate inference processes for objects,
relations, and goals (Tsividis et al., 2021). However, the theory update GLM described above
does not distinguish between updates for separate theory components. Rather, theory update
events occur when either objects, relations, or goals are updated (Figure 5A, top). When we
repeated the PETH analysis described above for individual theory component updates, we found
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Figure 4: Theory learning signals in prefrontal cortex and ventral/dorsal streams.
A. GLM analysis pipeline. Similarly to Figure 3A, frame-by-frame state-action sequences
((a1, s1), (s2, a2), (s3, a3), ...) from human gameplay were replayed through EMPA. Corresponding theory
update sequences (I[θ1 ≡ θ2], I[θ2 ≡ θ3], I[θ3 ≡ θ4], ...) from EMPA were entered as regressors in a GLM. Resulting
theory update beta estimates (βtheory update) for individual voxels aggregated across participants using two-sided
t-tests. Resulting t-maps thresholded at p < 0.001 and whole-brain cluster FWE corrected at α = 0.05.
B. Group-level t-maps from GLM analysis in A. ROIs noted as OFCant (anterior orbital gyrus), SFGmedial
(superior frontal gyrus, medial), and the rest as in Figure 3B.
C. Peri-event time histograms showing the average change in BOLD signal following theory updates and different
control events in ROIs with significant βtheory update. Colored fringes depict error bars (s.e.m.) across participants.
Stars indicate significance for theory updates for each time point. * - p < 0.05, ** - p < 0.01, *** - p < 0.001, ****
- p < 0.0001, ***** - p < 0.00001, ****** - p < 10−6 (two-sided t-tests).
D. Change in BOLD signal from C averaged over 20 s following corresponding event. Error bars depict s.e.m.
across participants. Significance notation as in C (paired t-tests).
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Figure 5: Separate update signals for different theory components.
A. Illustration of GLMs with impulse regressors for unified theory updates (top GLM; same as in Figure 4), single
component updates (middle three GLMs), and separate updates for all three components (bottom GLM).
B. GLM comparison in ROIs showing a significant increase in BOLD signal for all three theory components (Fig-
ure S5B). ROIs noted as in Figure 3B. Bars denote GLM BICs relative to theory update GLM BIC. Error bars
denote s.e.m. across participants. * - p < 0.05, ** - p < 0.01, *** - p < 0.001, **** - p < 0.0001 (two-sided t-tests).
BIC, Bayesian information criterion.
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GLM PXPs

AAL3 Region
Theory
updates

Object
updates

Relation
updates

Goal
updates

Object,
relation,
goal

updates
IFG pars triangularis < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.9998
IFG pars opercularis 0.1717 0.1717 0.1586 0.1649 0.3328
Superior occipital gyrus 0.0004 < 0.0001 < 0.0001 < 0.0001 0.99953
Inferior occipital gyrus < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.99998
Middle occipital gyrus < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.99996
Fusiform gyrus 0.7140 0.0097 0.0004 0.0004 0.2756

Table 1: GLM comparison results. PXP, protected exceedance probability. IFG, inferior frontal gyrus.

that some regions respond differentially to different component updates (Figure S5). This led us
to hypothesize that the brain might factorize theory learning similarly to EMPA.

To investigate this hypothesis, we fit a GLM in which theory updating was split into three
separate regressors for object, relation, and goal updates (Figure 5A, bottom). We additionally
fit three control GLMs, each with a single component update (Figure 5A, middle). We compared
GLMs using random effects Bayesian model selection (Rigoux et al., 2014) in the ROIs showing a
significant BOLD increase in response to all three individual component updates (Figure S5B). We
found that the GLM with separate component updates best explains the BOLD signal in inferior
frontal gyrus and all three occipital gyri (Figure 5B, Table 1). This suggests that, similarly to
EMPA, the brain also performs a factorized theory update.

6. Theory representations activated during updating

The overlap (Figure 6A) between the brain regions representing the theory (Figure 3) and
the brain regions responding to theory updating (Figure 4) was somewhat surprising. A priori,
these regions do not necessarily have to be the same: one analysis looks for regions consistently
representing the theory, without any increase in activity around change points, while the other
analysis looks for regions with increased activity at theory change points, without regard for the
content of the theory itself. This led us to hypothesize that the two are related. Specifically, we
conjectured that theory representations are preferentially activated during theory updating, akin
to being “loaded” into working memory for the necessary computation.

To investigate this hypothesis, we plotted PETHs of the baseline-adjusted predictivity time-
course from the encoding model (Figure 3A) following theory updates and other control events in
the ROIs from the overlap. This shows, at each time point after the event, how well the pattern
of BOLD activity can be predicted based on the inferred theory, compared to immediately before
the event. We found a significant sustained increase in predictivity after theory updates in inferior
frontal gyrus (triangular and opercular parts), all three occipital gyri (inferior, middle, superior),
and fusiform gyrus (Figure 6B; two-sided t-tests). Furthermore, the magnitude of this increase
was significantly greater for theory updates compared to other events (Figure 6C; paired t-tests),
suggesting that theory representations are activated in these regions specifically during theory
updating.

To investigate whether this effect varies between individual theory components, we repeated
this analysis for separate component updates using the corresponding encoding models fit for
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Figure 6: Theory representations activated during updating.
A. Overlap between significant clusters for theory representations (Figure 3B) and theory updating (Figure 4B).
ROIs noted as in Figure 3B.
B. Peri-event time histograms showing the average change in predictivity score following theory updates and different
control events in the overlapping ROIs. Notation as in Figure 4C. Note that, in contrast to Figure 4C, the y-axis
is ∆z, which quantifies how well an encoding model based on theory representations can predict instantaneous
patterns of brain activity after a theory update, compared to before the update.
C. Change in predictivity score from B averaged over 20 s following corresponding event. Notation as in Figure 4D.
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Figure 7: Effective connectivity during theory updating is consistent with predictive coding.
A. Best-fitting effective connectivity pattern based on neural responses to theory update events estimated using
beta series GLM. ROIs noted as in Figure 3B.
B. Same results using neural responses 2 s after theory update events.

objects, relations, or goals only. We found that most regions did not show a significant difference
(Figure S6), with the exception of fusiform gyrus in which object representations were activated
after object updates more strongly compared to relation and goal representations during their
respective updates (p < 0.001, Bonferroni corrected), suggesting a specific role for fusiform gyrus
in object updating.

7. Effective connectivity during theory updating is consistent with predictive coding

Having identified brain regions involved in theory representation (Figure 3), theory updating
(Figure 4, Figure 5), and the dynamic interplay between these processes (Figure 6), we finally
sought to characterize the pattern of information flow between these regions. Using a beta series
GLM (Poldrack et al., 2011), we extracted estimates of instantaneous neural activity during theory
update events from ROIs that showed a significant effect in the previous analyses. We additionally
extracted estimates from visual and motor ROIs in order to include potential inputs and outputs
to and from the theory coding and updating regions. We entered the resulting estimates into
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the IMaGES algorithm (Ramsey et al., 2010; Poldrack et al., 2011) from the TETRAD software
package for causal modeling (Scheines et al., 1998), which greedily searches the space of effective
connectivity patterns for the one that best fits the data. Our hypothesis was that, during theory
updating, information would flow in a bottom-up fashion, from early visual regions through theory
updating regions in occipital and temporal cortex to theory coding regions in prefrontal cortex,
where the updated theory is putatively stored.

To the contrary, we found the opposite pattern, with information flowing in a top-down fash-
ion, from prefrontal theory coding regions to theory updating regions in occipital and temporal
cortex to early visual regions (Figure 7A). When we repeated the same analysis, except using
neural activity 2 s after theory updates, we found a bottom-up pattern consistent with our prior
expectations (Figure 7B). These findings are consistent with a predictive coding interpretation:
information about the brain’s internal model of the world (in our case, the theory) is flowing
top-down from higher areas in prefrontal cortex, shaping sensory predictions in lower visual areas;
when an inconsistency between predictions and observations is detected, this results in a theory
prediction error which triggers a theory update, reversing the flow of information so that the new
sensory data can be used to update the theory in the higher regions.

8. Discussion

A longstanding question in neuroscience is how the brain represents the structure of the envi-
ronment in order to support efficient learning and flexible generalization. One possible answer from
cognitive science is that the brain learns a rich, abstract, causal model grounded in core cognitive
concepts such as objects, relations, and goals, which is used to simulate the outcomes of different
courses of action during planning (Lake et al., 2017; Tsividis et al., 2021; Pouncy et al., 2021;
Pouncy and Gershman, 2022). We found support for this kind of theory-based RL using fMRI
data from human participants learning to play different Atari-style games. The theory inferred
by a theory-based RL agent can explain variance in inferior frontal gyrus and other prefrontal
regions better than control models, suggesting that those regions encode theory-like representa-
tions above and beyond visual and model-free RL features. In an overlapping network of regions,
including inferior frontal gyrus, occipital gyri, and fusiform gyrus, we found theory learning signals
that could not be explained by visual events, motor actions, or theory-related nuisance variables,
suggesting those regions play a role in theory inference. In a subset of those regions, we found
evidence for separate learning signals for objects, relations, and goals, suggesting that the brain
factorizes theory inference similarly to our theory-based RL agent. We additionally found that
the striking overlap between theory coding and theory learning regions is not coincidental, with
theory representations being activated following theory updates. This suggests that the theory is
not stored as a persistent pattern of neural activity but is rather stored “silently” (Beukers et al.,
2021), perhaps in the pattern of synaptic weights, and is only activated when updated by the
theory inference circuitry. Finally, we found that the effective connectivity pattern during such
updates is consistent with predictive coding (Rao and Ballard, 1999; Friston, 2005), with feedback
connections conveying theory predictions and feedforward connections conveying theory prediction
errors.

The idea that animals learn rich, structured the representations of their environments dates
back to Tolman’s work on latent learning (Tolman and Honzik, 1930; Tolman, 1948). Tolman
observed that rats were able to quickly find newly placed rewards in a maze after repeated unwarded
exposures to the maze, leading him to hypothesize that this flexible generalization is supported
by “cognitive maps” (Kaplan et al., 2017; Behrens et al., 2018; Boorman et al., 2021)—internal
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models of the world which allow animals to mentally search through space and find efficient paths
to goals. Neural evidence for cognitive maps was famously identified in the hippocampus (O’keefe
and Nadel, 1978), where place cells appear to encode an animal’s location in space. Subsequent
studies found evidence that cognitive maps can represent nonspatial domains (Schuck et al., 2016;
Constantinescu et al., 2016) and also appear in other parts of the brain (Walton et al., 2010;
Rudebeck and Murray, 2011; Jocham et al., 2016) such as ventral prefrontal cortex which includes
inferior frontal gyrus, a region our study implicates in theory coding. Our study did not find
evidence for theory coding in the hippocampus, likely due to the fact at the theory on its own does
not constitute a map per se but rather a set of abstract relational rules that, when grounded in a
particular world state (such as a video game frame), can be used to predict future world states. We
conjecture that the hippocampus and medial entorhinal cortex might be involved in such grounded
representations, encoding a theory-based transition structure between concrete world states that
directly supports planning, rather than the abstract theory itself.

Our findings resonate with recent studies that have used computational modeling to identify a
more specific role for prefrontal cortex in representing and/or updating an internal causal model
of the world (Donoso et al., 2014). In an fMRI study comparing model-based and model-free
RL prediction errors, Gläscher et al. (2010) reported state prediction error signals—discrepancies
between the observed state and the state predicted by the brain’s internal model, akin to theory
prediction errors in our study – in similar prefrontal regions, particularly in bilateral inferior frontal
gyrus. Another fMRI study by Lee et al. (2015) reported evidence of rapid, one-shot learning of
causal associations driven by uncertainty encoded in ventrolateral prefrontal cortex, including
inferior frontal gyrus. An fMRI study of causal structure learning from our lab (Tomov et al.,
2018) found causal structure learning signals in a distributed bilateral network of regions, including
inferior, middle, and superior frontal gyrus, regions in occipital cortex, and regions in the ventral
stream such as fusiform gyrus. In that study, we also reported evidence of beliefs about causal
structure being activated in response to feedback in a frontoparietal network of regions, including
inferior frontal gyrus. Another study from our lab (Dorfman et al., 2021) reported evidence for
beliefs about causal structure activated in inferior frontal gyrus during belief updating.

A separate line of work has implicated similar prefrontal regions in relational reasoning (Waltz
et al., 1999; Krawczyk et al., 2011). Knowlton et al. (2012) unified some of these findings using a
role-based relational reasoning model (LISA) according to which prefrontal cortex encodes abstract
relational rules as distributed role-filler bindings at increasing levels of abstraction, from objects to
relations to propositions, somewhat reminiscent of our HRR theory code. In LISA, rules are rapidly
updated via spike-timing dependent plasticity in anterior prefrontal cortex and are activated in
working memory by long-distance connections from semantic units in posterior cortex. This bears
striking resemblance to our proposal, and suggests that theory-based reinforcement learning could
serve as a unifying lens for results from the neuroscience literature on model-based reinforcement
learning, causal inference, and relational reasoning. According to this view, these findings could
be interpreted as signatures of the same theory inference machinery applied to different, narrower
domains, with inferior frontal gyrus serving as the key locus of theory computation/storage in
prefrontal cortex and posterior regions computing theory prediction errors for theory learning.

Video games have long served as microcosms in which to compare human and machine intelli-
gence in naturalistic, complex environments (Mnih et al., 2015; Tsividis et al., 2017). Most closely
related to our work is a recent study by Cross et al. (2021) in which fMRI data from human partic-
ipants playing Atari games was analyzed using a deep RL network (DQN), a powerful model-free
RL algorithm. The authors found evidence for DQN representations across a distributed network
of regions, most notably in the dorsal visual stream and posterior parietal cortex. Despite sim-
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ilar methodology, there are crucial differences between our studies. The most critical difference
is that we are interested in how people learn to play these games—an aspect of human behav-
ior that is particularly well-captured by a theory-based RL model compared to model-free deep
RL models—whereas Cross et al. (2021) are interested in the sensorimotor transformations that
support gameplay after learning has plateaued. This in turn dictates important design decisions
that differ between the two studies. Most importantly, we focus on games in which our prior
work suggests that people seem to be model-based, and in particular that they seem to follow
the predictions of theory-based RL, whereas Cross et al. (2021) focus on games in which people
follow the predictions of the model-free DQN. As a result, our study includes more games played
over shorter timescales with levels designed to maximize learning, less visually distinct features,
and more complex rules. This could explain the relatively poor performance of our model-free RL
control in matching human performance and brain activity.

However, our results are not mutually exclusive with those of Cross et al. (2021). Multiple
studies have shown that brains employ a mix of model-free and model-based RL strategies (Gläscher
et al., 2010; Daw et al., 2011; Lee et al., 2014; Kool et al., 2018). Indeed, the results from Cross
et al. (2021) point to the dorsal stream, posterior parietal cortex, and motor areas as the loci
of model-free sensorimotor transformations, whereas they report little evidence for model-free
representations in prefrontal regions, and in particular they do not report any results in inferior
frontal gyrus. In contrast, our results point to prefrontal cortex and inferior frontal gyrus in
particular as the locus of theory encoding, and to occipital and ventral stream regions as the
loci of theory learning computations; at the same time, we find little evidence for theory-based
representations in the dorsal stream, posterior parietal cortex, or motor cortex. Thus the results
from the two studies can be seen as complementary, pointing to hybrid architecture which includes
both theory-based and model-free components. While EMPA in its current form is purely model-
based, it can straightforwardly be extended to include learned policy and/or value components
to help guide the search towards promising action plans. In the field of artificial intelligence,
such hybrid approaches have recently achieved remarkable success in learning to play board games
(Silver et al., 2017, 2018) and video games (Schrittwieser et al., 2020), suggesting that this could
be a fruitful avenue for future neuroscience research.

Our effective connectivity analysis suggests that top-down information about the theory from
prefrontal regions flows to occipital and ventral stream regions for predicting sensory inputs and
that when a discrepancy occurs—a kind of theory prediction error—information flows the other
way for updating the theory in prefrontal regions based on sensory input from occipital and ventral
stream regions. This is broadly consistent with hierarchical predictive coding (Rao and Ballard,
1999; Friston, 2005): the idea that top-down (feedback) connections convey model predictions orig-
inating in higher cortical areas and shaping neural activity in lower cortical areas, which in turn
compute prediction errors that are conveyed to higher areas via bottom-up feedforward connections
for model updating. Despite this affinity, there are important differences between our proposal and
traditional predictive coding accounts. First, the predictive coding interpretation only pertains to
information flow between regions representing the learned theory and regions computing theory
prediction errors. Importantly, it does not account for the processes of learning, planning, and ex-
ploration, which are core aspects of theory-based RL. Second, predictive coding models are usually
employed in narrow domains, often focusing on simple problems of low-level perception (Rao and
Ballard, 1999) or simple RL problems (Friston et al., 2013). In contrast, EMPA and theory-based
RL more broadly focus on solving richer and more structured problems. Our approach considers
perception and inference in the context of a complete modeling, planning and exploring agent; the
models and plans generated by EMPA – and those generated by the brain – have more structure
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to them than those generated by standard predictive coding approaches. Finally, theory-based
RL and predictive coding are frameworks at fundamentally different levels of description (Marr
and Poggio, 1976): theory-based RL is a computational-level proposal of exploration, modeling,
and planning based on Bayesian inference over intuitive theories (with EMPA being a particular
algorithmic instantiation of it), whereas predictive coding is an implementation-level proposal of
neural coding and dynamics of modeling and perception (Aitchison and Lengyel, 2017). Viewed in
this light, our results suggest that the general predictive coding framework could be a promising
starting point for studying theory predictions, theory prediction errors, and theory updating at
the neural level. Future work could formally relate EMPA to particular predictive coding formula-
tions, which could provide a richer theoretical framework for understanding the interplay between
top-down and bottom-up inferential processes in the brain, as well as the interplay between model
learning, exploration, and planning, relative to current predictive coding models.

One puzzling aspect of our results is the prevalence of visual regions, which raises the possible
concern that our analysis was not selective enough to exclude visual confounds. This concern is
partly addressed by our control analyses. In our encoding model analysis (Figure 3), we found that
EMPA consistently outperformed all of our control models in prefrontal regions, but not in other
cortical areas; indeed, in most other regions, EMPA was no better than PCA, suggesting that
the theory effects in those areas could be partly explained by visual features. The theory update
GLM (Figure 4) included visual nuisance regressors that showed a stronger effect in some regions,
particularly in early visual areas, suggesting that those regions play a role in visual processing
that is not specific to theory updating. Accordingly, we excluded early visual areas from reporting
and follow-up analyses. Theory learning effects in higher visual areas could be partly explained by
our effective connectivity results: according to the predictive coding interpretation, it is precisely
visual regions that ought to compute theory prediction errors – discrepancies between theory-based
predictions and sensory observations – which in turn serve as the basis for updating the theory in
prefrontal regions. It is also worth noting that previous work on causal structure learning (Tomov
et al., 2018) has also reported evidence for model updating in visual areas. Additionally, to some
extent our experimental design already controls for visual confounds by having participants play
the same level on repeat for 1 minute: if they do end up playing the same level for multiple
episodes, most learning often occurs during the first episode(s), with the other episodes serving
as implicit controls with nearly identical visual inputs but little-to-no theory learning. This idea
could be taken further by having participants watch a replay of their own gameplay immediately
after or in a subsequent scan session. We leave this kind of control study as future work.

Our study identifies key brain regions involved in theory encoding and theory updating, as
well as the dynamic relationship between these processes. This can serve as a basis for further
characterizing the neural architecture of theory-based RL. One important question pertains to
theory coding: how exactly is the symbolic theory encoded in distributed patterns of neural firing
and/or synaptic weights? Our study points to HRRs as one possibility, although we do not make
strong theoretical commitments to HRRs, but merely use them is part of our encoding model.
HRRs were originally proposed as a model of associative memory (Plate, 1995) and have since
been used as a model of structured scenes in event memories (Franklin et al., 2020), making them
a plausible candidate for a neural theory code. The theory coding question could be addressed by
comparing encoding models using different theory codes.

Another open question pertains to theory learning: what algorithm does the brain employ
to infer the theory and how is it implemented in neural circuits? Our study takes a step in
addressing that question, indicating that theory inference might be factorized into separate object,
relation, and goal updates, similarly to EMPA. However, unlike EMPA, which treats observations
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as deterministic and does not explicitly maintain probability distributions over theories, humans
can account for the stochasticity of noisy observations and can maintain/update probabilities for
multiple possible hypotheses (Donoso et al., 2014). An alternative to EMPA’s deterministic theory
update is a particle-based approximation which explicitly maintains multiple hypothesized theories
and their relative probabilities (Pouncy and Gershman, 2022). Both of these approaches maintain
multiple hypotheses and progressively reduce uncertainty about the world model as the learner
gets more data. Other possibilities come from deep model-based RL approaches (Schrittwieser
et al., 2020), which can learn a model of the environment from scratch, or from deep meta-RL
approaches (Duan et al., 2016; Wang et al., 2016), which use a model-free RL algorithm to learn a
model-based RL algorithm. Future versions of EMPA could be extended with different inference
algorithms to address this question.

A third open question pertains to the inductive biases which allow EMPA to learn as effectively
as humans: where do they come from and how are they learned and represented by the brain?
Work from our lab (Pouncy and Gershman, 2022) has proposed formalizing such inductive biases
using a Markov logic network defining a prior distribution over theories. A follow-up study that
explicitly manipulates participants’ biases could begin to address these questions.

In summary, our results are consistent with a neural architecture of theory-based RL in which
theory representations in inferior frontal gyrus and other prefrontal regions are activated and
updated in response to theory prediction errors computed in occipital and ventral stream regions,
such as fusiform gyrus, in a way consistent with hierarchical predictive coding. Additionally, we
hope that our work highlights the benefits of combining sophisticated, interpretable, end-to-end
cognitive models such as EMPA with naturalistic experimental environments such as video games.
By comparing the internal representations of such models with brain activity, researchers can begin
to uncover how the brain learns and represents an internal model of the environment that supports
adaptive behavior in complex, naturalistic tasks.
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10. Methods

10.1. Participants

Thirty-two healthy participants were recruited from the Cambridge, MA community: 15 female,
17 male, 19-36 years of age, mean age 24± 4 years, all right-handed and with normal or corrected-
to-normal vision. The study was approved by the Harvard University Institutional Review Board
and all participants gave informed consent. All participants were paid for their participation.
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10.2. Experimental Design

Each participant played 6 different Atari-style games adapted from Tsividis et al. (2021) over
the course of 6 scanner runs in a single session (Figure 2B). Six games were played across 6 scanner
runs. Each run consisted of 3 blocks. Each block consisted of 3 levels of a given game. Each level
was played on repeat for 1 minute total: if the episode ended before 1 minute had elapsed, a new
episode began on the same level. Nine levels were played in total for each game. Scanner runs
were grouped in 3 data partitions for cross-validation. Game order was pseudo-randomized such
that each data partition contained one block of each game, ensuring that games and levels were
balanced across partitions.

For each participant, games were randomly assigned names that were unrelated to the game
rules (Archeplan, Deception Eagle, Dreams of Origins, Giants of Solitude, Questtide, Fuseville,
Prime Origin). At the beginning of each block, the game name was shown for 2 s (Figure 2A).
During an episode, the game name and the current score were displayed at the top of the screen.
At the end of an episode, the outcome (“You WON!” or “You LOST!”) was shown at the bottom
of the screen and the final frame was frozen for 2 s. Timing was adjusted such that each level was
played for one minute total. After one minute, the current episode was interrupted with a “End
of level” outcome (to distinguish it from a win or loss) shown for 2 s, unless the participant was
already on a win/loss screen. There was a 10-s fixation cross at the beginning and end of each run
to account for scanner stabilization and the hemodynamic lag, respectively. Each run was 566 s
in total.

Following Tsividis et al. (2021), in order to avoid biasing learning with semantic priors based
on object appearance, all games were played in “color-only” mode: all objects were visualized as
colored squares with symbols on them. Objects of the same kind had the same color and symbol,
while objects of different kinds had different colors and symbols. Color and symbol assignments
were randomized across games and participants. The game descriptions were inspired by and/or
drawn from the General Video Game AI (GVGAI) competition (Perez-Liebana et al., 2015) and
expressed in the Video Game Description Language (VGDL; Schaul, 2013). Participants 1 through
11 played Chase, Helper, Bait, Zelda, Lemmings, Plaque Attack. Participants 12 through 32 played
the same games, except for Plaque Attack which was replaced by Avoid George. Each game had
5 actions: move left, move up, move down, move right, action key. The levels were designed to
ensure continuous learning about the game rules. Specifically, different levels involved different
object layouts and later levels involved game rules that earlier levels did not. All game and level
descriptions are available at https://github.com/tomov/RC_RL/tree/fmri/fmri_all_games.

Participants were told that they would be playing a sequence of Atari-style games with different
rules and that they will have to learn the rules of each game from experience. The game and level
order and timing was explained to them (Figure 2B), as well as that they would be playing all
games in color-only mode and what that is. Specifically, they were told that the colors, symbols,
and game names convey no information about the game rules, except that objects of the same
kind look the same in a given game. They were also told that colors and symbols in one game
convey no information about objects in another game. All participants were paid a base of $80
for their participation. Additionally, to incentivize learning, we paid participants a bonus based
on performance. Specifically, for each participant, we randomly chose a level and paid them the
maximum score they achieved (in dollars) at the end of any episode on that level, counting only
episodes which they won. If they never won that level, the bonus was $0. This bonus scheme was
explained to them in detail. They were also told that it is meant to encourage efficient learning
and gameplay: they should aim to maximize the score and win each level within 1 minute.

In the scanner, participants played using a 5-finger button box, with each button corresponding
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to a game action (index finger = move left, middle finger = move up, ring finger = move down, pinky
finger = move right, thumb = action key). Before entering the scanner, participants practiced by
playing 3 levels (1 block) of a different game (Sokoban) on the laptop using a similar key setup. This
game was not played in the scanner. Overall, the entire scan session took 2.5 hrs per participant,
1.5 hrs of which was spent in the scanner, 1 hr of which was spent on BOLD acquisition and
gameplay.

10.3. fMRI Data Acquisition

We followed a similar protocol to our previous work (Tomov et al., 2020). All participants
were scanned using a 3T Siemens Magnetom Prisma MRI scanner with the vendor 32-channel
head coil (Siemens Healthcare, Erlangen, Germany) at the Harvard University Center for Brain
Science Neuroimaging. A T1-weighted high-resolution multi-echo magnetization-prepared rapid-
acquisition gradient echo (ME-MPRAGE) anatomical scan (Van der Kouwe et al., 2008) of the
whole brain was acquired for each participant prior to any functional scanning: 176 sagittal slices,
voxel size = 1.0× 1.0× 1.0 mm, TR = 2530 ms, TE = 1.69–7.27 ms, TI = 1100 ms, flip angle =
7◦, FOV = 256 mm. Functional images were acquired using a T2*-weighted echo-planar imaging
(EPI) pulse sequence that employed multiband RF pulses and Simultaneous Multi-Slice (SMS)
acquisition (Moeller et al., 2010; Feinberg et al., 2010; Xu et al., 2013). We collected 6 functional
runs for each participant, each with 283 timepoints (Figure 2B). Scan parameters: 87 interleaved
axial-oblique slices per whole-brain volume, voxel size = 1.7×1.7×1.7 mm, TR = 2000 ms, TE =
30 ms, flip angle = 80◦, in-plane acceleration (GRAPPA) factor = 2, multi-band acceleration factor
= 3, FOV = 211 mm. Functional slices were oriented to a 25◦ tilt towards coronal from AC-PC
alignment. The SMS-EPI acquisitions used the CMRR-MB pulse sequence from the University of
Minnesota.

All 32 participants were included in the analysis. Scanner runs with excessive motion (> 3 mm
translation or > 3◦ rotation) were excluded from the analysis.

10.4. fMRI Preprocessing

Following our previous work (Tomov et al., 2020), we preprocessed functional images using the
SPM12 MATLAB toolbox (Wellcome Department of Imaging Neuroscience, London, UK). Each func-
tional scan was realigned to correct for small movements between scans, producing an aligned set
of images and a mean image for each participant. The high-resolution T1-weighted ME-MPRAGE
images were then co-registered to the mean realigned images and the gray matter was segmented
out and normalized to the gray matter of a standard Montreal Neurological Institute (MNI) ref-
erence brain. The functional images were then normalized to the MNI template (resampled voxel
size 2 mm isotropic), spatially smoothed with a 8-mm full-width at half-maximum (FWHM) Gaus-
sian kernel, high-pass filtered at 1/ 128 Hz, and corrected for temporal autocorrelations using a
first-order autoregressive model.

10.5. EMPA

A detailed technical description of EMPA can be found in Tsividis et al. (2021), which we
summarize here. EMPA learns a model (or theory), θ, of each game expressed in VGDL (Schaul,
2013). VGDL breaks down the game rules into three different components corresponding to core
aspects of human intuitive theories (Lake et al., 2017; Carey, 2000): objects (sprites), relations
(interactions) between objects, and goals.

A VGDL game description consists of a SpriteSet, θS, which specifies the type, appearance,
and dynamic properties each object (e.g., “red objects chase the avatar at a speed of 3 squares
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per second”); an InteractionSet, θI , which specifies what happens when two objects interact (e.g.,
“when a red object collides with the avatar, the avatar dies”); and a TerminationSet, θT , which
specifies the win/loss conditions of the game (e.g., “when the avatar dies, the game is lost with a
score of 0”). A VGDL description thus procedurally defines a Markov Decision Process: the state
at every timestep is described by the object instances and locations, the avatar’s internal state,
and any events due to collisions between pairs of objects; the transition function is defined by the
SpriteSet, the InteractionSet, and the TerminationSet; and the reward function is defined by the
InteractionSet and the TerminationSet.

EMPA learns the rules of each game by inferring a probability distribution over the space of
possible VGDL theories, Θ, from experience using Bayesian inference:

p(θ | s1:T , a1:T−1) ∝ p(s1:T | θ, a1:T−1)p(θ), (1)

where θ = (θS, θI , θT ) is the inferred theory describing the game rules, T is the current timestep,
s1:T is the history of observed states, a1:T−1 is the history of avatar actions, and p(θ) is a minimum
description length prior favoring simpler theories.

To choose actions, EMPA uses the maximum a posteriori theory, θ∗, together with a simulation-
based planner that searches for action sequences that lead to rewarding outcomes under θ∗. Specif-
ically, EMPA pursues exploitative goals that lead to winning (according to θ∗T ), as well as ex-
ploratory goals that reduce the uncertainty in θ (e.g., inducing an unobserved collision). Pursuit
of these sparse goals is aided by subgoals, which represent partial progress towards goals (e.g., “3
blue objects remaining”), and goal gradients, which represent preferences for states that are spa-
tially closer to achieving a subgoal (e.g., “the closest blue object is 3 squares away”). Planning is
further aided by state pruning and re-planning based on prediction errors, as described in Tsividis
et al. (2021).

The code for EMPA will be available at https://github.com/tsividis/vgdl upon publica-
tion.

10.6. DDQN

Following Tsividis et al. (2021), as a control model we trained a deep reinforcement learning
network (DDQN) based on the public repository https://github.com/dxyang/DQN_pytorch with
parameter settings α = 0.00025, γ = 0.999, τ = 100, experience-replay max = 50, 000, batch size
= 32, and image input recrop size = 64 × 64 × 3. The exploration parameter, ϵ, was annealed
linearly from 1 to 0.1 using a decay rate of 200 steps. Following (Mnih et al., 2015), the DDQN
had 3 convolutional layers (conv1: 32 filters with size = 8 × 8 and stride = 4; conv2: 64 filters
with size = 4× 4 and stride = 2; conv3: 64 filters with size = 3× 3 and stride = 1), followed by a
fully connected layer (linear1: 512 units), followed by the output layer (linear2: 5 units). Each
convolutional layer was followed by batch normalization and linear rectification (ReLU). ReLU
units also followed the fully connected layer. The input was a 64 × 64 × 3 scaled game frame
with 3 color channels (RGB). To ensure a fair comparison with EMPA, we pretrained a separate
DDQN for each game using a VGDL environment for 100 epochs of 250, 000 steps. Levels were
alternated across epochs to ensure exposure to all levels. Specifically, in each epoch, the DDQN
was trained on a given level for one or more episodes, restarting the level if it was won or lost.
During epoch 1, we trained on level 1, during epoch 2, we trained on level 2, and so on, starting
over from level 1 after level 9. We used the same pretrained DDQNs for both the behavioral and
the neural analyses.

The code for the DDQN is available at https://github.com/tomov/RC_RL.

20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.14.496001doi: bioRxiv preprint 

https://github.com/tsividis/vgdl
https://github.com/dxyang/DQN_pytorch
https://github.com/tomov/RC_RL
https://doi.org/10.1101/2022.06.14.496001


10.7. Generative play

To compare human performance with EMPA and DDQN performance, we valuated the models
on the same games and levels as the human participants. We simulated each participant with
EMPA by having a separate EMPA instance play all levels of each game generatively, in order.
As with human participants, each level was played for 1200 frames (60 sec at 20 Hz), restarting
the level if won or lost before that. Similarly to humans, performance was evaluated based on the
expected bonus payout, namely the maximum per-level winning score, averaged across all levels
and games. We simulated 32 participants independently, each simulation corresponding to a single
human participant. We similarly simulated 32 participants with the pretrained DDQNs. Note
that, unlike the DDQNs, EMPA does not require pretraining.

10.8. Encoding model analysis

To compare EMPA theories to brain activations, we used an encoding model (Naselaris et al.,
2011; Güçlü and van Gerven, 2015; Cross et al., 2021) that maps EMPA theory embeddings to
BOLD signal (Figure 3A). For each participant, we first replayed the sequence of states, actions,
and rewards from their gameplay in the scanner through EMPA, using a separate EMPA instance
for each game. This produced an EMPA theory for each frame, corresponding to the theory that
EMPA would have inferred at that timepoint if it had observed the same sequence of events as
the participant. We embedded each theory in a vector space using holographic reduced repre-
sentations (HRRs; see below), resulting in a sequence of HRR embeddings. To account for the
stochasticity inherent in HRRs, we independently generated 100 such sequences, each with a dif-
ferent random HRR initialization. Each sequence was convolved with the canonical hemodynamic
response function from SPM and subsampled at the scanner frequency (TR = 2 s, or 0.5 Hz).

For each voxel, we predicted the BOLD signal with Gaussian process (GP) regression (see
below) using cross-validation across the 3 data partitions (Figure 2B) . We quantified accuracy by
correlating the predicted with the actual BOLD signal for each partition, averaging the resulting
Pearson correlation coefficients across partitions, and Fisher z-transforming the result to obtain
a single predictivity score z for that voxel. To aggregate across participants, we performed a
two-sided t-test against 0 across participants for each voxel, producing a group-level statistical
map (t-map). Following our previous work (Tomov et al., 2020), we thresholded single voxels at
p < 0.001 and applied cluster family-wise error (FWE) correction at significance level α = 0.05.
We visualized the corrected t-maps using the bspmview toolbox in MATLAB.

Anatomical regions of interest (ROIs) were extracted by cross-referencing the peak voxels in
each cluster (up to 3 peaks peaks per cluster, minimum 20 voxels apart) with the automated
anatomical labeling atlas (AAL3 atlas; Rolls et al., 2020). Confirmatory ROI analyses were per-
formed using bilateral anatomical ROIs from all models (see Control models below). In a given
ROI, for each participant we computed the fraction of significant voxels as the number of vox-
els with a significant Pearson correlation at the α = 0.05 significance level, divided by the total
number of voxels in the ROI. We compared models in each ROI using Wilcoxon signed rank tests
across participants. To aggregate ROIs into ROI groups (Figure S3C,D), we simply merged ROIs
from a given cortical region into a single “macro-ROI” and performed the same analysis.

We similarly applied GP regression with our control models.

10.9. Gaussian Process regression

For the encoding model we used Gaussian process (GP) regression (Williams and Rasmussen,
2006), a nonparametric method for predicting values of unseen data points based on similarity with
observed data points. Ridge regression – a more commonly used encoding model (Driscoll et al.,
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2017; Cross et al., 2021) – can be derived as a special case of GP regression. However, unlike ridge
regression, GP regression avoids the need to fit weights to individual HRR components (which by
design are random) and allows for straightforwardly accounting for the randomness of HRRs.

To justify the use of GP regression, first consider the standard general linear model (GLM)
formulation:

y = f(θ) + ϵ, (2)

f(θ) = ϕ(θ)⊤w = x⊤w, (3)

ϵ ∼ N (0, σ2
n), (4)

where y is the neural signal at a given time point, θ is the EMPA theory, ϕ(θ) = x is the HRR
embedding of θ, w are the component weights (often referred to as beta coefficients), and ϵ is
Gaussian noise with zero mean and variance σ2

n. Such GLMs are routinely used to fit brain data
and the resulting weights w – often fit using maximum likelihood estimation – are used to interpret
whether a given feature is represented in brain activity.

High-dimensional feature spaces pose a challenge to this approach, as the weights might be
underconstrained. One way around this is to impose a prior distribution on the weights:

w ∼ N (0,Σw), (5)

where Σw is the prior weight covariance matrix. The maximum a posteriori solution to this
Bayesian linear regression problem is equivalent to ridge regression, where a regularization term
that constrains the weights arises naturally from the weight prior.

The challenge with applying ridge regression is that HRR embeddings are random, which 1)
renders the weights meaningless, and 2) necessitates averaging over that randomness. These issues
can both be addressed by GP regression. First, the predicted neural signal ŷ∗ for a theory θ∗ can
be directly computed in closed form from the training data θ,y (Williams and Rasmussen, 2006),
bypassing the need to compute the weights:

ŷ∗ | θ∗, θ,y =
1

σ2
n

x⊤
∗ A

−1Xy, (6)

A = σ−2XX⊤ +Σw
−1, (7)

where θ = [θ1, θ2, θ3, ...]
⊤ and y = [y1, y2, y3, ...]

⊤ are the training theory and neural activa-
tion sequences, respectively, θ∗ and y∗ are the held-out theory and neural activation, respec-
tively, x∗ = ϕ(θ∗) is the HRR embedding of the held-out theory, and X = [x1,x2,x3, ...] =
[ϕ(θ1), ϕ(θ2), ϕ(θ3), ...] is the training data design matrix. Note that we are only using the poste-
rior means and omitting the variances for ease of exposition.

This can be further rearranged by applying the “kernel trick” (Williams and Rasmussen, 2006),
resulting in GP regression:

ŷ∗ | θ∗, θ,y = k⊤
∗ (K + σ2

nI)
−1y, (8)

k∗ = X⊤Σwx∗, (9)

K = X⊤ΣwX. (10)

Here, the covariance matrix (or kernel) K quantifies the similarity between every pair of theories
in the training data, and the covariance vector k∗ quantifies the similarity between every training
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theory and the held-out theory. In our case, they were computed based on the HRR design matrix
X, but in principle we could use a similarity metric that does not rely on explicitly computed
features. We used Σw = I, so our similarity metric for each pair of theories was effectively the dot
product of their HRR embeddings. Intuitively, equation 8 says that the predicted held-out neural
activation is the average of the training neural activations, weighted by the similarity between the
corresponding training theories and the held-out theory.

Finally, we can account for the randomness of HRRs by marginalizing over different HRR
embedding functions ϕ resulting from different HRR initializations:

ŷ∗ | θ∗, θ,y =

∫
ϕ

k⊤
∗ (K + σ2

nI)
−1y p(ϕ) dϕ. (11)

From the central limit theorem and the stochasticity of HRRs, the resulting distributions of K
and k∗ are approximately Gaussian, so we chose to simplify further by approximating them using
Dirac delta functions around their means, K̄ = Eϕ(K) and k̄∗ = Eϕ(k∗), yielding the final GP
formulation that we used:

ŷ∗ | θ∗, θ,y ≈ k̄⊤
∗ (K̄ + σ2

nI)
−1y. (12)

We used a sampling approximation for K̄ and k̄∗ by averaging over the kernels for 100 different
HRR initializations. In practice, during cross-validation, we had a set of held-out data points
θ∗,y∗ (rather than a single data point) with a corresponding covariance matrix K∗ between the
training and held-out data points. So for each HRR initialization we computed a single kernel
for all three data partitions, averaged the kernels across different HRR initializations, and then
selected submatrices of the average kernel to get K̄ and K̄∗ accordingly for each cross-validation
fold.

Our initial results indicated that our analysis is confounded by game identity: it produces
nearly identical results to those of a simple model were the feature vector x is a 6-dimensional
one-hot vector representing the game currently being played (Figure S2). To address this, we
projected out game identity from the BOLD signal and the model:

y′ = Ry, (13)

K ′ = RKR⊤, (14)

where R = I −XgX
†
g is the residual forming matrix for the game identity encoding model defined

by the design matrix Xg († denotes the Moore-Penrose pseudoinverse). This is equivalent to using
the residuals from a game identity GLM fit to the BOLD signal.

10.10. Holographic reduced representations

We embedded EMPA theories in a vector space using holographic reduced representations
(HRRs; Plate, 1995), a kind of vector symbolic architecture (Gayler, 2004) that can represent
compositional structure in distributed form. HRRs were originally proposed as a model of associa-
tive memory and have since been used for modeling structured memories of past events (Franklin
et al., 2020). HRRs use circular convolution to associate pairs of items, represented by vectors, and
addition to create bags of associations. The resulting vectors can be further associated or grouped
together to represent higher-order compositions. Individual items could be extracted from the
resulting vector using circular correlation, although we do not take advantage of this in our work.
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An EMPA theory consists of three components – objects (SpriteSet), relations (InteractionSet),
and goals (TerminationSet) – that we embed separately and then combine into a single vector
(Figure S1).

The SpriteSet is a set of object (sprite) classes, each consisting of a set of properties with
given values (e.g., type=Missile, color=blue, speed=slow). The base vectors corresponding
to properties (e.g., type) and their values (e.g., Missile) are drawn from isotropic D-dimensional
Gaussian distributions N (0, σ2

hI), where σh = 1/
√
D, bound together using circular convolution,

and added to produce the vector for the corresponding sprite class (e.g., c3 = type ⃝⋆ Missile +

color ⃝⋆ blue + speed ⃝⋆ slow). The vectors for different sprite classes are scaled to unit length
and added together to produce the SpriteSet vector, which is also normalized to unit length.

The InteractionSet is a set of relations (interactions) between pairs of sprite classes, each
describing the outcome of an interaction. Each interaction has three key properties: an agent sprite
class, a patient sprite class, and an interaction type describing the outcome of the interaction (e.g.,
killObject). In addition, there may be other optional properties (e.g., scoreIncrement). As
with the SpriteSet, the base vectors for properties and their values are drawn from D-dimensional
isotropic Gaussian distributions, with the exception of values for agent and patient vectors which
are the SpriteSet vectors for the corresponding sprite classes. The property and value vectors are
bound together and added to produce the interaction vector (e.g., i3 = patient ⃝⋆ c0 + agent
⃝⋆ c3 + interaction ⃝⋆ killObject). The vectors for different interactions are normalized to
unit length and added together to produce the InteractionSet vector, which is also normalized to
unit length.

The TerminationSet is a set of exploitative goals (termination conditions) and exploratory
goals. Each termination condition has a type (e.g., counter), a sprite class, an outcome (e.g.,
loss), as well as any additional properties (e.g., count). Exploratory goals have two sprite classes
whose interaction is yet unobserved, as well as other optional properties. As with the Interac-
tionSet, the base vectors for properties and their values are drawn from D-dimensional isotropic
Gaussian distributions, with the exception of spite classes whose vectors are the corresponding
SpriteSet vectors. The property and value vectors are bound together and added to produce the
goal vector (e.g., t0 = type ⃝⋆ counter + sprite ⃝⋆ c0 + outcome ⃝⋆ loss). The values for
different goals are normalized to unit length and added together to produce the TerminationSet
vector, which is also normalized to unit length.

The resulting SpriteSet, InteractionSet, and TerminationSet vectors are finally added to pro-
duce the theory vector, which is also normalized to unit length. Following Plate (1995), we chose
the dimension D of the vectors as:

D = 3.16(k − 0.25) ln
m

q3
≈ 348 (15)

Where k = 10 is the number of stored vectors, m = 10 is the vocabulary size, and q = 0.05 is the
probability of retrieval error.

Note that we are not making a strong commitment to HRRs as a neural code. Specifically, we
are not testing the hypothesis that the brain encodes theories in a form similar to HRRs; rather,
we are using HRRs as a cognitively plausible theory embedding to construct the theory similarity
kernel K for our encoding model. We leave the question of theory coding as the topic of future
work.

10.11. Control models

We performed a similar encoding model analysis with 3 control models:
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• DDQN, to account for model-free RL representations,

• PCA, to account for low-level visual representations,

• VAE, to account for higher-level state representations.

Deep RL networks (DQNs) have achieved human-level performance on Atari games (Mnih et al.,
2015) and have been put forward as an account of human model-free RL in complex domains
(Cross et al., 2021). Following Tsividis et al. (2021), we used a double DQN (DDQN), which is
a version of the original DDQN with improved convergence properties (van Hasselt et al., 2016).
We ran the sequence of frames (scaled to 64× 64× 3), actions, and rewards from each participant
through DDQNs pre-trained for the corresponding games, as described above. For each frame,
we concatenated the activations from all layers into a single feature vector. The resulting feature
vector sequences were fed through the same analysis pipeline as the EMPA theory embeddings
(Figure 3A).

Principal component analysis (PCA) has been used to explain brain activity in the visual
pathway (Olshausen and Field, 1996; Chang and Tsao, 2017) and has been utilized as a control
model for human RL in Atari games (Cross et al., 2021). We first extracted principal components
from 430,000 randomly chosen frames (scaled to 64 × 64 × 3) across all participants. We used
the incremental PCA algorithm from the sklearn Python library with a batch size of 10,000. We
then projected the frame sequence from each participant’s gameplay on to the top 100 principal
components and fed the resulting feature vectors through the same analysis pipeline as the EMPA
theory embeddings.

Variational autoencoders (VAEs) extract a latent representation of an input space by learning
to compress and then reconstruct the input data using a deep neural network (Mohamed and
Jimenez Rezende, 2015; Watter et al., 2015; Higgins et al., 2017). VAEs have also been used as
a control model for human RL in Atari games (Cross et al., 2021). We used an open-source VAE im-
plementation (https://medium.com/dataseries/variational-autoencoder-with-pytorch-2d359cbf027b).
The encoder had 3 convolutional layers (conv1: 8 filters with size = 3×3 and stride = 2; conv2: 16
filters with size = 3×3 and stride = 2; conv3: 32 filters with size = 3×3 and stride = 2), followed
by 2 fully connected layers (linear1: 128 units, linear2: 128), followed by the bottleneck layer
(latent: 128 units). The decoder had a correspondingly inverted architecture, with 2 fully con-
nected layers followed by 3 convolution transpose layers. The VAE was trained by maximizing the
evidence lower bound (ELBO) on the marginal likelihood of the training data. As with PCA, we
trained on 430,000 random frames across all participants. We used batch size = 256 and trained
for 1,000 epochs using the Adam optimizer with learning rate = 0.001 and weight decay = 10−5.
We then ran the frame sequence from each participant’s gameplay through the VAE and used the
bottleneck activations as the feature vectors which were fed through the same analysis pipeline as
the EMPA theory embeddings.

10.12. GLM analyses

To look for brain regions sensitive to theory updates, we employed a standard GLM approach
using SPM12 (Figure 4A). We created a GLM with impulse regressors at time points when the
theory inferred from EMPA changed (θt ̸= θt−1). We also included nuisance regressors for visual
and motor confounds, variables relevant for theory updating, as well as motion estimates derived
from realignment and run-specific intercepts (Table S3). All regressors were convolved with the
canonical hemodynamic response function. As in our previous work (Tomov et al., 2020), group-
level statistical maps were thresholded at p < 0.001 and cluster FWE corrected at α = 0.05.
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As with the encoding model, ROIs were extracted by cross-referencing the peak voxels from the
group-level t-map (up to 3 peaks peaks per cluster, minimum 20 voxels apart) with the AAL3 atlas
(Rolls et al., 2020). For our confirmatory analysis, we used all anatomical ROIs with an average
beta coefficient for theory updating which was significantly different from zero across participants
(Figure S4). We generated PETHs for a given participant and ROI by taking the 20-s (10 TRs)
BOLD timecourse following every theory update event, averaged across all voxels in the ROI, and
subtracting a baseline BOLD signal averaged over the preceding 4 s (2 TRs) to obtain the change
in BOLD signal in response to theory updating. The resulting traces were averaged across theory
update events and aggregated across participants to obtain the final PETHs (Figure 4C). The same
analysis was performed for the control events. To directly compare the change in BOLD signal in
response to different kinds of events (Figure 4D), we averaged the BOLD timecourse within the
20-s window following each event before averaging across event instances and aggregating across
participants.

10.13. GLM comparison

To identify regions which are sensitive to different update events, we constructed 4 additional
GLMs analogous to the theory update GLM: 3 GLMs for single component updates (objects, rela-
tions, and goals, respectively) and a single GLM with separate regressors for all three component
updates (Figure 5A). Following our previous work (Tomov et al., 2018), we compared GLMs using
random effects Bayesian model selection (Rigoux et al., 2014). We approximated the log model
evidence as LME = -0.5 * BIC, where BIC is the Bayesian information criterion based on the
maximum likelihood estimate of the GLM parameters. This quantifies how well the GLM fits the
BOLD signal in the ROI for a given participant (penalizing for model complexity), with lower
values indicating a better fit. We report the protected exceedance probability (PXP), which is the
posterior probability that a given model is most prevalent in the population (Table 1).

10.14. Theory activation timecourse

We generated the overlap between our theory representation and theory updating t-maps by
taking the voxels that were significant in both group-level t-maps (Figure 6A). To generate PETHs
with predictivity scores (Figure 6B) for a given ROI and participant, we first obtained a predictivity
timecourse by computing the Fisher z-transformed Pearson correlation between the predicted and
actual pattern of BOLD activity across voxels at each TR. We then proceeded in a similar fashion
to the BOLD PETHs described above: the 20-s predictivity timecourses following theory updates
were baseline-subtracted (average of preceding 4 s), averaged across theory update events, and
aggregated across participants to obtain the PETHs. The same analysis was performed for the
control events. As with the BOLD PETHs, to directly compare the change in predictivity score in
response to different kinds of events (Figure 6C), we averaged the predictivity timecourse within
the 20-s window following each event before averaging across event instances and aggregating across
participants. When performing this analysis for separate theory component updates (Figure S6),
we used predictivity scores from encoding models fit separately for objects, relations, and goals,
respectively.

10.15. Effective connectivity

Following our previous work (Dorfman et al., 2021), we investigated the pattern of effective
connectivity between brain regions during theory updating using structural equation modeling
(Spirtes, 2005; Ramsey et al., 2010; Poldrack et al., 2011). We constructed a beta series GLM
with separate impulse regressors for individual theory update events. Since the BOLD signal
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is highly autocorrelated, which violates the structural equation modeling assumptions, we only
included events that are at least 10 s apart, using a rolling window starting from the first theory
update event in each run. The resulting beta coefficients are estimates of the instantaneous neural
activity at each theory update event. For each ROI, we averaged the estimates across voxels.
We searched the space of connectivity patterns using the IMaGES (independent multiple-sample
greedy equivalence search) algorithm (Ramsey et al., 2010; Poldrack et al., 2011) from the TETRAD
software package for causal modeling (Scheines et al., 1998). IMaGES is a version of greedy
equivalence search (GES; Meek, 1997), which starts with an empty causal graph and greedily adds
edges that improve the fit to the data according to the BIC. IMaGES extends GES to multiple
datasets (e.g., multiple fMRI participants) by averaging the BICs across datasets. To find the
effective connectivity pattern 2 s after theory updating, we performed the same analysis except
with all theory updates shifted back by 2 s.
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11. Supplemental Information

Figure S1: Illustration of HRRs. Related to Figure 3A.
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A

C

DGame identity EMPA, not controlling for game identity

EMPA, controlling for game identity

Figure S2: Controlling for game identity. Related to Figure 3B.
A. Group-level t-map from encoding model analysis using one-hot game identity feature vectors. Notation as in
Figure 3B.
B. Group-level t-map from theory encoding model (Figure 3A) without controlling for game identity.
C. Group-level t-map from theory encoding model (Figure 3A), controlling for game identity. Surface view corre-
sponding to slices from Figure 3B.
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Figure S3: Encoding model results with outliers visualized. Related to Figure 3C.
A. Fraction of voxels with significant correlation between predicted and actual BOLD for different models. Notation
and results as in Figure 3C, except with outliers visualized as dots.
B. Same as A, except for individual theory components.
C. Results from A aggregated across larger cortical areas.
D. Results from B aggregated across larger cortical areas.
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Figure S4: Beta coefficients from theory update GLM. Related to Figure 4. * - p < 0.05, ** - p < 0.01, *** -
p < 0.001, **** - p < 0.0001, ***** - p < 0.00001, ****** - p < 0.000001, ******* - p < 0.0000001 (two-sided
t-tests).
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B

A

Figure S5: BOLD responses to individual theory component updates. Related to Figure 4C,D.
A. Peri-event time histograms showing the average change in BOLD signal following individual theory component
updates. Notation as in Figure 4C.
B. Change in BOLD signal from A averaged over 20 s following corresponding event. Notation as in Figure 4D.

B

A

Figure S6: Thery component activation following corresponding component updates. Related to Figure 6B,C.
A. PETHs showing the average change in predictivity score following individual theory component updates. Nota-
tion as in Figure 6B.
B. Change in predictivity score from A averaged over 20 s following corresponding event. Notation as in Figure 6C.
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Sign AAL3 region BA Extent T-stat MNI
Positive Fusiform gyrus (L) 37 6655 9.035 -36 -58 -14

Middle occipital gyrus (L) 19 6655 7.869 -32 -86 16
Superior occipital gyrus (L) 17 6655 7.374 -8 -100 12
Cuneus (R) 17 3088 7.004 18 -98 8
Fusiform gyrus (R) 37 3088 6.109 38 -52 -18
Middle occipital gyrus (R) 19 3088 5.231 38 -88 2
IFG pars triangularis (L) 48 1534 6.998 -36 24 22
IFG pars triangularis (L) 45 1534 6.497 -52 34 12
IFG pars triangularis (L) 1534 4.910 -26 48 34
Middle temporal gyrus (L) 22 422 5.417 -56 -32 8
Middle temporal gyrus (L) 22 422 4.141 -32 -38 8
Rolandic operculum (R) 48 452 5.238 40 -26 22
Supramarginal gyrus (R) 2 452 5.072 58 -30 30
Supramarginal gyrus (R) 3 452 4.615 36 -22 42
IFG pars opercularis (R) 44 384 5.207 42 8 30
IFG pars triangularis (R) 48 384 4.892 42 26 20
Precentral gyrus (R) 273 5.160 54 -12 54
Precentral gyrus (R) 6 273 4.559 34 -10 48
Cerebellum (R) 224 5.041 14 -82 -28
Cerebellum (R) 224 3.955 38 -74 -40
Supplementary motor area (L) 6 260 4.984 -8 18 64
Middle frontal gyrus (L) 9 260 4.682 -32 14 54
Precuneus (R) 5 288 4.840 8 -48 56
Postcentral gyrus (R) 3 288 4.756 28 -40 52
Postcentral gyrus (R) 1 288 3.613 28 -42 72
Middle occipital gyrus (R) 19 284 4.799 34 -66 36

Table S1: Theory representation clusters from encoding model t-map. Related to Figure 3. BA, Brodmann area.
T-stat, t-statistic in peak voxel in cluster. MNI, Montreal Neurological Institute coordinates of peak voxel in cluster.
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Regressor name Event Parametric modulator Durations
theory change flag theory updates 0 s
<game name> gameplay 180 s
up up keypress 0.05 s
down down keypress 0.05 s
left left keypress 0.05 s
right right keypress 0.05 s
spacebar action keypress 0.05 s
frames gameplay frame 0.05 s
new sprites gameplay frame number of new sprites 0.05 s
killed sprites gameplay frame number of killed sprites 0.05 s
sprites gameplay frame number of alive sprites 0.05 s
non walls gameplay frame number of non-wall squares 0.05 s
avatar moved gameplay frame whether the avatar moved 0.05 s
moved gameplay frame number of sprites that moved 0.05 s
movable gameplay frame number of non-static sprites 0.05 s
collisions gameplay frame number of observed collisions 0.05 s
effects gameplay frame number of observed effects 0.05 s
sprite groups gameplay frame number of sprite categories 0.05 s
changed gameplay frame number of changed squares 0.05 s
avatar collision flag gameplay frame whether the avatar was in a collision 0.05 s
effectsByCol gameplay frame number of unique effects by color 0.05 s
play start episode start 0 s
play end episode end 0 s

Table S2: Theory update GLM regressors. Related to Figure 4.

Sign AAL3 region BA Extent T-stat MNI
Positive Fusiform gyrus (R) 19 30340 13.628 32 -72 -16

Fusiform gyrus (L) 37 30340 13.306 -36 -52 -18
Fusiform gyrus (R) 37 30340 12.661 28 -44 -12
IFG pars triangularis (R) 48 2264 10.151 44 26 22
IFG pars triangularis (R) 6 2264 3.849 38 2 44
IFG pars triangularis (L) 48 1974 8.704 -40 14 26
IFG pars triangularis (L) 45 1974 7.999 -46 36 10
Middle cingulate & paracingulate gyri (R) 23 398 6.253 2 -34 30
Superior frontal gyrus, dorsolateral (R) 8 349 5.642 4 30 48
Anterior orbital gyrus (R) 47 283 5.096 32 36 -14

Negative Superior temporal gyrus (R) 22 390 -6.091 68 -20 6
Heschl’s gyrus (R) 48 390 -4.032 42 -22 10
Rolandic operculum (L) 48 345 -6.072 -38 -34 22
Precentral gyrus (L) 6 504 -4.838 -20 -28 52
Supplementary motor area (L) 6 504 -3.679 -10 0 64

Table S3: Theory updating clusters from GLM t-map. Related to Figure 4. Notation as in Table S1.
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