1	MicroRNA-27a is essential for bone remodeling by
2	modulating p62-mediated osteoclast signaling
3	
4	
5	
6	
7	
8	
9	
10	Shumin Wang ¹ , Eri O Maruyama ² , John Martinez ¹ , Trunee Hsu ⁶ , Wencheng Wu ¹ , Wei Hsu ^{1,2,3,4,5,*} and Takamitsu Maruyama ^{1,2,*}
11	Wu ¹ , Wei Hsu ^{1,2,5,4,5,*} and Takamitsu Maruyama ^{1,2,*}
12	
13	
14	
15	
16	
17	
18	
19 20	¹ University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642 ² The Forsyth Institute, ³ Faculty of Medicine of Harvard University, ⁴ Harvard School of
21	Dental Medicine, ⁵ Harvard Stem Cell Institute, 245 First Street, Cambridge, MA 02142
22	⁶ Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106,
23	
24 25	
23 26	
27	
28	
29	
30	Running title: miR-27a in bone remodeling
31 32	
33	
34	*Company on ding A with one
35 36	*Corresponding Authors Phone 617-892-8297
37	Email whsu@forsyth.org; wei.hsu@hsdm.harvard.edu; tmaruyama@forsyth.org

39	Author contributions: S.W., T.M. and W.H. conceived and designed the experiments,
40	and wrote the paper. S.W., E.O.M, J.M., T.H., W.W. T.M., and W.H performed the
41	experiments and analyzed the data. W.W. contributed new analytic tools. T.M. and
42	W.H. obtained research funding.
43	
44	Competing interest statement: The authors declare no competing financial interests.
45	
46	Keywords: miRNA-23a cluster; osteoporosis; bone homeostasis; skeletal remodeling;
47	skeleton; osteoclast; osteoblast; bone formation; bone resorption; CRISPR/Cas9 gene-
48	editing
49	

51 Abstract

52	The ability to simultaneously modulate a set of genes for lineage-specific
53	development has made microRNA an ideal master regulator for organogenesis.
54	However, most microRNA deletions do not exhibit obvious phenotypic defects possibly
55	due to functional redundancy. MicroRNAs are known to regulate skeletal lineages as the
56	loss of their maturation enzyme Dicer impairs bone remodeling processes. Therefore, it
57	is important to identify specific microRNA essential for bone homeostasis. We report the
58	loss of miR-27a causing severe osteoporosis in mice. MiR-27a affects osteoclast-
59	mediated bone resorption but not osteoblast-mediated bone formation during skeletal
60	remodeling. Gene profiling and bioinformatics further identify the specific targets of
61	miR-27a in osteoclast cells. MiR-27a exerts its effects on osteoclast differentiation
62	through modulation of Squstm1/p62 whose mutations have been linked to Paget's disease
63	of bone. Our findings reveal a new miR-27a-p62 axis necessary and sufficient to mediate
64	osteoclast differentiation and highlight a therapeutic implication for osteoporosis.
65	

66 Introduction

67 MicroRNA (miRNA) is a small non-coding RNA, base-pairing with 68 complementary sequences of messenger (mRNA) to control gene expression at posttranscriptional and translational levels ^{1, 2}. In animals, miRNA recognizes the 3' 69 70 untranslated region of their targets via a small stretch of seed sequences. A single miRNA may simultaneously affect the expression of hundreds of genes ^{3,4}. Because of 71 72 its potential to modulate the same biological process at various steps, miRNA has been postulated to function as a master regulator for organogenesis ^{5, 6}, similar to the 73 74 transcription factor capable of turning on a set of genes for lineage-specific development. 75 However, possibly due to functional redundancy, most of the miRNA deletions do not cause phenotypic alterations ^{7,8}. With only limited evidence ^{9,10}, it has been difficult to 76 77 prove this concept. 78 The skeleton is constantly remodeled to maintain a healthy structure after its formation¹¹. This lifelong process is called bone remodeling in which old bone is 79

80 removed from the skeleton, followed by replaced with new bone. Therefore, a balance of

81 osteoclast-mediated bone resorption and osteoblast-mediated bone formation is essential

82 for bone metabolism ¹¹. Dysregulation of bone remodeling causes metabolic disorders,

83 e.g. osteopetrosis, osteoporosis, and Paget's disease ¹². The current treatments have

84 major limitations leading to the exploration of new therapeutic strategies. Studies of

85 Dicer, an RNase III endonuclease involved in the maturation of miRNAs, suggest their

importance in the development of the skeletal lineages during bone remodeling $^{13, 14}$.

87 However, the specific miRNA(s) required for differentiation of osteoclasts and

88 osteoblasts remains largely unclear. The miR-23a cluster consists of miR-23a, miR-27a,

89	and miR-24-2. Aberrant regulation of miR-23a and miR-27a has been associated with
90	osteoporotic patients and increased bone fracture risks ^{15, 16, 17} . The effect of miR-23a and
91	miR-27a on the differentiation of osteoblast or osteoclast cells has been shown by in vitro
92	overexpression studies ^{16, 18, 19} . Interference of miR-23a or miR-27a by the use of
93	inhibitor/sponge has implied their role in osteoblast and osteoclast cells ^{18, 20} . However,
94	due to cross-reactivity of the RNA inhibitor among family members that share common
95	seed motif ^{21, 22} , the inhibitor assay may not truthfully reflect the function of the target
96	miRNA. Therefore, the genetic loss-of-function study remains the most rigorous method
97	for determining the endogenous function of miR-23a and miR-27a as well as testing the
98	removal of miR-23a~27a sufficient to cause bone loss.
99	We have performed mouse genetic analyses to definitively assess the requirement
100	of miR-23a and miR-27a for skeletogenesis and homeostasis. Surprisingly, the skeletal
101	phenotypes developed in newly established loss-of-function mouse models reveal
102	findings different from previous reports based on the gain-of-function analyses. Severe
103	loss of bone mass developed in mice with the deletion of miR-23a~27a or miR-27a.
104	MiR-23a~27a is dispensable for osteoblast-mediated bone formation. However,
105	compelling evidence support that miR-27a is essential for osteoclastogenesis and
106	osteoclast-mediated bone resorption during bone remodeling. Gene expression profiling
107	and bioinformatics analyses further identify osteoclast-specific targets of miR-27a. We
108	demonstrated that miR-27a exerts its effects on osteoclast differentiation through
109	modulation of a new and essential target Squstm1/p62. MiR-27a is necessary and
110	sufficient to mediate osteoclast differentiation, and as a biomarker and therapeutic target
111	for osteoporosis.

112

113 **Results**

114 The loss of miR23a~27a in mice causes low bone mass phenotypes

115 To determine the requirement of miR-23a~27a for skeletal development and 116 maintenance, we created a new mouse model with the deletion of miR-27a and miR-23a. 117 The CRISPR/Cas9 gene edition method was used to establish the mouse strain carrying 118 the ∆miR-23a~27a allele (Fig. 1A). PCR analysis of the miR-23a cluster demonstrated the sgRNA-mediated deletion and the reduction of 500 bp in the wild-type to 303 bp in 119 120 the mutants (Fig. 1B). Sequencing analysis also confirmed the expected genome editing 121 (data not shown). Next, we tested if the deletions affect the expression of other 122 microRNA molecules, generated from the same RNA precursor, within the same cluster. 123 Semi-quantitative RT-PCR analysis revealed that only miR-23a~27a are disrupted in the 124 ∆miR-23a~27a mutants (Fig. 1C). These results indicated our success in establishing 125 mouse models deficient for miR-23a~27a. 126 Mice heterozygous for Δ miR-23a~27a are viable and fertile. Intercross between 127 the heterozygotes successfully obtained the homozygous mutants without any noticeable 128 skeletal deformity, suggesting that miR-23a~27a are not required for the developmental 129 processes. Next, we examined if their deletions affect homeostatic maintenance of the 130 bone in adults. At 3 months, von Kossa staining and three-dimensional (3D) micro-131 computed tomography (μ CT) analyses of the Δ miR-23a~27a femurs revealed significant 132 loss of the trabecular bone volume in both sexes (Fig. 1D-G; BV/TV, n=3, mean + SD;

133 student t-test). Much more severe osteoporotic defects were detected in the 7-month-old

134 mutant females of Δ miR-23a~27a (Fig. S1; BV/TV, n=3, mean + SD; student t-test).

135 However, cortical bone thickness does not seem to be affected by the deletion of miR-136 23a~27a (Fig. S2). Next, we examined if similar bone loss phenotypes can be detected in 137 the vertebrae where age-related changes in the trabecular architecture are minimal. 138 Therefore, we examined the vertebrae of Δ miR-23a~27a and identified drastic reductions 139 in vertebral bone mass associated with the mutations (Fig. 1H). These data demonstrated 140 that miR-23a~27a is required for homeostatic maintenance of the bone. 141 Osteoblast-mediated bone formation is not affected by the loss of miR-23a~27a 142 Proper maintenance of the skeleton requires balanced bone formation and 143 resorption during bone remodeling. The bone loss phenotypes caused by the deletion of 144 miR-23a~27a are likely to be associated with an imbalanced bone formation and 145 resorption mediated by osteoblasts and osteoclasts, respectively. Therefore, we examined 146 if the bone formation and osteoblast activities are affected by the loss of miR-23a~27a. 147 New bone formation was analyzed by double labeling with alizarin red and calcein at 3 months. Quantitative analyses did not reveal a significant difference in bone formation 148 149 rate per unit of bone surface (BFR/BS) caused by the mutation (Fig. S3A). In addition, 150 the numbers of osteoblast cells positive for type 1 collagen (Col1) and Osteopontin 151 (OPN) lining the trabecular bone surface remain comparable between the wild-type and 152 homozygous littermates (Fig. S3B), indicating that osteoblast-mediated bone formation is 153 not affected by the miR-23a~27a deletion. The results suggested that miR-27a and miR-154 23a are not required for osteoblastogenesis and osteoblasts-mediated bone formation. 155 MiR-23a~27a regulates osteoclast differentiation 156 To determine if the loss of miR-27a affects bone resorption, we first examined 157 osteoclast number by tartrate-resistant acid phosphatase (TRAP) staining. An increase of

158	TRAP+ osteoclasts was detected in the 3-month-old ΔmiR -23a~27a males and females
159	(Fig. 2). When the number of TARP+ osteoclast cells in the total bone area (N.Oc/T.Ar),
160	the ratio of TRAP+ bone surface (Oc.S/BS), and the number of TRAP+ osteoclast cells
161	lining the bone surface (N.Oc/BS) were measured, we found that these parameters
162	associated with bone resorption are significantly elevated in the mutants (Fig. 2; n=5,
163	mean \pm SD; student t-test). In addition, there is a ~3-fold increase in the number of
164	Cathepsin K-expressing osteoclast cells lining the trabecular bone surface (Fig. 2; n=5,
165	mean \pm SD; student t-test). These results support that the loss of miR-23a~27a stimulates
166	osteoclastogenesis, leading to an elevation of bone resorption.
167	Next, to determine the role of miR-23a~27a in osteoclastogenesis, we analyzed
168	cell populations associated with the differentiation of the osteoclast cells. During
169	hematopoiesis, a common myeloid progenitor gives rise to monocytes that are precursors
170	of several cell types, including dendritic cells, macrophages, and osteoclasts ²³ .
171	Osteoclast precursors are known to derive from a monocyte population positive for
172	CD11b and negative for Gr-1 ²⁴ . Therefore, we examined CD11b+ and Gr-1– monocytes
173	to see if the miR-23a~27a deletion affects the osteoclast precursor population. FACS
174	analysis revealed that the CD11b+ and Gr-1– population was not affected in the ΔmiR -
175	23a~27a bone marrow of both male and female mice (Fig. 3A, B). The CD11b+/CD11c+
176	dendritic cell population, derived from the monocytes, was also unaffected by the miR-
177	23a~27a deletion (Fig. 3A, B). Although the precursors are not affected, miR-23a~27a
178	may play a role in osteoclast differentiation.
179	To test osteoclast differentiation affected by the loss of miR-23a~27a, an ex vivo
180	analysis was performed with cultures of cells seeding at two different densities. Cells

181 isolated from the bone marrow were cultured in the presence of M-CSF to obtain bone

- 182 marrow-derived macrophages (BMMs), followed by differentiation into osteoclasts with
- 183 the treatment of RANKL. TRAP staining was then used to assess the extent of osteoclast
- 184 differentiation. The number of TRAP+ cells was significantly increased by the loss of
- 185 miR-23a~27a (Fig. 3C; n=5, mean \pm SD; student t-test).
- 186 MiR-27a is an essential regulator for osteoclast-mediated skeletal remodeling

187 Using the miRPath Reverse-Search module, we searched and ranked miRNAs 188 whose targets are accumulated in osteoclast differentiation-related genes based on the 189 enrichment of the targets in the Kyoto Encyclopedia of Genes ad Genomics (KEGG: mmu04380)^{25, 26}. Among them, miR-27a was predicted as the top 3 candidates to 190 regulate osteoclast differentiation (Fig. S4, $p < 2.0 \times 10^{-71}$). Its sister gene miR-27b 191 192 contains the same seed sequences also ranked in the top 3. However, miR-23a had a 193 lower estimated rank suggesting that miR-27a alone may be sufficient to exert osteoclast regulation (Fig. S4, $p < 4.9 \times 10^{-29}$). To test this hypothesis, we created another mouse 194 195 strain with the deletion of only miR-27a using the CRISPR/Cas9 genome editing (Fig. 196 4A). PCR analysis revealed the sgRNA-mediated deletion causes the reduction of 500 bp 197 in the wild-type to 474 bp in the mutants (Fig. 4B). Sequencing of the PCR products 198 confirmed the genomic deletion (data not shown). Next, semi-quantitative RT-PCR 199 analysis indicated that only miR-27a are disrupted in the ∆miR-27a mutants, suggesting 200 the deletions does not affect the expression of other microRNA generated from the same 201 RNA precursor (Fig. 4C). These results demonstrated our success in establishing mouse 202 models deficient for miR-27a.

203	Mice heterozygous and homozygous for Δ miR-27a are viable and fertile similar
204	to the miR-23a~27a deletion. As anticipated, there was no noticeable skeletal deformity
205	associated with the loss of miR-27a suggesting its dispensable role in the developmental
206	processes. However, von Kossa staining and 3D micro-computed tomography (μCT)
207	analyses of the 3-month-old male and female femurs of Δ miR-27a revealed significant
208	loss of the trabecular bone volume (Fig. 4D-G; BV/TV, n=3, mean \pm SD; student t-test)
209	while cortical bone thickness was not affected (Fig. S5). Drastic bone loss phenotypes
210	can also be detected in the Δ miR-27a vertebrae where age-related changes in the
211	trabecular architecture are minimal (Fig. 4H). These data demonstrated the essential role
212	of miR-27a in skeletal remodeling.
213	Using double labeling with alizarin red and calcein for quantitative analyses, we
214	did not reveal a significant difference in bone formation rate per unit of bone surface
215	(BFR/BS) (Fig. S6A), and Col1+ and OPN+ osteoblast cells lining the trabecular bone
216	surface (Fig. S6B) at 3 months, suggesting that osteoblast-mediated bone formation is not
217	affected by the miR-27a deletion. However, we detected a significant increase of TRAP+
218	and Cathepsin K-expressing osteoclast cells lining the trabecular bone surface in the 3-
219	month-old Δ miR-27a males and females (Fig. 5A and Fig. S7; n=5, mean <u>+</u> SD; student
220	t-test), supporting that the loss of miR-27a stimulates osteoclastogenesis, leading to
221	elevated bone resorption. While the CD11b+/Gr-1- and CD11b+/CD11c+ osteoclast
222	precursor populations were not affected by the miR-27a deletion (Fig. S8A, B), osteoclast
223	differentiation was significantly increased by the loss of miR-27a (Fig. 5B; n=5, mean \pm
224	SD; student t-test). Furthermore, the loss of single miR-27a recapitulates the osteoporotic
225	phenotypes caused by double deletion of miR-23a and miR-27a, suggesting that miR-27a

226	is responsible for skeletal maintenance through the modulation of bone remodeling
227	processes. The results suggested that miR-27a functions as a negative regulator in
228	osteoclast differentiation. To test this possibility, we overexpressed miR-27a in cells
229	undergoing osteoclast differentiation. High levels of miR-27a significantly reduce the
230	number of differentiated osteoclast cells (Fig. 5C). Our findings demonstrated that miR-
231	27a is necessary and sufficient to modulate osteoclast differentiation. Osteoclastogenesis
232	mediated by miR-27a is essential for bone remodeling and homeostasis.
233	MiR-27a regulates osteoclast differentiation through the modulation of p62
234	To elucidate the mechanism underlying OC differentiation regulated by miR-27a,
235	we first used a bioinformatics approach to identify its potential targets (Fig. 6A). The
236	TarBase computationally predicted 2312 target genes for miR-27a ²⁷ . Furthermore, there
237	were 154 genes associated with osteoclast differentiation based on the Kyoto
238	Encyclopedia of Genes ad Genomics (KEGG: mmu04380) ^{25, 26} . The miRPath software
239	further identified 26 targets overlapping with the osteoclast-related genes ²⁸ . Next, we
240	examined the transcript level of these 26 targets in wild-type and Δ miR-27a osteoclast
241	cells. Quantitative RT-PCR analyses revealed that 5 of these targets, Snx10, Map2k7,
242	Ctsk, Tgfbr1, and Sqstm1, are significantly up-regulated by the loss of miR-27a (Fig. 6B,
243	p < 0.05, $n = 3$; two-sided student t-test). To test if these genes were the direct targets of
244	miR-27a, we performed 3'UTR-reporter assays. The expression of miR-27a significantly
245	downregulated the luciferase activity associated with the 3'UTR of Sqstm1, Tgfbr1,
246	Snx10, Map2k7, but not Ctsk (Fig. 6C, *; $p < 0.01$, n=3, mean \pm SD; two-sided student t-
247	test). As Cathepsin K is a protease expressed in the mature osteoclast cells, its alteration
248	at the transcript level is likely ascribed to indirect effects of increased osteoclastogenesis

in ∆miR-27a. The data indicated Sqstm1, Tgfbr1, Snx10, and Map2k7 as direct targets of
miR-27a.

251	Sqstm1 also known as p62 whose gain of function mutations were linked to
252	Paget's disease of bone with disruption of bone renewal cycle causing weakening and
253	deformity 29 . The deletion of p62 in mice also impaired osteoclast differentiation 30 .
254	Therefore, we performed a functional study to test the importance of the miR-27a-p62
255	regulatory axis during osteoblastogenesis. Cells isolated from the bone marrow were
256	induced for osteoclast differentiation and the number of osteoclast cells positive for
257	TRAP staining was counted to determine the outcome of the differentiation. The
258	enhanced osteoclast differentiation in the Δ miR-27a culture was significantly alleviated
259	by the shRNA-mediated knockdown of p62 (Fig. 6D, p < 0.05, n=3, mean \pm SD; two-
260	sided student t-test). The results demonstrated that miR-27a-dependent osteoclast
261	differentiation is mediated through the regulation of p62. The miR-27a-p62 regulatory
262	axis plays an important role in osteoclastogenesis during bone remodeling.
263	
264	Discussion
265	The dysregulation of miRNA has been implicated in osteoporosis in menopausal
266	women. Among 851 miRNAs tested miR-27a is one of the most significant genes
267	downregulated in postmenopausal osteoporosis patients ¹⁷ . However, it's not clear
268	whether the alteration of miRNAs is the cause or consequence of the disease. Our
269	genetic study presented here has demonstrated the loss of miR23a~27a or miR27a results
270	in significant bone loss. The findings suggest a single miRNA deficiency can lead to

271 severe osteoporotic defects, indicating an essential role of miR-27a in bone remodeling.

272 Because osteoporosis is caused by an imbalance of osteoblast-mediated bone formation 273 and osteoclast-mediated bone resorption, the conventional knockout model is ideal to 274 decipher the regulatory processes underlying miR-27a-dependent pathogenesis. Our data 275 also suggest that miR-27a is dispensable for osteoblast differentiation and bone formation 276 as its deletion does not affect the number of osteoblast cells and bone formation rates. 277 The results do not agree with the previous gain-of-function study indicating an inhibitory role of miR-27a in osteoblastogenesis¹⁸. Therefore, the association of osteoporosis with 278 279 both upregulation and downregulation is possibly mediated through distinct mechanisms 280 underlying the regulatory process of the miR-23a cluster. 281 This study provides compelling evidence to first demonstrate that miR-27a is 282 essential for regulating the bone resorption process through modulation of osteoclast 283 differentiation. The loss of miR-27a in mice leads to elevated numbers of osteoclast cells 284 as well as increases in critical parameters for bone resorption. The inhibitory function of 285 miR-27a on osteoclastogenesis is also in agreement with previous in vitro culture data 286 showing its crucial downregulation among miRNAs associated with osteoclast differentiation ³¹. Although the number of osteoclast progenitors is comparable between 287 288 the control and mutant, the deletion of miR-27a strongly accelerates the process of 289 osteoclastogenesis. The isolated Δ miR-27a exhibits a highly potent ability in 290 differentiation and maturation, indicating cell-autonomous regulations of miR-27a in the 291 osteoclast cell. 292 The gain-of-function mutations have linked p62 to the cause of Paget's disease of bone – a genetic disorder characterized by aberrant osteoclastic activity $^{29, 32}$. The 293 294 knockout of p62 in mice further supports its critical role in osteoclastogenesis²⁹. Our

295 identification and characterization of p62 as a direct downstream regulator of miR-27a 296 established a new osteoclast signaling axis. Not only osteoclast differentiation and 297 maturation are suppressed by high levels of p62 but also its reduction can alleviate 298 excessive osteoclastogenesis caused by the loss of miR-27a. Our findings suggest the 299 miR-27a-p62 regulatory axis is necessary and sufficient to regulate bone remodeling 300 through modulation of osteoclastogenesis. In addition, circulatory miRNAs were 301 released in the cell-free form either bound with protein components or encapsulated with 302 microvesicles. They are quite stable and found with variations in miRNA signature as 303 biomarkers³³. Therefore, the identification of miR-27a as essential for bone remodeling 304 promises its use as a biomarker for early detection of bone destruction-associated 305 diseases, risk prediction for bone fracture, as well as personalized treatment and 306 monitoring of the treatment efficacy. 307 Hormone therapy is effective for the prevention and treatment of postmenopausal 308 osteoporosis as estrogen reduction is a crucial pathogenic factor. Because of the well-

309 documented side effects, e.g. cardiovascular events and breast cancer risk, estrogen-based

310 therapies are now limited to short-term use ^{34, 35}. Another widely used treatment for

311 osteoporosis is bisphosphonates which possess a high affinity for bone minerals with

312 inhibitory effects on osteoclast cells $^{35, 36}$. However, there is a need for alternative

313 treatments due to the side effects of bisphosphonates, e.g. atypical femur fracture and

314 osteonecrosis of the jaw ^{36, 37}. The clear demonstration of osteoporotic bone loss caused

315 by the disruption of miR-27a suggests its supplementation be explored as a new

316 therapeutic approach. The clinical application requires a system for osteoclast delivery of

317 miR-27a. However, this may be complicated by the negative effects of the miR23a

318	cluster on osteoblast-mediated bone formation ²⁰ . High levels of miR23a in the mast
319	cells also lead to bone loss through the release of extracellular vesicles by neoplastic mast
320	cells ³⁸ . Therefore, the targeting miR-27a to the bone resorption surfaces with synthetic
321	compounds such as bisphosphonates or osteoclast-targeting molecules such as acid
322	octapeptides with aspartic acid is critical for future clinical applications ³⁹ .
323	
324	Materials and Methods
325	Animals. The CRISPR/Cas9 gene edition strategy was used to generate $\Delta miR-23a\sim 27a$
326	and ΔmiR -27 <i>a</i> mouse strains ^{40, 41} . Complementary oligonucleotides containing the <i>miR</i> -
327	23a or miR-27a sgRNA target sequences were designed by CRISPR Design Tool
328	(http://crispr.mit.edu) and inserted into the pX335 plasmid (Addgene, Cambridge, MA),
329	followed by DNA sequencing to verify the correct cloning. A mixture of sgRNA
330	plasmid, Cas9 protein (NEB, Ipswich, MA), and ssODN (Integrated DNA Technologies,
331	Coralville, IA) was injected into the pronuclei and cytoplasm of fertilized eggs ^{42, 43} . The
332	survived embryos were transferred into the oviduct of pseudopregnant females for
333	carrying to term. The founder lines were genotyped by PCR analysis using primers 5'-
334	GAC CCA GCC TGG TCA AGA TA-3' and 5'-GGA CTC CTG TTC CTG CTG AA-3'
335	to determine the success of the gene edition and germline transmission. Both male and
336	female mice were used in this study. Care and use of experimental animals described in
337	this work comply with guidelines and policies of the University Committee on Animal
338	Resources at the University of Rochester and IACUC at the Forsyth Institute.
339	

340	Genes. Total RNAs including miRNAs were isolated using mirVana miRNA isolation
341	kit (Thermo Fisher Scientific, Waltham, MA), followed by polyadenylation using E. coli
342	Poly(A) polymerase (NEB), and reserve transcribed into DNA using Reverse
343	Transcriptase (Thermo Fisher Scientific) and an anchor primer. Based on the dominant
344	mature miRNA sequences, four to six nucleotides were added to the 5' end to enhance
345	the annealing specificity. To detect the expression of the miRNAs, the reverse
346	transcription products were subject to PCR analysis using forward and reverse primers
347	listed in Supplementary Table 1. The PCR was performed by denaturation at 95° C for 2
348	min and 27 cycles of amplification (95 [°] C for 20 s, $60^{°}$ C for 10 s, and $70^{°}$ C for 10 s). The
349	Lentivirus-miR27a (Cat #MmiR3347MR03, GeneCopoeia, Rockville, MD) and
350	Lentivirus-shRNA p62/Sqstm1 (Product ID: MSH093992, Accession: NM_011018.3,
351	GeneCopoeia) were used to express miR-27a and knockdown p62, respectively.
352	
353	Cells. Primary cells were harvested from bone marrows of the bilateral femur to obtain
354	bone marrow cells. These cells were incubated with Mouse BD Fc Block TM (Cat
355	#553142, BD Biosciences, San Jose, CA) to reduce non-specific antibody staining caused
356	by receptors for IgG, followed by FACS analysis with anti-CD11b/Mac-1 (M1/70)-APC
357	(17-0112-81, eBioscience/Thermo Fisher Scientific; 1:400), anti-granulocyte mAb: anti-
358	Ly-6G/Gr-1 (RB6-8C5)-PE (12-5931-81, eBioscience; 1:10000), anti-dendritic cell mAb:
359	anti-CD11c (N418)-FITC (11-0114-81, eBioscience; 1:20) using LSR II (BD

- 360 Biosciences). For OC differentiation, isolated cells were cultured in αMEM containing
- 361 10% FBS, 1% L-glutamine, 1% non-essential amino acids, and 5 ng/ml M-CSF, followed

362	by the addition of RANKL 10 ng/ml (R&D, Minneapolis, MN). The differentiated cells
363	were then fixed with 10% formalin followed by TRAP staining ²⁴ .

364

365 **3'UTR assay.** The LUC-3'UTR reporter DNA plasmids contain the 3'UTR from

366 Sqstm1, Tgfbr1, Snx10, Map2k7, and Ctsk fused to the end of a luciferase reporter gene

367 (MmiT079315-MT06, MmiT096143-MT06, MmiT073076-MT06, MmiT099033-MT06,

368 MmiT091679-MT06, GeneCopoeia). C3H10T1/2 mesenchymal cells were transfected by

the LUC-3'UTR without or with co-transfection of miR27a (MmiR3347-MR04-50,

370 GeneCopoeia) using Lipofectamine 200 (Cat #11668027, Invitrogen, Waltham, MA).

371 The transcript stability and its translation efficiency in the presence or absence of miR-

372 27a were determined by the luciferase assay 72 hours after the transfection using the

373 Dual-Luciferase Reporter Assay System (Cat #1910, Promega, Madison, WI). The

374 luminescent intensity was measured by the SpectraMax iD3 Multi-Mode Microplate

375 Reader (Molecular Devices, San Jose, CA). Firefly luciferase activities were normalized

376 by the values of Renilla luciferase.

377

Bone analysis and staining. Mouse limbs and spines were collected for ex vivo µCT
imaging using a vivaCT40 scanner (Scanco USA, Wayne, PA). The scanned images
were segmented for reconstruction to access the relative bone volume (BV/TV, %) by 3D visualization and analysis using Amira (FEI, Thermo Fisher Scientific). Cortical bone
thickness (Ct. Th, mm) was analyzed at a standardized location of 30 slices near the
midshaft. Skeletal preparation, fixation, and embedding for paraffin sections were
performed as described ^{44, 45, 46, 47, 48, 49, 50, 51, 52, 53}. Samples were subject to

385	hematoxylin/eosin staining for histology, TRAP staining, van Kossa staining, or
386	immunological staining with avidin: biotinylated enzyme complex ^{44, 45, 47, 49, 50, 52, 53, 54, 55,}
387	^{56, 57} . The immunological staining was visualized by enzymatic color reaction or
388	fluorescence according to the manufacturer's specification (Vector Laboratories,
389	Burlingame, CA). After TRAP staining, osteoclast number per bone area (N.Oc/T.Ar),
390	osteoclast number per bone surface (N.Oc/BS), and osteoclast surface per bone surface
391	(Oc.S/BS, %) was determined for statistical significance. Rabbit antibodies Collagen I
392	(LSL-LB-1190, Cosmo Bio Co., LTD., Japan; 1:2000), Cathepsin K (ab19027, Abcam,
393	Cambridge, MA; 1:50); mouse antibodies Osteopontin (MPIIIB10, Hybridoma Bank,
394	Iowa; 1:500) were used in these analyses. Images were taken using Leica DM2500 and
395	DFC310FX imaging system (Leica, Bannockburn, IL) and Zeiss Axio Observer
396	microscope (Carl Zeiss, Thornwood, NY). Bone formation rate (BFR) was examined by
397	double labeling of Alizarin Red S and Calcein Green, injected intraperitoneally with a 7-
398	day interval. The labeled samples were embedded without decalcification for frozen
399	sections (SECTION-LAB Co. Ltd, Japan) ^{47, 52, 53} , followed by analyzed under a
400	fluorescent microscope using an OsteoMeasure morphometry system (OsteoMetrics,
401	Atlanta, GA) to determine Mineral Apposition Rate (MAR, BFR/BS).
402	

403 **Statistics and Reproducibility.** Microsoft Excel 2010 was used for statistical analysis. 404 The significance was determined by two-sided student t-tests. A *p*-value less than 0.05 405 was considered statistically significant. Before performing the t-tests, the normality of 406 the data distribution was first validated by the Shapiro-Wilk normality test. Analysis of 407 samples by μ CT was performed by a technician who is blinded to the condition. No

- 408 randomization, statistical method to predetermine the sample size, and
- 409 inclusion/exclusion criteria defining criteria for samples were used. At least 3
- 410 independent experiments were performed for statistical analyses of the animal tissues
- 411 described in figure legends. Statistical data were presented as mean \pm SD. The miPath
- 412 v.3 KEGG Reverse Search (https://dianalab.e-
- 413 ce.uth.gr/html/mirpathv3/index.php?r=mirpath/reverse) with Search Pathway: mmu04380
- 414 and Method: TarBase v7.0 was used to identify the candidates that are both miR-27a
- 415 targets (TarBase v7.0) and genes associated with osteoclast differentiation (KEGG:
- 416 mmu04380).

417

- 418 Materials & Correspondence. Correspondence and material requests should be
- 419 addressed to W.H. and T.M.
- 420

421 ACKNOWLEDGEMENTS

422 We thank Chyuan-Sheng Lin, Keiko Kaneko, Ya-Hui Chiu, Michael Thullen, and Hsiao-

423 Man Ivy Yu for assistance in transgenic mouse strains, plasmid DNA construction and

424 purification, FACS, µCT scanning, and imaging analysis, respectively. Research

- 425 reported in this publication is supported by the National Institute of Dental and
- 426 Craniofacial Research of the National Institutes of Health under award numbers
- 427 R01DE015654 and R01DE026936 to W.H. and R21DE028696 to T.M.

428

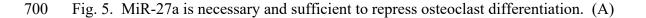
430 **References**

431 432 433	1.	Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. <i>Cell</i> 116 , 281-297 (2004).
434 435 436	2.	Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. <i>Nature</i> 455 , 64-71 (2008).
430 437 438 439 440	3.	Hausser J, Zavolan M. Identification and consequences of miRNA-target interactionsbeyond repression of gene expression. <i>Nat Rev Genet</i> 15 , 599-612 (2014).
441 442 443 444	4.	Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. <i>Cell</i> 123 , 1133-1146 (2005).
445 446 447	5.	Ebert MS, Sharp PA. Roles for microRNAs in conferring robustness to biological processes. <i>Cell</i> 149 , 515-524 (2012).
448 449 450	6.	Li Z, Rana TM. Therapeutic targeting of microRNAs: current status and future challenges. <i>Nat Rev Drug Discov</i> 13 , 622-638 (2014).
451 452 453	7.	Miska EA, <i>et al.</i> Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. <i>PLoS genetics</i> 3 , e215 (2007).
454 455 456	8.	Park CY, et al. A resource for the conditional ablation of microRNAs in the mouse. Cell reports 1, 385-391 (2012).
457 458 459	9.	Croce CM. Causes and consequences of microRNA dysregulation in cancer. <i>Nat Rev Genet</i> 10 , 704-714 (2009).
460 461 462	10.	Shenoy A, Blelloch RH. Regulation of microRNA function in somatic stem cell proliferation and differentiation. <i>Nature reviews</i> 15 , 565-576 (2014).
463 464 465	11.	Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. <i>N Engl J Med</i> 332 , 305-311 (1995).
466 467 468 469	12.	Feng X, McDonald JM. Disorders of bone remodeling. <i>Annu Rev Pathol</i> 6, 121-145 (2011).
470 471 472 473	13.	Gaur T, <i>et al.</i> Dicer inactivation in osteoprogenitor cells compromises fetal survival and bone formation, while excision in differentiated osteoblasts increases bone mass in the adult mouse. <i>Developmental biology</i> 340 , 10-21 (2010).

474 475 476 477	14.	Mizoguchi F, <i>et al.</i> Osteoclast-specific Dicer gene deficiency suppresses osteoclastic bone resorption. <i>Journal of cellular biochemistry</i> 109 , 866-875 (2010).
478 479 480	15.	Seeliger C, et al. Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. <i>J Bone Miner Res</i> 29 , 1718-1728 (2014).
481 482 483 484	16.	Guo Q, Chen Y, Guo L, Jiang T, Lin Z. miR-23a/b regulates the balance between osteoblast and adipocyte differentiation in bone marrow mesenchymal stem cells. <i>Bone Res</i> 4 , 16022 (2016).
484 485 486 487 488	17.	You L, Pan L, Chen L, Gu W, Chen J. MiR-27a is Essential for the Shift from Osteogenic Differentiation to Adipogenic Differentiation of Mesenchymal Stem Cells in Postmenopausal Osteoporosis. <i>Cell Physiol Biochem</i> 39 , 253-265 (2016).
488 489 490 491 492 493	18.	Hassan MQ, <i>et al.</i> A network connecting Runx2, SATB2, and the miR- 23a~27a~24-2 cluster regulates the osteoblast differentiation program. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 107 , 19879-19884 (2010).
494 495 496 497	19.	Guo L, <i>et al.</i> Estrogen inhibits osteoclasts formation and bone resorption via microRNA-27a targeting PPARgamma and APC. <i>J Cell Physiol</i> 234 , 581-594 (2018).
498 499 500 501	20.	Zeng HC, <i>et al.</i> MicroRNA miR-23a cluster promotes osteocyte differentiation by regulating TGF-beta signalling in osteoblasts. <i>Nature communications</i> 8 , 15000 (2017).
502 503 504	21.	Androsavich JR, <i>et al.</i> Polysome shift assay for direct measurement of miRNA inhibition by anti-miRNA drugs. <i>Nucleic acids research</i> 44 , e13 (2016).
505 506 507	22.	Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. <i>Nature methods</i> 4 , 721-726 (2007).
508 509 510	23.	Charles JF, Nakamura MC. Bone and the innate immune system. <i>Curr Osteoporos Rep</i> 12 , 1-8 (2014).
510 511 512 513 514 515	24.	Yao Z, et al. Tumor necrosis factor-alpha increases circulating osteoclast precursor numbers by promoting their proliferation and differentiation in the bone marrow through up-regulation of c-Fms expression. J Biol Chem 281, 11846-11855 (2006).
516 517 518	25.	Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. <i>Nucleic acids research</i> 28 , 27-30 (2000).

519 520 521	26.	Kanehisa M, <i>et al.</i> KEGG for linking genomes to life and the environment. <i>Nucleic acids research</i> 36 , D480-484 (2008).
522 523 524 525	27.	Vlachos IS, <i>et al.</i> DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. <i>Nucleic acids research</i> 43 , D153-159 (2015).
526 527 528	28.	Vlachos IS, <i>et al.</i> DIANA-miRPath v3.0: deciphering microRNA function with experimental support. <i>Nucleic acids research</i> 43 , W460-466 (2015).
529 530 531 532	29.	Rea SL, <i>et al.</i> A novel mutation (K378X) in the sequestosome 1 gene associated with increased NF-kappaB signaling and Paget's disease of bone with a severe phenotype. <i>J Bone Miner Res</i> 21 , 1136-1145 (2006).
533 534 535	30.	Duran A, <i>et al.</i> The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesis. <i>Developmental cell</i> 6 , 303-309 (2004).
536 537 538	31.	Ma Y, <i>et al.</i> Validation of downregulated microRNAs during osteoclast formation and osteoporosis progression. <i>Mol Med Rep</i> 13 , 2273-2280 (2016).
538 539 540 541 542	32.	Laurin N, Brown JP, Morissette J, Raymond V. Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. <i>Am J Hum Genet</i> 70 , 1582-1588 (2002).
543 544 545	33.	Garnero P. Biomarkers for osteoporosis management: utility in diagnosis, fracture risk prediction and therapy monitoring. <i>Mol Diagn Ther</i> 12 , 157-170 (2008).
546 547 548 549	34.	Rossouw JE, <i>et al.</i> Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. <i>Jama</i> 288 , 321-333 (2002).
550 551 552	35.	Khosla S, Hofbauer LC. Osteoporosis treatment: recent developments and ongoing challenges. <i>Lancet Diabetes Endocrinol</i> 5 , 898-907 (2017).
552 553 554 555 556	36.	Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. <i>Osteoporos Int</i> 19 , 733-759 (2008).
550 557 558 559 560	37.	Shane E, <i>et al.</i> Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research. <i>J Bone Miner Res</i> 29 , 1-23 (2014).
561 562 563 564	38.	Kim DK, <i>et al.</i> Mastocytosis-derived extracellular vesicles deliver miR-23a and miR-30a into pre-osteoblasts and prevent osteoblastogenesis and bone formation. <i>Nature communications</i> 12 , 2527 (2021).

565 566 567	39.	Dang L, <i>et al.</i> Targeted Delivery Systems for Molecular Therapy in Skeletal Disorders. <i>International journal of molecular sciences</i> 17 , 428 (2016).
568 569 570	40.	Cong L, et al. Multiplex genome engineering using CRISPR/Cas systems. Science (New York, NY 339 , 819-823 (2013).
571 572 573	41.	Mali P, et al. RNA-guided human genome engineering via Cas9. Science (New York, NY 339 , 823-826 (2013).
574 575 576 577	42.	Mashiko D, Fujihara Y, Satouh Y, Miyata H, Isotani A, Ikawa M. Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. <i>Scientific reports</i> 3 , 3355 (2013).
578 579 580 581	43.	Wu WH, et al. CRISPR Repair Reveals Causative Mutation in a Preclinical Model of Retinitis Pigmentosa. <i>Molecular therapy : the journal of the American Society of Gene Therapy</i> 24 , 1388-1394 (2016).
582 583 584 585	44.	Maruyama T, Mirando AJ, Deng CX, Hsu W. The balance of WNT and FGF signaling influences mesenchymal stem cell fate during skeletal development. <i>Sci Signal</i> 3 , ra40 (2010).
586 586 587 588	45.	Yu HM, <i>et al.</i> The role of Axin2 in calvarial morphogenesis and craniosynostosis. <i>Development (Cambridge, England)</i> 132 , 1995-2005 (2005).
588 589 590 591 592	46.	Mirando AJ, Maruyama T, Fu J, Yu HM, Hsu W. Beta-catenin/cyclin D1 mediated development of suture mesenchyme in calvarial morphogenesis. <i>BMC Dev Biol</i> 10 , 116 (2010).
592 593 594 595 596	47.	Maruyama T, Jiang M, Hsu W. Gpr177, a novel locus for bone mineral density and osteoporosis, regulates osteogenesis and chondrogenesis in skeletal development. <i>J Bone Miner Res</i> 28 , 1150-1159 (2013).
597 598 599	48.	Yu HM, Jin Y, Fu J, Hsu W. Expression of Gpr177, a Wnt trafficking regulator, in mouse embryogenesis. <i>Dev Dyn</i> 239 , 2102-2109 (2010).
600 601 602 603 604	49.	Yu HM, Liu B, Chiu SY, Costantini F, Hsu W. Development of a unique system for spatiotemporal and lineage-specific gene expression in mice. <i>Proceedings of</i> <i>the National Academy of Sciences of the United States of America</i> 102 , 8615-8620 (2005).
605 606 607 608	50.	Yu HM, Liu B, Costantini F, Hsu W. Impaired neural development caused by inducible expression of Axin in transgenic mice. <i>Mechanisms of development</i> 124 , 146-156 (2007).


609 610 611 612	51.	Maruyama EO, Yu HM, Jiang M, Fu J, Hsu W. Gpr177 deficiency impairs mammary development and prohibits Wnt-induced tumorigenesis. <i>PLoS ONE</i> 8 , e56644 (2013).
612 613 614 615 616	52.	Maruyama T, Jeong J, Sheu TJ, Hsu W. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration. <i>Nature communications</i> 7 , 10526 (2016).
617 618 619	53.	Maruyama T, et al. Rap1b is an effector of Axin2 regulating crosstalk of signaling pathways during skeletal development. J Bone Miner Res, (2017).
620 621 622 623	54.	Chiu SY, Asai N, Costantini F, Hsu W. SUMO-Specific Protease 2 Is Essential for Modulating p53-Mdm2 in Development of Trophoblast Stem Cell Niches and Lineages. <i>PLoS biology</i> 6 , e310 (2008).
623 624 625 626 627	55.	Fu J, Hsu W. Epidermal Wnt controls hair follicle induction by orchestrating dynamic signaling crosstalk between the epidermis and dermis. <i>J Invest Dermatol</i> 133 , 890-898 (2013).
628 629 630	56.	Russell HK, Jr. A modification of Movat's pentachrome stain. <i>Archives of pathology</i> 94 , 187-191 (1972).
630 631 632 633 634	57.	Fu J, et al. Disruption of SUMO-Specific Protease 2 Induces Mitochondria Mediated Neurodegeneration. <i>PLoS genetics</i> 10 , e1004579 (2014).
635		
636		
637		

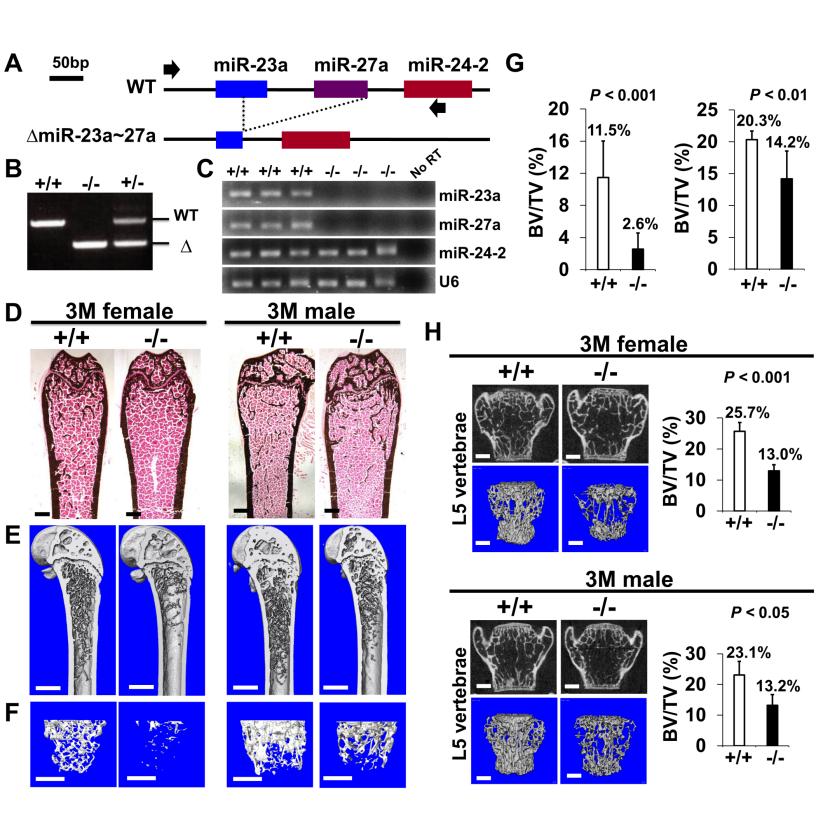
638 Figure legends

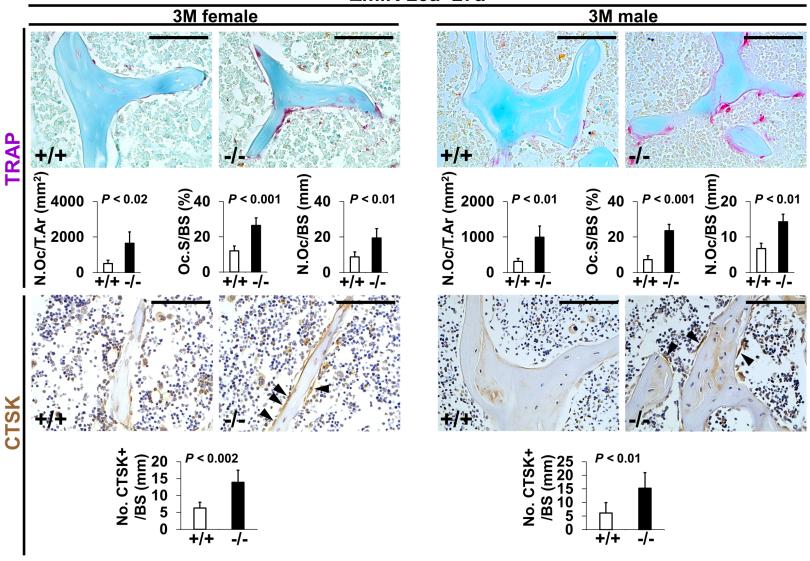
- 639 Fig. 1. Low bone mass phenotypes in mice deficient for miR-23a~27a. (A) Diagrams
- 640 illustrate the miR-23a cluster, consisting of miR-23a, miR-27a, and miR-24-2 (WT), and
- 641 the creation of mouse strains deficient for miR-23a~27a (Δ miR-23a~27a) by
- 642 CRISPR/Cas9 genome editing. Broken lines and arrows indicate the deleted genomic
- 643 regions and primers used for PCR genotyping analysis, respectively. (B) PCR analysis
- 644 examines the miR-23a cluster for genotyping the wild-type (+/+), heterozygous (+/-) and
- homozygous (-/-) for miR-23a~27a mice. The mutant (Δ) alleles with deletion of miR-
- 646 23a~27a result in the generation of shorter PCR products. (C) RT-PCR analysis of the
- 647 miR-23a, miR-27a, and miR-24-2 RNAs reveals the disruption of specific microRNA(s)
- 648 in the mutants. The analysis of small noncoding RNA U6 is used as an internal control.
- Femurs of the 3-month-old (3M) wild-type (+/+) and mutant (-/-) males and females were
- 650 analyzed by μCT scanning (E-F), followed by sectioning and von Kossa staining (D).
- 651 Reconstructed µCT images of the distal femur (E) and femoral metaphysis (F) were
- 652 subject to quantitative analysis for trabecular bone volume (G). (H) Spines of the 3-
- 653 month-old (3M) Δ miR-23a~27a males and females were analyzed by μ CT scanning.
- Images show the μ CT scanned wild-type (+/+) and mutant (-/-) L5 vertebrae (top) and 3D
- 655 rendered trabecular bone (bottom). Quantitative analyses of trabecular bone volume per
- total volume in the femurs and vertebrates are shown in graphs (BV/TV, n=3, mean \pm
- 657 SD; student t-test). Images (D-F, H) are representatives of three independent
- 658 experiments. Scale bars, 500 μm (D-F, H).
- 659

660	Fig. 2. Increased number of osteoclast cells in the Δ miR-23a~27a mice. Sections of the
661	3-month-old (3M) Δ miR-23a~27a males and females were analyzed by tartrate-resistant
662	acid phosphatase (TRAP) staining and immunostaining of Cathepsin K (CTSK). Graphs
663	show quantitative analyses of positively stained cells in the wild-type $(+/+)$ and mutant (-
664	/-) distal femurs (No. of cell+/BS, n=5, mean \pm SD; student t-test). Histomorphometric
665	parameters of bone resorption are evaluated by number of osteoclast/bone area
666	(N.OC/T.Ar), osteoclast surface/bone surface (OC.S/BS), osteoclast number/bone surface
667	(N.OC/BS, n=5, mean \pm SD; student t-test). Images are representatives of five
668	independent experiments. Scale bars, 100 µm.
669	
670	Fig. 3. MiR-23a~27a regulates osteoclast differentiation. (A) FACS analysis examines
671	the CD11b+/Gr-1- and CD11b+/CD11c+ populations for monocyte precursors and
672	dendritic cells, respectively. Images are representatives of three independent
673	experiments. (B) The bone marrow of 3-month-old (3M) wild-type (+/+) and ΔmiR -
674	23a~27a (-/-) males and females show no significant difference (ns; $n = 3$, mean \pm SD;
675	student t-test). (C) Cells isolated from the bone marrow were induced for osteoclast (OC)
676	differentiation (top, 2.5×10^4 cells/well and bottom, 5×10^4 cells/well). The number of OC
677	cells positive for TRAP staining is significantly enhanced in the mutant cultures (n=5,
678	mean \pm SD; student t-test). Scale bars, 1 mm (C).
679	
680	Fig. 4. The loss of miR-27a alone causes osteoporotic defects. (A) Diagrams illustrate
681	the miR-23a cluster (WT), and the creation of mouse strains deficient for miR-27a
682	(Δ miR-27a) by CRISPR/Cas9 genome editing. Broken lines and arrows indicate the

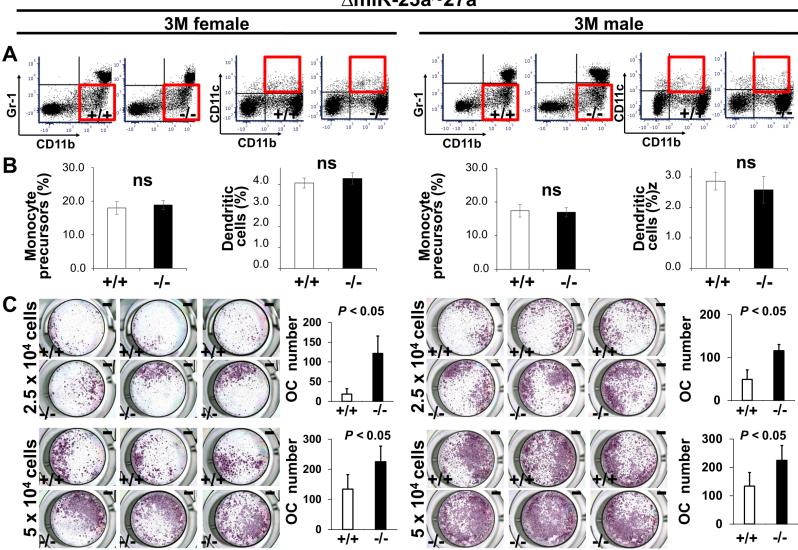
683	deleted genomic regions and primers used for PCR genotyping analysis, respectively.
684	(B) PCR-based genotyping identifies the wild-type (+/+), heterozygous (+/-) and
685	homozygous (-/-) for miR-27a mice showing the mutant (Δ) alleles with deletion of miR-
686	27a result in the generation of shorter PCR products. (C) RT-PCR analysis reveals the
687	disruption of miR-27a but not miR-23a and miR-24-2 RNAs in Δ miR-27a mutants. The
688	analysis of small noncoding RNA U6 is used as an internal control. Femurs of the 3-
689	month-old (3M) wild-type (+/+) and mutant (-/-) males and females were analyzed by
690	μ CT scanning (E-F), followed by sectioning and von Kossa staining (D). The 3D
691	rendered μCT images of the distal femur (E) and femoral metaphysis (F) were subject to
692	quantitative analysis for trabecular bone volume (G). (H) Spines of the 3-month-old
693	(3M) Δ miR-27a males and females were analyzed by μ CT scanning. Images show the
694	μCT scanned wild-type (+/+) and mutant (-/-) L5 vertebrae (top) and 3D rendered
695	trabecular bone (bottom). Quantitative analyses of trabecular bone volume per total
696	volume in the femurs and vertebrates are shown in graphs (BV/TV, n=3, mean \pm SD;
697	student t-test). Images (D-F, H) are representatives of three independent experiments.
698	Scale bars, 500 µm (D-F, H).
699	

701 Graphs show quantitative analyses of TRAP+ and CTST+ cells in the wild-type (+/+) and

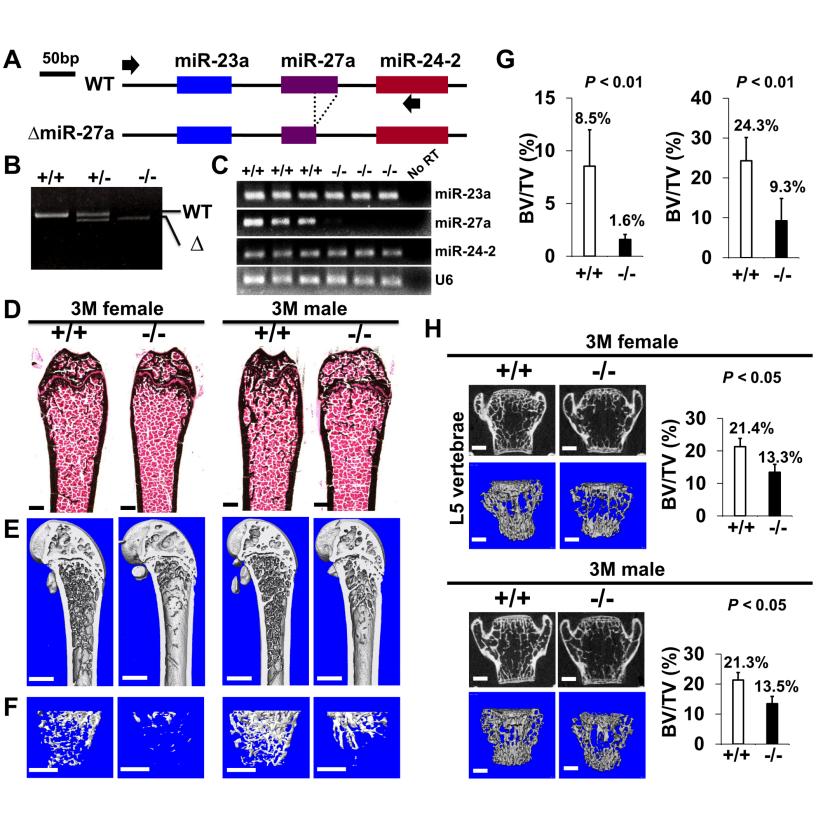

702 mutant (-/-) distal femurs detected in the stained section of the 3-month-old (3M) ΔmiR-

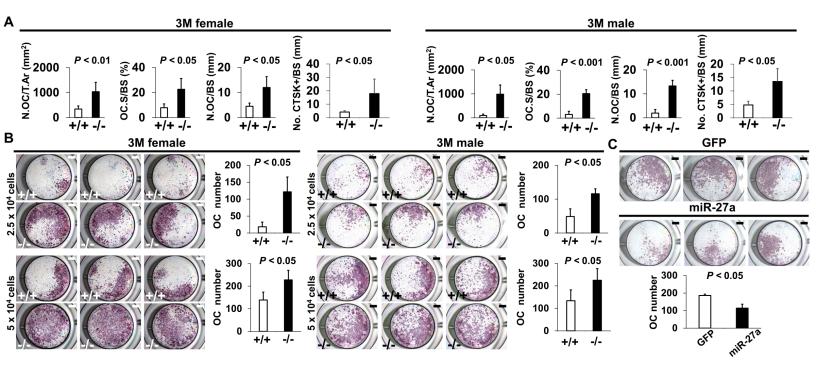

703 27a males and females (n=5, mean \pm SD; student t-test). Histomorphometric parameters

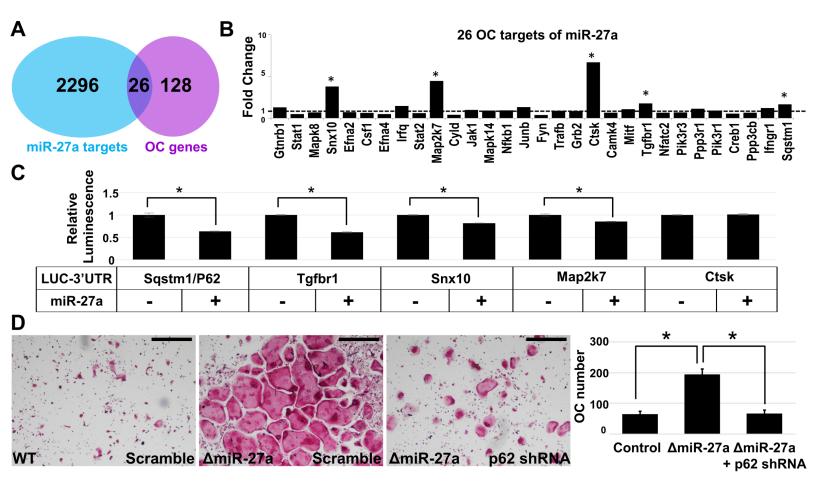
of bone resorption are evaluated by number of osteoclast/bone area (N.OC/T.Ar),


705 osteoclast surface/bone surface (OC.S/BS), osteoclast number/bone surface (N.OC/BS),

706	CTSK+ cells/bone surface (No. CTSK+/BS). (B) Cells isolated from the wild-type (+/+)
707	and mutant (-/-) bone marrows were induced for osteoclast (OC) differentiation (top,
708	2.5×10^4 cells/well and bottom, 5×10^4 cells/well). Graphs indicate the number of TRAP+
709	OC cells (n=5, mean \pm SD; student t-test). (C) Cells isolated from the bone marrow were
710	seeded (5×10^4 cells/well) and induced for OC differentiation with the lentivirus-mediated
711	expression of GFP (control) or miR-27a. The TRAP+ OC cell number is significantly
712	decreased in the miR-27 overexpression cultures (n=3, p < 0.05, mean \pm SD; student t-
713	test). Scale bars, 1 mm (B, C).
714	
715	Fig. 6. MiR-27a-dependent regulation of osteoclast differentiation is mediated through
716	p62 modulation. (A) Venn diagrams illustrate our strategy to identify the OC
717	differentiation-associated genes (KEGG: mmu04380) that are directly regulated by miR-
718	27a. (B) The twenty-six potential targets are examined by quantitative RT-PCR analysis
719	to detect the change of transcript levels in wild-type and Δ miR-27a OC cells (n=3; *, p-
720	value < 0.05 , two-sided student's t-test). (C) The 3'UTR-reporter assay examines five
721	potential genes that are direct targets of miR-27a (n=3; *, p-value < 0.01, means \pm SEM,
722	two-sided student's t-test). (D) A functional study of Sqstm1 also known as p62 reveals
723	the enhancement of OC differentiation caused by the loss of miR-27a is alleviated by
724	lentiviral-shRNA-mediated knockdown. TRAP staining examines the number of mature
725	OC cells in the control, Δ miR-27a and Δ miR-27a plus shRNA-mediated knockdown of
726	p62 (Δ miR-27a + p62 shRNA) cultures (n=3; *, p-value < 0.05, means ± SEM, two-sided
727	student's t-test). Scale bars, 500 µm.






∆miR-23a~27a

∆miR-23a~27a

Supplementary Information for

MicroRNA-27a is essential for bone remodeling by modulating p62-mediated osteoclast signaling

Shumin Wang¹, Eri O Maruyama², John Martinez¹, Trunee Hsu⁶, Wencheng Wu¹, Wei Hsu^{1,2,3,4,5,*} and Takamitsu Maruyama^{1,2,*}

*Corresponding authors emails wei.hsu@hsdm.harvard.edu; whsu@forsyth.org; tmaruyama@forsyth.org

The PDF file includes:

- Fig. S1. The loss of miR-23a~27a causes an osteopenic phenotype in mice.
- Fig. S2. The loss of miR-23a~27a does not affect the cortical bone thickness.
- Fig. S3. Bone formation and osteoblastogenesis are not affected by the ∆miR-23a~27a deletion.
- Fig. S4. Identification of miRNA candidates in osteoclast differentiation pathway.
- Fig. S5. The loss of miR-27a does not affect the cortical bone thickness.
- Fig. S6. Bone formation and osteoblastogenesis are not affected by the Δ miR-27a deletion.
- Fig. S7. Enhanced osteoclastogenesis in the ΔmiR-27a mice.
- Fig. S8. Osteoclast precursor populations are not affected by the loss of miR-27a.
- Table S1. Primers for RT-PCR analysis of miR23a~27a~24-2.

Fig. S1. The loss of miR-23a~27a causes an osteopenic phenotype in mice. Femurs of the 7-month-old (7M) wild-type (+/+) and mutant (-/-) females, were analyzed by μ CT scanning, followed by H&E staining (A). The 3D rendering μ CT images of the distal femur (B) and femoral metaphysis (C) were subject to quantitative analysis (D) for BV/TV (trabecular bone volume per tissue volume, n=3, *, p-value < 0.05, mean ± SD; student t-test). Scale bars, 500 μ m (A-C).

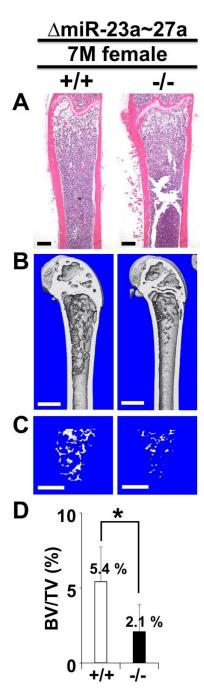


Fig. S2. The loss of miR-23a~27a does not affect the cortical bone thickness. Femurs of the 3month-old (3M) Δ miR-23a~27a males and females were analyzed by μ CT scanning. Images show the reconstructed cortical bone of wild-type (+/+) and mutant (-/-). Quantitative analyses of cortical (Ct.) thickness (Th) are shown in graphs (n=5, mean <u>+</u> SD; student t-test, ns, nonsignificant). Images are representatives of five independent experiments. Scale bars, 500 μ m.



Fig. S3. Bone formation and osteoblastogenesis are not affected by the Δ miR-23a~27a deletion. Sections of the 3-month-old (3M) Δ miR-23a~27a males and females were analyzed by (A) double labeling of alizarin red and calcein, and (B) immunostaining of type 1 collagen (Col1) and Osteopontin (OPN). Quantitative analyses of (A) bone formation rate per bone surface (BFR/BS, n=3, mean \pm SD; student t-test) and (B) number of positively stained cells over the bone surface (No. +/BS, n=5, mean \pm SD; student t-test, ns, non-significant) in the wild-type (+/+) and mutant (-/-) distal femurs are shown in graphs. Eb, endosteal; Tb, trabecular. Images are representatives of three independent experiments. Scale bar, 100 µm.

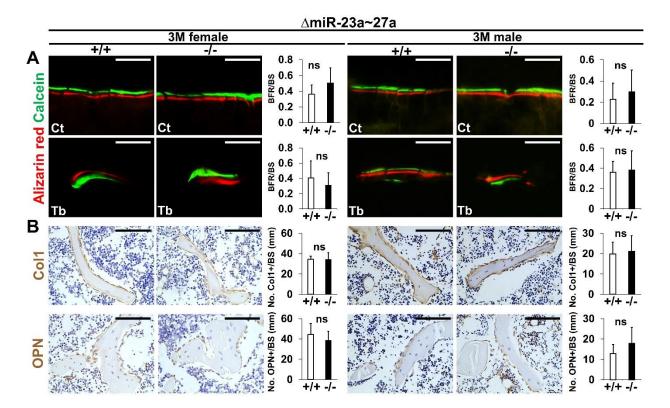


Fig. S4. Identification of miRNA candidates in osteoclast differentiation pathway. The diagram illustrates the top candidates identified by the miRPath Reverse-Search module based on the target accumulation in osteoclast differentiation-related genes in the Kyoto Encyclopedia of Genes ad Genomics (KEGG: mmu04380).

RANK	miRNA	p-value	Genes targeted
1	mmu-miR-17-5p	2.97E-81	29
2	mmu-miR-27b-3p	1.13E-74	27
3	mmu-miR-27a-3p	2.01E-71	26
4	mmu-miR-20b-5p	2.02E-71	26
5	mmu- miR-106a-5p	3.37E-68	25
¥	÷	¥	¥
50	mmu-miR-23a-3p	4.98E-29	12

Fig. S5. The loss of miR-27a does not affect the cortical bone thickness. Femurs of the 3month-old (3M) and Δ miR-27a males and females were analyzed by μ CT scanning. Images show the reconstructed cortical bone of wild-type (+/+) and mutant (-/-). Quantitative analyses of cortical (Ct.) thickness (Th) are shown in graphs (n=5, mean <u>+</u> SD; student t-test, ns, nonsignificant). Images are representatives of five independent experiments. Scale bars, 500 μ m.

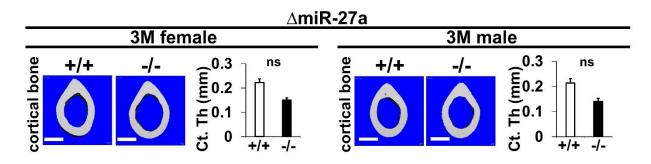


Fig. S6. Bone formation and osteoblastogenesis are not affected by the Δ miR-27a deletion. Sections of the 3-month-old (3M) Δ miR-27a males and females were analyzed by (A) double labeling of alizarin red and calcein, and (B) immunostaining of type 1 collagen (Col1) and Osteopontin (OPN). Quantitative analyses of (A) bone formation rate per bone surface (BFR/BS, n=3, mean ± SD; student t-test) and (B) number of positively stained cells over the bone surface (No. +/BS, n=5, mean ± SD; student t-test, ns, non-significant) in the wild-type (+/+) and mutant (-/-) distal femurs are shown in graphs. Eb, endosteal; Tb, trabecular. Images are representatives of three independent experiments. Scale bar, 100 µm.

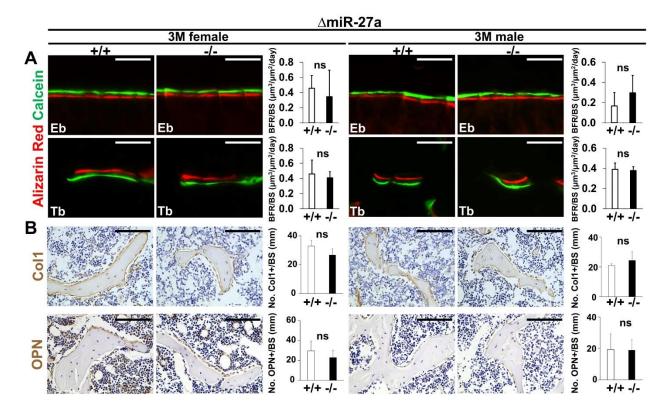


Fig. S7. Enhanced osteoclastogenesis in the Δ miR-27a mice. Sections of the 3-month-old (3M) Δ miR-27a males and females were analyzed by tartrate-resistant acid phosphatase (TRAP) staining and immunostaining of Cathepsin K (CTSK). Based on the positively stained cells in the wild-type (+/+) and mutant (-/-) distal femurs (No. +/BS, n=5, mean <u>+</u> SD; student t-test), quantitative analyses were performed to obtain histomorphometric parameters of bone resorption, the number of osteoclast/bone area (N.Oc/T.Ar), osteoclast surface/bone surface (Oc.S/BS), Osteoclast number/bone surface (N.Oc/BS) shown in Fig. 5. Arrowheads indicate differentiated osteoclast cells positive for TRAP and CTSK. Images are representatives of five independent experiments. Scale bars, 100 µm.

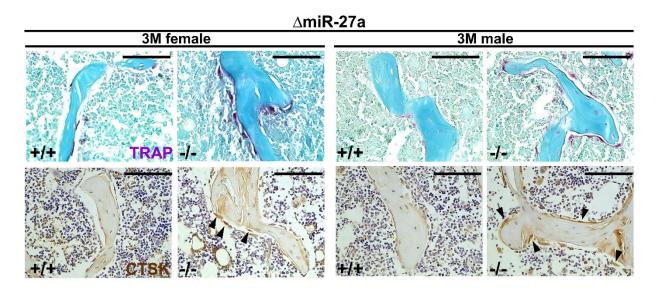
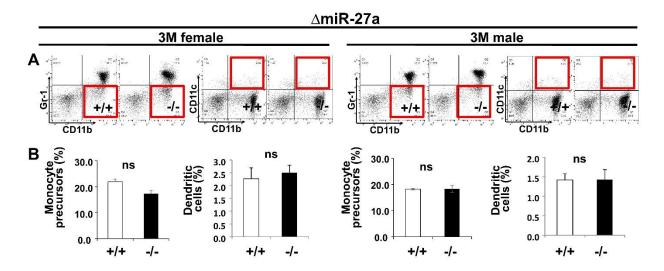



Fig. S8. Osteoclast precursor populations are not affected by the loss of miR-27a. (A) FACS analysis examines the CD11b+/Gr-1– and CD11b+/CD11c+ populations for monocyte precursors and dendritic cells, respectively. Images are representatives of three independent experiments. (B) No significant difference in the bone marrow of 3-month-old (3M) wild-type (+/+) and Δ miR-23a~27a (-/-) mice (n = 3, mean + SD; student t-test).

Name	Primer
mmu-miR-23a F	GTCTGATCACATTGCCAGGGATTTCC
mmu-miR-27a F	GTCTTCACAGTGGCTAAGTTCCGC
mmu-miR-24-2 F	GTGGCTCAGTTCAGCAGGAACAG
U6 polyA F	CACGCAAATTCGTGAAGCGTTCCAT
universal reverse PCR primer	CCAGTCTCAGGGTCCGAGGTATTC
	CGACTCGATCCAGTCTCAGGGTCCGAGGTATTCG
miR reverse anchor primer	ATCCTAACCCTCTCCTCGGTATCGAGTCGCACTTT
	TTTTTTTTV

Table S1. Primers for RT-PCR analysis of miR23a~27a~24-2.