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Low-dimensional neural manifolds are controversial in part
because it is unclear how to reconcile them with high-
dimensional representations observed in areas such as
primary visual cortex (V1). We addressed this by record-
ing neuronal activity in V1 during slow-wave sleep, en-
abling us to identify internally-generated low-dimensional
manifold structure and evaluate its role during visual pro-
cessing. We found that movements and visual stimuli
were both encoded in the “on-manifold” subspace pre-
served during sleep. However, only stimuli were encoded
in the “off-manifold” subspace, which contains activity pat-
terns that are less likely than chance to occur sponta-
neously during sleep. This off-manifold activity comprises
sparse firing in neurons with the strongest low-dimensional
modulation by movement, which paradoxically prevents
movement-evoked activity from interfering with stimulus
representations. These results reveal an unexpected link
between low-dimensional dynamics and sparse coding,
which together create a protected off-manifold coding
space keeping high-dimensional representations separa-
ble from movement-evoked activity.

Intrinsic manifold | Low-dimensional dynamics | High-dimensional
representations | Sparse coding

Introduction
Recent studies using large-scale neuronal recordings have
reported that neural activity contains brain-wide low-
dimensional representations of movements and internal states
(1–4), even in sensory areas such as primary visual cortex (V1).
Many studies have also suggested that the brain operates in a
low-dimensional dynamical regime, with activity constrained
to a neural "manifold," or low-dimensional subspace (5–10).
However, high-dimensional representations of sensory stimuli
and behavioral variables have also been reported (11–13) and
proposed to confer computational advantages (14, 15). How
the brain reconciles low-dimensional dynamics with high-
dimensional representations in the same neuronal population
is an open question.

Here we investigated this question using large-scale record-
ings of neurons during slow-wave sleep (SWS) to probe the
intrinsic population dynamics and examine their relation to ac-

tivity during awake visual perception. Although previous work
has examined replay during SWS (16–18), replay events ac-
count for only a small percentage of neuronal activity (19, 20).
We aimed instead to use SWS as a window into internally-
generated population structure that is uncontaminated by the
influence of the ongoing behavior and sensory inputs present
during wakefulness (21–23).

Results
Neural activity in slow-wave sleep reveals low-dimen-
sional internally-generated population structure
Internally-generated population structure is mostly preserved
between sleep and wakefulness (8, 21, 22, 24), but we reasoned
that SWS may be closer to a true “ground state” of the brain and
could provide better estimates of this population structure. We
tested this by first investigating if the population structure ob-
served in sleep is preserved in wakefulness. For this purpose,
we performed recordings with long periods of SWS and awake
states. We used cross-validated Principal Component Analysis
(cvPCA) to estimate the population structure in the data and
found that SWS population structure is mostly preserved in
awake states (Fig. 1A), with high-variance SWS dimensions
accounting for most of the variance in awake population activ-
ity (Fig. S1, 98.4 ± 0.7% of awake variance; mean ± s.e.m., n =
130 recordings, multiple brain areas), even after subsampling
to account for differences in firing rates (Fig. S2, 89.4 ± 0.6%
of awake variance; mean ± s.e.m., n = 130 recordings, multiple
brain areas).

Since SWS is a more homogenous state than wakeful-
ness, we next tested whether SWS activity would provide a
more reliable estimate of the intrinsic population structure.
To accomplish this, we made independent estimates of the
population activity eigenspectrum from short segments of the
data (16.83 ± 0.82 min., mean ± s.e.m., n = 141 recordings,
multiple brain areas), finding that SWS eigenspectrum es-
timates showed lower segment-to-segment variability (Fig.
1B-C). Using an index of reliability to quantify this variability
(see methods), we found that SWS provides more reliable esti-
mates of population structure than awake spontaneous activity
(Fig. 1D, reliability index 0.15 ± 0.04, mean ± s.e.m., n = 25
recordings) in both our V1 recordings and in publicly available
datasets (Fig. S10) (21, 25–29). We reasoned further that if
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Fig. 1. Slow-wave sleep (SWS) enables reliable estimation of internally-generated low-dimensional manifold structure. (A)
Typical segment of data illustrating that the correlation structure of population activity in V1 is similar during wakefulness and slow-
wave sleep (SWS). (B) Cross-validated principal components analysis (cvPCA) eigenspectra estimated from five adjacent segments
of data show more segment-to-segment variability in wakefulness than in SWS (note wider confidence interval), suggesting SWS
provides a more reliable estimate of population structure. (C) Individual eigenvalues from panel B are estimated more reliably from
SWS than from awake spontaneous activity. (D) cvPCA eigenspectra can be estimated more reliably from SWS than wakefulness). (E)
cvPCA eigenspectra decay faster in SWS than wakefulness (regression slope <1), indicating that SWS is lower-dimensional. (F) Linear
regression slopes of awake and SWS eigenspectra show that, in general, dimensionality is higher during awake states. (t-test for slope
<1) (G) We reasoned that if SWS population structure is generated internally, it should be evoked by diffuse, nonspecific optogenetic
stimulation. We tested this by stimulating in S1 and M1 while recording in the contralateral hemisphere. (H) The eigenspectrum of
optostimulation-evoked activity was more similar to SWS than wakefulness, indicating similar population structure
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SWS is closer to a ground state, then activity should be lower-
dimensional than in wakefulness. To test this, we compared the
rates of eigenspectrum decay (11), finding that SWS activity
was lower-dimensional in V1 (Fig. 1E-F, regression slope 0.91
± 0.03, mean ± s.e.m., n = 25 recordings) and all brain regions
tested (Fig. S10). Because REM sleep was higher-dimensional
than SWS (Fig. S9), we focused our subsequent analyses on
SWS.

Finally, we asked whether the population structure we ob-
served during SWS was truly generated by internal dynamics
as opposed to driven by structured inputs such as specific
motor commands whose execution is blocked during SWS.
To test this, we used Neuropixels probes to record from mul-
tiple sites in one hemisphere during wakefulness, SWS, and
awake optogenetic stimulation of contralateral M1 or S1 (Fig.
1G). Our rationale was that if SWS population structure is
internally-generated, then diffuse, unstructured stimulation
during wakefulness should evoke SWS-like activity patterns.
In support of our hypothesis, we found that awake optostimula-
tion of the contralateral hemisphere evoked multidimensional
dynamics in V1, and the resulting eigenspectrum was more
similar to SWS than wakefulness (Fig. 1H, S3, cosine similar-
ity: opto vs. SWS 0.978 ± 0.005, opto vs. awake 0.865 ± 0.027,
mean ± s.e.m., n = 8 recordings of multiple brain regions).

Off-manifold dimensions are activated in wakefulness
For our subsequent analyses, we operationally defined three
subspaces containing cvPCs that account for more (“on-
manifold”), equal (“non-manifold”), or less (“off-manifold”)
variance than chance during SWS (Fig. 2A). Although the
high-variance cvPCs do not define a manifold per se, we
use the term “on-manifold” to indicate a subspace that likely
contains an internally-generated manifold (5, 6, 22, 23). The
off-manifold subspace is also noteworthy: these dimensions
are preserved in cross-validation and therefore are not merely
noise. Instead, they represent patterns of neuronal activity that
are reproducibly less likely than chance to occur during SWS.

To examine the similarities and differences between awake
and SWS activity, we projected the awake data onto the SWS
cvPCs (Fig. 2B) and determined the amount of variance cap-
tured by each subspace. We found that awake population
structure was similar to SWS, but with increased activity in
the off-manifold subspace (Fig. 2C). This increase was ob-
served in several recording sessions in V1 (Fig. 2D, variance
index: on-manifold -0.07 ± 0.01, non-manifold 0.02 ± 0.01,
off-manifold 0.04 ± 0.01, mean ± s.e.m., n = 25 recordings),
and it was not observed in the opposite direction (SWS pro-
jected onto awake cvPCs, Fig. S4), suggesting it is not a
trivial consequence of PCA minimizing variance in the off-
manifold subspace. To guard further against this possibility,
we developed a novel type of PCA, normalized contrastive
PCA (ncPCA, see methods), which finds the dimensions ex-
hibiting the largest increase in variance in the awake state.
Unlike standard contrastive PCA (30), ncPCA is normalized
to remove the bias toward high-variance dimensions. Using
ncPCA, we found that the dimensions most overrepresented in
wakefulness are preferentially off-manifold (Fig. 2E-F, cosine
similarity index: on-manifold -0.096 ± 0.02, non-manifold

-0.13 ± 0.01, off-manifold 0.13 ± 0.02, mean ± s.e.m., n = 25
recordings). Together, these results suggest that awake activ-
ity is composed of the low-dimensional dynamics observed
in SWS with off-manifold activity added. We found similar
results in multiple other brain regions (Fig. S10), suggesting
this may be a general feature of neural population activity.

Movements and visual stimuli are both encoded on-
manifold, but only stimuli are encoded off-manifold
Since natural scenes have high-dimensional representations in
V1 (11), we next investigated how movements and natural vi-
sual scenes are encoded in the on/non/off-manifold subspaces
(Fig. 3A). For this, we projected awake activity into each of the
three subspaces and tested their ability to predict movements
and stimulus identity compared to random subspaces of equal
dimension. In our chronic V1 recordings, we found that run-
ning speed is encoded preferentially in the on-manifold sub-
space (Fig. 3B on-manifold 0.18 ± 0.05, non-manifold -0.02
± 0.01, off-manifold -0.02± 0.02, mean ± s.e.m., n = 6), sug-
gesting that it drives internally-generated dynamics. We also
confirmed this result in publicly available datasets collected
from several different brain areas (Fig. S10). Further, we found
that face motion, a multidimensional movement, is also en-
coded in the on-manifold subspace in V1 (Fig. 3B on-manifold
0.08 ± 0.02, non-manifold -0.08 ± 0.009, off-manifold -0.1±
0.03, mean ± s.e.m., n = 6 recordings) and several other brain
regions (Fig. S10). It has previously been suggested that dis-
tributed movement representations are created by efference
copy and sensory reafference (2, 31). Although these inputs
undoubtedly drive activity, our results indicate that the pop-
ulation structure of movement-related activity is dictated by
internal dynamics that are preserved during SWS.

Unexpectedly, we found that stimulus identity in V1 is en-
coded in both the on- and off-manifold subspaces, but not
the non-manifold subspace (Fig. 3B, S6, S7 on-manifold 0.14
± 0.02, non-manifold -0.1 ± 0.01, off-manifold 0.08 ± 0.02,
mean ± s.e.m., n = 6 recordings). The on-manifold component
is consistent with previous studies showing that stimulus-
evoked activity in V1 is more similar to spontaneous activity
than chance (8, 32–34). However, our results indicate that natu-
ral scenes are also encoded by off-manifold patterns of activity
that are less likely than chance to occur during SWS. More-
over, decoding performance was improved further by using
combined on- and off-manifold activity (Fig. S8), indicating
that these subspaces encode non-redundant information.

Off-manifold activity is composed of “chorister” neu-
rons firing decoupled from the rest of the population
We next investigated which neuronal activity patterns occupy
the off-manifold subspace. Since natural visual scenes are
known to be encoded by sparse activity in V1 (35–37), we
first quantified the population sparsity of each SWS cvPC by
calculating the Gini coefficient (38). Our analysis revealed
that off-manifold cvPCs have higher population sparsity than
on- and non-manifold ones (Fig. 4A-B, Gini coefficient: on-
manifold 0.45 ± 0.005, n = 82 cvPCs, non-manifold 0.49 ±
0.01, n = 501 cvPCs, off-manifold 0.55 ± 0.003, n = 277
cvPCs, mean ± s.e.m.), meaning that fewer neurons participate
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Fig. 2. Wakefulness exhibits more off-manifold activity than slow-wave sleep. (A) Using SWS cvPCA, we operationally defined
three subspaces: on-manifold (magenta), non-manifold (gray), and off-manifold (cyan), which during SWS account for more, equal,
or less variance than chance, respectively. Example shows a single session in mouse V1. (B) To measure the amount of variance
in each subspace, we projected SWS and awake test sets onto cvPCs from SWS training set. (C) Awake test set activity shows
preferential activation of off-manifold dimensions relative to the SWS test set. (D) This result was observed across several V1 sessions
analyzed. (E) Normalized contrastive PCA (ncPCA, see methods) finds the dimensions that show the largest relative increase in
variance between wakefulness and SWS. These dimensions are overrepresented in the off-manifold subspace. (F) The top 10% of
ncPCs are more aligned with the off-manifold subspace than the on-/non-manifold subspaces [repeated measures ANOVA, multiple
comparisons **p<0.01, ***p<0.001].

in each dimension, the same results was observed in other brain
regions (Fig. S10). It has been reported that cortical neurons
exhibit a broad distribution of population coupling strengths
ranging from “soloists,” which fire decoupled from the rest of
the population (i.e. sparse), to “choristers,” whose activity is
strongly coupled to the population (i.e. dense) (9) and modu-
lated by movement (Fig. S5). We therefore asked whether the
sparse activity patterns we observed in off-manifold dimen-
sions were due to preferential participation by soloist neurons.
We found the opposite result: the off-manifold subspace was
more likely to contain choristers, and the non-manifold sub-
space was more likely to contain soloists (Fig. 4C, Pearson
correlation: non-manifold r = -0.728 ± 0.015, off-manifold r =
0.729 ± 0.007, mean ± s.e.m., n = 6 recordings). These results
were also replicated in other brain regions (Fig. S10), indi-
cating is not V1 specific). The explanation for this seemingly
contradictory result is that the off-manifold subspace contains
population-sparse activity in neurons with low average popu-
lation sparsity; in other words, it is when chorister neurons fire
decoupled from the population (Fig. 4D). Because this is sta-
tistically unlikely to occur, it is observed at less-than-chance
levels during SWS. In contrast, non-manifold activity occurs
at chance levels because soloist neurons usually fire with high
population sparsity.

Low-dimensional dynamics create an off-manifold
coding space accessed by sparse activity
These findings suggest that not all sparse activity in V1 is
equal: sparse firing carries more information about stimulus
identity when it occurs in chorister neurons, which are unlikely
to fire sparsely. This implies that visual stimuli are encoded
in the neurons with the strongest modulation by movement,
which raises the problem that movement-related activity could
interfere with visual processing. To gain insight into this, we
built a modelwith Poisson-spikingneurons that receivea dense
movement-evoked “noise” input with a distribution of input
strengths ranging from low (soloists) to high (choristers) (Fig.
4E). A set of neurons was chosen to encode visual stimuli (“sig-
nal”), with each stimulus activating a sparse subset of those
neurons. We then systematically varied which set of neurons
received visual inputs, ranging from soloists to choristers, en-
abling us to adjust how much stimulus-related variance was in
the non- and off-manifold subspaces (Fig. S13). We found that
when the signal-to-noise ratio is high, non-manifold coding by
soloists yielded optimal stimulus decoding performance (Fig.
4F). However, when the signal-to-noise ratio is lower (compa-
rable to levels observed in our data: SNR = 1.13 ± 0.03 , mean
± s.e.m., n = 6), off-manifold coding by choristers becomes
optimal; in other words, encoding movements and stimuli in
the same neurons makes it easier to keep them separate. An
explanation for this counterintuitive result is that for soloist
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off-manifold 0.07 ± 0.02, mean ± s.e.m., n = 6 [repeated measures ANOVA, multiple comparisons *p<0.05, **p<0.01, ***p<0.001].

neurons, spontaneous activity travels throughout the whole
state space (Fig. 4G), and stimulus representations overlap
with movement-related activity. For chorister neurons, spon-
taneous activity is constrained to a low-dimensional manifold,
opening an unused region of neural state space that sparse ac-
tivity can access to encode visual stimuli without interference
from movement-related activity (Fig. 4G).

Discussion
This work aims to reconcile several disparate findings in
the literature: brain-wide representations of movement (1, 2),
low-dimensional dynamics (5–7, 9, 10), and high-dimensional
representations of sensory stimuli (11). The population struc-
ture of movement-evoked activity has generally been assumed
to be generated by motor efference copy or sensory reaffer-
ence (2, 31). However, we found that this structure is intact
during sleep and evoked by diffuse optogenetic stimulation,
suggesting that efference copy and sensory reafference merely
drive internally-generated dynamics. Our finding that visual
scenes are encoded partly in the on-manifold subspace sug-
gests that structured sensory inputs also activate internally-
generated dynamics, consistent with previous studies showing
that evoked and spontaneous activity in V1 are more similar
than expected by chance (32–34). However, we unexpectedly
found that stimulus identity is also encoded in the off-manifold

subspace, which contains activity patterns that occur at less-
than-chance levels. This suggests that structured inputs can
evoke high-dimensional population activity patterns that are
not generated spontaneously, providing one possible explana-
tion for how high-dimensional representations can be compat-
ible with low-dimensional dynamics and movement-related
activity. Whether these off-manifold patterns passively reflect
the structure of their inputs or are stored in the local network
and triggered by structured inputs will be an interesting ques-
tion for future studies. Our finding that off-manifold activity is
composed of population-sparse activity in chorister neurons,
which are the least likely to fire sparsely, reveals an unexpected
link between dimensionality and sparse coding. Sparse rep-
resentations have been reported in numerous brain regions of
different species (35, 39–41), where they have been proposed
as a mechanism to reduce energy consumption (42). Our re-
sults suggest that another important function of sparse coding
may be to access the off-manifold subspace. Conversely, an
underappreciated function of the low-dimensional dynamics
found in many brain regions may be to reserve an off-manifold
coding space for high-dimensional representations. Our find-
ing that wakefulness is associated with increased off-manifold
activity in many brain regions suggests this may be a general
principle that holds outside of V1. This study has several im-
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activity. Thus, off-manifold activity has high population sparsity but occurs mostly in neurons with low average population sparsity (t-
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panel shows a single segment of V1 data split into its projection into the three subspaces. Rows are ordered by population coupling with
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decoding performance was better when the stimulus was encoded off-manifold in choristers. This indicates, counterintuitively, that it is
easier to separate signal and noise when they are encoded in the same neurons rather than different ones. (G) An intuitive explanation
for this result is that soloist neurons are decoupled from the spontaneous activity manifold, so movement-evoked activity enters the
non-manifold space at random, and there is no dedicated space in which to encode the stimulus. (H) For chorister neurons, activity
is coupled to the manifold, which creates a protected off-manifold subspace (cyan) that movement-evoked activity is unlikely to enter.
Sparse activity in chorister neurons accesses this off-manifold coding space, which encodes high-dimensional stimuli separate from
movement-evoked activity.

portant limitations, including the fact that we did not attempt to
use nonlinear dimensionality reduction methods to determine
the intrinsic dimension or structure of the underlying popu-
lation activity manifold. Additionally, we did not attempt to
determine which specific stimulus features are coded in the on-
and off-manifold subspaces. Future studies addressing these
questions could shed light on the possible roles of off-manifold
activity in encoding higher-order stimulus features or unex-
pected deviations from movement-evoked changes in sensory
inputs. Our findings highlight the benefits of using sleep as a
tool to study awake brain function, even in primary sensory ar-
eas such as V1. Many previous studies have compared evoked

activity to awake spontaneous activity (9, 10, 32, 34, 43, 44),
but our results suggest that SWS provides a more reliable
estimate of internally-generated low-dimensional population
structure. We encourage others to incorporate sleep recordings
into their experiments as a relatively low-effort means to gain
insight into the interactions between internally-generated dy-
namics and representations of sensory and cognitive variables.
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Methods
All experimental procedures were conducted in accordance
with the Institutional Animal Care and Use Committee of
Albert Einstein College of Medicine.

Animals and surgery
Experiments were conducted using C57BL/6J x FVB F1 hy-
brid mice (45). For the visual stimulation task, we chronically
implanted a 64-site silicon probe (NeuroNexus) in the pri-
mary visual cortex (V1) (AP: 3.4 ML: 2.6 DV: 0.6 from brain
surface) under isoflurane anesthesia, as described previously
(46). Wires for reference and electrical ground were implanted
above the cerebellum, and a copper mesh hat was built to
shield the probes. Probes were mounted on microdrives that
were used to move the probe farther into V1 for maximizing
unit yield, though never beyond DV of 1.0 mm. Animals were
housed individually after implantation and allowed to recover
for at least one week before experiments. Recordings were
performed using the Intan system at 30 kHz. Offline automatic
spike sorting was performed using Kilosort 2.0 (1, 47), and
all parameters used for sorting are presented in the Kilosort
2.0 wrapper repository in StandardConfig_KS2Wrapper.m.
Manual adjustment of Kilosort outputs was performed using
Phy. Isolated single units were assigned to putative principal
neurons or fast-spiking interneurons based on through-to-peak
time of waveforms, a criteria previously used in V1 (28).

We also used data that is publicly available on the Buzsáki
laboratory website. We used the Matlab toolbox Buzcode to
extract the data used for this manuscript . The methodology
for collection of this data was described elsewhere (21, 25–
29). From all datasets, we selected only recording sessions
where there were location/speed tracking and slow-wave sleep
(SWS) states. A table with a brief summary of the dataset used
is presented in table 1.

Brain region Species Animals Sessions Reference
V1 Mice 18 18 (28)
FC Rat 9 21 (25)
TH Mice 7 51 (21)
LS Rat 5 45 (29)

HPC/NAc Mice 6 34 (27)
BLA Rat 4 39 (26)

Table 1. Summary of datasets used for analysis. V1: primary vi-
sual cortex, FC: frontal cortex, TH: thalamus, LS: Lateral Septum,
HPC: Hippocampus, NAc: Nucleus Accumbens, BLA: Basolat-
eral amygdala

Viral vectors
We used an adeno-associated viral vector (AAV) with a
CaMKII promoter to express channelrhodopsin-2 in pyra-
midal cells in primary sensory and motor cortex. The recombi-
nant AAV vector was pseudotyped with AAV5 capsid protein
and packaged by Addgene.

Visual stimuli
Natural scene stimuli were the same as used in (1). In brief,
32 images were selected from ethological relevant categories,

such as animals and plants. The images chosen were less than
50% uniform background, and with a balance of low and high
spatial frequencies. We performed 60 repetitions with 0.5 s
duration and an inter-stimulus interval varying from 0.7 to 1
seconds. Visual stimuli were presented on a screen facing the
eye contralateral to the side being recorded.

Neuropixels data acquistion
Neuropixels electrodes were used to record extracellularly
from neurons in multiple brain areas including V1, hippocam-
pus, thalamus, striatum, and prefrontal cortex in head-fixed
mice. On the day of recording, two small craniotomies were
made with a dental drill. After recovery, animals were head-
fixed on a custom made treadmill. Two neuropixels probes are
inserted in each animal’s right hemisphere (anterior-posterior
(AP): -3.2 mm, medial-lateral (ML): 2.7 mm, depth(D): 3.6
mm, angle: horizontal 60 degrees, medial 15 degrees; AP: -0.2
mm, ML: 3.2 mm, D: 5.6 mm, angle: horizontal 60 degrees,
medial 55 degrees; AP: 0.9 mm, ML: 1.1 mm, D: 3.8 mm,
angle: horizontal 60 degrees, medial 55 degrees). Each probe
was mounted on a rod held by a micromanipulator (uMP-4,
Sensapex Inc.) and advanced slowly (∼ 1µm/s). Electrodes
were allowed to settle for 30 min before starting recording.
Recordings were made in external reference mode with LFP
gain 250 and AP gain 500 using Open-Ephys software. Wires
for reference and electrical ground were connected to the
cerebellum.

Optogenetic stimulation
In each animal’s left hemisphere, the optical fibers (400 µm
core diameter, 0.5 NA) were inserted in S1 (anterior-posterior
(AP): -1.5 mm, medial-lateral (ML) 1.5 mm, Depth(D): 0.6
mm) and M1 (AP: 1.5 mm, ML 1.7 mm, D: 1.2 mm). Op-
togenetic stimulation was at 450 nm (Osram PL450B laser
diode) with power ranging from 0-6 mW. We use three types
of optogenetic stimuli: 25 Hz white noise lasting 1 s, 10 Hz
white noise lasting 1 s, and a 10 Hz sinusoid lasting 0.4 s.

Data analysis and exclusion
We used custom MATLAB custom scripts for analysis and
plotting. In our analysis we used the following toolboxes:
Buzcode, communication subspace (48) for Reduced Rank
Regression, and GPML toolbox for Gaussian Process Re-
gression. We used only sessions containing a minimum of
30 neurons and 20 minutes of sleep, unless otherwise stated.
When analyzing running speed and face motion prediction, we
excluded sessions where the full rank prediction was smaller
than a threshold of R2 = 0.1. In the classification of natural
visual scenes we excluded low-quality sessions in which the
total prediction accuracy was below 30%.

Cross-validated PCA
First, we separate the data into training and test sets (Ntr and
Nts respectively). The singular vectors Vn are calculated for
the training set, and test set data is projected onto those singular
vectors to estimate cross-validated scores Un = NtsVn, with
variance calculated from each cvPC score. When estimating
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the amount of variance, we performed cvPCA in five contigu-
ous folds, i.e. folds that have the same duration but consist of
continuous blocks of time rather than randomly selected time
points. We set each neuron to contribute equally to the cvPCA
by z-scoring them individually. Each state (awake and SWS)
is z-scored separately. Since shortening the data in time can
change the variance of each neuron, we z-scored the training
set separately before PCA, but the test set was only z-scored
once with the entire dataset.

To build a null distribution for the eigenspectrum, we shuf-
fled the cell identities of the test set 10,000 times and calculated
the variance of the shuffled test set’s projection onto the orig-
inal singular vectors. We defined the confidence interval as
the lower (100 × p)% and upper (100 × (1 − p))% values of
this null distribution, where p = 1/N and N is the number of
units in the data. The confidence interval was used to define
where on-/non-/off-manifold subspaces begin and end in the
cross-validated eigenspectrum.

Normalized contrastive PCA
To determine the dimensions that are maximally different
between SWS and awake states, we developed a new PCA
method to find the contrastive dimensions between the two. In
order to control for high variance dimensions dominating the
contrastive PCs, we normalize the method by their variance.
This method finds the eigenvector x that maximizes equation
1.

xT (BT B −AT A)x
xT (BT B +AT A)x (1)

Where A and B are the neural activity in SWS and awake
states.

Reliability index
The reliability index was calculated based on the coefficient
of variation from the cross-validated eigenspectrum. For this
purpose, we took segments of awake and SWS data of equal
duration and separated the data from each state into five con-
tiguous folds. We performed PCA on one fold and projected
each other fold in the testing sets onto the training set PCs.
Each fold got a turn as the training set, which allowed us to
build a confidence interval out of the PCs. Using the standard
deviation (σ) and mean (µ) we calculated the Reliability in-
dex by the ratio µ

σ which is equivalent to the inverse of the
coefficient of variation σ

µ .

Gaussian process regression and running speed pre-
diction
We used gaussian process regression (GPR) to predict run-
ning speed from the neural activity. Running speed was log-
transformed and z-scored before model training and predic-
tion. The parameters used for GPR were mean function zero,
covariance function rational quadratic, and exact inference of
posterior probability with gaussian likelihood. All the hyper-
parameters were optimized by the log marginal likelihood.

Face motion extraction and prediction
We record the face of the mouse using a camera with a infrared
filter. Infrared LEDs illuminated the face of the mouse. Videos

were collected at 30 Hz and aligned with electrophysiology
based on digital pulses that triggered frame collection.

To extract the face motion variables we used Facemap. For
face motion variables used here, we excluded ROIs around the
eyes to avoid contamination by the pupil.

Reduced rank regression was used for prediction of face
motion components by z-scored neural activity. The initial β
used for the regression were estimated by ridge regression, as
described previously (48).

Optostimulation prediction and Partial Least Squares
regression
To determine the dimensionality of optostimulation-driven
population activity we used partial least squares (PLS) re-
gression. This method identifies dimensions in the neural data
that maximize the prediction of the optostimulation wave-
form. Similarly to PCA, PLS regression identifies orthogonal
dimensions with decaying variance explained in a successive
manner. We performed prediction of optostimulation by us-
ing the z-scored neural data projected into the identified PLS
dimensions and using GPR to predict the z-scored optostim-
ulation waveform. For GPR we used the same parameters as
described in the Gaussian process regression section. This
method was done separately for S1 and M1 optostimulation.

To define the dimensionality of optostimulation in the neural
data, we picked the number of PLS dimensions that plateaued
the cross-validated R2. For that we picked the lowest number
of dimensions that had prediction performance one s.e.m.
away from peak prediction.

Natural visual scenes classification
We made predictions of stimulus identity by fitting a linear
multiclass support vector machine (SVM); the SVM model fits
a one-vs-one multiple binary classifications to a total of K(K-
1)/2 models, where K is the number of visual stimuli identity.
The average firing rate of neurons during each stimulation was
z-scored and used as a variable for prediction. We projected
this data in different dimensions, when stated so, for some of
the analysis performed in this study

R2 and accuracy
To estimate performance of regression analysis, we use the
equation 2 for R2.

R2 = 1−

∑
i

(yi − ŷi)2∑
i

(yi − ȳ)2 (2)

Where y is the original variable, ŷ is the model predicted
and ȳ is the mean of the original variable. In this R2 equation,
the model is compared to a constant model (the mean of the
original variable). If the prediction is worse than the constant
model, the R2 can be negative, which is comparable to R2 = 0.

The performance of classification for natural scenes was
calculated using the accuracy equation 3.

Accuracy = (True Positive + True Negative)
(All Samples) (3)
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Prediction index and random projections
There was a different number of dimensions in each subspace
(on-/non-/off-manifold), which can influence the prediction
quality of the variables we tested. To control for that, we
generated 10 random subspaces of equal dimensionality to the
on-/non-/off-manifold subspaces. We projected the data into
both the original subspace and the random subspaces to make
predictions of running speed, face motion, and natural scenes.
We used the R2 from the original subspace and the average
R2 from the subspaces generated to calculate the prediction as
indicated in equation 4.

Prediction Index =
R2

s −R2
rp

R2
s +R2

rp

(4)

Where R2
s is the R2 of the subspace and R2

rp the R2 random
projections of matching dimensionality. A positive prediction
index means the prediction was better by the original subspace,
and a negative index means that random subspaces generated
a better prediction. Because the R2 cannot be negative for this
index calculation, we zeroed every R2 that was negative (see
R2 and accuracy section).

Single-neuron population coupling
Population coupling was calculated as described before (9); in
brief, we summed the neural activity of N-1 neurons binned
and zero-centered, then took the dot product of the left-out
neuron’s activity with that of the summed population activity.
The resulting number is normalized by the L2-norm of the left-
out neuron’s activity. We normalized the population coupling
to the range [0,1]. Unlike Okun et al., we did not smooth the
data prior to the population coupling calculation.

Population sparseness
We used the Gini coefficient of the absolute loadings to esti-
mate the population sparseness. This was calculated separately
for each cvPC. We first calculated the histogram of loadings
using 30 bins, then estimated scores Sn by multiplying the
count in each bin by its center value. The histogram of load-
ings was also used to calculate the discrete density function
f(yi), which represents the fraction of the population that has
that loading value. Using these variables, we estimated the
Gini coefficient by equation 5.

Gini coefficient = 1−

n∑
i=1

(f(yi)(Si−1 +Si))

Sn
(5)

The coefficient varies from 0 to 1, where 0 is perfect equality
(i.e. equal participation of all the neurons in a cvPC) and 1 is
maximal inequality (only one neuron participates in the cvPC).

Overall firing rate fluctuation
To control for population firing rate fluctuations in our results,
we removed it from the data when applicable. For that we
estimated the overall firing rate fluctuation as the change in
activity in a [1] vector of the same number of rows as the
number of neurons. This vector is normalized by its L2-norm
and used to project the z-scored neural data N (organized with

time bins in rows and neurons in columns) and estimate the
overall firing rate fluctuation in time FRt. We then removed
this from the data by subtracting this projection, as in N −
FRt · [1]T.

Up and down state detection
To control for up and down transitions in SWS affecting our
estimates of population activity, we detected up/down states
and restricted the analysis to up states alone. For detecting
these states, we used the same methodology as described
previously (49). In brief, during periods of SWS, the LFP
delta (0.5-8 Hz) and gamma bands (30-600 Hz) are used for
thresholding and detection of up states (high gamma power)
and down states (delta peak and low gamma power). Down
states are then further restricted to periods where spiking
activity is below threshold.

High firing rate spikes subsampled
To control for the possibility that some of our results were
biased by differences in neuronal firing rates, we subsampled
the spike trains of high firing rate neurons to match the number
of spikes in the low firing rate neurons. We sorted the neurons
according to their firing rate and subsampled the top half of
neurons to match the bottom half. We randomized which top
neuron would match which bottom neuron so that the first top
neuron did not always match the first bottom neuron.

Single neuron subspace participation
To determine the participation of a neuron to a specific sub-
space, we calculated the average absolute loading of that
neuron in all the cvPCs that span that specific subspace.

Simulation
We built a simple neural network to investigate how the over-
lap of both movement-evoked activity and visual stimuli influ-
ences the decoding of the visual stimulus identity in relation to
the signal-to-noise ratio. The network has 100 principal neu-
rons, and each neuron’s firing patterns are Poisson-distributed
with uncorrelated noise added at each time step. Neurons were
not connected to each other but received inputs encoding both
movement "noise" and visual stimulus "signal", each with
their own weight matrix. There are two distinct time epochs: a
sleep epoch receiving only the movement-evoked white noise
input, and a visual stimulus epoch receiving both the noise
input and the visual stimulus signal input. For both epochs we
used 100 ms time steps, and the total duration of each epoch is
50 s. During the sleep epoch, the white noise temporal profile
was fed into the 60 out of the 100 principal neurons with
a weight vector of normal distribution loadings in the range
[0,1]. During the visual stimulus epoch, principal neurons also
received the same white noise input as during the sleep epoch.
In addition, ten different sparse input weight vectors represent-
ing ten visual stimuli were fed into the principal neurons with
loadings in the range [-1,1]. 30 out of 100 neurons received
visual stimuli, each with its own weight vector. 5 out of 30
neurons received all 10 visual stimulus inputs, and different
combinations of 5 out of 25 neurons were stimulated with each
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visual stimulus input. Thus 10 different combinations of neu-
rons are tuned for individual stimuli. In the simulations, two
parameters were explored: the signal-to-noise ratio and the
signal/noise population overlap. The signal-to-noise ratio is
varied by adjusting the amplitude of the white noise stimulus.
The signal/noise overlap is defined by selecting 30 out of 100
neurons to receive the visual stimulus, and those neurons vary
from having the highest to lowest movement-evoked activity.
To test the network’s performance encoding visual stimuli,
prediction accuracy was computed using the accuracy formula
above.

Null hypothesis testing
Information on statistical tests can be found on supplementary
table 2. All t-tests were two-tailed, and for multiple pair-
wise group comparisons we used Tukey-Kramer posthoc test
correction.
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Fig. S 1. SWS and awake cvPCs explain a similar amount of variance in awake population activity. (A) SWS cvPCs capture
much of the population structure of awake activity. (B) The top k (k = 9.4 ± 0.6, mean ± s.e.m., n = 130 recordings across multiple
brain regions) cvPCs of awake and SWS activity (defined as the number of cvPCs with variance above chance in SWS) explain similar
amounts of variance in the awake test set data. This suggests that low-dimensional population structure is conserved across SWS and
wakefulness.
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Fig. S 2. The population activity structure observed during SWS is not explained by high firing rate neurons dominating on-
manifold dimensions. (A) To control for higher firing rate neurons being overrepresented in on-manifold dimensions, we subsampled
the spikes of the top half of high-firing-rate neurons to match the firing rates of the bottom half. (B) Example eigenspectrum of original
SWS test set projected onto PCs from SWS training set, subsampled SWS training set, and random vectors. Note similarity of sub-
sampled and full eigenspectra. (C) The SWS PC eigenspectrum is more similar to the subsampled SWS PC eigenspectrum (colored
boxplots) than random vectors (grey boxplots) for all brain areas tested. Eigenspectrum cosine similarity with SWS subsampled: 0.73 ±
0.02, random vectors: 0.12 ± 0.02, mean ± s.e.m., n = 130 recordings. [paired t-test **p<0.01, ***p<0.001]
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Fig. S 3. Optogenetic stimulation evokes multidimensional activity patterns similar to those observed during SWS. (A) Using
partial least squares regression (PLS), we found neuronal activity dimensions that best predicted the white noise waveform of diffuse op-
togenetic stimulation applied to the contralateral hemisphere. (B) Multiple PLS dimensions are required to predict the one-dimensional
optogenetic stimulus, suggesting that optostimulation drives internally-generated dynamics. (C) S1 and M1 optostimulation generate
multidimensional representations in multiple brain areas (S1: 12 ± 1.2, n = 17 brain areas; M1: 14.1 ± 1.2, n = 15 brain areas; mean
± s.e.m.). (D) Optostimulation during awake states evokes population activity that is more similar to SWS than awake states. The left
eigenspectrum example shows the projection of test set data onto awake cvPCs, and the right eigenspectrum shows the projection
onto SWS cvPCs. In both cases, optostimulation is closer to SWS than awake (group statistics shown in Fig. 1H).
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Fig. S 4. SWS activity does not show increased variance in dimensions that exhibit the lowest variance during wakefulness. (A)
To test whether our results from Fig. 2 were artifactual, we performed the same analysis in the opposite direction: PCs were estimated
from the awake training set, then awake and SWS test sets were projected onto these PCs. We built a null distribution using the awake
training set to identify cvPCs that explain more, equal, or less variance than chance. (B) The SWS test set projected onto awake cvPCs
does not show an increased variance in the low-variance dimensions, as is observed when an awake test set is projected onto SWS
cvPCs (Fig. 2C-D). This suggests that the increased off-manifold activity observed during wakefulness is not a trivial consequence of
the awake and SWS eigenspectra being different. (C) With the sole exception of the BLA, we did not observe any increased variance in
the lowest-variance awake PC subspace. Variance index: high-variance -0.002 ± 0.007, chance-variance 0.003 ± 0.005, low-variance
0.01 ± 0.01, mean ± s.e.m., n = 141 recordings). [repeated measures ANOVA, multiple comparisons *p<0.05, **p<0.01, ***p<0.001].
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Fig. S 7. Off-manifold encoding of natural visual scenes is not explained by various nonspecific effects. Off-manifold coding
remains intact after: (A) Removal of firing rate fluctuation from each neuron in SWS. (B) Estimating SWS cvPCs using up state periods
only. (C) Subsampling the spikes from top half firing rate neurons to match the amount of spikes of bottom half. (D) Using solely putative
pyramidal cells. [repeated measures ANOVA, multiple comparisons **p<0.05, **p<0.01, ***p<0.001]
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whether the on- and off-manifold subspaces encode redundant information, we tested the performance of a classifier in predicting
stimulus identity from neural activity in the on-manifold subspace, the off-manifold subspace, or both. (B) Prediction performance is
higher for both subspaces combined. [repeated measures ANOVA, multiple comparisons **p<0.01, ***p<0.001]
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Fig. S 9. REM sleep is higher dimensional than SWS. (A) The eigenspectrum decays more slowly in REM, indicating higher-
dimensional population activity than in SWS. (B) Summary of several recording sessions from V1 (SWS: two-tailed t-test, p = 0.0099,
1.24 ± 0.06, n = 6 recordings; Awake: p = 0.0955, 1.06 ± 0.03, n = 6 recordings; mean ± s.e.m.).
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Fig. S 10. Main results found in V1 are replicated in multiple brain areas (A) Population structure from SWS is more reliable than
wakefulness for all brain areas tested (B) Eigenspectrum decay reveals that SWS is lower-dimensional than wakefulness in all brain
areas tested. (C) Normalized contrastive PCA finds the dimensions maximally overrepresented in wakefulness; these dimensions are
more aligned with the off-manifold subspace than the other subspaces. (D) During wakefulness, running speed encoding is on-manifold
in CA1, LS, NAc and BLA datasets. (E) Neuropixels recordings from multiple brain areas have face motion encoding on-manifold but not
non-/off-manifold. (F) For all datasets analyzed, off-manifold dimensions are sparser than on-/non-manifold dimensions. (G) Neurons
participating in off-manifold coding are strongly coupled to the rest of the population. [*p<0.05,**p<0.01, ***p<0.001]
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Fig. S 11. Subsampling spikes in high firing rate neurons does not drastically change subspace participation. (A) In an example
session, the on-manifold participation of each neuron is similar before and after subsampling spike trains to control for firing rate. (B)
Correlation coefficients for subspace participation in original and subsampled spike trains for all V1 recording sessions: on-manifold
(magenta), non-manifold (dark gray), and off-manifold (cyan). Light gray boxplots are for randomly chosen vectors. Pearson correlation,
on-manifold: r = 0.49 ± 0.04, non-manifold: r = 0.6 ± 0.06, off-manifold: r = 0.4 ± 0.08 [paired t-test, **p<0.01, ***p<0.001]
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Fig. S 12. Controlling for firing rate fluctuations does not change on-manifold prediction of movements. (A) Removing overall
firing rate fluctuation of each neuron does not change on-manifold predictability of face motion. Prediction index, original: 0.5 ± 0.09,
corrected: 0.62 ± 0.07, mean ± s.e.m., n = 15 recordings of multiple brain areas. (B) Same as A but for running speed. Prediction index,
original: 0.12 ± 0.01, corrected: 0.11 ± 0.01, mean ± s.e.m., n = 77 recordings. [two-tailed t-test, *p<0.05, **p<0.01, ***p<0.001]
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Fig. S 13. Stimulus-evoked activity in chorister neurons creates off-manifold encoding. (A) In our model, the stimulus provides
inputs to a sparse subset of neurons that varies from low to high population coupling. (B) At low signal-to-noise ratios, off-manifold
coding becomes advantageous. This is the same plot shown in Fig. 4F, but without normalization. (C) The proportion of stimulus-related
variance captured by the non- and off-manifold subspaces (gray and cyan, respectively). As the sparse stimulus goes from overlapping
with soloists to choristers, the coding of the stimulus switches from non-manifold to off-manifold. (D) The off-manifold prediction index
increases as the sparse stimulus overlaps more with choristers than with soloists.

24 | bioRχiv de Oliveira and Kim et al. | Off-manifold visual encoding

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2022. ; https://doi.org/10.1101/2022.06.10.495710doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.10.495710
http://creativecommons.org/licenses/by-nc-nd/4.0/


Panel brain area test used value CI n df P-value
1D V1 t-test t=2.57 0.024 - 0.22 25 24 0.0167
1F V1 t-test t=-3.41 0.85 - 0.96 25 24 0.0023
1H Multiple paired t-test t=5.01 0.02 - 0.06 10 9 7.23E-4
2D V1 RM ANOVA F=80.17 - 25 (2,48) 4.99E-16
2D V1 on- vs non- Multiple Comparisons - -0.11 - -0.065 25 - 4.96E-09
2D V1 on- vs off- Multiple Comparisons - -0.14 - -0.078 25 - 7.08E-09
2D V1 non- vs off- Multiple Comparisons - -0.031 - -0.007 25 - 2.1E-03
2F V1 RM ANOVA F=51.08 - 25 (2,48) 1.3E-12
2F V1 on- vs non- Multiple Comparisons - -0.027 - 0.080 25 - 0.44
2F V1 on- vs off- Multiple Comparisons - -0.32 - -0.14 25 - 5.78E-06
2F V1 non- vs off- Multiple Comparisons - -0315 - -0.201 25 - 1.11E-09
3B V1 running speed RM ANOVA F=15.25 - 6 (2,10) 9.17E-04
3B V1 on- vs non- Multiple Comparisons - 0.054 - 0.39 6 - 0.017
3B V1 on- vs off- Multiple Comparisons - 0.032 - 0.4 6 - 0.028
3B V1 non- vs off- Multiple Comparisons - -0.07 - -0.063 6 - 0.98
3B V1 face motion RM ANOVA F=25.95 - 6 (2,10) 1.10E-04
3B V1 on- vs non- Multiple Comparisons - 0.093 - 0.24 6 - 1.5E-3
3B V1 on- vs off- Multiple Comparisons - 0.052 - 0.264 6 - 0.01
3B V1 non- vs off- Multiple Comparisons - -0.075 - 0.064 6 - 0.96
3B V1 natural scenes RM ANOVA F=29.14 - 6 (2,10) 6.73E-05
3B V1 on- vs non- Multiple Comparisons - 0.135 - 0.37 6 - 2.0E-03
3B V1 on- vs off- Multiple Comparisons - -0.039 - 0.19 6 - 0.17
3B V1 non- vs off- Multiple Comparisons - -0.37 - 0.13 6 - 0.004
4B V1 cvPCs sparsity One-way ANOVA F=242.98 - 860 (2,857) 2.56E-84
4B V1 on- vs non- Multiple Comparisons - -0.064 - -0.04 - - 9.50E-10
4B V1 on- vs off- Multiple Comparisons - -0.12 - -0.09 - - 9.50E-10
4B V1 non- vs off- Multiple Comparisons - -0.06 - 0.046 - - 9.50E-10
4C V1 non- t-test t=-47.71 -0.767 - 0.689 6 5 7.63E-08
4C V1 off- t-test t=102.98 0.71 - 0.747 6 5 1.64E-09

Table 2. Summary of statistics for the main figures

de Oliveira and Kim et al. | Off-manifold visual encoding bioRχiv | 25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2022. ; https://doi.org/10.1101/2022.06.10.495710doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.10.495710
http://creativecommons.org/licenses/by-nc-nd/4.0/

