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Abstract	
The	 human	 cerebral	 cortex	 underlies	 many	 of	 our	 unique	 strengths	 and	 vulnerabilities	 as	 a	
species	-	but	efforts	to	understand	its	organization	are	challenged	by	reliance	on	incompatible	
measurement	methods	at	different	spatial	scales.	Macroscale	features	such	as	cortical	folding	or	
functional	 activation	 are	 accessed	 through	 spatially	 dense	 neuroimaging	 maps,	 whereas	
microscale	 cellular	 and	 molecular	 features	 are	 typically	 measured	 with	 sparse	 postmortem	
sampling.	 Here,	we	 integrate	 these	 distinct	windows	 on	 brain	 organization	 by	 building	 upon	
existing	postmortem	data	to	 impute,	validate	and	analyze	a	 library	of	~20,000	spatially	dense	
neuroimaging-like	maps	of	human	cortical	gene	expression.	These	maps	allow	spatially	unbiased	
discovery	of	cortical	zones	with	extreme	transcriptional	profiles	or	unusually	rapid	transcriptional	
change	indexing	distinct	microstructure.	Comparison	with	neuroimaging	shows	these	molecular	
transitions	 are	 aligned	 with	 cortical	 folding	 and	 functional	 specializations.	 Next,	 we	 define	
canonical	cortex-wide	gene	co-expression	patterns,	and	show	that	these	integrate	diverse	spatial	
scales	 and	 temporal	 epochs	 of	 human	 brain	 organization	 -	 ranging	 from	 protein-protein	
interactions	to	large-scale	systems	for	cognitive	processing.	These	spatial	modes	of	cortical	gene	
expression	are	enriched	for	neuropsychiatric	disorder	risk	genes,	and	-	in	the	example	of	autism	
spectrum	disorder	-	define	a	functionally	enriched	subset	of	risk	genes	that	tags	specific	cyto-
laminar	features	and	predicts	the	 location	of	altered	cortical	anatomy	and	gene	expression	 in	
patients.	 Taken	 together,	 the	 methods,	 resources	 and	 findings	 described	 here	 advance	 our	
understanding	 of	 human	 cortical	 organization	 and	 offer	 flexible	 bridges	 to	 connect	 scientific	
fields	operating	at	different	spatial	scales	of	human	brain	research.	
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Introduction	
	 The	human	cerebral	cortex	is	an	astoundingly	complex	structure	that	underpins	many	of	
our	distinctive	 facilities	and	vulnerabilities1.	Achieving	a	mechanistic	understanding	of	cortical	
organization	in	health	and	disease	requires	integrating	information	across	its	many	spatial	scales:	
from	macroscale	cortical	folds	and	functional	networks2	to	the	gene	expression	programs	that	
reflect	microscale	cellular	and	laminar	features3,4.	However,	a	hard	obstacle	to	this	goal	is	that	
our	measures	of	the	human	cortex	at	macro-	and	microscales	are	fundamentally	mismatched	in	
their	spatial	sampling.	Macroscale	measures	from	in	vivo	neuroimaging	provide	spatially	dense	
estimates	of	structure	and	function,	but	microscale	measures	of	gene	expression	are	gathered	
from	spatial	discontinuous	postmortem	samples	that	have	so	far	only	been	linked	to	macroscale	
features	 using	 methodologically-imposed	 cortical	 parcellations5–7.	 Consequently,	 local	
transitions	in	human	cortical	gene	expression	remain	uncharacterized	and	unintegrated	with	the	
spatially	fine-grained	topographies	of	human	cortical	structure	and	function	that	are	revealed	by	
in	vivo	neuroimaging8,9.	Finding	a	way	to	bridge	this	gap	would	not	only	enrich	both	our	micro-	
and	macro-scale	models	of	human	cortical	organization,	but	also	provide	an	essential	framework	
for	translation	across	traditionally	siloed	scales	of	neuroscientific	research.	

Here,	we	use	spatially	sparse	postmortem	data	from	the	Allen	Human	Brain	Atlas	[AHBA3]	
to	generate	and	validate	spatially	dense	cortical	expression	maps	(DEMs)	for	20,781	genes	in	the	
adult	brain.	These	maps	allow	a	fine-grained	transcriptional	cartography	of	the	human	cortex,	
which	we	integrate	with	diverse	genomic,	histological	and	neuroimaging	resources	to	shed	new	
light	on	several	fundamental	aspects	of	human	cortical	organization	in	health	and	disease.	First,	
by	 focusing	 on	 local	 transitions	 in	 gene	 expression,	 we	 reveal	 a	 close	 spatial	 coordination	
between	molecular	and	 functional	 specializations	of	 the	cortex,	and	establish	 that	 the	spatial	
orientation	of	cortical	folding	and	functional	activation	is	aligned	with	local	tangential	transitions	
in	cortical	gene	expression.	Next,	by	defining	and	deeply-annotating	gene	co-expression	modules	
across	the	cortex	we	systematically	link	macroscale	measures	of	cortical	structure	and	function	
in	 vivo,	 to	 postmortem	 markers	 of	 laminar,	 cellular	 and	 temporal	 features	 of	 cortical	
microstructure	from	early	fetal	to	late	adult	life.	Finally,	as	a	proof-of-principle,	we	use	this	novel	
framework	to	secure	a	newly-integrated	multiscale	understanding	of	atypical	brain	development	
in	autism	spectrum	disorder	(ASD).		

The	tools	and	results	from	this	analysis	of	the	human	cortex	-	which	we	collectively	call	
Multiscale	Atlas	of	Gene	expression	for	Integrative	Cortical	Cartography	(MAGICC)	-		open	up	an	
empirical	bridge	that	can	now	be	used	to	connect	cortical	models	(and	scientists)	that	have	so	far	
operated	at	segregated	spatial	scales.	To	this	end,	we	share:	(i)	all	gene-level	DEMs	and	derived	
transcriptional	 landscapes	 in	 neuroimaging-compatible	 files	 for	 easy	 integration	 with	 in	 vivo	
macroscale	measures	of	human	cortical	 structure	and	 function;	and	 (ii)	 all	 gene	 sets	defining	
spatial	subcomponents	of	cortical	 transcription	for	easy	 integration	with	any	desired	genomic	
annotation	(MAGICC:	share	link).	
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Figure	 1.	 Creating	 and	 Benchmarking	 Spatial	 Dense	 Gene	 Expression	Maps	 in	 the	 Human	 Cortex.	 a,	 Spatially	
discontinuous	 Allen	 Human	 Brain	 Atlas	 (AHBA)	 microarray	 samples	 (red	 points)	 were	 aligned	 with	MRI-derived	
cortical	surface	mesh	reconstructions.	b,	AHBA	vertex	expression	values	were	propagated	using	nearest-neighbor	
interpolation	and	subsequently	smoothed	(c).	d,	Subject-level	maps	were	z-normalized	and	averaged	to	generate	a	
single	 reference	 dense	 expression	map	 (DEM)	 for	 each	 gene,	 as	well	 as	 the	 associated	 expression	 gradient	map	
(shown	 here	 for	 PVALB:	 top	 and	 bottom,	 respectively).	 e,	 Illustrative	 comparisons	 of	 selected	 DEMs	 with	
corresponding	macroscale	cortical	measures	from	independent	neuroimaging	and	histological	markers.	f,	Illustrative	
comparisons	of	selected	DEMs	against	microscale	cortical	measures:	scatterplot	showing	the	global	correlation	of	
regional	cellular	proportions	from	single	nucleus	RNAseq	(snRNAseq)	across	16	cells	and	6	regions10	with	DEM	values	
for	corresponding	cell-type	marker	genes	(R=0.48,	pspin<0.001,	excluding	Ex3-V1	and	In8-BA10	outlier	samples).	g,	
DEMs	for	markers	of	6	neuronal	subtypes	(3	excitatory:	FEZF2,	RORB,	THEMIS,	3	inhibitory:	PVALB,	SST,	VIP)	based	
on	recently	validated	subtype	marker	genes11,12	
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Results	
	
Creating	and	benchmarking	spatially	dense	maps	of	human	cortical	gene	expression	

To	create	a	dense	transcriptomic	atlas	of	the	cortex,	we	used	AHBA	microarray	measures	
of	gene	expression	for	20,781	genes	in	each	of	1304	cortical	samples	from	six	donor	left	cortical	
hemispheres	 (Methods,	 Table	 S1).	 We	 extracted	 a	 model	 of	 each	 donor's	 cortical	 sheet	 by	
processing	their	brain	MRI	scan,	and	identified	the	surface	location	(henceforth	"vertex")	of	each	
postmortem	cortical	sample	in	this	sheet	(Methods,	Fig	1a).	For	each	gene,	we	then	propagated	
measured	 expression	 values	 into	 neighboring	 vertices	 using	 nearest-neighbor	 interpolation	
followed	by	smoothing	(Methods,	Fig	1b,c).	Expression	values	were	scaled	across	vertices	and	
these	 vertex-level	 expression	 maps	 were	 averaged	 across	 donors	 to	 yield	 a	 single	 dense	
expression	map	 (DEM)	 for	 each	 gene	 -	 which	 provided	 estimates	 of	 expression	 at	 ~	 30,000	
vertices	across	the	cortical	sheet	(e.g.	DEM	for	PVALB	upper	panel	Fig	1d).	These	fine-grained	
vertex-level	measures	also	enabled	us	to	estimate	the	orientation	and	magnitude	of	expression	
change	for	each	gene	at	every	vertex	(e.g.	dense	expression	change	map	for	PVALB,	lower	panel	
Fig	1d)	

We	assessed	 the	 reproducibility	of	DEMs	by	 repeating	 the	above	process	 (Fig	1)	 after	
repeatedly	splitting	the	donors	into	non-overlapping	groups	of	varying	size,	and	using	learning	
curve	 analyses	 to	 estimate	 the	DEM	 reproducibility	 achieved	by	our	 full	 set	 of	 6	 donors.	 For	
cortically	expressed	genes	(Methods,	Table	S2),	the	average	reproducibility	of	gene	expression	
maps	was	r=0.56	(correlation	of	expression	values	for	a	gene	across	vertices),	and	the	average	
reproducibility	of	ranked	gene	expression	at	each	vertex	was	r=0.63	(correlation	of	expression	
values	at	a	vertex	across	genes)	(Fig	S1c-e).		These	estimates	were	substantially	lower	for	genes	
without	recorded	cortical	expression	(Methods,	Table	S2).	Regional	differences	in	the	density	of	
postmortem	sampling	in	the	AHBA	did	not	 influence	DEM	reproducibility	or	the	magnitude	of	
local	expression	change	captured	by	DEMs	(Methods,	Fig	S1h).	

To	assess	 the	biological	validity	of	DEMs	across	contrasting	spatial	 scales,	we	drew	on	
selected	 independent	macro-	 and	microscale	 cortical	measures	 that	 DEMs	 should	 align	 with	
based	on	known	biological	processes	(Fig	1e,f,g,	Methods).	At	the	macroscale,	maps	from	diverse	
measurement	 modalities	 showed	 strong	 and	 statistically-significant	 spatial	 correlations	 with	
their	corresponding	DEM(s)	relative	to	a	null	distribution	based	on	random	“spinning”	of	maps13	
(Fig	1e,	Methods,	all	pspin<0.01):	(i)	areas	of	cortex	activated	during	motor	fMRI	tasks	in	humans2	
vs.	the	average	DEM	for	canonical	cell	markers	of	large	pyramidal	neurons	(Betz	cells)	found	in	
layer	 V	 of	 the	 motor	 cortex	 that	 are	 the	 outflow	 for	 motor	 movements11,	 (ii)	 an	 in	 vivo	
neuroimaging	marker	of	cortical	myelination	(T1/T2	ratio14)	vs.	the	Myelin	Basic	Protein	DEM,	
which	marks	myelin	(iii)	the	relative	thickness	of	cortical	layer	IV15	vs.	the	average	DEM	for	layer	
IV	marker	genes16–18,	and	(iv)	the	degree	of	in	vivo	regional	cortical	thinning	by	MRI	in	Alzheimer	
disease	patients	who	have	at	 least	one	APOE	E4	variant19,20	vs.	 the	APOE	DEM	(thinning	map	
generated	from	119	APOE	E4	patients	and	633	controls	structural	MRI	(sMRI)	scans	as	detailed	
in	Methods).	 For	 initial	 biological	 validation	 of	 DEMs	 at	 microscale,	 we	 harnessed	 regional	
differences	 in	 the	 proportion	 of	 canonical	 neuronal	 subtypes	 as	 described	 by	 single	 nucleus	
RNAseq	 (snRNAseq)10.	We	 observed	 a	 strong	 spatial	 correlation	 (r=0.6,	 pspin<0.001)	 between	
regional	 marker	 gene	 expression	 in	 DEMs	 and	 regional	 proportions	 of	 their	 corresponding	
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neuronal	subtypes	from	snRNAseq	(Fig	1f,	Methods).	Fig	1g	shows	example	marker	gene	DEMs	
for	6	canonical	neuronal	subtypes:	3	excitatory	(FEZF2,	RORB,	THEMIS)	and	3	inhibitory	(PVAL,	
SST,	VIP)11,12.	Collectively,	the	above	tests	of	reproducibility	(Fig	S1)	and	convergent	validity	(Fig	
1e,f)	supported	use	of	DEMs	for	downstream	analyses.	
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Figure	2.	Mapping	transcriptional	distinctiveness	in	the	human	cortex	and	its	alignment	with	macroscale	structure	
and	function.	a,	Regional	transcriptomic	distinctiveness	(TD)	can	be	quantified	as	the	mean	absolute	z-score	of	dense	
expression	map	(DEM)	values	at	each	vertex	(top),	and	visualized	as	a	continuous	cortical	map	(middle,	TD	encoded	
by	color)	or	in	a	relief	map	of	the	flattened	cortical	sheet	(bottom,	TD	encoded	by	color	and	elevation,	Sup	Movie	1).	
Black	lines	on	the	inflated	view	identify	cuts	for	the	flattening	procedure.	The	cortical	relief	map	is	annotated	to	show	
the	central	sulcus	(CS),	and	peaks	of	TD	overlying	dorsal	sensory	and	motor	cortices	(Brodmann	Areas,	BA2,	BA4),	the	
primary	visual	cortex	(V1),	temporal	pole	(TGd),	insula	(Ins)	and	ventromedial	prefrontal	cortex	(OFC).	b,	Thresholding	
the	TD	map	through	spatial	permutation	of	DEMs	(tspin	Methods)	and	clustering	significant	vertices	by	their	expression	
profile	defined	six	TD	peaks	in	the	adult	human	cortex	(depicted	as	coloured	regions	on	terrain	and	inflated	cortical	
surfaces).	c,	Cortical	vertices	projected	into	a	3D	coordinate	system	defined	by	the	first	3	principal	components	(PCs)	
of	gene	expression,	coloured	by	the	continuous	TD	metric	(left)	and	TD	peaks	(right).	TD	peaks	are	focal	anchors	of	
cortex-wide	expression	PCs	d,	TD	peaks	show	statistically-significant	functional	specializations	in	a	meta-analysis	of	
in	 vivo	 functional	MRI	 data.	 e,	 The	 average	magnitude	 of	 local	 expression	 transitions	 across	 genes	 (color)	 and	
principal	orientation	of	these	transitions	(white	bars)	varies	across	the	cortex.	f,	Cortical	folds	in	AHBA	donors	(top	
surface	maps	and	middle	flat-map)	tend	to	be	aligned	with	the	principal	orientation	of	TD	change	across	cortical	
vertices	(p<0.01,	middle	histogram,	sulci	running	perpendicular	to	TD	change),	and	the	strength	of	this	alignment	
varies	between	cortical	regions.	g,	Putative	cortical	areas	defined	by	a	multimodal	 in	vivo	MRI	parcellation	of	the	
human	cortex2	(top	surface	maps	and	middle	flat-map)	also	tend	to	be	aligned	with	the	principal	direction	of	gene	
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expression	change	across	cortical	vertices	(p<0.01,	middle	histogram,	sulci	running	perpendicular	to	long	axis	of	area	
boundaries),	and	the	strength	of	this	alignment	varies	between	cortical	areas.		
	
Defining	and	surveying	the	human	cortex	as	a	continuous	transcriptional	terrain	

As	an	 initial	 summary	view	of	 transcriptional	patterning	 in	 the	human	cortex,	we	 first	
averaged	all	20,781	DEMs	to	represent	the	cortex	as	a	single	continuous	transcriptional	terrain,	
where	altitude	encodes	 the	 transcriptional	 distinctiveness	 (TD)	of	 each	 cortical	 point	 (vertex)	
relative	to	all	others	(TD	=	mean(abs(zexp)),	Figure	2a,	Sup	Movie	1).	This	terrain	view	revealed	6	
statistically-significant	TD	peaks	(Methods,	Fig.	2a,b)	which	recover	all	major	archetypal	classes	
of	 the	 mammalian	 cortex	 as	 defined	 by	 classical	 studies	 of	 laminar	 and	 myelo-architecture,	
connectivity,	and	functional	specialization21	encompassing:	primary	visual	(V1),	somatosensory	
[Brodmann	area	(BA22)	2],	and	motor	cortex	(BA	4),	as	well	 limbic	[temporal	pole	centered	on	
dorsal	 temporal	 area	 G	 (TGd23),	 ventral	 frontal	 centered	 in	 orbitofrontal	 cortex	 (OFC)]	 and	
heteromodal	 association	 cortex	 (BA	 9-46d).	Of	 note,	 our	 agnostic	 parcellation	 of	 all	 TD	 peak	
vertices	by	their	ranked	gene	lists	(Methods)	perfectly	cleaved	BA2	and	BA4	along	the	central	
sulcus	-	despite	there	being	no	representation	of	this	macroanatomical	landmark	in	DEMs.	

Integration	 with	 principal	 component	 analysis	 of	 DEMs	 across	 vertices	 (Methods,	 Fig	
S2a,b)	 showed	 that	 TD	 peaks	 constitute	 sharp	 poles	 of	 more	 recently-recognized	 cortical	
expression	gradients24	(Fig.	2c).	The	“area-like”	nature	of	these	TD	peaks	is	reflected	by	the	steep	
slopes	of	transcriptional	change	surrounding	them	(Figure	2a,e),	and	could	be	quantified	as	TD	
peaks	being	transcriptomically	more	distinctive	than	their	physical	distance	from	other	cortical	
regions	would	predict	(Fig.	S2c,d).	In	contrast,	transitions	in	gene	expression	are	more	gradual	
and	lack	such	sharp	transitions	in	the	cortical	regions	between	TD	peaks	(Fig	2	a,c,e,	Fig	S2h).	
Thus,	 because	 DEMs	 provide	 spatially	 fine-grained	 estimates	 of	 cortical	 expression	 and	
expression	change,	they	offer	an	objective	framework	for	arbitrating	between	area-based	and	
gradient-based	views	of	cortical	organization	in	a	regionally-specific	manner.		

The	TD	peaks	defined	above	exist	as	discrete	patches	of	cortex	and	the	distinctive	profile	
of	gene	expression	which	defines	each	peak,	and	 this	duality	offers	an	 initial	bridge	between	
macro-	and	microscale	views	of	cortical	organization.	Specifically,	we	found	that	each	TD	peak	
overlapped	 with	 a	 functionally-specialized	 cortical	 region	 based	 on	 meta-analysis	 of	 in	 vivo	
functional	neuroimaging	data25	 (Methods,	Fig.	2d,	Table	S3),	 and	 featured	a	gene	expression	
signature	 that	was	 preferentially	 enriched	 for	 a	 distinct	 set	 of	 biological	 processes,	 cell	 type	
signatures	(Fig	S2e)	and	cellular	compartments	(Methods,	Table	S2	and	S3).	For	example,	the	
peaks	overlapping	area	TGd	and	OFC	were	enriched	for	synapse-related	terms,	while	BA2	and	
BA4	TD	peaks	were	predominantly	enriched	for	metabolic	and	mitochondrial	terms.	At	a	cellular	
level,	V1	closely	overlapped	with	DEMs	for	marker	genes	of	the	Ex3	neuronal	subtype	known	to	
be	localised	to	V1(Lake	et	al.	2016),	while	BA4	closely	overlapped	Betz	cell	markers(Bakken	et	al.	
2021)	(Fig	S2e).	

The	expression	profile	of	each	TD	peak	was	achieved	through	surrounding	zones	of	rapid	
transcriptional	 change	 (Fig	 2a,e,	 Fig	 S2f,g).	We	 noted	 that	 these	 transition	 zones	 tended	 to	
overlap	 with	 cortical	 folds	 -	 suggesting	 an	 alignment	 between	 spatial	 orientations	 of	 gene	
expression	and	folding.	To	formally	test	this	idea	we	defined	the	dominant	orientation	of	gene	
expression	change	at	each	vertex	(Methods,	Fig	2e)	and	computed	the	angle	between	this	and	
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the	orientation	of	folding	(Methods).	The	observed	distribution	of	these	angles	across	vertices	
was	 significantly	 skewed	 relative	 to	 a	 null	 based	 on	 random	 alignment	 between	 angles	
(pspin<0.01,	Fig	2f,	Methods)	-	indicating	that	there	is	indeed	a	tendency	for	cortical	sulci	to	run	
perpendicular	 to	 the	 direction	 of	 fastest	 transcriptional	 change	 (pspin<0.01,	 Fig	 2f).	 A	 similar	
alignment	 was	 seen	 when	 comparing	 gradients	 of	 transcriptional	 change	 with	 the	 spatial	
orientation	of	putative	cortical	areas	defined	by	multimodal	in	vivo	neuroimaging2	(expression	
change	running	perpendicular	to	area	long-axis,	pspin<0.01,	Fig	2g,	Methods).	Visualizing	these	
expression-folding	 and	 expression-areal	 alignments	 revealed	 greatest	 concordance	 over	
sensorimotor,	 medial	 occipital,	 cingulate,	 and	 posterior	 perisylvian	 cortices	 (with	 notable	
exceptions	of	transcription	change	running	parallel	to	sulci	and	the	long-axis	of	putative	cortical	
areas	in	lateral	temporoparietal	and	temporopolar	regions).	As	a	preliminary	probe	for	causality,	
we	 examined	 the	 developmental	 ordering	 of	 regional	 folding	 and	 regional	 transcriptional	
identity.	 Mapping	 the	 expression	 of	 high-ranking	 TD	 genes	 in	 fetal	 cortical	 laser	 dissection	
microarray	data26	from	21	PCW	(Post	Conception	Weeks)	(Methods)	showed	that	the	localized	
transcriptional	identity	of	V1	and	TGd	regions	in	adulthood	is	already	apparent	well	before	these	
cortical	regions	show	mature	folding	topology27	(Fig	S2h).	Thus,	the	unique	capacity	of	DEMs	to	
resolve	 local	 orientations	 of	 expression	 change	 reveals	 a	 close	 spatial	 alignment	 between	
regional	transitions	of	cortical	gene	expression	at	microscale	and	regional	transitions	of	cortical	
folding,	structure	and	function	at	macroscale.	
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Figure	3.	Cortex-wide	Gene	Coexpression	Patterns	Reflect	Multiple	Spatial	Scales	and	Developmental	Epochs	of	
Brain	Organization.	a,	Overview	of	Weighted	Gene	Co-expression	Network	Analysis	(WGCNA)	pipeline	applied	to	the	
full	DEM	dataset.	Starting	top	 left:	 the	pairwise	DEM	spatial	correlation	matrix	 is	used	to	generate	a	 topological	
overlap	matrix	 between	genes	 (middle	 top)	which	 is	 then	 clustered.	Of	 the	 23	WGCNA-defined	modules,	 7	were	
significantly	enriched	for	non-cortical	genes	and	removed,	leaving	16	modules.	Each	module	is	defined	by	a	set	of	
spatially	co-expressed	genes,	for	which	the	principal	component	of	expression	can	be	computed	and	mapped	at	each	
cortical	point.	M6	is	shown	as	an	example	projected	onto	an	inflated	left	hemisphere	(M6	z-scored	expression	and	
M6	expression	change),	and	the	bulk	transcriptional	distinctiveness	(TD)	terrain	view	from	Fig	2	(M6	expression).	b,	
The	extremes	of	module	eigenmaps	highlight	different	peaks	in	the	cortical	terrain:	the	main	TD	terrain	colored	by	
TD	value	(center,	from	Fig	2),	surrounded	by	TD	terrain	projections	of	selected	WGCNA	Module	expression	eigenmaps.	
c,	WGCNA	modules	(eigenmaps	and	gradient	maps,	rows)	are	enriched	for	multiscale	aspects	of	cortical	organization	
(columns).	 Cell	 color	 intensity	 indicates	 pairwise	 statistical	 significance	 (p<0.05),	 while	 black	 outlines	 show	
significance	 after	 correction	 for	 multiple	 comparisons	 across	 modules.	 Columns	 capture	 key	 levels	 of	 cortical	
organization	at	different	 spatial	 scales	 (arranged	 from	macro-	 to	microscale)	 and	developmental	 epochs:	 spatial	
alignment	between	module	eigenmaps	and	in	vivo	MRI	maps	of	cortical	folding	orientation,	cortical	thickness	and	
T1/T2	ratio,	fMRI	resting-state	functional	networks;	enrichment	for	module	gene	sets	for	independent	annotations	
(Table	 S2)	 marking:	 cortical	 layers17,18;	 cell	 types10,12,28–34;	 subcellular	 compartments35;	 synapse-related	 genes36;	
protein-protein	interactions	between	gene	products	37;	temporal	epochs	of	peak	expression38	[“fetal”:	8-24	21	post	
conception	weeks	(PCW)	/	“perinatal''	24	PCW-6	months	/	“postnatal”	>6	months];	transient	layers	of	the	mid-fetal	
human	cortex	at	21	post	conception	weeks	(PCW)26[subpial	granular	zone	(SG),	marginal	zone	(MZ),	cortical	plate	
(CP),	subplate	(SP),	intermediate	zone	(IZ),	subventricular	zone	(SZ)	and	ventricular	zone	(VZ)];		and	fetal	cell	types	at	
17-18	PCW39.	d,	Independent	validation	of	multiscale	enrichments	for	selected	modules	M2	&	M12.	M2	significantly	
overlaps	the	Neurosynth	topic	associated	with	the	terms	motor,	cortex	and	hand.	Two	high-ranking	M2	genes,	MOG	
&	TF	exhibit	clear	layer	VI	peaks	on	ISH	and	GO	enrichment	analysis	myelin-related	annotations.	M12,	overlapping	
the	limbic	network	most	closely	overlapped	the	Neurosynth	topic	associated	with	social	reasoning.	Two	high-ranking	
M22	 genes	 GABRA2	 and	 GRIN2B	 showed	 layer	 II	 ISH	 peaks	 and	 GO	 enrichment	 analysis	 revealed	 synaptic	
annotations.	e,	Network	visualization	of	pairwise	overlaps	between	annotational	gene	sets	used	in	Fig	3c,	including	
WGCNA	module	gene	sets	(inset	expression	eigenmaps).	
	
	
	
Cortical	gene	coexpression	integrates	diverse	spatial	scales	of	human	brain	organization	

To	complement	the	TD	analyses	above	(Fig	2),	we	next	used	weighted	gene	co-expression	
network	analysis	(WGCNA40,	Methods,	Fig	3a)	to	achieve	a	more	systematic	integration	of	macro-	
and	 macroscale	 cortical	 features.	 This	 integration	 is	 enabled	 by	 the	 fact	 that	 each	 WGCNA	
module	 exists	 as	 both	 (i)	 a	 single	 expression	 map	 (eigenmap)	 for	 spatial	 comparison	 with	
neuroimaging	data	(Fig	3a,b,	Methods)	and,	(ii)	a	unique	gene	set	for	enrichment	analysis	against	
marker	genes	for	cortical	layers,	cell	types,	cell	compartments,	protein-protein	interactions	(PPI)	
and	GO	terms	(Methods,	Table	S2	and	S4).	Furthermore,	whereas	prior	applications	of	WGCNA	
to	 AHBA	 data	 have	 revealed	 gene	 sets	 that	 covary	 in	 expression	 across	 many	 different	
compartments	of	 the	brain4,41,42,	using	DEMs	as	 input	 to	WGCNA	generates	modules	 that	are	
purely	based	on	the	fine-scale	coordination	of	gene	expression	across	the	cortex.	Using	WGCNA,	
we	identified	16	gene	modules	(M1-M16),	which	we	then	deeply	annotated	against	independent	
measures	of	cortical	organization	at	diverse	spatial	scales	and	developmental	epochs	(Figure	3c,	
Methods).	

Several	WGCNA	modules	showed	statistically	significant	alignments	with	structural	and	
functional	features	of	the	adult	cerebral	cortex	from	in	vivo	imaging	(Methods,	Fig	3c14,43).	For	
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example,	 (i)	 the	M6	eigenmap	was	significantly	positively	correlated	with	 in	vivo	measures	of	
cortical	thickness	from	sMRI	and	enriched	within	a	limbic	functional	connectivity	network	defined	
by	resting	state	functional	connectivity	MRI,	and	(ii)	the	M8,	M9	and	M14	eigenmaps	showed	
gradients	of	expression	change	 that	were	significantly	aligned	with	 the	orientation	of	 cortical	
folding	(especially	around	the	central	sulcus,	medial	prefrontal	and	temporo-parietal	cortices,	Fig	
S3a).	 At	 microscale,	 several	 WGCNA	 module	 gene	 sets	 showed	 statistically	 significant	
enrichments	for	genes	marking	specific	cortical	layers17,18	and	cell	types10,12,28–34	(Methods,	Fig	
3c,	Table	S4).	These	microscale	enrichments	were	often	congruent	between	cortical	layers	and	
cell	classes	annotations,	and	in	keeping	with	the	linked	eigenmap	(Fig	3c,	Table	S4).	For	example,	
M4	-	which	was	uniquely	co-enriched	for	markers	of	endothelial	cells	and	middle	cortical	layers	-	
showed	peak	expression	over	dorsal	motor	cortices	which	are	known	to	show	expanded	middle	
layers11,15	with	rich	vascularization44	relative	to	other	cortical	regions.	Similarly,	M6	-	which	was	
enriched	 for	markers	 of	 astrocytes,	 microglia	 and	 excitatory	 neurons	 as	 well	 as	 layers	 1/2	 -	
showed	peak	expression	over	rostral	frontal	and	temporal	cortices	which	are	known	to	possess	
relatively	expanded	supragranular	 layers15	 that	predominantly	contain	 the	apical	dendrites	of	
excitatory	 neurons	 and	 supporting	 glial	 cells23.	 We	 also	 observed	 that	 modules	 with	 similar	
eigenmaps	(Fig	S3b)	(including	overlaps	of	multiple	modules	with	the	same	TD	peak)	could	show	
contrasting	 gene	 set	 enrichments.	 For	 example	M2	and	M4	both	 showed	peak	expression	of	
dorsal	sensorimotor	cortex	(i.e.	TD	areas	BA2	and	BA4),	but	M2	captures	a	distinct	architectonic	
signature	of	sensorimotor	cortex	from	the	mid-layer	vascular	signal	of	M4:	expanded	and	heavily	
myelinated	layer	6	11,15,45	(Fig	3c).	The	spatially	co-expressed	gene	modules	detected	by	WGCNA	
were	not	only	congruently	co-enriched	for	cortical	layer	and	cell	markers,	but	also	for	nanoscale	
features	such	as	sub-cellular	compartments35	(Table	S2	and	S4)	(often	aligning	with	the	cellular	
enrichments)	 and	 protein-protein	 interactions37	 (PPI)	 (Methods,	 Fig	 3c,	 Table	 S4).	 This	
demonstrates	the	capacity	of	our	resource	to	tease	apart	subtle	subcomponents	of	neurobiology	
based	on	cortex-wide	expression	patterns.	

To	 further	assess	 the	 robustness	of	 these	multiscale	 relationships,	we	 focused	on	 two	
modules	with	contrasting	multiscale	signatures	-	M2	and	M12	-	and	tested	for	reproducibility	of	
our	primary	findings	(Fig	3c)	using	orthogonal	methods.	Our	primary	analyses	indicated	that	M2	
has	 an	 expression	 eigenmap	which	 overlaps	with	 the	 canonical	 somato-motor	 network	 from	
resting-state	functional	neuroimaging43,	and	contains	genes	that	are	preferentially	expressed	in	
cortical	 layer	 6	 from	 layer-resolved	 transcriptomics17,18,	 and	 in	 oligodendrocytes	 from	
snRNAseq10,12,28–34	 (Fig	 3c).	 We	 were	 able	 to	 verify	 each	 of	 these	 observations	 through	
independent	validations	including:	spatial	overlap	of	M2	expression	with	meta	analytic	functional	
activations	 relating	 to	 motor	 tasks25;	 immunohistochemistry	 localization	 of	 high-ranking	 M2	
genes	to	deep	cortical	layers16	(Methods);	and	significant	enrichment	of	M2	genes	for	myelin-
related	GO	terms	(Fig	3d,	Table	S4).	By	contrast,	our	primary	analyses	indicated	that	M12	-	which	
had	peak	expression	over	ventral	frontal	and	temporal	limbic	cortices	-	was	enriched	for	marker	
genes	 for	 layer	 2,	 neurons	 and	 the	 synapse	 (Fig	 3c).	 These	 multiscale	 enrichments	 were	 all	
supported	 by	 independent	 validation	 analyses,	 which	 showed	 that:	 the	 M12	 eigenmaps	 is	
enriched	in	a	limbic	network	that	is	activated	during	social	reasoning25;	high-ranking	M12	marker	
genes	show	elevated	expression	in	upper	cortical	layers	by	immunohistochemistry16	(Methods);	
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and,	there	is	a	statistically-significant	over	representation	of	synapse	compartment	GO	terms	in	
the	M12	gene	set	(Fig	3d,	Table	S4).		
	
Linking	spatial	and	developmental	aspects	of	cortical	organization	

Given	 that	 adult	 cortical	 organization	 is	 a	 product	 of	 development,	 we	 next	 asked	 if	
eigenmaps	 of	 adult	 cortical	 gene	 expression	 (Fig	 3a,b)	 are	 related	 to	 the	 patterning	 of	 gene	
expression	between	fetal	stages	and	adulthood.	To	achieve	this,	we	tested	WGCNA	module	gene	
sets	 for	enrichment	of	developmental	marker	genes	 from	3	 independent	postmortem	studies	
(rightmost	 columns,	 Fig	 3c)	 capturing	 genes	 with	 differential	 expression	 between	 (i)	 3	
developmental	 epochs	 between	 8	 post-conception	 weeks	 (PCWs)	 and	 adulthood	 (BrainVar	
dataset	from	prefrontal	cortex38)	(ii)	7	histologically-defined	zones	of	mid-fetal	(21	PCW)	cortex26	
(Methods,	Table	S1	and	S2),	and	(iii)	16	mid-fetal	(17-18	PCW)	cell-types39	(Methods,	Table	S2).	

Comparison	with	the	BrainVar	dataset	revealed	that	most	module	eigenmaps	(13	of	all	
16	cortical	modules)	were	enriched	for	genes	with	developmentally-dynamic	expression	levels	
between	early	fetal	and	 late	adult	stages	(Figure	3c,	Table	S4).	This	finding	was	reinforced	by	
supplementary	analyses	modeling	developmental	trajectories	of	eigenmap	gene	set	expression	
between	 12	 PCW	 and	 40	 years	 in	 the	 BrainSpan	 dataset33	 (Methods,	 Fig	 S3c),	 and	 further	
qualified	by	the	observation	that	several	WGCNA	modules	were	also	differentially	enriched	for	
markers	 of	mid-fetal	 cortical	 layers	 and	 cell-types26,39	 (Figure	 3c,	 Table	 S4).	 As	 observed	 for	
multiscale	spatial	enrichments	(Fig	3c,d);	the	developmental	enrichments	of	modules	were	often	
closely	coordinated	with	one	another,	and	eigenmaps	with	similar	patterns	of	regional	expression	
could	possess	different	signatures	of	developmental	enrichment.	For	example,	the	M6	and	M12	
eigenmaps	 shared	a	 similar	 spatial	expression	pattern	 in	 the	adult	 cortex	 (peak	expression	 in	
medial	 prefrontal,	 anterior	 insula	 and	 medio-ventral	 temporal	 pole),	 but	 captured	 different	
aspects	of	human	brain	development	that	aligned	with	the	cyto-laminar	enrichments	of	M6	and	
M12	in	adulthood.	The	M6	gene	set	-	which	was	enriched	for	predominantly	glial	elements	of	
layers	 1	 and	 2	 in	 adult	 cortex	 -	 was	 also	 enriched	 for	 markers	 of	 mid-fetal	 microglia39,	 the	
transient	 fetal	 layers	 that	 are	 known	 to	 be	 particularly	 rich	 in	 mid-fetal	 microglia	 (subpial	
granular,	subplate	,	and	ventricular	zone46),	and	the	mid-late	fetal	epoch	when	most	microglial	
colonization	of	the	cortex	is	thought	to	be	achieved47	(Fig	3c).	 In	contrast,	the	M12	gene	set	-	
which	was	enriched	for	predominantly	neuronal	elements	of	layer	2	in	adult	cortex	-	also	showed	
enrichment	for	marker	genes	of	developing	fetal	excitatory	neurons,	the	fetal	cortical	subplate,	
and	windows	of	mid-late	fetal	development	when	developing	neurons	are	known	to	be	migrating	
into	a	maximally	expanded	subplate48.	

The	striking	co-enrichment	of	WGCNA	modules	for	features	of	both	the	fetal	and	adult	
cortex	(Fig	3c)	implied	a	patterned	sharing	of	marker	genes	between	cyto-laminar	features	of	the	
adult	and	fetal	cortex,	despite	the	fact	that	many	fetal	cell	types	and	cortical	compartments	are	
no	 longer	 apparent	 in	 adulthood.	 To	more	 directly	 test	 this	 idea,	 and	 characterize	 potential	
biological	themes	reflected	by	these	shared	marker	genes,	we	carried	out	pairwise	enrichment	
analyses	between	all	annotational	gene	sets	from	Fig	3c.	These	gene	sets	collectively	draw	from	
a	diverse	array	of	study	designs	encompassing	bulk,	laminar,	and	single	cell	transcriptomics	of	
the	 human	 cortex	 between	 10	 PCW	 and	 60	 years	 of	 life	 (Methods17,18,26,29–34,38,39).	 Network	
visualization	and	clustering	of	 the	 resulting	adjacency	matrix	 (Fig	S3d)	 revealed	an	 integrated	
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annotational	 space	 defined	 by	 five	 coherent	 clusters	 (Fig	 3e).	 A	 mature	 neuron	 cluster	
encompassed	markers	of	post-mitotic	neurons	and	the	compartments	that	house	them	in	both	
fetal	and	adult	cortex	(red,	Fig	3e,	Table	S2,	example	core	genes:	NRXN1,	SYT1,	CACNG8).	This	
cluster	also	included	genes	with	peak	expression	between	late	fetal	and	early	postnatal	life,	and	
those	 localizing	 to	 the	 plasma	membrane	 and	 synapse.	 A	 small	 neighboring	 fetal	 ganglionic	
eminence	cluster	(Fetal	GE,	yellow,	Fig	3e,	Table	S2,	example	core	genes:	NPAS3,	DSX,	DCLK2)	
contained	marker	sets	for	migrating	inhibitory	neurons	from	the	medial	and	caudal	ganglionic	
eminence	in	mid-fetal	life.	These	two	neuronal	clusters	-	mature	neuron	and	Fetal	GE	-	were	most	
strongly	 connected	 to	 the	M12	 gene	 set	 (Methods),	 which	 highlights	medial	 prefrontal,	 and	
temporal	 cortices	 possessing	 a	 high	 ratio	 of	 neuropil:neuronal	 cell	 bodies49,50.	 A	 mitotic	
annotational	cluster	(blue,	Fig	3e,	Table	S2,	example	core	genes:	CCND2,	MEIS2,	PHLDA1)	was	
most	distant	from	these	two	neuronal	clusters,	and	included	genes	showing	highest	expression	
in	early	development	as	well	as	markers	of	cycling	progenitor	cells,	radial	glia,	oligodendrocyte	
precursors,	germinal	zones	of	the	fetal	cortex,	and	the	nucleus.	This	cluster	was	most	strongly	
connected	 to	 the	M15	 gene	 set,	which	 shows	 high	 expression	 over	 occipito-parietal	 cortices	
distinguished	by	a	high	cellular	density	and	notably	low	expression	in	lateral	prefrontal	cortices,	
which	possess	low	cellular	density51.	The	mature	neuron	and	mitotic	clusters	were	separated	by	
two	remaining	annotational	clusters	for	non-neuronal	cell	types	and	associated	cortical	layers.	A	
myelin	 cluster	 (orange,	 Fig	 3e,	 Table	 S2,	 example	 core	 genes:	 MOBP,	 CNP,	 ACER3)	 -	 which	
contained	 gene	 sets	 marking	 adult	 layer	 6,	 oligodendrocytes,	 and	 organelles	 supporting	 the	
distinctive	biochemistry	and	morphology	of	oligodendrocytes	(the	golgi	apparatus,	endoplasmic	
reticulum	 and	 cytoskeleton)	 -	 was	 most	 connected	 to	 the	 M2	 gene	 set	 highlighting	 heavily	
myelinated	motor	cortex52.	A	non-neuronal	cluster	(yellow,	Fig	3e,	Table	S2,	example	core	genes:	
TGFBR2,	GMFG,	A2M)	-	which	encompassed	marker	sets	for	microglia,	astrocytes,	endothelial	
cells,	 pericytes,	 and	 markers	 of	 superficial	 adult	 and	 fetal	 cortical	 layers	 that	 are	 relatively	
depleted	of	neurons	-	was	most	connected	to	the	M6	gene	set	highlighting	medial	temporal	and	
anterior	cingulate	cortices	with	notably	high	non-neuronal	content49.	

These	analyses	show	that	the	regional	patterning	of	bulk	gene	expression	captures	the	
organization	of	the	human	cortex	across	multiple	spatial	scales	and	developmental	stages	such	
that	(i)	the	summary	expression	maps	of	spatially	co-expressed	gene	sets	align	with	independent	
in	vivo	maps	of	macroscale	structure	and	function	from	neuroimaging,	while	(ii)	the	spatially	co-
expressed	gene	sets	defining	these	maps	show	congruent	enrichments	for	specific	adult	cortical	
layers	and	cell-types	as	well	as	developmental	precursors	of	these	features	spanning	back	to	mid-
fetal	life.		
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Figure	 4.	ASD	 risk	 genes	 follow	 two	 different	 spatial	 patterns	 of	 cortical	 gene	 expression	which	 differentially	
predict	cortical	changes	in	ASD.	a,	Enrichment	of	WGCNA	module	gene	sets	for	risk	genes	associated	with	atypical	
brain	development	through	enrichment	of	rare	deleterious	variants	 in	studies	of	Autism	Spectrum	Disorder	(ASD),	
Schizophrenia	(Scz),	severe	developmental	disorders	(DDD,	Deciphering	Developmental	Disorders	study)	and	Epilepsy.	
Cell	color	intensity	indicates	pairwise	statistical	significance	(p<0.05),	while	outlined	matrix	cells	survived	correction	
for	multiple	comparisons	across	modules.	b,	Summary	of	multiscale	and	developmental	annotations	from	Fig	3c	for	
M12	and	M15:	the	only	two	WGCNA	modules	enriched	for	risk	genes	of	more	than	one	neurodevelopmental	disorder.	
c,	 M12	 and	M15	 genes	 clustered	 by	 the	 strength	 of	 their	 membership	 to	 each	 module.	 Color	 encodes	 module	
membership.	Shape	encodes	annotations	for	two	GO	Biological	Process	annotations	that	differ	between	the	module	
gene	 sets:	 neuronal	 communication	 and	 regulation	 of	 gene	 expression.	 Text	 denotes	 specific	 ASD	 risk	 genes.	 d,	
contrasting	GO	enrichment	of	M12	and	M15	 for	neuronal	 communication	and	 regulation	of	gene	expression	GO	
Biological	 Process	 annotations.	e,	M12	 and	M15	 differ	 in	 the	 developmental	 trajectory	 of	 their	 average	 cortical	
expression	between	early	fetal	and	mid-adult	life33.	f,	Regional	differences	in	intrinsic	expression	of	the	M15	module	
(but	not	the	M12	module)	in	adult	cortex	is	correlated	with	regional	variation	in	the	severity	of	altered	cortical	gene	
expression	 (number	 of	 differentially	 expressed	 genes)	 in	 ASD53.	 g,	 Statistically-significant	 regional	 alterations	 of	
cortical	thickness	(CT)	in	ASD	compared	to	typically	developing	controls	from	in	vivo	neuroimaging54,55	(top).	Areas	of	
cortical	thickening	show	a	statistically-significant	spatial	overlap	(Dice	overlap	=	0.68,	pspin<0.01)	with	regions	of	peak	
intrinsic	expression	for	M15	in	adult	cortex	(bottom).	h,	M15	eigenmap	expression	(but	not	M12	eigenmap)	shows	
significant	spatial	correlation	with	relative	cortical	thickness	change	in	ASD.	

	
	

ASD	 risk	 genes	 follow	 two	 different	 spatial	 patterns	 of	 cortical	 expression,	 which	 capture	
distinct	aspects	of	cortical	organization	and	differentially	predict	cortical	changes	in	ASD	

The	 findings	 above	 establish	 that	 gene	 co-expression	 modules	 in	 the	 human	 cortex	
capture	multiple	 levels	 of	 biological	 organization	 ranging	 from	 subcellular	 organelles,	 to	 cell	
types,	cortical	layers	and	macroscale	patterns	of	brain	structure	and	function.	Given	that	genetic	
risks	 for	 atypical	 brain	 development	 presumably	 play	 out	 through	 such	 levels	 of	 biological	
organization,	 we	 hypothesized	 that	 disease	 associated	 risk	 genes	 would	 be	 enriched	 within	
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WGCNA	module	 gene	 sets.	 Testing	 this	 hypothesis	 simultaneously	 offers	 a	means	 of	 further	
validating	 our	 analytic	 framework,	while	 also	 potentially	 advancing	 understanding	 of	 disease	
biology.	To	 test	 for	disease	gene	enrichment	 in	WGCNA	modules,	we	compiled	 lists	of	 genes	
enriched	 for	deleterious	 rare	variants	 in	 	autism	spectrum	disorder56,57	 (ASD),	 schizophrenia58	
(SCZ),	 severe	 developmental	 disorders59	 and	 epilepsy60	 (Table	 S2).	 We	 considered	 rare	 (as	
opposed	to	common)	genetic	variants	to	focus	on		high	effect-size	genetic	associations	and	avoid	
ongoing	uncertainties	regarding	the	mapping	of	common	variants	to	genes61.	We	observed	that	
disease	associated	gene	sets	were	significantly	enriched	in	several	WGCNA	modules	(Fig	4a),	with	
two	modules	showing	enrichments	for	more	than	one	disease:	M15	(ASD,	SCZ	and	DDD)	and	M12	
(ASD	and	Epilepsy).	ASD	was	the	only	disorder	to	show	a	statistically-significant	enrichment	of	
risk	genes	within	both	M12	and	M15	(Fig	4a)	-	providing	an	ideal	setting	to	ask	if	and	how	this	
partitioning	of	ASD	risk	genes	maps	onto	(i)	multiscale	brain	organization	in	health,	and	(ii)	altered	
brain	organization	in	ASD.	

The	eigenmaps	and	gene	 set	enrichments	of	M12	vs.	M15	 implicated	 two	contrasting	
multiscale	motifs	in	the	biology	of	ASD	(Fig	4b).	ASD	risk	genes	including	SCN2A,	SYNGAP1,	and	
SHANK2	 resided	 within	 the	 M12	 module	 (Fig	 4c)	 which	 is	 most	 highly	 expressed	 within	 a	
distributed	cortical	system	that	is	activated	during	social	reasoning	tasks	(pspin<0.01,	Fig	3c,d,	Fig	
5b).	The	M12	gene	set	is	also	enriched	for:	genes	with	peak	cortical	expression	in	late-fetal	and	
early	 postnatal	 life;	 marker	 genes	 for	 the	 fetal	 subplate	 and	 developing	 excitatory	 neurons;	
markers	of	layer	2	and	mature	neurons	in	adult	cortex;	and	synaptic	genes	involved	in	neuronal	
communication	 (Fig	3c,d,	Fig	4b,c,d,e,	 Table	 S4).	 In	 contrast,	ASD	 risk	 genes	 including	ADNP,	
KMT5B,	and	MED13L	resided	within	the	M15	module	(Fig	5c),	which	is	most	highly	expressed	in	
primary	 visual	 cortex	 and	 associated	 ventral	 temporal	 pathways	 for	 object	
recognition/interpretation62	 (pspin<0.05,	 Fig	 3c,d,	 Fig	 4b,	 Table	 S4).	 The	 M15	 module	 is	 also	
enriched	for:	genes	showing	peak	cortical	expression	in	early	fetal	development,	marker	genes	
for	 cycling	 progenitor	 cells	 in	 the	 fetal	 cortex;	 markers	 of	 layer	 2,	 inhibitory	 neurons	 and	
oligodendrocyte	precursors	in	the	adult	cortex	(Fig	3c,d,	Fig	4b,c,d,e,	Table	S4).	The	alignment	of	
ASD	 risk	 genes	with	M12	 and	M15	was	 reinforced	when	 considering	 all	 135	 ASD	 risk	 genes:		
spatial	 co-expression	 analyses	 split	 these	 genes	 into	 two	 clear	 subsets	with	mean	expression	
maps	that	most	closely	resembled	M12	&	M15	(Fig	S4a,b).	Thus	-	using	only	spatial	patterns	of	
cortical	gene	expression	in	adulthood,	our	analytic	framework	was	able	to	recover	the	previous	
PPI	and	GO-based	partitioning	of	ASD	risk	genes	into	synaptic	vs.	nuclear	chromatin	remodeling	
pathways57,63,	and	then	place	these	pathways	into	a	richer	biological	context	based	on	the	known	
multiscale	associations	of	M12	and	M15	(Figs	3c,	4a).	

We	next	sought	to	address	whether	regional	differences	in	M12	and	M15	expression	were	
related	to	regional	cortical	changes	observed	in	ASD.	To	test	this	idea,	we	used	two	orthogonal	
indices	of	cortical	change	in	ASD	that	capture	different	levels	of	biological	analysis	-	the	number	
of	differentially	expressed	genes	(DEGs)	postmortem53,	and	the	magnitude	of	changes	in	cortical	
thickness	(CT)	as	measured	by	in	vivo	sMRI55.	Regional	DEG	counts	were	derived	from	a	recent	
postmortem	 study	 of	 725	 cortical	 samples	 from	 11	 cortical	 regions	 in	 112	 ASD	 cases	 and	
controls53,	 and	 compared	 with	 mean	 M12	 and	 M15	 expression	 within	 matching	 areas	 of	 a	
multimodal	MRI	 cortical	parcellation2.	The	magnitude	of	 regional	 transcriptomic	disruption	 in	
ASD	was	statistically-significantly	positively	correlated	with	region	expression	of	the	M15	module	
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(r=0.6,	pspin<0.05),	but	not	the	M12	module	(r=-0.3,	pspin>0.05)	(Fig	4f).	This	dissociation	is	notable	
because	M15	(but	not	M12)	is	enriched	for	genes	involved	in	the	regulation	of	gene	expression	
(Fig	4d).	Thus	the	enrichment	of	ASD	risk	genes	within	M15,	and	the	intrinsically	high	expression	
of	M15	 in	 occipital	 cortex	may	 explain	why	 the	 occipital	 cortex	 is	 a	 hotspot	 of	 altered	 gene	
expression	in	ASD.	

To	compare	M12	and	M15	expression	with	regional	variation	in	cortical	anatomy	changes	
in	 ASD,	we	 harnessed	 the	multicenter	 ABIDE	 datasets	 containing	 brain	 sMRI	 scans	 from	 751	
participants	with	 idiopathic	 ASD	 and	 773	 controls54,55.	We	 preprocessed	 all	 scans	 using	well-
validated	tools	for	harminonized64		estimation	64	of	cortical	thickness	(CT)64	from	multicenter	data	
(Methods),	and	then	modeled	CT	differences	between	ASD	and	control	cohorts	at	150,000	points	
(vertices)	 across	 the	 cortex	 (Methods).	 This	 procedure	 revealed	 two	 clusters	 of	 statistically-
significant	CT	change	 in	ASD	(Methods,	Fig	4g,	upper	panel)	encompassing	visual	and	parietal	
cortices	 (relative	 cortical	 thickening	 vs.	 controls)	 as	well	 as	 superior	 frontal	 vertices	 (relative	
cortical	 thinning).	 The	 occipital	 cluster	 of	 cortical	 thickening	 in	 ASD	 showed	 a	 statistically-
significant	spatial	overlap	with	the	cluster	of	peak	M15	expression	(Fig	4g,	upper	panel,	Methods,	
Dice	coefficient	=	0.7,	pspin<0.01),	and	relative	cortical	thickness	change	correlated	with	the	M15	
eigenmap	(Fig	4h).	In	contrast,	M12	expression	was	not	significantly	aligned	with	CT	change	in	
ASD	(Fig	4g,h).	Testing	these	relationships	in	the	opposite	direction	-	i.e.	asking	if	regions	of	peak	
M12	and	M15	expression	are	enriched	for	directional	CT	change	in	ASD	relative	to	other	cortical	
regions	-	recovered	the	M15-specific	association	with	regional	cortical	thickening	in	ASD	(Fig	S4c).		

Taken	 together,	 the	 above	 findings	 reveal	 that	 an	 occipital	 hotspot	 of	 altered	 gene	
expression	and	cortical	thickening	in	ASD	overlaps	with	an	occipital	hotspot	of	high	expression	
for	 a	 subset	 of	 ASD	 risk	 genes.	 These	 ASD	 risk	 genes	 are	 spatially	 co-expressed	 in	 a	module	
enriched	for	several	connected	layers	of	biological	organization	(Fig	3c,	4b,c,d)	spanning:	nuclear	
pathways	 for	 chromatin	 modeling	 and	 regulation	 of	 gene	 expression;	 G2/M	 phase	 cycling	
progenitors	and	excitatory	neurons	in	the	mid-fetal	cortex;	oligodendrocytes	and	layer	2	cortical	
neurons	in	adult	cortex;	and	occipital	functional	networks	involved	in	visual	processing.	These	
multiscale	aspects	of	cortical	organization	can	now	be	prioritized	as	potential	targets	for	a	subset	
of	genetic	risk	factors	in	ASD,	and	the	logic	of	this	analysis	in	ASD	can	now	be	generalized	to	any	
disease	genes	of	interest.	

	
Discussion		

We	 build	 on	 the	 most	 anatomically	 comprehensive	 dataset	 of	 human	 cortex	 gene	
expression	available	to	date3,	to	generate,	validate,	characterize,	apply	and	share	spatially	dense	
measures	of	gene	expression	that	capture	the	topographically	continuous	nature	of	the	cortical	
mantle.	By	representing	patterns	of	human	cortical	gene	expression	without	the	imposition	of	a	
priori	 boundaries24,41	 our	 library	of	 dense	 gene	expression	maps	 (DEMs)	 allows	anatomically-
unbiased	analyses	of	 local	gene	expression	 levels	as	well	as	 the	magnitudes	and	directions	of	
local	gene	expression	change.	This	core	spatial	property	of	DEMs	unlocks	several	methodological	
and	biological	advances.	First,	the	unparcellated	nature	of	DEMs	allows	us	to	agnostically	define	
cortical	zones	with	extreme	transcriptional	profiles	or	unusually	rapid	transcriptional	change	-	
which	 we	 show	 to	 capture	 microstructural	 cortical	 properties	 and	 align	 with	 folding	 and	
functional	specializations	at	the	macroscale	(Fig	2).	By	establishing	that	some	of	these	cortical	
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zones	are	evident	before	cortical	folding,	we	lend	support	to	a	“protomap”65	like	model	where	
the	 placement	 of	 some	 cortical	 folds	 is	 set-up	 by	 rapid	 tangential	 changes	 in	 cyto-laminar	
composition	of	the	developing	cortex66–68.	Second,	we	use	spatial	correlations	between	DEMs	to	
decompose	the	complex	topography	of	cortical	gene	expression	into	a	smaller	set	of	cortex-wide	
transcriptional	 programs	 that	 capture	 distinct	 aspects	 of	 cortical	 biology	 -	 at	multiple	 spatial	
scales	and	multiple	developmental	epochs	(Fig	3).	This	effort	provides	an	integrative	model	that	
links	expression	signatures	of	cell-types	and	layers	in	prenatal	life	to	the	large-scale	patterning	of	
regional	gene	expression	in	the	adult	cortex,	which	can	in	turn	-	through	DEMs	-	be	compared	to	
the	full	panoply	of	in	vivo	brain	phenotypes	provided	by	modern	neuroimaging.	Third,	we	find	
that	some	of	these	cortex-wide	expression	programs	in	adulthood	are	enriched	for	disease	risk	
genes,	and	we	show	that	the	expression	topography	for	a	functionally-enriched	subset	of	ASD	
risk	genes	can	predict	regional	changes	of	gene	expression	and	cortical	thickness	in	ASD	(Fig	4).	
The	multiscale	annotations	of	this	spatially	co-expressed	set	of	risk	genes	propose	specific	cortical	
layers,	cell-types,	subcellular	compartments,	biological	processes	and	developmental	stages	that	
may	translate	genetic	risk	into	altered	cortical	organization	in	ASD.	Crucially,	the	strategy	applied	
in	our	analysis	of	ASD	risk	genes	can	be	generalized	to	risk	genes	for	any	brain	disorder	of	interest	
to	place	known	risk	factors	for	disease	into	the	rich	context	of	multiscale	cortical	biology.		

Finally,	the	collection	of	DEMs,	annotational	gene	sets	and	statistical	tools	used	in	this	
work	 (NAME)	 is	 shared	 as	 a	 new	 resource	 to	 accelerate	multiscale	 neuroscience	 by	 allowing	
flexible	 and	 spatially	 unbiased	 translation	 between	 genomic	 and	 neuroanatomical	 spaces.	Of	
note,	 this	 resource	 can	 easily	 incorporate	 any	 future	 expansions	 of	 brain	 data	 in	 either	
neuroanatomical	 or	 genomic	 space.	 We	 anticipate	 that	 it	 will	 be	 particularly	 valuable	 to	
incorporate	 new	 data	 from	 the	 nascent,	 but	 rapidly	 expanding	 fields	 of	 high	 throughput	
histology15,	 single	 cell-omics11,	 and	 large-scale	 imaging-genetics	 studies69.	 Taken	 together,	
MAGICC	enables	a	new	integrative	capacity	in	the	way	we	study	the	brain,	and	hopefully	serves	
to	spark	new	connections	between	previously	distant	datasets,	ideas	and	researchers.	
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1.	Creating	spatially	dense	maps	of	human	cortical	gene	expression	(Fig	1a-d)	
	

Cortical	 surfaces	were	 reconstructed	 for	each	AHBA	donor	MRI	using	FreeSurfer1,	and	
coregistered	between	donors	 using	multimodal	 surface	matching2.	An	 average	donor	 cortical	
mesh	was	also	created	for	analyses	of	cortical	morphology,	by	averaging	the	vertex	coordinates	
of	volumetrically	aligned	meshes	for	the	6	donors.		

Probe-level	data	measures	of	gene	expression	 for	all	 samples	 in	 the	AHBA	adult	brain	
microarray	 dataset	 were	 downloaded	 from	 (https://human.brain-map.org/static/download)	 -	
providing	log2-transformed	measures	of	gene	expression	for	58,692	probes	in	each	of	3,702	brain	
tissue	samples	from	six	donors	(Table	S1).	Within-	and	across-brain	normalization	of	these	probe	
level	gene	expression	values	was	implemented	as	detailed	by	the	Allen	Institute	for	Brain	Science	
White	 Paper	 (http://help.brain-
map.org/download/attachments/2818165/WholeBrainMicroarray_WhitePaper.pdf).	 Probes	
were	reannotated	using	the	updated	manifest	from	Arnautkevic	et	al3,	excluding	genes	lacking	
an	 Entrez,	 and	 probe-level	 expression	 values	 were	 averaged	 for	 each	 gene	 to	 yield	 a	 single	
gene*sample	expression	matrix	for	each	donor.	As	only	2	donors	had	measurements	from	right	
hemispheres,	samples	were	filtered	by	region	to	retain	those	originating	from	the	cerebral	cortex	
left	hemisphere	only.	This	decision	was	made	given	evidence	for	potential	asymmetries	in	gene	
expression	 within	 the	 human	 cortex4,	 and	 known	 differences	 in	 cortical	 shape	 between	 the	
hemispheres	that	complicate	the	reflection	of	sample	locations	from	left	to	right	cortical	sheets5.	
The	 above	 steps	 resulted	 in	 a	 final	 set	 of	 6	 donor-level	 gene*sample	matrices	 from	 the	 left	
cerebral	 cortex	 for	 downstream	 analyses.	 These	 matrices	 collectively	 contained	 scaled	
expression	values	for	20,781	genes	in	each	of	1304	cortical	samples.	

Native	subject	MRI	coordinates	were	extracted	for	every	cortical	sample	in	each	donor	
(Fig	1a).	Nearest	mid-surface	cortical	vertices	were	identified	for	each	sample,	excluding	samples	
further	 than	 20mm	 from	a	 cortical	 coordinate.	 For	 cortical	 vertices	with	 no	 directly	 sampled	
expression,	expression	values	were	 interpolated	 from	their	nearest	 sampled	neighbor	vertex6	
(Fig	1b).	Sampling	density	ρ	in	each	subject	was	calculated	as	the	number	of	samples	per	mm2,	
from	which	average	inter-sample	distance,	d,	was	estimated	using	the	formula:	� = 1

�
,	giving	a	

mean	intersample	distance	of	17.7mm	±	1.2mm.	Surface	expression	maps	were	smoothed	with	
a	20mm	full-width	at	half	maximum	Gaussian	kernel,	selected	to	be	consistent	with	this	sampling	
density	(Fig	1c).	To	align	subjects’	expression,	expression	values	were	z-scored	by	the	mean	and	
standard	deviation	across	vertices	and	 then	averaged	across	 the	6	subjects	 (Fig	1d)	 -	yielding	
spatially	dense	estimates	of	expression	at	29696	vertices	across	the	left	cerebral	cortex	per	gene.	
For	Y-linked	genes,	DEMs	were	calculated	from	male	donors	only.	For	each	of	the	resulting	20,781	
gene-level	expression	maps,	the	orientation	and	magnitude	of	gene	expression	change	at	each	
vertex	(i.e.	the	gradient)	was	calculated	for	folded,	inflated	and	flattened	representations	of	the	
cortical	sheet.	
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2.	Benchmarking	dense	expression	maps	(DEMs)	
	

a. Replicability	and	independence	from	cortical	sampling	density	(Fig	S1).	
	

We	assessed	the	replicability	of	DEMs	by	applying	the	above	steps	for	DEM	generation	to	
non-overlapping	 donor	 subsets	 and	 comparing	 DEMs	 between	 the	 resulting	 sub-atlases.	We	
quantified	DEM	agreement	between	sub-atlases	at	both	the	gene-level	(correlation	in	expression	
across	vertices	for	each	gene,	Fig	1c,d)	and	the	vertex-level	(correlation	in	ranking	of	genes	by	
their	scaled	expression	values	at	each	vertex,	Fig	1e,f).	These	sub-atlas	comparisons	were	done	
between	all	possible	pairs	of	individuals,	donor	duos	and	donor	triplets	to	give	distributions	and	
point	estimates	of	reproducibility	for	atlases	formed	of	1,	2	and	3	donors.	Learning	curves	were	
fitted	to	these	data	to	estimate	the	projected	gene-level	and	vertex-level	DEM	reproducibility	of	
our	full	6-subject	sample	atlas7(Fig	S1c,e).		

To	assess	the	effect	of	data	interpolation	in	DEM	generation	we	compared	gene-level	and	
vertex-level	reproducibility	of	DEMs	against	a	“ground	truth”	estimate	of	these	reproducibility	
metrics	 based	 on	 uninterpolated	 expression	 data.	 To	 achieve	 a	 strict	 comparison	 of	 gene	
expression	values	between	different	individuals	at	identical	spatial	locations	we	focused	these	
analyses	on	the	subset	of	AHBA	samples	where	samples	from	two	subjects	were	within	3	mm	
geodesic	distance	of	one	another.	This	resulted	in	582	instances	(spatial	locations)	with	measures	
of	gene	expression	for	pairs	of	donors	from	both	DEMs	and	un-interpolated	AHBA	expression	
data.	We	computed	gene-level	and	vertex-level	 reproducibility	of	expression	using	 the	paired	
donor	data	at	each	of	these	sample	points	-	for	both	DEM	and	uninterpolated	AHBA	expression	
values.	 By	 comparing	 DEM	 reproducibility	 estimates	 with	 those	 for	 uninterpolated	 AHBA	
expression	data,	we	were	able	to	quantify	the	combined	effect	of	interpolation	and	smoothing	
steps	 in	 DEM	 generation.	 We	 used	 cross-vertex	 correlation	 to	 compare	 vertex-level	
reproducibility	values	between	DEMs	and	uninterpolated	AHBA	expression	data	(Fig	S1a).	We	
used	gene-level	reproducibility	values	from	DEMs	and	uninterpolated	AHBA	expression	data	to	
compute	a	gene-level	difference	 in	 reproducibility,	 and	we	 then	visualized	 the	distribution	of	
these	difference	values	across	genes	(Fig	S1b).	

Theoretically,	 regional	 gradients	 of	 expression	 change	 in	 DEMs	 could	 be	 biased	 by	
regional	variations	in	the	density	of	AHBA	cortical	sampling.	To	test	for	this,	in	each	individual	
subject,	we	 calculated	 the	 spatial	 relationship	between	 the	 sampling	density	 and	mean	gene	
gradient	magnitude	(Fig	S1g).	We	additionally	tested	whether	the	regional	variability	of	gene	rank	
predictability	in	the	atlas	(shown	in	Fig	S1h)	was	linked	to	the	sampling	density	within	the	atlas.	
	

b. Alignment	with	reference	measures	of	cortical	organization	(Fig	1	e-g)	
	

We	first	determined	if	our	DEM	library	was	able	to	differentiate	between	genes	that	are	
known	 to	 show	 cortical	 expression	 (CExp)	 and	 those	 without	 any	 prior	 evidence	 of	 cortical	
expression	 (NCExp)	 -	 motivated	 by	 the	 strong	 expectation	 that	 NCExp	 genes	 should	 lack	 a	
consistent	spatial	gradient	in	expression.	For	this	test,	we	defined	a	set	of	16573	CExp	genes	by	
concatenating	 the	 genes	 coding	 for	 proteins	 found	 in	 the	 “cortex”	 tissue	 class	 of	 the	human	
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protein	atlas8	genes	identified	as	markers	for	cortical	layers	or	cortical	cells	(see	below,9–19).	The	
remaining	4,208	genes	in	our	DEM	library	were	classified	as	NCExp.	Independent	T-tests	were	
used	to	assess	whether	the	distributions	of	gene-level	reproducibility	values	differed	significantly	
between	CExp	and	NCExp	genes	(Fig	S1d).	We	projected	vertex-level	reproducibility	values	for	
CExp	and	NCExp	genes	onto	the	cortical	surface	for	visual	comparison,	and	also	computed	the	
mean	cross-vertex	reproducibility	for	each	of	these	maps	(Fig	S1f).	

We	 next	 compiled	 data	 from	 independent	 studies	 for	 a	 range	 of	 macroscale	 and	
microscale	cortical	features	that	would	be	expected	to	align	with	specific	DEM	maps,	and	asked	
if	 the	spatial	patterns	of	cortical	gene	expression	from	DEMs	showed	the	expected	alignment	
with	 these	 independent	 data.	 These	 independent	 comparison	 studies	were	 selected	 to	 span	
diverse	measurement	methods	and	data	modalities	representing	a	range	of	spatial	scales.	We	
benchmarked	 DEMs	 against	 orthogonal	 spatially	 dense	 measures	 of	 cortical	 through	 the	
following	comparisons:	(i)	motor-associated	areas	of	the	cortex	from	multimodal	in	vivo	MRI20,	
vs.	 the	 average	 DEM	 for	 two	 marker	 genes	 (ASGR2,	 CSN1S1)	 of	 Betz	 cells,	 which	 are	 giant	
pyramidal	 neurons	 that	 output	 from	 layer	 V	 of	 the	 human	 motor	 cortex21;	 (ii)	 an	 in	 vivo	
neuroimaging	map	of	the	T1/T2	ratio	measuring	of	 intracortical	myelination22	vs.	the	DEM	for	
Myelin	Basic	Protein;	(iii)	Layer	IV	thickness	values	from	the	3D	BigBrain	atlas	of	cortical	layers23	
vs.	the	average	DEM	for	later	IV	marker	genes18,19	(Table	S2);	and,	(iv)	regional	cortical	thinning	
from	in	vivo	sMRI	data	in	Alzheimer	disease	patients	with	the	APOE	E4	(OASIS-3	dataset24	,	see	
MRI	Data	Processing	below)	vs.	the	APOE4	DEM.	For	all	four	of	these	comparisons,	alignment	
between	maps	was	quantified	and	test	for	statistical	significance	using	a	strict	spin-based	spatial	
permutation	method	 that	 controls	 for	 spatial	 autocorrelation	 in	 cortical	 data	 (25methods	 on	
statistical	testing	of	pairwise	cortical	maps	can	be	found	in	the	Statistical	Methods	Table	below).	

We	also	sought	to	benchmark	DEMs	against	regional	differences	in	cellular	measures	of	
cortical	organization	from	single	nucleus	RNA-sequencing	studies	(snRNA-seq).	Specifically,	we	
correlated	 regional	differences	 in	 the	estimated	proportion	of	16	neuronal	 subtypes	across	6	
cortical	regions9	with	regional	DEM	estimates	for	the	mean	expression	of	provided	markers	for	
these	 cell	 types9.	 The	 test	 statistic	 was	 tested	 against	 a	 null	 distribution	 generated	 through	
spinning	and	resampling	the	cell	marker	DEM	estimates	(Statistical	Methods	Table).	Given	the	
observed	correspondence	between	regional	cellular	proportions	and	regional	expression	of	cell	
marker	sets,	we	used	more	recently-generated	reference	cell-markers	from	the	Allen	Institute	
for	Brain	Sciences11,21,26	to	generate	DEMs	for	11	of	14	major	cell	subclasses	in	the	mammalian	
cortex	(6	neuronal	types	shown	in	Fig	1g,	all	11	used	for	TD	peak	enrichment	analysis	Fig	S2e).	
Three	markers	were	excluded	due	to	absence	in	the	original	dataset	or	low	gene-predictability	
(r<0.2,	Fig	S1d).	
	
3.	Characterizing	the	topography	of	DEMs	
	

a. Transcriptomic	distinctiveness	(TD)	and	principal	component	analysis	(Fig	2a-c)	
	

Transcriptomic	distinctiveness	(TD)	of	each	cortical	vertex	was	calculated	as	the	mean	of	
the	 absolute	 DEM	 value	 for	 all	 genes	 (Fig	 2a).	 Statistically	 significant	 peaks	 in	 TD,	 driven	 by	
convergence	of	extreme	values	across	multiple	genes,	were	identified	as	follows.	The	DEM	for	
each	gene	was	 independently	spun	and	TD	was	recalculated	at	each	vertex	over	1000	sets	of	
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gene-level	DEM	permutations	25.	The	maximum	vertex	TD	value	for	each	permuted	TD	map	was	
recorded	and	the	95th	percentile	value	across	the	1000	permutations	was	taken	as	a	threshold	
value.	 This	 threshold	 represents	 the	 maximum	 TD	 one	 would	 expect	 in	 the	 absence	 of	
concentrated	colocalisations	of	extreme	expression	signatures,	and	areas	above	this	threshold	
were	 annotated	 as	 TD	 peaks.	 To	 disambiguate	 TD	 peaks	 that	 are	 spatially	 coalescent	 but	
potentially	driven	by	extreme	values	of	heterogeneous	gene	sets	within	different	regions,	we	
concatenated	all	suprathreshold	TD	vertices	into	a	single	vertex*gene	matrix	and	vertices	in	this	
matrix	were	clustered	based	on	their	expression	signatures.	

Intervertex	correlation	of	gene	 rankings	were	calculated	and	 the	matrix	was	clustered	
using	a	gaussian	mixture	model.	Bayesian	information	criterion	was	used	to	identify	the	optimum	
number	of	clusters	(k=6)	from	a	range	of	2-18.	Labels	were	given	to	each	of	these	TD	peaks	based	
on	 their	 intersection	 with	 a	 reference	 multimodal	 neuroimaging	 parcellation	 of	 the	 human	
cortex20.	Each	TD	was	given	the	label	of	the	multimodal	parcel	that	showed	greatest	overlap	(Fig	
2b).		

The	cortical	regions	defined	by	TD	peaks	were	annotated	according	to	their	spatial	overlap	
with	the	24	cortical	cell	marker	expression	DEMs	used	in	Fig	1	(Lake	et	al.	2016;	Hodge	et	al.	2019;	
Bakken	 et	 al.	 2021).	 To	 establish	 that	 cell	maps	were	 aligned	with	 TD	 peaks,	we	 first	 tested	
whether	the	vertex	with	the	highest	DEM	value	for	each	cell	map	overlapped	with	a	TD	peak	and	
compared	the	number	of	overlapping	cells	to	a	null	distribution	created	through	spinning	the	TD	
peaks	independently	1000	times.	We	then	identified	the	cell	types	whose	expression	most	closely	
aligned	with	each	TD	peak,	comparing	mean	TD	expression	with	a	null	distribution	generated	
through	 spinning	 the	 peaks	 1000	 times	 (Fig	 S2e).	 TD	 peaks	 were	 also	 annotated	 for	 their	
functional	 activations	 using	 the	 meta-analytic	 Neurosynth	 database	 (see	 Map	 annotations	
below).	

Gene	 sets	 characterizing	 TD	 peaks	 were	 identified	 as	 follows.	 At	 the	 vertex	 with	 the	
highest	TD	value	within	a	peak	region,	the	95th	centile	TD	value	across	genes	was	selected	as	a	
threshold.	Genes	with	z-scored	expression	values	above	this	threshold	or	below	its	inverse	were	
selected,	allowing	TD	peaks	 to	have	asymmetric	 length	gene	 lists	 for	high	and	 low-expressed	
genes	 (Table	 S3).	 These	 TD	 gene	 lists	 were	 submitted	 to	 a	 Gene	 Ontology	 (GO)	 enrichment	
analysis	pipeline	(see	Gene-set	based	annotations	below).	

To	 contextualize	 the	 newly-described	 TD	 peaks	 using	 previously-reported	 principal	
components	 (PCs)	 of	 human	 cortical	 gene	 expression,	 we	 computed	 the	 first	 5	 PC	 of	 gene	
expression	 in	 our	 full	 DEM	 library.	 The	 percentage	 of	 variance	 explained	 by	 each	 PC	 was	
calculated	and	compared	to	a	null	threshold	derived	through	fitting	PCs	to	a	permuted	null	given	
by	1000	random	spatial	rotations	of	gene-level	DEMs	(Fig	S2a).	Taking	the	gene-level	loadings	
from	the	 first	3	PCs	 (Fig	S2b),	each	vertex	could	be	positioned	 in	a	3D	PC	space	based	on	 its	
expression	 signature	 and	 also	 be	 colored	 based	 on	 its	 membership	 of	 a	 TD	 peak	 -	 thereby	
visualizing	the	position	of	TD	peaks	relative	to	the	dominant	spatial	gradients	of	transcriptomic	
variation	across	the	cortex	(Fig	2c).	

The	assignment	of	TD	regions	as	“peaks”	implies	a	rapid	emergence	of	the	TD	signature	
surrounding	the	peak	boundaries,	which	we	formally	assessed	by	cortex-wide	analysis	of	local	
tangential	changes	in	gene	expression	(see	“Local	Gradient	Analysis”	below),	and	a	spatially	fine-
grained	comparisons	of	the	physical	vs.	transcriptional	distance	between	cortical	regions.	In	the	
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latter	of	these	two	analytic	approaches,	a	rapid	“border-like”	onset	of	TD	features	would	appear	
as	(i)	TD	regions	showing	a	greater	transcriptional	distance	from	other	cortical	regions	than	would	
be	 expected	 from	 their	 physical	 distance	 from	 other	 cortical	 regions,	 and	 (ii)	 this	 disparity	
emerging	 sharply	 surrounding	 the	peak.	To	achieve	 this	 test,	we	 first	quantified	 the	geodesic	
physical	 distance	 and	 Euclidean	 transcriptomic	 distance	 between	 pairs	 of	 vertices.	 For	
computational	tractability,	we	limited	this	analysis	to	a	subsample	of	vertices,	choosing	central	
vertices	from	ROIs	in	a	parcellation	with	500	approximately	evenly	sized	parcels27.	We	fit	a	linear	
generalized	 additive	 model	 to	 the	 data	 -	 predicting	 transcriptomic	 distance	 from	 geodesic	
distance	 -	and	calculated	the	residuals	 for	each	 inter-vertex	edge	 (Fig	S2c).	For	each	sampled	
vertex	we	averaged	these	residuals	and	mapped	them	back	to	the	surface	to	visualize	cortical	
areas	that	were	transcriptomically	more	distinctive	than	their	physical	distance	to	other	areas	
would	predict	(Fig	S2d).		
	

b. Relating	adult	TD	peaks	to	fetal	gene	expression	(Fig	S2g)	
	

We	 sought	 to	 establish	 whether	 the	 regional	 expression	 signatures	 characterizing	 TD	
peaks	were	present	early	in	fetal	development.	This	goal	required	measures	of	gene	expression	
from	multiple	regions	across	the	fetal	cortical	sheet,	which	are	provided	by	the	Allen	Institute	
from	Brain	Sciences	fetal	laser	micro-dissection	microarray	dataset28.	In	each	samples’	fetal	brain,	
this	 dataset	 represents	 approximately	 25	 cortical	 brain	 regions	 tangentially,	 and	 radially	 7	
transient	 fetal	 layers/compartments	 radially:	 Subpial	 granular	 zone	 (SG),	marginal	 zone	 (MZ),	
outer	and	inner	cortical	plate	(grouped	together	as	CP),	subplate	zone	(SP),	intermediate	zone	
(IZ),	outer	and	inner	subventricular	zone	(grouped	together	as	SZ),	and	ventricular	zone	(VZ).		

Probe-level	data	measures	of	gene	expression	for	the	two	PCW21	donors	 in	the	AHBA	
fetal	 LMD	 microarray	 dataset	 were	 downloaded	 from	
(https://www.brainspan.org/static/download.html)	 -	 providing	 log2-transformed	 measures	 of	
gene	expression	for	58,692	probes	in	each	of	536	tissue	samples	across	both	donors	(Table	S1).	
Preprocessing	and	normalization	of	these	probe	level	gene	expression	values	was	implemented	
as	 detailed	 by	 the	 Allen	 Institute	 for	 Brain	 Science	 White	 Paper	 (https://help.brain-
map.org/download/attachments/3506181/Prenatal_LMD_Microarray.pdf).	 Probe-level	
expression	values	were	averaged	for	each	gene	to	yield	a	single	gene*sample	expression	matrix	
for	each	donor,	which	was	filtered	to	include	only	cortical	samples.	Gene	expression	values	were	
scaled	across	samples	within	each	donor,	and	scaled	gene	expression	values	were	compiled	for	
the	set	of	235	cortical	regions	that	was	common	to	both	donor	datasets.	We	averaged	scaled	
regional	gene	expression	values	between	donors	per	gene,	and	filtered	for	genes	in	the	fetal	LDM	
dataset	that	were	also	represented	in	the	adult	DEM	dataset	-	yielding	a	single	final	20,476*235	
gene-by-sample	matrix	of	expression	values	for	the	human	cortex	at	21	PCW.	This	matrix	was	
then	used	to	test	 if	each	TD	expression	signature	discovered	 in	the	adult	DEM	dataset	 (Fig	2,	
Table	3)	was	already	present	in	similar	cortical	regions	at	21	PCW.	
	 The	analysis	of	fetal	regional	patterning	of	TD	peak	gene	sets	was	carried	out	as	follows	
(Fig	 S2g).	 For	 a	 given	 TD	 peak,	 the	 significantly	 enriched	 genes	 for	 that	 peak	 (see	 above	 for	
definition	of	 these	 gene	 sets)	were	 identified	 in	 the	 fetal	 dataset	 and	averaged	at	 each	 fetal	
sample	-	capturing	how	highly	expressed	the	TD	signature	was	 in	each	fetal	sample.	Next,	we	
identified	all	samples	in	the	fetal	expression	dataset	that	originated	from	regions	underlying	the	
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TD	 peak,	 and	 defined	 these	 as	 the	 “fetal	 target	 region	 set”	 for	 that	 TD	 region	 (i.e.	 occipital	
samples	in	the	fetal	brain	were	the	fetal	target	region	set	for	analysis	of	gene	enriched	in	the	
adult	occipital	TD	region).	We	ranked	all	fetal	samples	by	their	mean	expression	of	the	TD	marker	
set,	and	normalized	 these	 ranks	 to	between	0	 (TD	markers	most	highly	expressed)	and	1	 (TD	
markers	most	lowly	expressed).	Normalization	was	done	to	adjust	for	varying	numbers	of	areas	
recorded	per	compartment.	This	ranking	enabled	us	to	compute	the	median	rank	of	the	fetal	
target	region	set,	and	test	if	this	was	significantly	lower	compared	to	a	null	distribution	of	ranks	
from	random	reassignment	of	the	fetal	target	region	set	labels	across	all	fetal	samples.	Within	
this	 analytic	 framework,	 a	 statistically	 significant	 test	 means	 that	 the	 adult	 TD	 signature	 is	
significantly	localized	to	homologous	cortical	regions	at	21	PCW	fetal	life	(Fig	S2g).	We	repeated	
this	procedure	for	each	adult	TD.	
	

c. Local	gradient	analysis	(Fig	2e-g)	
	

Spatially	dense	expression	maps	enabled	the	calculation	of	a	vector	describing	the	first	
spatial	derivative	-	i.e.	the	local	gradient	-	of	each	gene’s	expression	at	each	vertex.	These	vectors	
describe	both	the	orientation	and	the	magnitude	of	gene	expression	change.	Averaging	these	
gene-level	 magnitude	 estimates	 across	 genes	 provided	 a	 vertex-level	 summary	 map	 of	 the	
magnitude	of	local	expression	changes	in	our	full	DEM	library	(Fig	2e).	Regions	with	a	significantly	
high	average	expression	gradient	were	identified	using	a	similar	spatial	permutation	procedure	
as	described	for	the	identification	of	TD	peaks.	Briefly,	the	DEM	gradient	map	for	each	gene	was	
independently	 spun	 and	 an	 average	 expression	 gradient	magnitude	was	 recalculated	 at	 each	
vertex	over	1000	sets	of	these	spatial	permutations25.	For	each	permutation	we	recorded	the	
maximum	vertex-level	average	expression	gradient	value,	and	the	95th	percentile	value	of	these	
maximums	across	the	1000	permutations	was	taken	as	a	threshold	value.	Vertices	with	observed	
average	 expression	 gradient	 values	 above	 this	 threshold	 represented	 cortical	 regions	 of	
significantly	rapid	transcriptional	change	(Fig	S2f).	

	The	 principal	 orientation	 of	 gene	 expression	 change	 at	 each	 vertex	 was	 calculated	
considering	 the	 vectors	 describing	 gene	 expression	 gradients	 -	 thereby	 providing	 a	 single	
summary	 of	 local	 gene	 expression	 gradients	 that	 considers	 both	 direction	 and	 magnitude.	
Principal	component	analysis	(PCA)	of	gene	gradient	vectors	was	used	to	calculate	the	primary	
orientation	of	gene	expression	change	at	each	vertex	(Fig	2e)	and	the	percentage	of	orientation	
variance	accounted	for	by	this	principal	component	(Fig	2e,	Fig	S2e).	Gene-level	PC	weights	for	
each	vertex	were	stored	for	subsequent	analyses,	including	alignment	with	folds	and	functional	
ROIs	(Fig	2f	&	g,	see	annotational	analyses	below).	

The	 rich	 DEM	 expression	 gradient	 information	 described	 above	 was	 applied	 in	 three	
downstream	analyses.	First,	we	used	these	resources	to	detail	the	emergence	of	TD	expression	
signatures	within	the	cortical	sheet	-	focusing	on	all	vertices	that	had	been	identified	to	show	a	
significantly	elevated	mean	expression	gradient.	Specifically,	we	ranked	genes	at	these	vertices	
by	their	 loadings	onto	the	1st	PC	of	gene	expression	gradients	at	each	vertex,	and	correlated	
these	rankings	with	the	rankings	of	genes	by	the	expression	at	each	TD	peak	vertex.	This	vertex-
level	correlation	score	 -	which	quantifies	how	closely	 the	gene	expression	gradient	at	a	given	
vertex	resembles	that	expression	signature	of	a	given	TD	peak	-	was	regenerated	for	each	of	the	
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6	TD	peaks	 (colors,	Fig	S2f).	 In	each	of	 these	6	maps,	we	were	also	able	 to	plot	 the	principal	
orientations	of	expression	change	at	 the	vertex-level	 (red	 lines,	Fig	S2f)	 to	ask	 if	 gradients	of	
expression	change	for	a	given	TD	signature	were	spatially	oriented	towards	the	TD	in	question.		

Second,	we	used	the	principal	orientation	of	expression	change	at	each	vertex	to	assess	
whether	 local	 transcriptomic	 gradients	 were	 aligned	 with	 the	 orientation	 of	 cortical	 folding	
patterns.	Orientation	of	cortical	folds	was	calculated	using	sulcal	depth	and	cortical	curvature	29.	
Gradient	vectors	for	sulcal	depth	describe	the	primary	orientation	of	cortical	folds	on	the	walls	
of	sulci,	while	gradient	vectors	of	cortical	curvature	better	describe	the	orientation	at	sulcal	fundi	
and	gyral	crowns.	These	two	gradient	vector-fields	were	combined	and	smoothed	with	a	10mm	
FWHM	gaussian	 kernel	 to	 propagate	 the	 vector	 field	 into	 plateaus	 e.g.	 at	 large	 gyral	 crowns	
where	 neither	 sulcal	 depth	 nor	 curvature	 exhibit	 reliable	 gradients.	 The	 folding	 orientation	
vectors	were	calculated	with	reference	to	a	2D	flattened	cortical	representation	for	statistical	
comparison	with	the	gradient	vectors	derived	from	gene	expression	maps	(Fig	2f).	At	each	vertex,	
the	minimum	angle	was	calculated	between	the	folding	orientation	vector	and	gene	expression	
gradient	vector.	Aligned	vector	maps	exhibit	positive	skew,	with	angles	tending	towards	zero.	
Therefore	the	skewness	of	the	distribution	of	angles	across	all	vertices	was	calculated,	and	to	test	
for	 significance,	 folding	 and	expression	 vector	maps	were	 spun	 relative	 to	one	 another	 1000	
times,	 generating	 a	 null	 distribution	 of	 skewness	 values	 against	 which	 the	 test-statistic	 was	
compared	 (Statistical	 methods	 table).	 A	 similar	 analysis	 was	 applied	 to	 test	 the	 association	
between	module	eigenmap	gradient	vectors	and	cortical	folding	(see	WGCNA	section	below).	
	 Third	we	 sought	 to	 quantify	 the	 alignment	 between	 cortical	 expression	 gradients	 and	
cortical	areas	as	defined	by	multimodal	imaging.	Orientation	of	each	MRI	multimodal	parcel	ROI	
from	Glasser	et	al20,	was	calculated	 taking	 the	coordinates	 for	all	 vertices	within	a	given	ROI.	
Principal	Component	Analysis	of	coordinates	was	used	to	identify	the	short	and	long	axis	of	the	
ROI	 object.	 The	 vector	 describing	 the	 short	 axis	 was	 taken	 for	 comparison	 with	 mean	 of	
expression	gradient	vectors	for	vertices	in	the	same	ROI.	For	each	ROI,	the	minimum	angle	was	
calculated	and	the	skewness	of	the	angles	across	all	ROIs	was	calculated	and	compared	to	a	null	
distribution	created	through	spinning	maps	independently	1000	times,	recalculating	angles	and	
their	skewness	(Fig	2g).	
	

d.	Weighted	Gene	Co-expression	Network	Analysis	(WGCNA)	(Fig	3a-c)	
	

Genes	were	 clustered	 into	modules	 for	 further	analysis	using	WGCNA30.	Briefly,	 gene-
gene	cortical	spatial	correlations	were	calculated	across	all	vertices	to	generate	a	single	square	
20,781*20,781	 signed	 co-expression	 matrix.	 This	 co-expression	 matrix	 underwent	 “soft-
thresholding”,	raising	the	values	to	a	soft	power	of	6,	chosen	as	the	smallest	power	where	the	
resultant	network	satisfied	the	scale-free	topology	model	fit	of	r2>0.831.	Next,	a	similarity	matrix	
was	created	through	calculating	pairwise	topological	overlap,	assessing	the	extent	to	which	genes	
share	 neighbors	 in	 the	 network32.	 The	 inverse	 of	 the	 topological	 overlap	 matrix	 was	 then	
clustered	using	average	linkage	hierarchical	clustering,	with	a	minimum	cluster	size	of	30	genes.	
The	 eigengene	 for	 each	 module	 is	 the	 first	 principal	 component	 of	 gene	 expression	 across	
vertices,	 and	 provides	 a	 single	 measure	 of	 module	 expression	 at	 each	 vertex	 (hence,	
“eigenmap”).	 As	 per	 past	 implementation	 of	 WGCNA,	 pairs	 of	 modules	 with	 eigengene	
correlations	above	0.9	were	merged.	These	procedures	defined	a	total	of	23	gene	co-expression	
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modules	ranging	in	size	from	77-3725	genes,	and	a	single	set	of	unconnected	genes	(gray	module	
265	genes).	We	filtered	the	gray	module	from	further	analysis,	as	well	as	all	6	other	modules	that	
were	also	statistically	significantly	enriched	for	NCExp	genes	(Table	S4,	Fisher’s	test,	all	p<0.0001)	
-	leaving	a	total	of	16	modules	for	downstream	analysis	(Table	S4).	

Each	WGCNA	module	could	be	visualized	as	a	cortical	eigenmap,	and	eigenmap	gradient	
-	on	the	TD	terrain,	or	inflated	cortical	(Fig	3a).	The	eigenmap	gradient	for	each	module	provides	
a	vertex-level	measure	for	the	magnitude	of	change	in	module	expression	at	each	vertex,	as	well	
as	 a	 vertex-level	 orientation	 of	module	 expression	 change	 -	 calculated	 as	 described	 in	 Local	
Gradient	 Analysis	 above.	 These	 anatomical	 representations	 of	 each	 WGCNA	 module	 are	
amenable	to	spatial	comparison	with	any	other	cortical	map	through	spatial	permutations25	(see	
Annotational	 analyses	 below).	 Each	WGCNA	module	 is	 also	 defined	 as	 a	 gene	 set,	 which	 is	
amenable	to	standard	gene-set	based	enrichment	analysis	(see	Annotational	analyses	below).	
WGCNA	modules	can	each	also	be	represented	as	a	ranked	list	of	all	genes	-	based	on	gene-level	
kME	scores	for	each	module,	which	are	the	cross-vertex	correlation	between	a	gene’s	DEM	map	
and	a	module’s	eigenmap.	
	
4.	Multiscale	annotation	of	WGCNA	modules	(Fig	3c,d)	
	

We	used	multiple	 open	 neuroimaging	 and	 genomic	 datasets	 to	 systematically	 sample	
diverse	levels	of	cortical	organization	and	achieve	a	multiscale	annotation	of	WGCNA	modules.	
All	gene	sets	used	in	enrichment	analysis	are	detailed	in	Table	S2.	

	

a. Map-based	annotations	
	

MRI-derived	maps	of	cortical	function:	Functional	annotations	of	the	cortex	were	carried	
out	using	two	independent	functional	MRI	(fMRI)	resources	-	one	based	on	resting	state	fMRI	(rs-
FMRI)33,	and	one	using	task-based	fMRI34,35.	Resting	state	functional	connectivity	networks	were	
taken	from33,	which	divides	the	cortex	into	seven	coherent	functional	networks	through	surface-
based	 clustering	 of	 resting	 state	 fMRI	 into:	 visual,	 somatomotor,	 dorsal	 attention,	 ventral	
attention,	 frontoparietal	 control,	 limbic	 and	 default	 networks.	 We	 used	 spin-based	 spatial	
permutation	testing	to	test	for	networks	in	which	WGCNA	eigenmap	expression	was	significantly	
elevated	(Fig	3c,	see	Statistical	Methods	Table).	

For	task	fMRI-driven	functional	annotation	of	the	cortex,	we	drew	on	meta-analytic	maps	
of	cortical	activation	from	Neurosynth34,35.	Briefly,	over	11,000	functional	neuroimaging	studies	
were	text-mined	for	papers	containing	specific	terms	and	associated	activation	coordinates	34.	
Secondary	 analyses	 generated	 activation	 maps	 for	 30	 topics	 spanning	 a	 range	 of	 cognitive	
domains	35.	Topic	activation	maps	were	intersected	with	cortical	surface	meshes	and	thresholded	
to	 identify	vertices	with	an	activation	value	above	0.	Example	topics	 included	“motor,	cortex,	
hand”	 and	 “social,	 reasoning,	 medial	 prefrontal	 cortex”	 (Fig	 3d).	 Topics	 were	 excluded	 if	
intersected	cortical	maps	indicated	activation	in	fewer	than	1%	of	cortical	vertices.	Topic	maps	
were	used	to	annotate	TD	peaks	(Fig	2d)	-	identifying	for	each	ROI,	the	2	topics	with	the	highest	
Dice	 overlap.	 Topic	 maps	 also	 served	 as	 an	 independent	 validation	 of	 selected	 WGCNA	
eigenmaps	(Fig	2d,	Statistical	Methods	Table).	Topic	maps	from	Neurosynth	were	also	used	to	
provide	an	orthogonal	validation	of	observed	resting	state	network	enrichments	from	Yeo	et	al	
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(Fig	3c)	for	M2	and	M12:	mean	eigenmap	expression	for	module	M2	and	M12	was	calculated	for	
Neurosynth	 topic	maps	and	assessed	for	statistical	significance	using	spin-based	permutations	
(Fig	3d,	Statistical	Methods	Table).	
	 MRI-derived	maps	of	cortical	structure:	Cortical	thickness	and	T1/T2	“myelin”	maps	were	
taken	 from	 the	 Human	 Connectome	 Project	 average20.	 Spatial	 correlations	 were	 calculated	
across	all	vertices	with	each	WGCNA	module	eigenmap,	and	assessed	for	statistical	significance	
using	spin-based	permutations	(Fig	3c,	see	Statistical	Methods	Table).	

Orientation	of	cortical	folds:	We	used	the	orientation	of	expression	change	at	each	vertex	
to	assess	whether	local	eigenmap	gradients	were	aligned	with	the	orientation	of	cortical	folding	
patterns,	mirroring	the	analysis	described	above	(Fig	S3a,	see	Local	Gradient	Analysis).	

Inter-eigenmap	correlations:	We	tested	the	pairwise	spatial	correlation	between	pairs	of	
module	eigenmaps.	Statistical	significance	was	assessed	using	a	null	distribution	of	correlation	
matrices	 through	 independently	 spinning	 eigenmaps	 and	 recalculating	 correlations,	 and	
correcting	for	multiple	comparisons	(Fig	S3b,	see	Statistical	Methods	Table).	

	
b. Gene-set	based	annotations	

	

GO	 enrichment:	 Gene	 Ontology	 Enrichment	 Analysis	 (see	 Statistical	 Methods	 Table	
below)	were	carried	out	on	gene	sets	of	interest,	testing	for	enrichment	of	Biological	Processes	
and	Cellular	Compartment,	using	the	GOATOOLS	python	package36.	Where	multiple	gene	 lists	
were	assessed	simultaneously	(e.g.	for	TD	peak	gene	lists	or	WGCNA	gene	sets),	correction	for	
multiple	comparisons	was	carried	out	by	dividing	the	p<0.05	threshold	for	statistical	significance	
by	 the	number	of	 tests	 (i.e.	 for	 16	module	p<0.05/16).	To	 facilitate	 summary	descriptions	of	
multiple	significant	GO	terms,	terms	were	hierarchically	clustered	based	on	semantic	similarity	37	
and	representative	terms	were	selected	based	on	biological	specificity	(i.e.	depth	within	the	gene	
ontology	tree)	and	magnitude	of	the	enrichment	statistic	(Fig	3d,	Table	S2).		

Layer	marker	gene	sets	and	 in	 situ	hybridisation	validation:	We	sought	 to	assess	 the	
extent	to	which	convergent	spatial	patterns	of	gene	expression	indicate	convergent	laminar	and	
cellular	features.	Marker	genes	for	each	cortical	layer	were	defined	as	the	union	of	layer-specific	
marker	 genes	 from	 two	 comprehensive	 transcriptomic	 studies	 of	 layer-dependent	 gene	
expression	sampling	prefrontal	cortical	regions18,19.	He	et	al.,	took	human	cortical	samples	from	
the	prefrontal	cortex,	corresponding	to	areas	BA	9,	10	&	46.	Samples	were	sectioned	into	cortical	
depths	and	underwent	RNAseq	to	 identify	4131	genes	exhibiting	 layer-dependent	expression.	
Maynard	 et	 al.,	 took	 samples	 from	 the	 dorsolateral	 prefrontal	 cortex	 and	 carried	 out	 spatial	
snRNAseq	 to	 identify	 3785	 genes	 enriched	 in	 specific	 cortical	 layers.	 These	 independent	
resources	were	 combined	 for	 laminar	 enrichment	 analyses	 (i.e.	we	 took	 each	 layer’s	marker	
genes	to	be	the	union	of	 layer	genes	defined	in	Maynard	et	al	and	He	at	al).	WGCNA	module	
genes	 were	 tested	 for	 laminar	 enrichment	 using	 Fisher’s	 exact	 test,	 correcting	 for	 multiple	
comparisons	 (Fig	 3c,	 see	 Statistical	 Methods	 Table).	 Independent	 validation	 of	 laminar	
associations	of	candidate	genes	identified	through	the	above	marker	lists	were	carried	out	using	
in	situ	hybridisation	(ISH)	data	from	the	Allen	Institute38.	For	selected	modules,	we	identified	the	
highest	 kME	 genes	 represented	within	 the	 ISH	dataset.	 For	 each	of	 these	 genes,	 the	 highest	
quality	 sections	 were	 downloaded,	 and	 the	 cortical	 ribbon	 was	 manually	 segmented.	
Equivolumetric	 estimates	 of	 cortical	 depth	 were	 generated	 and	 profiles	 of	 depth-dependent	
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staining	 intensity	 were	 generated39.	 Accompanying	 approximate	 cytoarchitectonic	 layer	
thickness	estimations	were	derived	from	BigBrain	and	used	to	describe	the	laminar	location	of	
ISH	peaks23	(Fig	3d).	

Adult	 cortical	 cell	 type	marker	 gene	 sets:	Cell	marker	 gene	 sets	were	 compiled	 from	
multiple	 snRNAseq	 datasets,	 sampling	 a	 wide	 variety	 of	 cortical	 areas	 covering	 occipital,	
temporal,	 frontal,	cingulate	and	parietal	 lobes9–17.	To	 integrate	across	differing	subcategories,	
cell	 subtype	 marker	 lists	 were	 grouped	 into	 the	 following	 cell	 classes	 according	 to	 their	
designated	 names:	 excitatory	 neurons,	 inhibitory	 neurons,	 oligodendrocytes,	 astrocyte,	
oligodendrocyte	precursor	cells,	microglia	and	endothelial	cells.	Marker	lists	for	each	of	these	cell	
classes	represented	the	union	of	all	subtypes	assigned	to	the	category.	Cells	not	fitting	into	these	
categorisations	 were	 excluded.	 WGCNA	 module	 genes	 were	 tested	 for	 cell	 class	 marker	
enrichment	using	Fisher’s	exact	test,	correcting	for	multiple	comparisons	(Fig	3c,	see	Statistical	
Methods	Table).		

Fetal	cortical	cell	 type	marker	gene	sets:	Fetal	cell	marker	gene	 lists	were	taken	from	
Polioudakis	et	al40.	WGCNA	module	genes	were	tested	 for	cell	class	marker	enrichment	using	
Fisher’s	exact	test,	correcting	for	multiple	comparisons	(Fig	3c,	see	Statistical	Methods	Table).	

Compartments	 and	 SynGO:	 Cellular	 compartment	 gene	 lists	 were	 taken	 from	 the	
COMPARTMENTS	database41,	which	identifies	subcellular	localisation	of	marker	genes	based	on	
integrated	 information	 from	 the	Human	Protein	Atlas,	 literature	mining	and	GO	annotations.	
Examples	 of	 cellular	 compartments	 include	 nucleus,	 plasma	 membrane	 and	 cytosol.	 An	
additional	compartment	list	for	neuronal	synapse	was	generated	by	collapsing	all	genes	in	the	
manually	 curated	 SynGO	dataset42.	WGCNA	module	 genes	were	 tested	 for	 cell	 compartment	
gene	set	enrichment	using	Fisher’s	exact	test,	correcting	for	multiple	comparisons	(Fig	3c,	see	
Statistical	Methods	Table).	

PPI	 network:	 Protein-protein	 interactions	 were	 derived	 from	 the	 STRING	 database43.	
Physical	 direct	 and	 indirect	 protein-protein	 interactions	 were	 considered.	 We	 tested	 for	
enrichment	of	protein-protein	interactions	for	proteins	coded	by	genes	within	WGCNA	modules.	
The	median	number	of	intramodular	connections	was	compared	to	a	null	distribution	of	median	
modular	connectivity	derived	from	10000	randomly	resampled	modules	with	the	same	number	
of	genes.	Gene	resampling	was	restricted	within	deciles	defined	by	the	degree	of	protein-protein	
connectivity.	

Developmental	 peak	 epoch:	 Peak	 developmental	 epochs	 for	 genes	 were	 extracted	
from44.	Briefly,	bulk	transcriptomic	expression	values	were	measured	from	DLPFC	samples	across	
development	(6	PCW	to	20	years),	fitting	developmental	trajectories	to	each	gene.	Genes	were	
categorized	according	to	developmental	epoch	in	which	their	expression	peaked.	For	descriptive	
purposes,	epochs	were	renamed	as	1:	“early	fetal”	[“fetal”,	8	postconception	weeks	(PCW)	-	24	
PCW],	2:	late	fetal	transition	(“perinatal”,	24	PCW	-	6	months	postnatal)	and	3:	“postnatal”	(>6	
months).	 Genes	 associated	with	WGCNA	modules	were	 tested	 for	 enrichment	 correcting	 for	
multiple	comparisons	across	16	modules.		

Developmental	 trajectories:	Gene-specific	 developmental	 trajectories	were	 generated	
for	the	cortical	samples	from16.	Briefly,	in	this	study	bulk	transcriptomic	expression	values	were	
measured	from	brain	tissue	samples	taken	from	individuals	aged	between	5	PCW	and	64	years	
old.	In	our	analysis,	samples	were	filtered	for	cortical	ROIs	and	restricted	to	post	10	PCW	due	to	
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lack	 of	 samples	 before	 this	 time-point.	 Ages	were	 log	 transformed	 and	Generalized	 Additive	
Models	were	fit	to	each	gene	to	generate	an	estimated	developmental	trajectory.	To	compute	
trajectory	correlations	between	genes,	we	first	resampled	expression	trajectories	at	20	equally	
spaced	time	points	(in	log	time),	and	then	z-normalized	these	values	per	gene	(using	the	mean	
and	standard	deviation	of	each	 trajectory).	We	 then	calculated	expression	 trajectory	Pearson	
correlations	 between	 each	 pair	 of	 genes	 in	 this	 dataset,	 and	 used	 these	 to	 determine	 if	 the	
spatially	co-expressed	genes	defining	each	WGCNA	module	also	showed	significant	temporal	co-
expression.	To	achieve	this	test,	we	calculated	the	median	temporal	co-expression	(correlation	
in	expression	trajectories)	for	each	WGCNA	module	gene	set,	and	compared	this	to	null	median	
co-expression	 values	 for	 1000	 randomly	 resampled	 gene	 sets	 matching	 module	 size.	 Mean	
trajectories	of	genes	in	each	module	were	calculated	to	visualize	the	developmental	expression	
pattern	of	each	module	(Fig	S3c).	

Fetal	compartmental	analysis:	We	used	the	21	PCW	fetal	microarray	data	processed	for	
analysis	of	TD	peaks	(see	Relating	adult	TD	peaks	to	fetal	gene	expression	above,	Fig	S2g)28,	to	
generated	marker	gene	sets	for	each	of	7	transient	fetal	cortical	compartments:	subpial	granular	
zone	(SG),	marginal	zone	(MZ),	outer	and	inner	cortical	plate	(grouped	together	as	CP),	subplate	
zone	(SP),	intermediate	zone	(IZ),	outer	and	inner	subventricular	zone	(grouped	together	as	SZ),	
and	ventricular	zone	(VZ).	We	collapsed	21	PCW	cortical	expression	data	into	compartments	by	
averaging	expression	values	across	cortical	regions	for	each	compartment	because	compartment	
differences	are	known	to	explain	the	bulk	of	variation	in	cortical	expression	within	this	dataset	
(24%28).	The	 top	5%	expressed	genes	 for	each	of	 the	7	 fetal	 compartments	was	 taken	as	 the	
compartment	marker	 set	 and	used	 for	 enrichment	 analysis	 of	WGCNA	modules	with	 Fisher’s	
exact	test,	correcting	for	multiple	comparisons	(see	Statistical	Methods	Table,	Fig	3c).	
	
5.	Combining	gene-set	based	annotations	of	the	cortical	sheet	(Fig	3e,	Fig	S3d)	
	

Our	observation	that	many	WGCNA	modules	showed	statistically-significant	enrichment	
for	 diverse	 gene	 sets	 that	 could	 span	 different	 spatial	 scales	 (e.g.	 layers	 and	 organelles)	 or	
temporal	epochs	(e.g.	fetal	and	adult	cortical	features)	(Fig	3c)	suggested	a	potential	sharing	of	
marker	gene	across	 these	diverse	 sets.	To	 test	 this	 idea,	and	characterize	potential	biological	
themes	reflected	by	these	shared	marker	genes,	we	carried	out	pairwise	enrichment	analyses	
between	all	annotational	gene	lists	(Fig	3e).	Gene	lists	used	for	enrichment	analysis	of	WGCNA	
modules	for	cortical	 layers,	adult	cells,	cellular	compartments,	fetal	cells,	developmental	peak	
epochs	 and	 fetal	 compartments,	were	 taken	 for	 further	 analysis.	 A	 genelist-genelist	 pairwise	
enrichment	matrix	was	generated.	p-values	above	0.1	were	set	to	1,	to	limit	their	contribution	
and	p-values	were	converted	to	-log10(p).	To	remove	isolated	gene	lists,	all	lists	were	ranked	by	
their	degree	(edges	defined	as	p<0.05)	and	the	bottom	10%	were	excluded	from	further	analysis.	
The	matrix,	excluding	WGCNA	modules,	underwent	Louvain	clustering45,	grouping	together	gene	
lists	with	similar	properties.	Clusters	were	assigned	descriptive	names	according	to	their	salient	
common	features	(e.g.	Non-neuronal,	Mature	neuron,	Mitotic,	Myelin,	Fetal	GE)	(Fig	S3d).	For	
visualization,	 the	 full	 matrix	 underwent	 UMAP	 embedding46,	 a	 non-linear	 dimensionality	
reduction	technique	assigning	2D	coordinates	to	each	gene	 list	 (Fig	3e),	coloring	gene	 lists	by	
their	assigned	cluster	along	with	the	top	20%	of	edges.	
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6.	Disease	enrichment	and	ASD-based	analysis	of	WGCNA	modules	
	

The	 proposed	 analyses	 above	 link	 regionally	 patterned	 cortical	 gene	 expression	 with	
macroscale	imaging	maps	of	structure	and	function,	and	microscale	gene	sets	exhibiting	laminar,	
cellular,	subcellular	and	developmental	transcriptomic	specificity.	We	sought	to	assess	whether	
WGCNA	module	gene	lists	capturing	shared	spatial	and	temporal	features	were	also	enriched	for	
genes	 implicated	 in	 atypical	 brain	 development.	 We	 included	 genes	 identified	 in	 exome	
sequencing	 studies	 in	 neurodevelopmental	 disorders:	 autism	 spectrum	 disorder47,48	 (ASD),	
schizophrenia49	(SCZ),	severe	developmental	disorders50	(Deciphering	Developmental	Disorders	
study,	DDD)	and	epilepsy51.	WGCNA	module	gene	sets	were	tested	for	enrichment	of	these	genes	
using	Fisher’s	test	and	corrected	for	multiple	comparisons	(Statistical	Methods	below,	Fig	4a).	
Two	modules	-	M12	and	M15	-	showed	enrichment	for	multiple	disease	sets,	with	the	ASD	gene	
set	being	unique	for	showing	enrichment	in	both	modules.	We	therefore	focused	downstream	
analysis	on	further	characterizing	the	enrichment	of	ASD	genes	in	M12	and	M15,	and	testing	if	
these	enrichments	could	predict	regional	cortical	changes	in	ASD.	
	

a. Characterizing	ASD	gene	enrichments	in	M12	and	M15	
	

kME	analysis:	To	better	characterize	the	spatially	distinctive	properties	of	genes	within	
M12	and	M15,	we	defined	the	union	of	genes	in	both	modules	and	collated	the	WGCNA-defined	
kME	scores	for	each	gene	to	both	M12	and	M15.	This	provided	a	basis	for	plotting	all	genes	by	
their	 relative	membership	 to	 both	modules	 to:	 quantify	 the	 proximity	 of	 each	 gene	 to	 each	
module;	assess	the	discreteness	of	gene	assignment	to	modules;	and	-	for	any	provide	a	common	
space	within	which	to	project	gene	functions	and	associations	with	ASD	(Fig	4c)	

Enrichment	of	ASD-linked	GO	terms:	Genes	linked	to	two	specific	GO	terms,	“Neuronal	
communication”	 and	 “Gene	 expression	 regulation”,	 enriched	 amongst	 risk	 genes	 for	 Autism	
Spectrum	Disorder	 in48,	were	separately	 tested	 for	enrichment	within	M12	and	M15	(Fig	4d),	
using	a	Fisher’s	exact	test.	

Developmental	 trajectories	 of	 disease-linked	modules:	To	 characterize	 the	 distinctive	
temporal	 trajectories	 of	 M12	 &	 M15	 (see	 Fig	 3c),	 we	 took	 gene-level	 trajectories	 (see	
Developmental	trajectories	above)	and	calculated	the	mean	gene-expression	trajectory	of	genes	
in	each	module	(Fig	4e).	

Independent	characterisation	of	ASD	risk	genes:	To	assess	the	extent	to	which	modules	
M12	&	M15	captured	the	underlying	axes	of	spatial	patterning	across	all	135	ASD	risk	genes,	we	
took	DEMs	for	all	135	risk	genes	and	independently	clustered	them.	Pairwise	co-expression	was	
calculated	for	all	risk	gene	DEMs	and	the	resultant	matrix	was	clustered	using	Gaussian	mixture	
modeling	into	two	clusters,	C1	and	C2	(Fig	S4a).	kME	values	were	calculated	for	each	risk	gene	
with	all	WGCNA	modules	and	averaged	within	each	cluster.	For	each	cluster,	we	then	identified	
the	WGCNA	module	with	the	highest	mean	kME	(Fig	S4b)	
	

b. Comparing	M12	and	M15	expression	to	regional	changes	of	cortical	gene	expression	in	
ASD	(Fig	4f)	
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We	mapped	regional	transcriptomic	disruption	in	ASD	measured	from	multiple	cortical	
regions	using	RNA-seq	data52.	This	study	compared	bulk	transcriptomic	expression	in	ASD	and	
control	samples	across	11	cortical	areas,	quantifying	the	extent	of	transcriptomic	disruption	by	
identifying	 the	 number	 of	 significantly	 differentially	 expressed	 genes	 in	 each	 region.	 Cortical	
areas	sampled	in	this	study	were	mapped	to	their	closest	corresponding	area	in	a	multimodal	
MRI	parcellation20.	The	mean	expression	of	M12	&	M15	eigenmaps	was	quantified	in	the	same	
cortical	 areas	 (Fig	4f).	 The	 test	 statistic,	 correlating	eigenmap	expression	with	 the	number	of	
differentially	expressed	genes,	was	tested	against	a	null	distribution	generated	through	spinning	
and	resampling	the	eigenmaps	(see	Statistical	Methods	Table).	

	
c. Comparing	M12	and	M15	expression	to	regional	changes	of	cortical	thickness	 in	ASD	

(Fig	4g,	h,	Fig	S4c)	
To	 assess	 the	 extent	 to	which	WGCNA	module	 eigenmaps	 pattern	macroscale	 in	 vivo	

anatomical	differences	in	ASD,	we	took	the	map	of	relative	cortical	thickness	change	in	autism	
(see	Preprocessing	and	analysis	of	structural	MRI	data	below)	and	compared	this	to	eigenmap	
expression	patterns.	M12	and	M15	eigenmaps	were	thresholded,	identifying	the	5%	of	vertices	
with	the	highest	expression.	Areas	of	high	significant	thickness	change	were	tested	for	overlap	
with	 areas	 of	 significant	 cortical	 thickness	 change	 using	 the	Dice	 overlap	 compared	 to	 a	 null	
distribution	 of	 Dice	 scores	 generated	 through	 spinning	 the	 thresholded	 eigenmaps	 (see	
Statistical	Methods	Table)	
	
7.	Preprocessing	and	analysis	of	structural	MRI	data	
	

a. AHBA	donors	
	

	 Pial	 and	 white	 matter	 cortical	 T1	 MRI	 scans	 of	 the	 6	 AHBA	 donor	 brains	 were	
reconstructed	using	Freesurfer	(v5.3)53(see	Table	S1).	Briefly,	scans	undergo	tissue	segmentation,	
cortical	 white	 and	 pial	 surface	 extraction.	 A	 mid-thickness	 surface,	 between	 pial	 and	 white	
surfaces	was	also	created.	The	locations	of	tissue	samples	taken	for	bulk	transcriptomic	profiling,	
provided	in	the	coordinates	of	the	subject’s	MRI	were	mapped	to	the	mid-thickness	surface	as	
outlined	above	(see	Creating	spatially	dense	maps	of	human	cortical	gene	expression	from	the	
AHBA).	Individual	subject	cortical	surfaces	were	co-registered	to	the	fs_LR32k	template	surface	
brain	using	MSMSulc2	as	part	of	the	ciftify	pipeline54,	which	warps	subject	meshes	by	non-linear	
alignment	their	folding	patterns	to	the	MRI-derived	template	surface.	A	donor-specific	template	
surface	 was	 created	 through	 averaging	 the	 coordinates	 of	 the	 aligned	meshes	 and	 used	 for	
analysis	 of	 cortical	 folding	 patterns	 used	 in	 Alignment	 with	 reference	 measures	 of	 cortical	
organization.	Pial,	Inflated	and	flattened	representations	of	the	fs_LR32k	surface	were	used	for	
the	visualization	of	cortical	maps	throughout.		
	

b. OASIS	(Fig	1e)	
	

	 To	estimate	relative	cortical	thickness	change	in	AD	patients	with	the	APOE	E4	variant,	we	
utilized	the	openly	available	OASIS	database24.	T1w	MRI	data	collected	using	a	Siemens	Tim	Trio	
3T	 scanner	 and	 underwent	 cortical	 surface	 reconstruction	 using	 Freesurfer	 v5.3	 as	 above.	
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Reconstructions	underwent	manual	quality	control	and	correction,	with	poor	quality	data	being	
removed.	Output	cortical	thickness	maps,	smoothed	at	20mm	fwhm	and	aligned	to	the	fsaverage	
template	surface	were	downloaded	via	https://www.oasis-brains.org/,	along	with	age,	sex,	APOE	
genotype	and	cognitive	status.	Subjects	were	included	in	the	analysis	if	they	had	been	diagnosed	
with	AD	and	had	at	least	one	APOE	E4	allele	(n=119),	or	were	a	healthy	control	(n=633)	(see	Table	
S1).	 Per-vertex	 coefficients	 for	 disease-associated	 cortical	 thinning	 and	 significance	 were	
calculated,	 adjusting	 for	 age,	 sex	 and	mean	 cortical	 thickness.	We	 controlled	 for	mean	CT	 to	
identify	 local	anatomical	changes	given	our	 finding	of	generalized	cortical	 thickening	 in	AD	as	
compared	to	controls	 in	OASIS.	The	map	of	cortical	thickness	coefficients	was	then	registered	
from	fsaverage	to	fs_LR32k	for	comparison	with	the	DEM	of	APOE	(Fig	1e)2.		
	

c. ABIDE	
	

To	 estimate	 relative	 cortical	 thickness	 change	 in	 ASD,	 MRI	 cortical	 thickness	 maps,	
generated	through	Freesurfer	processing	of	3T	T1	structural	MRI	scans	were	downloaded	from	
ABIDE,	along	with	age,	sex,	site	information55,56(Table	S1).	Multiple	sites	and	scanners	were	used	
to	 acquire	 these	 data,	 which	 is	 known	 to	 introduce	 systematic	 biases	 in	 morphological	
measurements	like	cortical	thickness.	To	mitigate	this,	we	used	neuroCombat	which	estimates	
and	 removes	unwanted	scanner-effects	while	 retaining	biological	effects	on	variables	 such	as	
age,	 sex	 and	 diagnosis57.	 Subjects	with	 poor	 quality	 freesurfer	 segmentations	were	 excluded	
using	a	threshold	Euler	count	of	100	(ref).	Cortical	thickness	change	in	ASD	relative	to	controls	
was	calculated	adjusting	for	age,	sex	and	mean	cortical	thickness.	Neighbor-connected	vertices	
exhibiting	 significant	 cortical	 thickness	 change	 (p<0.05)	 were	 grouped	 into	 clusters.	 A	 null	
distribution	 of	 cluster	 sizes	 was	 generated	 using	 1000	 random	 permutations	 of	 the	 cohort,	
storing	the	maximum	significant	cluster	size	for	each	permutation.	The	95th	percentile	cluster	
size	was	used	as	a	threshold	for	removing	test	clusters	that	could	have	arisen	by	chance58.	Output	
coefficient	and	cluster	maps	were	registered	from	fsaverage	to	fs_LR32k	and	compared	with	the	
M12	and	M15	eigenmaps	as	described	above	

.	
8.	Statistical	methods	table	
	
Statistical	tests	used	to	compare	spatial	maps	and	gene	sets	derived	from	the	Allen	Human	Brain	
Atlas	with	independent	multiscale	neuroscientific	resources.	
	

Input	data	 Test	statistic	 Significance	test	

Comparison	 of	 two	 cortical	
maps	e.g.	Fig	1e	

Pearson’s	 R	 (e.g.	 Fig	 1e,f),	
Spearman	Rrank	(Fig	3),	delta	Z	
for	 binary	 and	 continuous	
comparison	 (Fig	 1e,	 Fig	 3c	 &	
d),	 Dice	 score	 for	 two	 binary	
maps	 (Fig	2d,	Fig	4g)	skew	 in	
distribution	of	angles	(Fig	2f	&	
g,	 3c).	 Counts	 for	 peak	

Spin	 test:	 Generate	 null	
distribution	 for	 test	 statistic	
by	 independently	 spinning	
spherical	 projections	 of	
spatial	maps	and	recalculating	
test	statistic	on	spun	maps25	
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expression	 locations	
overlapping	ROIs	(Fig	S2e).	

Intrasubject	 alignment	 of	
multimodal	maps	

Pearson’s	R	(e.g.	Fig	S1h)	 Simple	 permutation-based	
intermodal	 correspondence	
(SPICE)	test59	

Comparison	 of	 gene-gene	
connectivity	matrix	e.g.	PPI	vs	
spatial	correlation,	gene-gene	
spatial	 correlation	 vs	
developmental	 trajectory	
correlation		

If	 continuous,	 threshold	
matrix	 at	 95%.	 Fisher’s	 exact	
test	 for	 significant	 edge-level	
overlap	

Fisher’s	 exact	 test	 p-values	
corrected	 for	 multiple	
comparisons	using	 the	Holm-
Sidak	step	down	procedure60	

Overlap	of	two	gene	lists	e.g.	
Fig	3e	

Fisher’s	exact	test	 Fisher’s	 exact	 p-value	
corrected	 for	 multiple	
comparisons	

Cortical	 thickness	 changes	 in	
pathology	(in	AD	Fig	1e,	in	ASD	
Fig	5e)	

Linear	model:	
Vertex	 cortical	 thickness	 ~	
Age	 +	 sex	 +	 group	 +	 mean	
cortical	thickness	
	

Cluster-wise	 correction.	
Calculate	 maximum	 size	 of	
significant	 clusters	 on	 1000	
randomly	 permuted	 cohorts,	
using	the	95th	centile	size	as	a	
threshold	on	the	test	cohort58	

Intramodular	 trajectory	
correlation	

Pairwise	intramodular	median	
rank	correlation.	

Randomly	 sampled	gene	 sets	
of	comparable	size	

Protein-protein	interaction	 Intramodular	connectivity	 Random	 resampling	 of	 gene	
sets	with	 decile-matching	 for	
degree	
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