bioRxiv preprint doi: https://doi.org/10.1101/2022.06.07.495209; this version posted June 12, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1 Genomic analyses provide new insights into the evolutionary history

2 and reproduction of the Paleogene relictual *Kingdonia*

3 (Circaeasteraceae, Ranunculales)

- 4 Yanxia Sun^{1,2,9}, Xu Zhang^{1,2,3,9}, Aidi Zhang^{1,4,9}, Jacob B. Landis^{5,6}, Huajie Zhang^{1,2}, Hang Sun⁷,
- 5 Qiu-Yun (Jenny) Xiang⁸, Hengchang Wang^{1,2}
- 6 ¹CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture,
- 7 Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
- 8 ²Center of Conservation Biology, Core Botanical Gardens, Chinese Academy
- 9 of Sciences, Wuhan, Hubei, China
- 10 ³University of Chinese Academy of Sciences, Beijing 100049, China
- 11 ⁴Center of Economic Botany, Core Botanical Gardens, Chinese Academy of
- 12 Sciences, Wuhan, Hubei, China
- 13 ⁵School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey
- 14 Hortorium, Cornell University, Ithaca, NY, USA
- 15 ⁶BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY, USA
- 16 ⁷Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming
- 17 Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- 18 ⁸Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC, USA
- ⁹These authors contributed equally
- 20 Author for correspondence: Hang Sun, Email: sunhang@mail.kib.ac.cn; Jenny Xiang,
- 21 Jenny_xiang@ncsu.edu; Hengchang Wang, Email: hcwang@wbgcas.cn

23 Abstract

24	Asexual lineages are perceived to be short-lived on evolutionary timescales due to
25	accumulation of deleterious mutations. Hence reports for exceptional cases of putative
26	'ancient asexual' species usually raise doubts about whether such species are recently
27	derived or engage in some undocumented sexual reproduction. However, there have
28	been few studies to solve the mystery. The monotypic Kingdonia dating to the early
29	Eocene, contains only K. uniflora that has no known definitive evidence for sexual
30	reproduction nor records for having closely related congeneric sexual species,
31	seeming to have persisted under strict asexuality for long periods of time. In this study,
32	we use population genomic analyses to test for reproduction mode and infer the
33	evolutionary process and mechanisms facilitating the survival of the species. Our
34	results indicate the presence of three differentiating genetic lineages within the species
35	and support that asexual reproduction in K. uniflora indicated by high allelic
36	heterozygosity had occurred prior to the lineage differentiation (\sim 0.5 mya). We also
37	detected DNA recombination events in some populations, in line with occurrence of
38	unseen and unevenly distributed sexual reproduction among populations. However the
39	observation of high linkage disequilibrium, relatively high ratio of π_N/π_S
40	(nonsynonymous versus synonymous nucleotide diversity), together with high allelic
41	heterozygosity suggest the sexual reproduction is infrequent. Furthermore, we found
42	that genes containing SNPs with elevated F st values are significantly enriched in
43	functions associated with seed development, suggesting differentiation in genes
44	regulating seed development is likely to be the key reason of the uneven distribution

45	of sexual reproduction in K. uniflora. Evidence from our study supports predominate
46	asexual reproduction in K. uniflora, but unseen sexual reproduction must have played
47	a key role to ensure the long-term survival of the lineage in general. Uneven
48	distribution of sexual reproduction in the species may be a key factor underlying the
49	observed genetic differentiation between populations. This study provides novel
50	insights into the reproduction and evolution of Kingdonia, a relict lineage evolved in
51	the Paleogene and known for asexual reproduction, and demonstrate the power of data
52	from population genome sequencing in resolving long-standing evolutionary
53	questions.
54	Key words: asexual reproduction, allelic heterozygosity, DNA recombination,
55	nonsynonymous nucleotide diversity, seed development.
56	
57	
58	Introduction

Sexual and asexual reproduction are the two basic methods of plant reproduction. 59 Although sexual reproduction is the predominant mode in vascular plants, asexual 60 reproduction occurs in many taxonomic groups (Mogie 1992). Compared to sexual 61 reproduction, asexual reproduction is often described as "a short cut" and "cost 62 effective", requiring no waiting time and resources for fertilization to occur, resulting 63 in production of more offspring in less time (Corley et al. 2001). Evolutionary theory 64 predicts that asexual reproduction is not a successful long-term strategy. In the 65 absence of sexual reproduction, accumulation of deleterious mutations, e.g., elevated 66

67	ratio of non-synonymous (selected) to synonymous (neutral) polymorphisms (π_N/π_S)
68	is expected due to relaxed purifying selection in asexual lineages (Normark and
69	Moran 2000; Ament-Velásquez et al. 2016). One consequence is the eventual
70	extinction of asexual lineages once the accumulation reaches a high load of
71	deleterious mutations (Muller's ratchet; Muller 1964; Felsenstein 1974). Hence,
72	asexual lineages are traditionally perceived as evolutionary dead-ends
73	(Maynard-Smith 1978; Zimmer 2009). However, a number of exceptions, the
74	so-called 'ancient asexual' species, e.g., darwinulid ostracods and parthenogenetic
75	oribatid mites, have been reported (Heethoff et al. 2007; Schoen et al. 2009; Brandt et
76	al. 2021). These lineages were suggested to have persisted under obligate asexuality
77	over millions of years, which violates the expectation that sexual reproduction and
78	recombination are necessary for long-term survival (Schurko et al. 2009). A long
79	standing hypothesis is that such 'ancient asexual' lineages should have special
80	adaptive mechanisms, e.g., an efficient DNA repair system, to cope with the
81	accumulation of deleterious mutations (e.g., Birky et al. 2005; Gladyshev and
82	Meselson 2008). Alternatively, such lineages may not be true 'ancient asexuals', and
83	several species (including the famous Bdelloid rotifers) previously believed to be
84	long-term asexuals were indeed later shown to be either recently derived or to engage
85	in some unseen sexual reproduction (Lunt 2008; Schurko et al. 2009; Signorovitch et
86	al. 2015; Schwander 2016; Laine 2020; Brandt et al. 2021).
87	In the literature, the determination of obligate asexual reproduction in such 'ancient
88	asexual' lineages has usually relied on negative evidence, such as the failure to find

89	individuals of the opposite sex for mating or failure to detect a recent sexual ancestor
90	(Neiman et al. 2009). Such evidence is not conclusive regarding sexual reproduction
91	is absent due to the possibility that unseen sexual reproduction may exist, and the
92	apparent "obligate" asexuality might reflect our inability to observe sexual
93	reproduction, making dominantly asexual lineages appear strictly asexual (Schurko et
94	al. 2009). Hence, assessing the true mode of reproduction in putative 'obligate asexual'
95	species requires more reliable methods. In contrast to previous organismal-based
96	methods, molecular approaches provide an effective way to distinguish obligate from
97	facultative asexual lineages. There are a number of expected genetic consequences
98	under obligate asexual reproduction. For example, in asexual diploid species, alleles
99	are expected to highly divergent due to the independent accumulation of mutations in
100	the absence of segregation and genetic exchange, the well-known Meselson effect
101	(Birky 1996; Mark Welch and Meselson 2000). Highly divergent alleles are also
102	expected in recently derived homoploid hybrid species due to the divergence of gene
103	copies derived from different species (Beck et al. 2012; Jaron et al. 2021).
104	Correspondingly, a negative value of the F_{IS} index, which measures the level of
105	within-individual heterozygosity, is expected in these lineages, as observed in obligate
106	asexuals (Balloux et al. 2003; Ament-Velásquez et al. 2016). Another
107	well-acknowledged signature of asexual reproduction is the generation of non-random
108	associations between loci, i.e., linkage disequilibrium (LD), which is often used for
109	estimating the amount of asexual reproduction. Therefore, genome-wide linkage
110	disequilibrium is expected in obligate asexuality (de Meeûsa and Balloux 2004;

111	Henry et al. 2012; Lovell et al. 2014). Additionally, in a strictly asexual lineage,
112	where mutation is the only source of genetic novelty and all loci show complete
113	linkage, the genealogy of genes and genomes of the lineage are expected to be a
114	strictly branching tree rather than a network (Normark et al. 2003). Although some of
115	these genetic consequences related to asexual reproduction have been assessed in
116	animals, investigating all of these consequences in a single study has been rare, and
117	largely lacking in plant lineages appears to be asexual only
118	Kingdonia, represented by a single species K. uniflora, is one of two monotypic
119	genera (Kingdonia and Circaeaster) in the family Circaeasteraceae (Ranunculales;
120	Angiosperm Phylogeny Group, 2016). The genus represents an ancient lineage
121	estimated to have diverged from its sister Circaeaster agrestis Maxim. during the
122	early Eocene based on molecular dating using the DNA sequences of three chloroplast
123	spacers (52 mya; 95% HPD=27-75 mya), 497 single-copy genes (51.8 mya; 95%
124	HPD=31-76 mya) and whole plastome sequences (52.2 mya; 95% HPD=26-83 mya),
125	respectively (Ruiz-Sanchez et al. 2012; Sun et al. 2020; Zhang et al. 2020). Unique
126	among angiosperms, both K. uniflora and C. agrestis possess an unusual dichotomous
127	leaf venation similar to that of ferns and Ginkgo, indicating a reversal to an ancestral
128	venation type of vascular plants. <i>Kingdonia uniflora</i> (diploid, $2n = 18$) is a herbaceous
129	species with a genome size of ~ 1 Gb, endemic to alpine regions of southwest China
130	and grows in cold and humid habitats with deep humus (Sun et al. 2020). The species
131	has a very narrow distribution being restricted to the Qinling Mountains, Minshan
132	Mountains and Daxue-Qionglai Mountains (Fig. 1a). Notably, K. uniflora is

133	well-known to produce new "individuals" by means of rhizome rupture, which occurs
134	on rhizomes more than three years old (Lei et al. 2000; Li et al. 2003; Supplemental
135	Fig. S1). Although production of seeds was observed occasionally, but different from
136	its sexual sister species C. agrestis, the seed embryo of K. uniflora can only develop
137	to the torpedo stage (Ren et al. 1998). Efforts to germinate K. uniflora seeds in the
138	natural habitat and lab had a zero rate of success (Li et al. 2004). So far, field
139	investigations throughout the species' range found no seedlings of the species in
140	natural populations (Li et al. 2003; Xu 2015). Available evidence suggests that the
141	species may have evolved without sexual reproduction for long periods of time,
142	representing a putative 'ancient asexual' lineage. Here we characterize genome-wide
143	genetic variation across nearly all known K. uniflora populations. Specifically, we aim
144	to determine (1) if the species is indeed an obligate asexual lineage or cryptic sexual
145	reproduction is present, and (2) when asexual reproduction has evolved in the species.
146	To answer these questions and better understand the evolutionary mechanisms of the
147	species, we conducted various analyses to (a) characterize the genetic variation and
148	population structure, (b) examine the genomic signatures of reproductive strategies, (c)
149	reconstruct the demographic and evolution histories, and (d) identify and annotate
150	outlier genetic variants.
151	
152	
153	Results

154 Sequence data processing

155	We produced 1601 Gb of data containing 2,356,880,312 raw reads for 60 individuals
156	of K. uniflora, and 2,342,304,596 clean reads (SRA) after filtering. The depth of
157	coverage for the 60 samples ranged from $21.6 \times$ (WZ4) to $34.8 \times$ (TN1), with a mean
158	coverage of 26.6x (Supplemental Table S1). Using the K. uniflora reference genome
159	(GenBank: PRJNA587615, Sun et al. 2020), we obtained 9,349,354 raw SNPs, and
160	8,678,779 high quality SNPs after primary standard strict filtering. Additionally, by
161	applying deep filtering standards, we obtained 114,746 SNPs located in 960 contigs
162	(Supplemental Table S2).
163	
164	Genetic diversity and population structure
165	Our LEA (Landscape and Ecological Association) analysis with the cross-entropy
166	method failed to identify an ideal best-fit number of K (Supplemental Fig. S2).
167	However, our phylogenetic analysis using the SVDQuartets method (Chifman and
168	Kubatko 2014) revealed three clusters (supported by three quarters (361494/487635)
169	of all the quartets), corresponding to the QL (Qingling Mountains), MS (Minshan
170	Mountains) and DQ (Daxue-Qionglai Mountains) groups (Fig. 1c). Therefore, we
171	repeated the LEA analysis (Fig. 1b; Supplemental Fig. S3) by setting $K=3$. The result
172	recognized the same three groups identified by SVDQuartets. Additionally, two of the
173	three populations from the QL group, three of the five populations from the MS group,
174	and two of the four populations from the DQ group exhibit different levels of genetic
175	admixture with the other groups (Fig. 1a,1b).
176	Nucleotide diversity (π) (the average π value) or per-site heterozygosity analysis

177	showed that the three groups have similar genetic diversity, ranging from 1.359×10^{-3}
178	to 1.497×10 ⁻³ (Table 1; Fig. 1d). The genetic differentiation statistics (fixation index;
179	F_{ST}) among the three groups estimated from VCFtools v0.1.16 (Danecek et al. 2011)
180	was 0.136 between the non-adjacent QL and the DQ groups (highest), 0.086 between
181	the adjacent MS group and DQ group (lowest), and 0.0104 between the adjacent
182	groups MS and QL (Fig. 1d), indicating low genetic differentiation among the three
183	groups. The Mantel test showed significant isolation by distance (IBD) ($r = 0.468$, $P =$
184	0.0002) (Fig. 1e). Results from the AMOVA showed small genetic variation among
185	the three groups (5.6%; Table 2). The results also showed no significant amount of
186	variation among individuals within populations (with a negative component value of
187	-48%; Table 2). And most of the genetic variation in K. uniflora was explained by
188	variation within individuals (with a component value of 123.83% within individuals)
189	(Table 2).

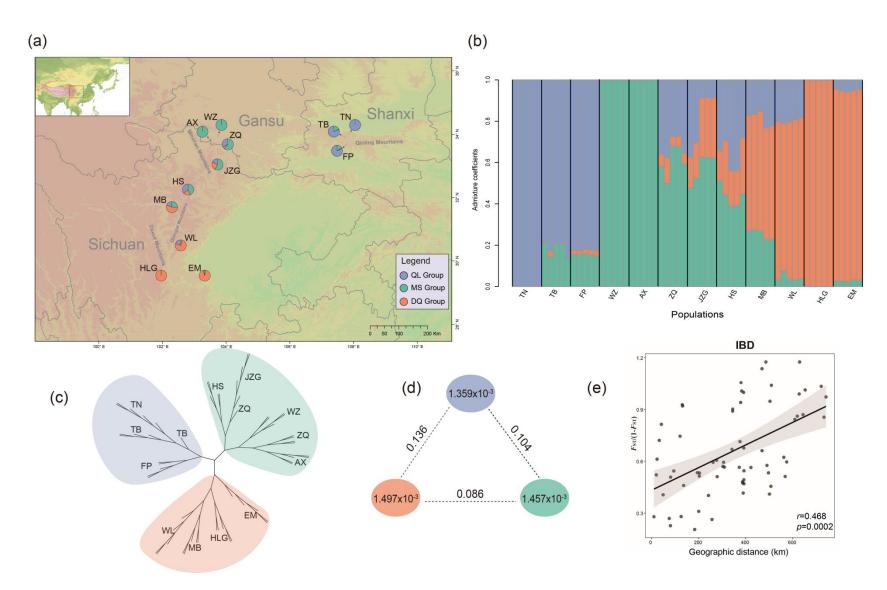
191	Table 1. Summary of	genetic diversity of K	. uniflora calculated	using 114,746 v	variant positions.
-----	---------------------	------------------------	-----------------------	-----------------	--------------------

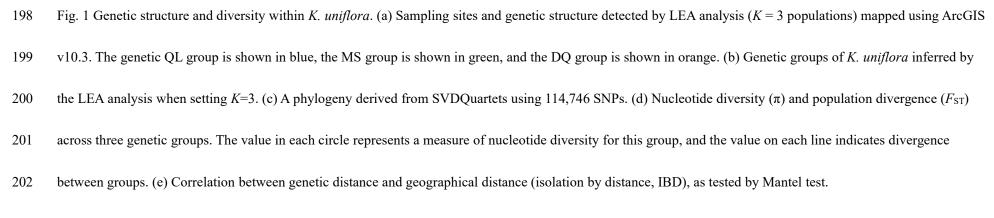
Group IDs	Population IDs	n	π (10 ⁻³)
QL		15	1.359
	FP	5	1.592
	ТВ	5	1.466
	TN	5	1.696
MS			1.457
	AX	5	1.771

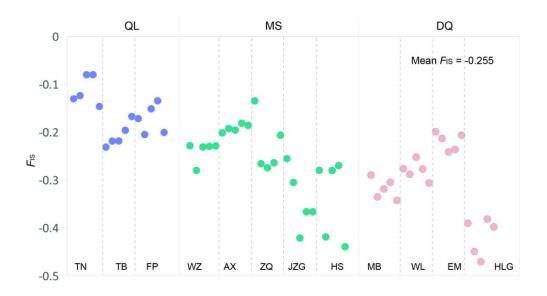
bioRxiv preprint doi: https://doi.org/10.1101/2022.06.07.495209; this version posted June 12, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

	HS	5	1.648
	JZG	5	1.602
	WZ	5	1.870
	ZQ	5	1.715
DQ			1.497
	EM	5	1.867
	HLG	5	1.755
	MB	5	1.686
	WL	5	1.625

192 *n*, number of individuals sampled; π , average number of pairwise nucleotide differences per site.


193 The statistics of three defined groups are given in bold.


194


195 **Table 2.** Details on the results of the analysis of the molecular variance (AMOVA).

Source of variation	Sum of	Variance	Percentage	Fixation	<i>P</i> -values
	squares	components	variation	indices	
Among groups	166030.43	993.35	5.06	0.05	0.00
Among populations	396979.34	3879.21	19.76	0.21	0.00
within groups					
Among individuals	255202.00	-9443.63	-48.10	-0.64	1.00
within populations					
Within individuals	1452238.00	24203.97	123.28	-0.23	1.00

196 Significant *P*-values are in bold.

- Fig. 2 Distribution of values of inbreeding coefficient (F_{IS}). Under Hardy-Weinberg equilibrium F_{IS} is 0, negative values of F_{IS} indicate excess of individual
- 206 heterozygosity.

207 Genomic signatures and signs of sexual and asexual reproduction

- 208 The calculation of F_{IS} using VCF tools v0.1.16 (Danecek et al. 2011) revealed negative
- 209 F_{IS} values (ranging from -0.07 to -0.47) for all 60 K. uniflora individuals (mean
- 210 F_{IS} =-0.26) (Fig. 2), indicating greater observed individual heterozygosity
- 211 (Supplemental Table S3) than expected from random mating, a sign of asexual
- 212 reproduction. The site frequency spectrum (SFS) across all 12 populations showed
- sites with heterozygous SNPs shared among three lineages/all 12 populations were
- 214 most abundant (12,367 sites), c. 250 times more frequent than expected under
- 215 Hardy-Weinberg equilibrium (HWE) (purple bar in Fig. 3), suggesting a large
- 216 proportion of the observed excess individual heterozygosity in the 12 populations
- 217 were attributed to accumulation by asexuality prior to the evolutionary divergence of
- the three genetic lineages (QL, MS and DQ).
- 219

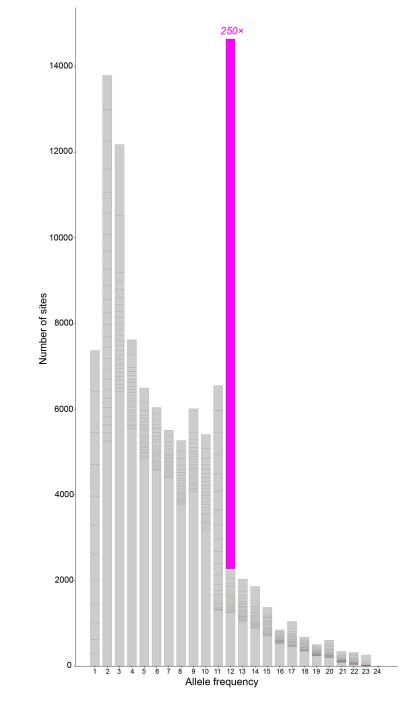
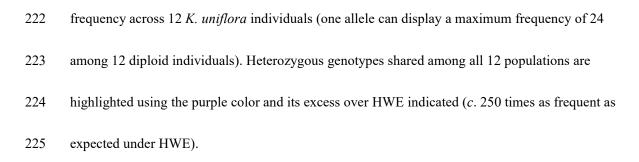
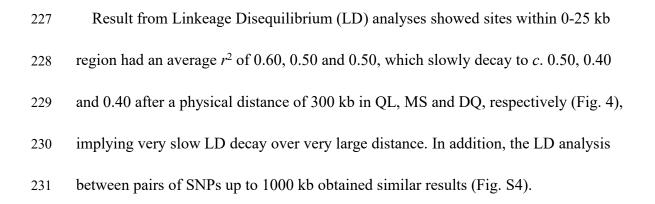




Fig. 3 The site frequency spectrum (SFS) depicting the number of sites with different allele

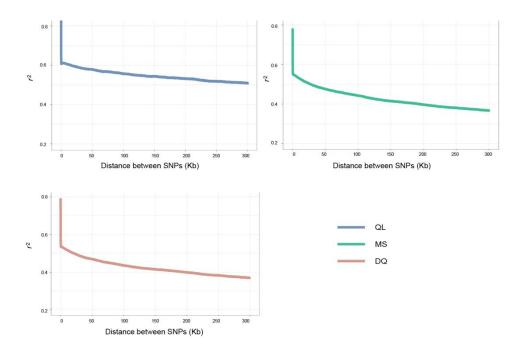


Fig. 4 Decay of linkage disequilibrium (LD) with physical distance in three genetic groups of *Kingdonia uniflora*. Averages of pairwise linkage disequilibrium measures r^2 are plotted for each bin of distances between pairs of SNPs. The displayed data are for the bins with pairs of SNPs separated by ≤ 300 kb

232

238 We used the ratio of nonsynonymous to synonymous polymorphisms (π_N/π_S) to

- assess the efficiency of purifying selection in *K. uniflora*. We defined a total of 24
- 240 genotypic groups according to multidimensional scaling (MDS) clustering (Fig. 5a).
- Among the 24 genotypic groups, genetic diversity at zero-fold degenerate

- 242 (nonsynonymous) and four-fold degenerate (synonymous) sites (π_0 and π_4) is 0.000546
- 243 and 0.000992, respectively, resulting in π_0/π_4 (π_N/π_S)=0.55 (Fig. 5b).

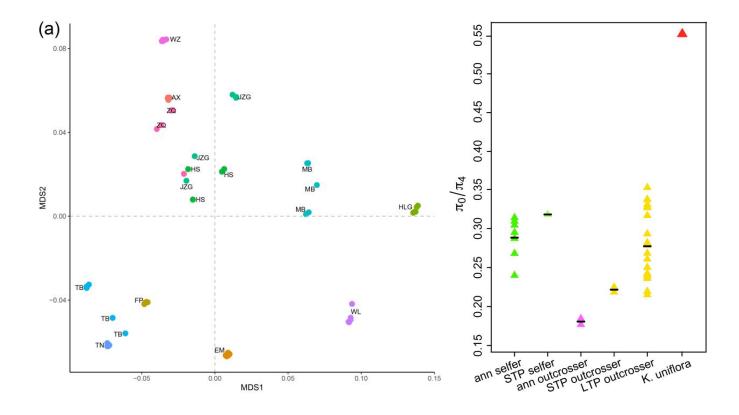


Fig. 5 Calculation of π_N/π_S in *K. uniflora*. (a) Multidimensional scaling analysis of identity-by-state pairwise distances between individuals. Individuals in the same population are coded with the same color. Individuals that come from the same population and cluster together are grouped into one genotypic group, and a total of 247 24 genotypic groups are identified. (b) π_0/π_4 difference between *K. uniflora* and other plants reported in Chen et al. (2017). The figure is modified based on Fig. 2B in 248 Chen et al. (2017). STP, short-term perennial; LTP, long-term perennial.

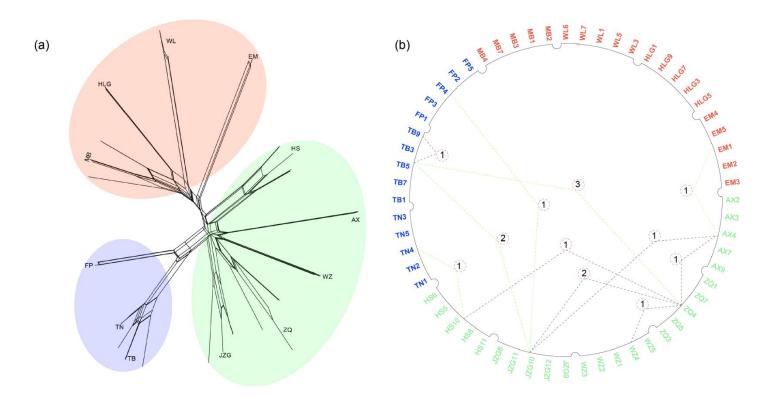


Fig. 6 Recombination events detected in *Kingdonia uniflora* (a) Recombination events identified by SplitsTree phylogenetic networks using a total of 114,476 SNPs.

- 251 The closed loops in the network shows recombination events. (b) Recombination events identified by RDP4. Black dotted lines indicate recombination between
- different individuals in the same genetic group; green dotted lines represent recombination between different individuals from different genetic groups; the number of
- 253 corresponding DNA recombination events are indicated in circles.

254	Results from SplitsTree v4.13.1 (Huson and Bryant 2006) showed reticulations on
255	the phylogeny of K. uniflora, which are signals of recombination (Fig. 6a). When all
256	SNPs were concatenated into a single sequence, the RDP4 (Recombination Detection
257	Program 4) (Martin et al. 2015) analysis identified 15 recombination events that were
258	unevenly distributed among populations (Supplemental Table S4; Fig. 6b).

260 Inferring population demographic history and distributions

261 The model with the highest score found by simulations of demographic history using

262 FSC2 (fastsimcoal2) (Excoffier et al. 2013) showed a divergence between the DQ and

263 QL + MS groups 513,000 years ago and a divergence between the MS and QL groups

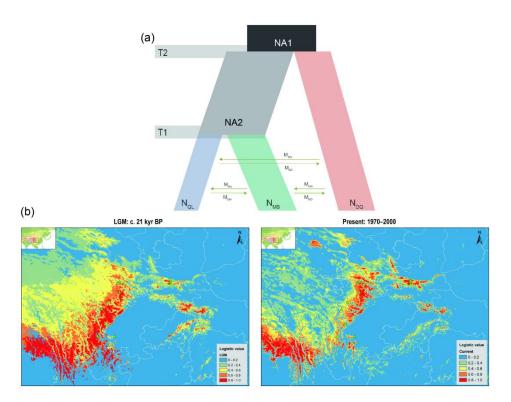
264 37,800 years ago (Table 3; Fig. 7a). The population sizes of DQ, MS and QL were

estimated to be 98,800, 32,300 and 23,200, respectively (Table 3; Fig. 7a). The

ancestral effective population size of the species $(N_{A1}; Fig.7a)$ was estimated to be

267 29,000 (Table 3), slightly larger than that of QL, but smaller than those of DQ and MS

268 (Table 3; Fig. 7a). The model also indicates asymmetric gene flow among the three


269 genetic groups, with the rates of migration from QL to DQ and MS being higher than

270 in the reverse direction. Between DQ and MS, the rate of migration from MS to DQ is

271 higher than in the opposite direction (Table 3).

272 Results from MAXENT ENM (ecological niche modeling) (Phillips and Dudik

- 273 2008) analyses showed a greater suitable habitat for *K. uniflora* in the LGM than at
- 274 present, especially in the Hengduan Mountains region, and that there is more suitable
- habitat at present than is currently occupied (Fig. 7b).

278 Fig. 7 Inferred evolutionary history of *K. uniflora*. (a) Schematic of demographic scenarios

279 modeled using FSC2, with the ancestral population shown in gray. Column width represents the

- 280 relative effective population size. Arrows indicate gene flow between populations. (b) Predicted
- suitable distributions of *K. uniflora* at different historical periods based on species distribution
- 282 modeling (SDM). Area color indicates probability (0-1) of suitable habitat for K. uniflora. LGM,
- 283 last glacial maximum. The map image was derived from ArcGIS v10.3.
- 284
- 285 **Table 3.** Inferred demographic parameters for the best-fitting FSC2 model shown in Figure 7a,
- 286 including 95% confidence intervals.

Parameter	Point estimation	95% confidence intervals	
		Lower bound	Upper bound
T ₁	3.78E+04	2.65E+04	4.91E+04

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.07.495209; this version posted June 12, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

T ₂	5.13E+05	4.60E+05	5.65E+05
N _{A1}	2.90E+04	2.46E+04	3.33E+04
N _{A2}	1.08E+05	1.00E+05	1.15E+05
N_{DQ}	9.88E+04	6.58E+04	1.32E+05
N _{MS}	3.23E+04	2.74E+04	3.71E+04
N _{QL}	2.32E+04	3.55E+03	4.29E+04
$M_{\rm DM}$	2.30E-04	9.76E-05	3.63E-04
$M_{ m DQ}$	1.53E-04	8.08E-05	2.26E-04
$M_{ m MD}$	6.13E-04	3.26E-04	9.01E-04
$M_{ m MQ}$	4.13E-04	1.58E-04	6.67E-04
$M_{ m QD}$	1.08E-03	4.67E-04	1.69E-03
M _{QM}	1.12E-03	6.84E-04	1.56E-03

Notes: Parameters included here comprise population size measures (N_{A1}, N_{A2}, N_{DQ}, N_{MS}, and N_{QL},
indicating ancestral populations, QL+MS, DQ, MS and QL, respectively), population divergence
times (T1 and T2, years), migration per generation after diversification between QL and MS, QL
and DQ, and DQ and MS.

291

292 Assessing the correlation between genetic differentiation and environmental

293 variables

Among the seven variables used for the GF (gradient forest) analysis, precipitation

seasonality (bio15) and temperature seasonality (bio04) were identified as the two

296 most important predictors of genetic variation. Mean temperatures of the warmest

297	quarter (bio10), annual precipitation (bio12) and precipitation of the wettest month
298	(bio13) were also of high importance (Fig. 8). The redundancy analysis (RDA)
299	revealed a significant amount of genetic variation among populations associated with
300	the seven important environmental variables (27.06%, $P = 0.001$). Each of the two
301	axes explained a significant amount of variation (Axis 1: 25.80%, $P = 0.001^{**}$; Axis 2:
302	17.03%, $P = 0.001^{**}$; Fig. 8). Separate analyses of the seven environmental variables
303	individually also found significant association with genetic variation (Table 4).
304	Consistent with the GF analysis, temperature seasonality (bio04; 6.498%, $P = 0.001^{**}$)
305	and precipitation seasonality (bio15; 6.27%, $P = 0.001^{**}$) were the two most
306	important predictors (Table 4).
207	

308 Table 4. Redundancy analysis (RDA) results based on seven important environmental variables

Environmental	Constrained		
variables	proportion (%)	F-statistic	Р
Bio04	6.498	4.0309	0.001**
Bio15	6.27	3.88	0.001**
Bio02	5.138	3.1418	0.001**
Bio13	4.477	2.7183	0.001**
Bio11	4.02	2.4294	0.001**
Bio10	3.973	2.3996	0.001**
Bio12	3.936	2.3762	0.001**

309 identified by GF analysis. **, P < 0.01.

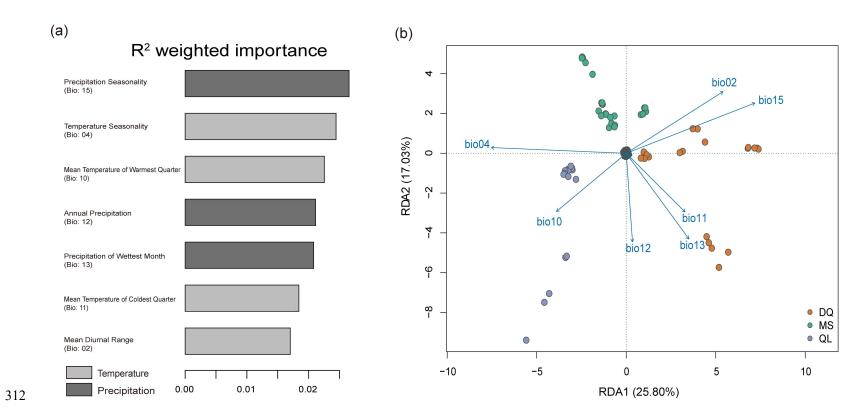
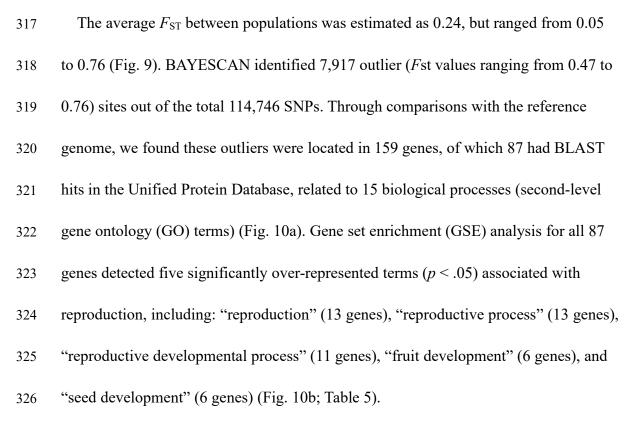
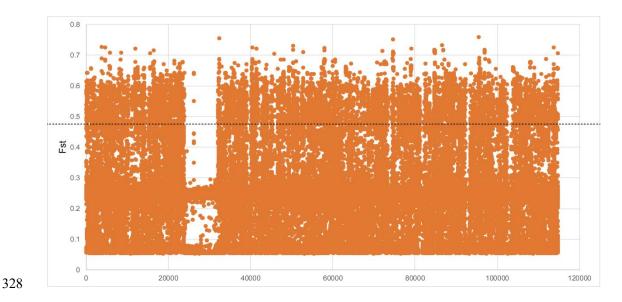
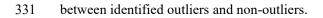



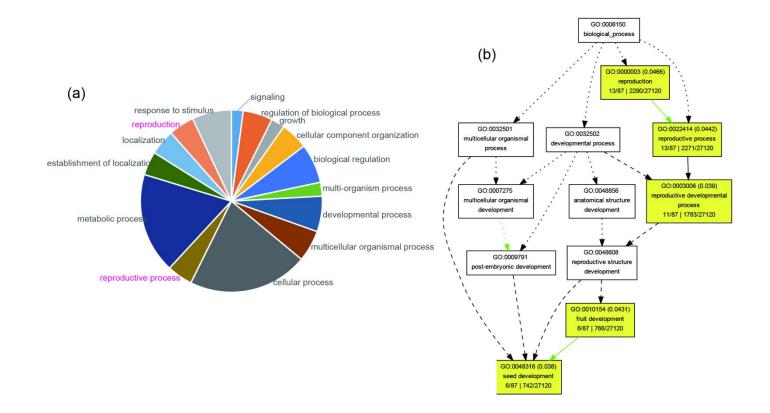
Fig. 8 Correlation between genetic distance and environmental difference. (a) R^2 -weighted importance of environmental variables that explain genomic variation

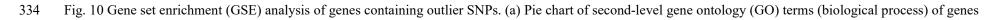

314 from GF analysis. (b) Redundancy analysis showing the relationship between the independent climate parameters and population structure of *K. uniflora*. Individuals

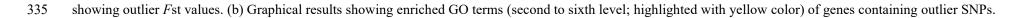
315 are colored points and colors represent three groups (QL, MS, DQ). Small black points are SNPs.

316 **Detecting and annotating outlier loci**




327


329 Fig. 9 *F*_{ST} values of 1, 114,746 SNPs among 60 *K. uniflora* individuals calculated by BAYESCAN.


330 The x-axis represents the sequence number of SNPs. The black dash line indicates the cut-off line

GO term	Class	Description	Significant	Annotated	<i>p</i> -value
GO:0048316	Р	seed development	6	742	0.038
GO:0003006	Р	reproductive developmental process	11	1783	0.039
GO:0010154	Р	fruit development	6	766	0.043
GO:0022414	Р	reproductive process	13	2271	0.044
GO:0000003	Р	reproduction	13	2290	0.047

Table 5. The significantly over-represented GO terms of genes containing outlier SNPs in *K. uniflora*.

339 **Discussion**

Kingdonia uniflora is characterized by high allelic heterozygosity, slow LD decay, 340 341 reduced efficacy of purifying selection, and unseen sexual reproduction In diploid asexuals, high levels of allelic divergence are expected to result from two 342 343 factors: (1) long-term evolution under obligate asexuality, i.e., Meselson effect (Birky 1996; Mark Welch and Meselson 2000) and (2) transition to asexual reproduction via 344 hybridization between sexual species (Jaron et al. 2021). The Meselson effect is 345 usually considered to be a strong indicator of long-term evolution under obligate 346 asexuality (Hartfield 2016; Brandt et al. 2021), yet this phenomenon has been shown 347 to appear in young lineages of less than 100,000 years age (Pellino et al. 2013). Here 348 we detected high allelic heterozygosity indicating obligate or high levels of asexuality 349 350 in the flowering plant species K. uniflora: (1) an excess of observed individual heterozygosity over Hardy-Weinberg expectation as indicated by negative F_{IS} values 351 (Fig. 2) (which is different from what is observed in the sister sexual species C. 352 agrestis (mean $F_{IS} = 0.02$; Table 1 in Zhang et al. 2020) and (2) greater genetic 353 divergence within individuals than that between populations revealed by the AMOVA 354 analysis (Table 2). Theoretically, as mentioned above, both the Meselson effect and 355 hybrid origin can explain high allelic heterozygosity in diploid asexuals. Hence 356 high levels of allelic divergence detected in K. uniflora could be explained as 357 accumulation of heterozygous variants caused by independent evolution of alleles 358 after the transition to obligate or high levels of asexuality. Alternatively, K. uniflora 359 could have switched to obligate or high level of asexuality via interspecific 360

361	hybridization, as reported in asexual species of Meloidogyne, Lineus ribbon worms,
362	and the Ranunculus auricomus complex (Lunt 2008; Pellino et al. 2013; Lunt et al.
363	2014; Ament-Velasquez et al. 2016). In the current study, although we cannot
364	formally exclude a hybrid origin of asexuality, this is unlikely to be the case in K .
365	uniflora. Different from the above hybrid origins of asexual species with multiple
366	congeneric sister species, Kingdonia is a monotypic genus and has no fossil record
367	that indicates the presence of parental species for hybridization. The closest related
368	species, C. agrestis, is from a different genus and diverged from K. uniflora
369	tens of millions of years ago (Sun et al. 2020; Zhang et al. 2020). The site frequency
370	spectrum reveals the level of the heterozygous genotypes shared among
371	lineages/populations greatly exceed those under Hardy-Weinberg equilibrium (Fig. 3),
372	indicating high allelic heterozygosity occurred prior to lineage differentiation. Hence,
373	in any event, both explanations (i.e., long-term asexuality and hybrid origin) provide
374	support that K. uniflora has engaged in obligate or high levels of asexuality before
375	lineage differentiation around 0.5 mya.
376	Asexual reproduction prevents free exchange of alleles among individuals and
377	results in allele linkage disequilibrium (LD) and in extreme cases (obligate asexuality)
378	may result in complete physical linkage of markers over the entire genome
379	(Flint-Garcia 2003; Simko et al. 2006; Schurko et al. 2009). Various genetic processes
380	in outcrossing can reduce LD and free random mating results in linkage equilibrium
381	of alleles. Therefore, the level of LD in a species reflects the extent of inbreeding
382	(non-random mating) or asexuality. Our data show that LD in K. uniflora has an

383	average r^2 up to 0.6, and the decay of LD with physical distance is extremely slow
384	(Fig. 4). This pattern of LD decay is comparable to that seen in the highly
385	self-fertilizing/asexual plant species, e.g., Arabidopsis thaliana (Nordborg et al. 2005;
386	Kim et al. 2007), Medicago truncatula (Branca et al. 2011), and Spirodela polyrhiza
387	(Ho et al. 2019), and completely different from outcrossing populations that often
388	show rapid LD decay over several hundred bp (Foxe et al. 2009; Mackay et al. 2012;
389	Ho et al. 2019). The LD decay pattern provides genetic evidence supporting K .
390	uniflora as a species is undergoing reproduction by high asexuality.
391	Interference among loci caused by high linkage disequilibrium will decrease the
392	efficiency of selection by preventing selection from acting individually on each locus
393	(Gordo and Charlesworth 2001; Otto 2021). Such kinds of selective interference, e.g.,
394	a selective sweep, can result in a higher ratio of non-synonymous (selected) to
395	synonymous (neutral) polymorphisms in asexual lineages (Ament-Velásquez et al.
396	2016; Hartfield 2016). The value of π_N/π_S ratio (0.55) in <i>K. uniflora</i> is relatively
397	higher than that (ranging from 0.20 to 0.35) observed in outcrossing plants (Fig. 5b),
398	implying a higher rate of non-synonymous substitution caused by reduced efficacy of
399	purifying selection in K. uniflora. Under high levels of asexuality, mutations are
400	expected to be an important source of variation, with mutations typically occurring in
401	a heterozygous state in asexual species due to independent evolution of alleles (as
402	found in K. uniflora by the F_{IS} and SFS analyses). However, recessive mutations are
403	not exposed to selection (Ament-Velásquez et al. 2016), which could be another
404	reason why a higher rate of non-synonymous substitution is detected in K. uniflora.

405	Although high allele divergence, LD level and π_N/π_S ratio are characterized by K.
406	uniflora, low levels of sexual reproduction cannot be excluded. We detected
407	recombination events in RDP4 analysis and genealogical network (Supplemental
408	Table S4; Fig. 6), suggesting occurrence of sexual reproduction. The evidence
409	supports K. uniflora as likely not an obligate asexual species. Although the detected
410	recombination events could have been from mitotic recombination, due to the
411	following evidence, we argue that occasional successful sexual reproduction exists in
412	the species. First, the species still produces seeds, although no seedling has been
413	observed in the field (Ren et al. 2003; Xu 2015). Second, high allele divergence has
414	been shown to be compatible with low-rate sexual reproduction (Ceplitis 2003).
415	Lastly, SVDQuartets showed a quarter of the quartets were incongruent with the
416	species tree, indicating a portion of the SNPs did not diverge congruently with the rest
417	of the SNP sites due to incomplete lineage sorting or recombination. Therefore, we
418	hypothesize that the species likely engages, to an extent, in sexual reproduction to
419	maintain genetic variation and slow down the speed of Muller's ratchet, supporting the
420	theory that recombination is necessary for long-term survival. In sum, our results
421	indicate that K. uniflora is not a true obligate asexual species although the asexuality
422	likely has evolved before 0.5 mya.
123	

424 Evolutionary history of Kingdonia uniflora

425 In asexual lineages, reduced efficacy of purifying selection caused by linked selection

426 will lead to decreased fitness and a reduction in the effective population size N_{e} ,

427	(Nordborg and Donnelly 1997; Nordborg 2000; Ho et al. 2019). Populations with
428	small $N_{\rm e}$ values usually show reduced capacity to respond to changing environmental
429	pressures (Higgins and Lynch 2001; Siol et al. 2007). Currently, our knowledge of the
430	evolutionary history of relict lineage with highly asexual reproduction, specifically
431	the origins of genetic differentiation and demographic dynamics, has been extremely
432	limited. In our study, results from the LEA and PAUP analyses indicate that
433	populations within each of the three mountain systems, i.e., the Qinling Mountains,
434	Minshan Mountains, and Daxue-Qionglai Mountains, belong to the same genetic
435	cluster (Table 2; Fig. 1d). This observation suggests an important role of mountain
436	isolation in shaping the population genetic structure of the species due to constraints
437	in dispersal by distance (Fig. 1e) and/or abiotic environments, as evidenced by results
438	from the GF and RDA analyses (Table 4; Fig. 8). The initial divergence of K. uniflora
439	lineages was estimated to have occurred c . 0.51 million years ago (mya) (Table 3; Fig.
440	7a). The divergence time coincides with the occurrence of the Naynayxungla
441	Glaciation (0.78-0.50 mya), one of the two largest glaciations on the Qinghai-Tibetan
442	Plateau (QTP) (Zheng et al. 2002). We speculate that the climate caused by the
443	Naynayxungla Glaciation triggered intraspecific differentiation in K. uniflora by
444	shifting the distribution range, while the synergistic effects following geographic
445	distance and environmental difference have further driven K. uniflora to eventually
446	evolved into different genetic lineages.
447	Gene flow is an important way to weaken differentiation within species inhabiting
448	montane regions, but is usually limited due to the aforementioned reasons. Gene flow

449	in highly asexual species of flowering plants is especially limited due to the generally
450	poor dispersal ability of propagules for asexual reproduction. Nevertheless, the FSC2
451	analysis support ancient gene flow between MS and both QL and DQ (Table 3; Fig.
452	7a). Our data from ecological niche modeling suggests gene flow likely occurred
453	during the LGM when the species expanded its size and distribution to more suitable
454	habitats as detailed below. Similar to many other cold adapted/tolerant species (e.g.,
455	Anderson et al. 2006; Tian et al. 2010; Opgenoorth et al. 2010; Gao et al. 2015), K.
456	uniflora had a significant population expansion during the LGM (10,000-20,000 years
457	ago) (Fig. 7b), well after the Naynayxungla Glaciation in the QTP or the divergence
458	of the three lineages (Table 3; Fig. 7a). This provided opportunities for population
459	admixture of the three previously (~0.5 mya) diverged lineages of K. uniflora.
460	Therefore, the gene flow likely have occurred recently during the LGM.
460 461	Therefore, the gene flow likely have occurred recently during the LGM.
	Therefore, the gene flow likely have occurred recently during the LGM. Uneven distribution of sexual reproduction among <i>Kingdonia uniflora</i>
461	
461 462	Uneven distribution of sexual reproduction among <i>Kingdonia uniflora</i>
461 462 463	Uneven distribution of sexual reproduction among <i>Kingdonia uniflora</i> populations is associated with differentiation in genes regulating seed
461 462 463 464	Uneven distribution of sexual reproduction among <i>Kingdonia uniflora</i> populations is associated with differentiation in genes regulating seed development
 461 462 463 464 465 	Uneven distribution of sexual reproduction among <i>Kingdonia uniflora</i> populations is associated with differentiation in genes regulating seed development Local adaptation involving diversifying selection is viewed as the best and longest
 461 462 463 464 465 466 	Uneven distribution of sexual reproduction among <i>Kingdonia uniflora</i> populations is associated with differentiation in genes regulating seed development Local adaptation involving diversifying selection is viewed as the best and longest manifestation of an evolutionary response to selection in nature (Kawecki and Ebert
 461 462 463 464 465 466 467 	Uneven distribution of sexual reproduction among <i>Kingdonia uniflora</i> populations is associated with differentiation in genes regulating seed development Local adaptation involving diversifying selection is viewed as the best and longest manifestation of an evolutionary response to selection in nature (Kawecki and Ebert 2004; Lovell et al. 2014). Our data suggests such process occurred in <i>K. uniflora</i> in

471	non-evident (unseen/infrequent) sexual reproduction in K. uniflora. Our results
472	showed that genes playing a strong role in divergence among K. uniflora populations
473	are enriched for functions involved in seed development (Fig. 10; Table 5), suggesting
474	differential selection of different alleles in different populations. An obvious
475	divergence of DNA recombination frequency among lineages, e.g., extremely rare
476	recombination events in DQ vs. relatively more frequent recombination events within
477	QL and MS (Fig. 6b,7a) and between QL and MS, suggests different levels of sexual
478	reproduction among and between population groups in different local environments.
479	These together indicate the genetic divergence in seed development associated genes
480	is likely to be the key factor of varied seed germination rate and sexual reproduction
481	extent among K. uniflora populations. Although local adaptation might be constrained
482	due to reduced efficacy of selection caused by genome-wide interference between loci
483	(Jaron et al. 2021), our results show genetic differentiation in genes associated with
484	seed development that, however, appear not to be random. The differences among
485	populations in environmental variables explains a significant amount of genetic
486	variation within K. uniflora (Fig. 8; Table 4), suggesting putative selection pressure on
487	genes regulating seed development. This indicates the adaptive constraints posed by
488	the high LD level in K. uniflora may be buffered by infrequent sexual reproduction.
489	The differences in environmental variables, e.g., seasonal temperature and
490	precipitation (Fig. 8), may directly affect seed germination rates and the
491	corresponding genes among populations, further driving diversifying selection in
492	shaping the diversity of genes regulating seed development. Overall, our results reveal

- 493 that the infrequency or uneven distribution of sexual reproduction in *K. uniflora* is
- 494 associated with genetic differentiation among populations.

496

497 Materials and Methods

498 Sample collection and resequencing

- 499 We carefully selected a total of 12 populations (Supplemental Table S5) to represent
- all known localities of K. uniflora. We collected fresh leaves of five individuals that
- 501 were at least ten meters away from each other in each population to reduce the
- 502 possibility that each sample was not a physiologically independent ramet. We dried
- 503 the leaves in silica gel in the field, then stored them at -20°C before DNA extraction.
- 504 Genomic DNA extraction, library construction, and amplification followed the
- 505 protocols of Novogene (Beijing, China) (Supplementary Methods). All samples were
- sequenced using the Illumina HiSeq 4000 platform with a pair-end read length of 150
- 507 bp by Novogene (https://en.novogene.com/). Illumina raw reads were filtered by

removing adapters and low-quality reads using Trim Galore v0.6.5

- 509 (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore) with default
- options (Phred quality threshold 20; adapter auto-detection) (Krueger 2021)
- 511

512 SNP calling and quality control

- 513 We mapped the filtered reads of each individual to the *K. uniflora* genome (Sun et al.
- 514 2020) using BWA-MEM v0.7.12-r1039 (Li 2013) with default parameters. We then

515	converted sequence alignment/map (SAM) format files to BAM and sorted the BAM
516	files using SAMtools v1.6 (Li et al. 2009) and conducted the following analyses in
517	Genome Analysis Toolkit (GATK, v4.0) (Depristo et al. 2011). We first marked
518	duplicate reads using MarkDuplicates. We then processed the data with
519	AddOrReplaceReadGroups to replace all read groups in the INPUT file with a single
520	new read group name and assign all reads to this read group in the OUTPUT BAM.
521	To identify SNPs, we first conducted single-sample haplotype calling with
522	HaplotypeCaller, and then identified Multi-sample SNPs using GenotypeGVCFs after
523	merging the haplotype caller results from each sample using CombineGVCFs which
524	aligned the haplotypes among samples. To obtain high quality SNPs, we filtered
525	multi-sample SNPs using VariantFiltration with strict filter settings "QD $<$ 2.0 \parallel MQ $<$
526	40.0 FS > 60.0 SOR > 3.0 MQRankSum < -12.5 ReadPosRankSum < -8.0". We
527	further filtered the SNPs data to exclude monomorphic or triallelic variants, indels,
528	and SNPs missing in any samples via VCFtools v0.1.16 (Danecek et al. 2011) for
529	further analyses.

531 Genetic diversity and population structure

- 532 To assess the population structure of *K. uniflora*, we performed the following analyses.
- 533 We used Landscape and Ecological Association (LEA) (v3.3.2) R package (Frichot
- and François 2015) to determine the number of ancestral populations. LEA was
- 535 developed for large genotypic matrices and does not rely on the genetic assumptions
- 536 of the absence of genetic drift, Hardy-Weinberg or linkage equilibrium in ancestral

537	populations (Pritchard et al. 2000). We also used a coalescent-based method to
538	estimate a "species tree" based on the SNP data for comparison with results from
539	LEA. Specifically, we used the SVDQuartets method (Chifman and Kubatko
540	2014) implemented in PAUP* v4.0a166 (Swofford, 2003;
541	http://paup.phylosolutions.com/) with 100 bootstrap replicates and the quartet
542	assembly method QFM to produce a species tree (Reaz et al. 2014).
543	We estimated nucleotide diversity (π) and genetic differentiation (F_{ST}) between
544	groups identified in the aforementioned analyses using VCFtools v0.1.16 (Danecek et
545	al. 2011), and used Analysis of Molecular Variance (AMOVA) in Arlequin v3.5.2.2
546	(Excoffier and Lischer 2010) to estimate relative contributions of genetic variation
547	from within and between groups. To determine if genetic differentiation is associated
548	with geographic distance, we performed an IBD (isolation by geographic distance)
549	analysis. We first estimated population-level genetic differentiation F_{ST} using the Weir
550	and Cockerham method (Weir and Cockerham 1984) implemented in HIERFSTAT
551	(Goudet 2005) in R v3.6.1 (R Core Team 2014). We then calculated genetic distance
552	with the formula $F_{ST}/(1-F_{ST})$ and computed the pairwise geographic distance among
553	12 populations using GENALEX v6.5 (Peakall and Smouse 2012). We then tested the
554	significance for the relationship between geographical distances and genetic distance
555	among populations by conducting Mantel tests with ADE4 v1.7
556	(https://CRAN.R-project.org/package=ade4) using mantel.rtest with 9999
557	permutations.

558

559	Detecting genomic signatures and signs of asexual and sexual reproduction
560	To understand the reproductive strategies, we first employed VCFtools v0.1.16
561	(Danecek et al. 2011) (option-het) to calculate $F_{IS}=1-H_{obs}/H_{exp}$ for each individual,
562	where H_{obs} and H_{exp} are the observed and expected heterozygosity, respectively. A
563	negative F_{IS} value indicates an excess of observed individual heterozygosity. We then
564	examined the distribution pattern of the excessive heterozygosity within and among
565	the genetic groups identified in the aforementioned analyses by generating a site
566	frequency spectrum (SFS) using Pop-Con with standard parameters
567	(https://github.com/YoannAnselmetti/Pop-Con). Twelve randomly selected
568	individuals that cover all populations were used for the SFS analysis.
569	We further examined other genetic consequences of asexual reproduction (i.e.,
570	linkage disequilibrium (LD) and reduced efficiency of purifying selection) and
571	genetic evidence of unseen sexual reproduction (i.e., recombination). We calculated
572	pairwise linkage disequilibrium (r^2 value) and modeled the decline of LD with
573	physical distance using PopLDdecay v3.40 (Zhang et al. 2019) with default settings.
574	Within each contig we calculated LD between pairs of sites up to 300 kb and 1000 kb,
575	respectively. In obligate asexuals, genome-wide LD between loci is expected, and the
576	decline of LD between loci does not depend on their physical distance (Vakhrusheva
577	et al. 2020).
578	To test if <i>K. uniflora</i> is characterized by reduced efficacy of purifying selection, we
579	calculated the π_N/π_S ratio of the species. For asexual species, individuals from the
580	same nonulation may be clones via descending from a common ancestor via only

580 same population may be clones via descending from a common ancestor via only

581	clonal reproduction, possibly over many generations (Ho et al. 2019). Therefore, prior
582	to the calculation, we grouped individuals by conducting multidimensional scaling
583	(MDS) analysis in plink v1.9 with the options -cluster, -mds-plot 2 eigvals and
584	-allow-extrachr (Purcell et al. 2007) to group individuals that were genotypically
585	highly similar into the same genotypic group within a population. We then randomly
586	selected one individual from each genotypic group and generated a concatenated
587	coding sequence for each selected individual based on SNP loci from coding regions
588	using a custom script (Supplemental Methods). The sequence matrix comprising all
589	above selected individuals was used for following nucleotide diversity calculation.
590	Designated nucleotide diversity at 0-fold and 4-fold degenerate positions, $\pi_{N}(\pi_{0})$ and
591	$\pi_{\rm S}(\pi_4)$, were calculated in MEGA (v10.1.6) (Kumar et al. 2018).
592	To assess if any unseen sexual reproduction may have occurred in K. uniflora, we
593	reconstructed the relationship of individuals using SNP data with the NeighborNet
593 594	reconstructed the relationship of individuals using SNP data with the NeighborNet method in SplitsTree v4.13.1 (Huson and Bryant 2006) with default settings. The
594	method in SplitsTree v4.13.1 (Huson and Bryant 2006) with default settings. The
594 595	method in SplitsTree v4.13.1 (Huson and Bryant 2006) with default settings. The method does not force a tree-like phylogeny in the analysis and can reveal
594 595 596	method in SplitsTree v4.13.1 (Huson and Bryant 2006) with default settings. The method does not force a tree-like phylogeny in the analysis and can reveal phylogenetic networks resulting from recombination events. We further used
594 595 596 597	method in SplitsTree v4.13.1 (Huson and Bryant 2006) with default settings. The method does not force a tree-like phylogeny in the analysis and can reveal phylogenetic networks resulting from recombination events. We further used Recombination Detection Program (RDP4) (Martin et al. 2015) to detect
594 595 596 597 598	method in SplitsTree v4.13.1 (Huson and Bryant 2006) with default settings. The method does not force a tree-like phylogeny in the analysis and can reveal phylogenetic networks resulting from recombination events. We further used Recombination Detection Program (RDP4) (Martin et al. 2015) to detect recombination events: "RDP4 implements a range of methods for both detection and
594 595 596 597 598 599	method in SplitsTree v4.13.1 (Huson and Bryant 2006) with default settings. The method does not force a tree-like phylogeny in the analysis and can reveal phylogenetic networks resulting from recombination events. We further used Recombination Detection Program (RDP4) (Martin et al. 2015) to detect recombination events: "RDP4 implements a range of methods for both detection and characterization of recombination events that are evident within a sequence alignment

603 Bonferroni correction and the highest acceptable p value 0.05. Recombination e	603	Bonferroni	correction and	the highest	acceptable <i>j</i>	value 0.05.	Recombination e	events
--	-----	------------	----------------	-------------	---------------------	-------------	-----------------	--------

- that were identified by at least three of the six methods were considered.
- 605

606 Inferring population demographic history and species distributions

- 607 To obtain a comprehensive view of the species' evolutionary history, we first inferred
- 608 the demographic history of *K. uniflora* using *fastsimcoal2* (FSC2; Excoffier et al.
- 2013) with the following details. We tested eight possible N_e models (Supplemental
- Fig. S5) to find the best model explaining our data for the genetic groups revealed by
- 611 PAUP and LEA analyses. Then we estimated the composite likelihood of the observed

data given a specified model using SFS (which was constructed here using

easySFS.py instead of Pop-Con to generate a direct input file for FSC2)

- 614 (https://github.com/isaacovercast/easySFS). Each model was run 20 times with
- 615 1,000,000 simulations for the calculation of the composite likelihood, and 40
- 616 expectation-conditional maximization (ECM) cycles. We compared the models based
- on the maximum likelihood value across 50 independent runs using the Akaike
- 618 Information Criterion and Akaike's weight of evidence and chose the model with the
- 619 maximum Akaike's weight value as the optimal model. Finally, we calculated
- 620 confidence intervals of parameter estimates from 100 para-metric bootstrap replicates
- by simulating SFS from the maximum composite likelihood estimates and
- 622 re-estimating parameters each time.
- 623 We also performed ecological niche modeling (ENM) to reconstruct the distribution
- range of the species in the present and past using MAXENT (Phillips and Dudik 2008)

625	with population present occurrence data and climatic variables of the occurrence
626	locations. Species' presence occurrence data were compiled from the Chinese Virtual
627	Herbarium (http://www.cvh.ac.cn) and our own field collections (Supplemental Table
628	S5). We downloaded the climate layers of 19 bioclimatic variables (Supplemental
629	Table S6) at a 2.5 arc minute resolution at present (average for the years 1970-2000)
630	and during the last glacial maximum (LGM: c. 21 thousand years before present (kyr
631	BP)) from WorldClim database website (http://www.worldclim.org/) (Fick and
632	Hijmans 2017). To avoid multicollinearity, a Pearson correlation analysis was
633	conducted to eliminate one of the variables in each pair with a correlation higher than
634	0.75, which resulted in seven climatic layers retained for analyses (Supplemental
635	Table S6).
636	
637	Assessing the correlation between differentiation and environmental variables
638	We performed a gradient forest (GF) analysis implemented in GRADIENTFOREST
639	v0.1 (http://gradientforest.r-forge.r-project.org/) to identify potential key
640	environmental drivers of genomic variation in K. uniflora. The gradient forest method

641 captures complex relationships between potentially correlated predictors (e.g.,

642 climatic variables) and multiple response variables (e.g., genetic variation), and

643 provides the overall importance for each predictor weighted by R^2 (Ellis et al. 2012;

644 Ma et al. 2020). The seven climatic layers retained in the ENM analysis were used as

- 645 environmental predictors in the GF analysis for analyses of all SNPs. The analysis
- 646 was run 1000 times to obtain the variability of R^2 , and the run with the highest overall

647	performance (R^2) for calculating weighted importance of predictors on response
648	variables. To verify the results of GF analysis, we performed a redundancy analysis
649	(RDA) to evaluate the associations between genetic variation and the seven
650	environmental variables. We constrained the dependent variables (individuals) by the
651	explanatory variables (environmental variables). The RDA analysis was performed
652	using the rda function in VEGAN v2.5 (Oksanen et al. 2018;
653	http://CRAN.R-project.org/package=vegan). The anova.cca function was used to
654	calculate overall significance and significance of each climate variable using 9999
655	permutations.
656	
657	Detecting and annotating outlier loci
658	To detect potential loci under diversifying selection, we performed an overall F_{ST}
659	outliers test in BAYESCAN v2.1 (Foll and Gaggiotti 2008) with default parameters.
660	BAYESCAN identifies outliers using differences in allele frequencies between
661	populations. A locus-specific component (α) was used to differ loci under-diversifying
662	selection (α >0) from that under balancing or purifying selection. Significance is based
663	on FDR-corrected q -values (<0.01). Loci under strong diversifying selection are those
664	whose F st values are larger than expected from coalescent simulation of neutral
665	evolution (Strand et al. 2012).
666	To determine what functions the genes containing SNP outliers may have, we
667	annotated each of these genes using gene ontology (GO) terms with TBtools (Chen et

al., 2018). We then used the Singular Enrichment Analysis (SEA) tool in agriGO v2.0

- (Tian et al. 2017) to analyze gene enrichment and tested for statistical significance of
- 670 gene enrichment using the chi-squared test.

671

672

		•1 •1•7
673	llata	accessibility
0/3	ναια	

- 674 *K. uniflora* resequencing reads have been deposited in the NCBI Short Read Archive
- 675 (SRA) under accession SRA-----.

676

677

678 Competing interest statement

The authors declare no competing interests.

680

681

682 Acknowledgments

- 683 This work was supported by the Program Foundation for the Backbone of Scientific
- Research by Wuhan Botanical Garden, Chinese Academy of Sciences (Y855241G01),
- the National Natural Science Foundation of China (U2003122), the Strategic Priority
- 686 Research Program of Chinese Academy of Sciences (XDA20050203), and the
- 687 National Natural Science Foundation of United States (DEB-1442161).

688

689

690 Author contributions

691	HW, JX, and HS developed the idea and designed the experiment; YS, XZ, and HZ
692	collected the leaf materials; YS, XZ, and AZ performed the statistical analyses; YS,
693	JBL, and JX interpreted the results and wrote the manuscript. All authors read, edited
694	and approved the final manuscript. YS, XZ, and AZ contributed equally to this work.
695	
696	
697	References
698	Ament-Velasquez SL, Figuet E, Ballenghien M, Zattara EE, Norenburg JL,
699	Fernandez-Alvarez FA, Bierne J, Bierne N, Galtier N. 2016. Population
700	genomics of sexual and asexual lineages in fissiparous ribbon worms (Lineus,
701	Nemertea): hybridization, polyploidy and the Meselson effect. Mol Ecol 25:
702	3356-3369. doi: 10.1111/mec.13717
703	Anderson LL, Hu SF, Nelson DM, Petit RJ, Paige KN. 2006. Ice-age endurance: DNA
704	evidence of a white spruce refugium in Alaska. Proc Natl Acad Sci USA 13:
705	12447-12450. doi: 10.1073/pnas.0605310103
706	APG IV. 2016. An update of the angiosperm phylogeny group classification for the
707	orders and families of flowering plants. Bot J Linn Soc 181: 1-20. doi:
708	10.1111/boj.12385
709	Balloux F, Lehmann L, de Meeûs T. 2003. The population genetics of clonal and
710	partially clonal diploids. Genetics 164: 1635-1644. doi:
711	10.1093/genetics/164.4.1635
712	Beck JB, Alexander PJ, Allphin L, Al-Shehbaz IA, Rushworth C, Bailey CD,

- 713 Windham MD. 2012. Does hybridization drive the transition to asexuality in
- 714 diploid Boechera? Evolution 66: 985-995. doi:
- 715 10.1111/j.1558-5646.2011.01507.x.
- 716 Birky CW, Wolf C, Maughan H, Herbertson L, Henry E. 2005. Speciation and
- 717 selection without sex. *Hydrobiologia* 546: 29–45. doi:
- 718 10.1007/s10750-005-4097-2
- 719 Birky CW. 1996. Heterozygosity, heteromorphy, and phylogenetic trees in asexual

```
720 eukaryotes. Genetics 144: 427–437. doi: 10.1093/genetics/144.1.427
```

- 721 Branca A, Paape TD, Zhou P, Briskine R, Farmer AD, Mudge J, Bharti AK,
- Woodward JE, May GD, Gentzbittel L, et al. 2011. Whole-genome nucleotide
- diversity, recombination, and linkage disequilibrium in the model legume
- 724 *Medicago truncatula. Proc Natl Acad Sci USA* 108: E864-E870. doi:
- 725 10.1073/pnas.1104032108
- 726 Brandt A, Tran Van P, Bluhm C, Anselmetti Y, Dumas Z, Figuet E, Francois CM,
- Galtier N, Heimburger B, Jaron KS, et al. 2021. Haplotype divergence supports
- 128 long-term asexuality in the oribatid mite Oppiella nova. Proc Natl Acad Sci USA
- 729 118: e2101485118. doi: 10.1073/pnas.2101485118
- 730 Ceplitis A. 2003. Coalescence times and the Meselson effect in asexual eukaryotes.
- 731 *Genet Res* 82: 183-190. doi: 10.1017/s0016672303006487
- 732 Chen C, Chen H, He YH, Xia R. 2018. TBtools, a Toolkit for Biologists integrating
- various biological data handling tools with a user-friendly interface. DOI:
- 734 https://doi.org/10.1101/289660

735	Chen J, Glémin S, Lascoux M. 2017. Genetic diversity and the efficacy of purifying
736	selection across plant and animal species. Mol Biol Evol 34: 1417-1428.
737	doi:10.1093/molbev/msx088
738	Chifman J, Kubatko L. 2014. Quartet inference from SNP data under the coalescent
739	model. Bioinformatics 30: 3317-3324. doi: 10.1093/bioinformatics/btu530
740	Corley LS, Blankenship JR, Moore AJ. 2001. Genetic variation and asexual
741	reproduction in the facultatively parthenogenetic cockroach Nauphoeta cinerea :
742	implications for the evolution of sex. J Evolution Biol 14: 68-74. doi:
743	10.1046/j.1420-9101.2001.00254.x
744	Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE,
745	Lunter G, Marth GT, Sherry ST, et al. 2011. The variant call format and
746	VCFtools. Bioinformatics 27: 2156-2158. doi: 10.1093/bioinformatics/btr330
747	de Meeûs T, Balloux F. 2004. Clonal reproduction and linkage disequilibrium in
748	diploids: a simulation study. Infect Genet Evol 4: 345-351. doi:
749	10.1016/j.meegid.2004.05.002
750	DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis
751	AA, del Angel G, Rivas MA, Hanna M, et al. 2011. A framework for variation
752	discovery and genotyping using next-generation DNA sequencing data. Nat
753	Genet 43: 491-498. doi: 10.1038/ng.806
754	Ellis N, Smith S, Pitcher C. 2012. Gradient forests: calculating importance gradients
755	on physical predictors. <i>Ecology</i> 93: 156–168. doi: 10.1890/11-0252.1
756	Excoffier L, Dupanloup I, Huerta-Sanchez E, Sousa VC, Foll M. 2013. Robust

- 757 demographic inference from genomic and SNP data. *PLoS Genet* 9: e1003905.
- 758 doi: 10.1371/journal.pgen.1003905
- 759 Excoffier L, Lischer H. 2010. Arlequin suite ver 3.5: A new series of programs to
- 760 perform population genetics analyses under Linux and Windows. *Mol Ecol*
- 761 *Resour* 10: 564–567. doi: 10.1111/j.1755-0998.2010.02847.x
- Felsenstein J. 1974. The evolutionary advantage of recombination. *Genetics* 78:
- 763 737–756. doi:10.1093/genetics/78.2.737
- Fick S, Hijmans R. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces
- 765 for global land areas. Int J Climatol 37: 4302–4315. doi: 10.1002/joc.5086
- 766 Flint-Garcia SA, Thornsberry JM, Buckler ESt. 2003. Structure of linkage
- 767 disequilibrium in plants. *Annu Rev Plant Biol* 54: 357-374. doi:
- 768 10.1146/annurev.arplant.54.031902.134907
- Foll M, Gaggiotti O. 2008. A genome-scan method to identify selected loci
- appropriate for both dominant and codominant markers: a bayesian perspective.
- 771 *Genetics* 180: 977–993. doi: 10.1534/genetics.108.092221
- Foxe JP, Slotte T, Stahl EA, Neuffer B, Hurka H, Wright SI. 2009. Recent speciation
- associated with the evolution of selfing in Capsella. *Proc Natl Acad Sci USA* 106:
- 774 5241–5245. doi: 10.1073/pnas.0807679106
- 775 Frichot E, François O. 2015. LEA: AnRpackage for landscape and ecological
- association studies. *Methods Ecol Evol* 6: 925–929. doi:
- 777 10.1111/2041-210X.12382
- Gao Y-D, Zhang Y, Gao X-F, Zhu Z-M. 2015. Pleistocene glaciations, demographic

	•	1 1	. • 1 .•	. 1	1 1 1 1	1	
779	expansion a	ind subsequ	lent isolation	promoted m	orphological	heterogeneity:	A
112	emperiore a			promote a m	iorphorogreen	neveregenerejer	

- 780 phylogeographic study of the alpine *Rosa sericea* complex (Rosaceae). *Sci Rep* 5:
- 781 11698. doi: 10.1038/srep11698
- 782 Gladyshev E, Meselson M. 2008. Extreme resistance of bdelloid rotifers to ionizing
- radiation. *Proc Natl Acad Sci USA* 105: 5139–5144. doi:
- 784 10.1073/pnas.0800966105
- Goudet J. 2005. HIERFSTAT, a package for R to compute and test hierarchical
- 786 F-statistics. *Mol Ecol Notes* 5: 184–186. doi: 10.1111/j.1471-8286.2004.00828.x
- 787 Hartfield M. 2016. On the origin of asexual species by means of hybridization and

788 drift. *Mol Ecol* 25: 3264-3265. doi: 10.1111/mec.13713

- 789 Heethoff M, Domes K, Laumann M, Maraun M, Norton RA, Scheu S. 2007. High
- 790 genetic divergences indicate ancient separation of parthenogenetic lineages of the
- 791 oribatid mite *Platynothrus peltifer* (Acari, Oribatida). *J Evolution Biol* 20:
- 792 392-402. doi: 10.1111/j.1420-9101.2006.01183.x
- 793 Henry L, Schwander T, Crespi BJ. 2012. Deleterious mutation accumulation in

asexual Timema stick insects. *Mol Biol Evol* 29: 401-408. doi:

- 795 10.1093/molbev/msr237
- 796 Higgins K, Lynch M. 2001. Metapopulation extinction caused by mutation
- 797 accumulation. *Proc Natl Acad Sci USA* 98: 2928–2933. doi:
- 798 10.1073/pnas.031358898
- 799 Ho EKH, Bartkowska M, Wright SI, Agrawal AF. 2019. Population genomics of the
- facultatively asexual duckweed *Spirodela polyrhiza*. *New Phytol* 224: 1361-1371.

801	doi:	10.1111	l/nph.1	16056
-----	------	---------	---------	-------

- 802 Huson D, Bryant D. 2006. Application of phylogenetic networks in evolutionary
- studies. *Mol Biol Evol* 23: 254–267. doi: 10.1093/molbev/msj030
- ⁸⁰⁴ Jaron KS, Bast J, Nowell RW, Ranallo-Benavidez TR, Robinson-Rechavi M,
- Schwander T. 2021. Genomic features of parthenogenetic animals. *J Hered* 112:
- 806 19-33. doi:10.1093/jhered/esaa031
- 807 Kawecki TJ, Ebert D. 2004. Conceptual issues in local adaptation. *Ecol Lett* 7:
- 808 1225-1241. doi: 10.1111/j.1461-0248.2004.00684.x
- 809 Kim S, Plagnol V, Hu TT, Toomajian C, Clark RM, Ossowski S, Ecker JR, Weigel D,
- 810 Nordborg M. 2007. Recombination and linkage disequilibrium in *Arabidopsis*
- 811 thaliana. Nat Genet 39: 1151-1155. doi: 10.1038/ng2115
- 812 Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular
- evolutionary genetics analysis across computing platforms. *Mol Biol Evol* 35:
- 814 1547-1549. doi: 10.1093/molbev/msy096
- Laine VN, Sackton T, Meselson M. 2020. Sexual reproduction in bdelloid rotifers.
- 816 bioRxiv doi: 10.1101/2020.08.06.239590v4
- Lei Y, Ren L, Li Z, Ren Y. 2000. Studies on vegetative reproduction pattern of
- 818 *Kingdonia uniflora*. Acta Botanica Boreali-Occidentalia Sinica, 20: 432-435.
- Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G,
- 820 Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. the sequence
- alignment/map format and SAMtools. *Bioinformatics* 25: 2078-2079. doi:
- 822 10.1093/bioinformatics/btp352

- Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with
- 824 BWA-MEM. arXiv doi:1303.3997
- Li J, Zhang W, Li H. 2003. Research on distribution pattern of rare and endangered
- 826 plant Kingdonia uniflora population. Journal of Northwest Forestry University
- 827 18: 38-40.
- 828 Li J, Zhao J, Li L. 2004. Property of sexual reproduction of Kingdonia uniflora
- 829 population in Mountain Taibai. Journal of Northwest Sci-Tech University of
- 830 *Agriculture and Forestry* 32: 89-92.
- 831 Lovell JT, Grogan K, Sharbel TF, McKay JK. 2014. Mating system and
- 832 environmental variation drive patterns of adaptation in *Boechera spatifolia*
- 833 (Brassicaceae). *Mol Ecol* 23: 4486-4497. doi: 10.1111/mec.12879
- Lunt DH, Kumar S, Koutsovoulos G, Blaxter ML. 2014. The complex hybrid origins
- of the root knot nematodes revealed through comparative genomics. *Peer J* 2:
- e356. doi: 10.7717/peerj.356
- 837 Lunt DH. 2008. Genetic tests of ancient asexuality in root knot nematodes reveal
- recent hybrid origins. *BMC Evol Biol* 8: 194. doi: 10.1186/1471-2148-8-194
- 839 Ma S, Tian Y, Li J, Yu H, Cheng J, Sun P, Fu C, Liu Y, Watanabe Y. 2020. Climate
- 840 variability patterns and their ecological effects on ecosystems in the
- 841 Northwestern North Pacific. *Front Mar Sci* 7: 546882. doi:
- 842 10.3389/fmars.2020.546882
- 843 Mackay TF, Richards S, Stone EA, Barbadilla A, Ayroles JF, Zhu D, Casillas S, Han Y,
- 844 Magwire MM, Cridland JM, et al. 2012. The *Drosophila melanogaster* genetic

1010101000000000000000000000000000000	845	reference pane	el. Nature 482:	173-178. doi:	10.1038/nature10811
---------------------------------------	-----	----------------	-----------------	---------------	---------------------

- 846 Mark Welch D, Meselson M. 2000. Evidence for the evolution of bdelloid rotifers
- 847 without sexual reproduction or genetic exchange. *Science* 288: 1211–1215. doi:
- 848 10.1126/science.288.5469.1211
- 849 Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. 2015. RDP4: Detection and
- analysis of recombination patterns in virus genomes. *Virus Evol* 1: vev003. doi:
- 851 10.1093/ve/vev003
- 852 Matzk F, Meister A, Schubert I. 2000. An efficient screen for reproductive pathways
- using mature seeds of monocots and dicots. *Plant J* 21: 97-108. doi:
- 854 10.1046/j.1365-313x.2000.00647.x
- 855 Maynard Smith J. 1978. The evolution of sex. Cambridge University Press,
- 856 Cambridge (United Kingdom).
- 857 Mogie M. 1992. The evolution of asexual reproduction in plants. Chapman & Hall,
- 858 London.
- 859 Muller HJ. 1964. The relation of recombination to mutational advance. *Mutat*

860 *Res-Fund Mol M* 1: 2–9. doi: 10.1016/0027-5107(64)90047-8

- Nei M, Gojobori T. 1986. Simple methods for estimating the numbers of synonymous
- and nonsynonymous nucleotide substitutions. *Mol Biol Evol* 3: 418-426. doi:
- 863 10.1093/oxfordjournals.molbev.a040410
- Neiman M, Meirmans S, Meirmans PG. 2009. What can asexual lineage age tell us
- about the maintenance of sex? *Ann NY Acad Sci* 1168: 185-200. doi:
- 866 10.1111/j.1749-6632.2009.04572.x

867 Nordborg M, Donnelly P. 1997. The coalescent process with selfing. <i>Gene</i>	867	Nordborg M, Donnell	y P. 1997. The coalescent	process with selfing. Genetic
--	-----	---------------------	---------------------------	-------------------------------

- 868 146: 1185-1195. doi: 10.1093/genetics/146.3.1185
- 869 Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C, Zheng H, Bakker E, Calabrese
- P, Gladstone J, Goyal R, et al. 2005. The pattern of polymorphism in *Arabidopsis*
- *thaliana. PLoS Biol* 3: e196. doi: 10.1371/journal.pbio.0030196
- Nordborg M. 2000. Linkage disequilibrium, gene trees and selfing: an ancestral
- recombination graph with partial self-fertilization. *Genetics* 154: 923-929. doi:
- 874 10.1093/genetics/154.2.923
- Normark B, Judson O, Moran N. 2003. Genomic signatures of ancient asexual
- 876 lineages. *Biol J Linn Soc* 79: 69–84. doi: 10.1046/j.1095-8312.2003.00182.x
- 877 Normark BB, Moran NA. 2000. Testing for the accumulation of deleterious mutations
- in asexual eukaryote genomes using molecular sequences. *J Nat Hist* 34:
- 879 1719-1729. doi: 10.1080/00222930050122147
- 880 Opgenoorth L, Vendramin GG, Mao K, Miehe G, Miehe S, Liepelt S, Liu J,
- Ziegenhagen B. 2010. Tree endurance on the Tibetan Plateau marks the world's
- highest known tree line of the Last Glacial Maximum. *New Phytol* 185: 332-342.
- doi: 10.1111/j.1469-8137.2009.03007.x
- Otto SP. 2021. Selective Interference and the Evolution of Sex. *J Hered* 112: 9-18. doi:
- 885 10.1093/jhered/esaa026
- 886 Peakall R, Smouse P. 2012. GenAlEx 6.5: genetic analysis in Excel. Population
- genetic software for teaching and research–an update. *Bioinformatics* 28:
- 888 2537–2539. doi: 10.1093/bioinformatics/bts460

- 889 Pellino M, Hojsgaard D, Schmutzer T, Scholz U, Horandl E, Vogel H, Sharbel TF.
- 890 2013. Asexual genome evolution in the apomictic *Ranunculus auricomus*
- 891 complex: examining the effects of hybridization and mutation accumulation. *Mol*
- *Ecol* 22: 5908-5921. doi: 10.1111/mec.12533
- 893 Pettersson ME, Berg OG. 2006. Muller's ratchet in symbiont populations. *Genetica*
- 894 130: 199. doi: 10.1007/s10709-006-9007-7
- 895 Phillips S, Dudik M. 2008. Modeling of species distributions with Maxent: new
- extensions and a comprehensive evaluation. *Ecography* 31: 161–175. doi:
- 897 10.1111/j.0906-7590.2008.5203.x
- 898 Pritchard J, Stephens M, Donnelly P. 2000. Inference of population structure using
- 899 multilocus genotype data. *Genetics* 155: 945–959. doi:
- 900 10.3410/f.1015548.197423
- 901 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J,
- 902 Sklar P, de Bakker PI, Daly MJ, Sham PC. 2007. PLINK: a tool set for
- 903 whole-genome association and population-based linkage analyses. *Am Journal*
- 904 *Hum Genet* 81: 559-575. doi: 10.1086/519795
- 905 R Core Team. 2014. R version 3.6.1: A language and environment for statistical
- 906 computing. In *R Foundation for Statistical Computing*. Vienna, Austria.
- 907 Ruiz-Sanchez E, Rodriguez-Gomez F, Sosa V. 2012. Refugia and geographic barriers
- 908 of populations of the desert poppy, *Hunnemannia fumariifolia* (Papaveraceae).
- 909 Organisms Diversity & Evolution 12:133-143. doi: 10.1007/s13127-012-0089-z
- 910 Reaz R, Bayzid MS, Rahman MS. 2014. Accurate Phylogenetic Tree Reconstruction

	911	from Quartets: A Heuristic Approach. <i>PLoS ONE</i> 9: e104008.	loi:1
--	-----	--	-------

- 912 1371/journal.pone.0104008
- 813 Ren Y, Wang ML, Hu ZH. 1998. Kingdonia, embryology and its systematic
- 914 significance. *Acta Phytotaxonomica Sinica* 36: 423-427.
- 915 Ren Y, Li Z, Lei Y. 2003. Achene and seed abortion contribute to the rarity of
- 916 Kingdonia uniflora. Isr J Plant Sci 51: 39-44. doi: 10.1560/y466-dtln-5qf2-d4yh
- 917 Schön I, Rossetti G, Martens K. 2009. Darwinulid ostracods: ancient asexual scandals
- 918 or scandalous gossip? *Lost Sex* 217–240. doi: 10.1007/978-90-481-2770-2_11
- 919 Schurko AM, Neiman M, Logsdon JM, Jr.. 2009. Signs of sex: what we know and
- 920 how we know it. *Trends Ecol Evol* 24: 208-217. doi: 10.1016/j.tree.2008.11.010
- 921 Schwander T. 2016. Evolution: the end of an ancient asexual scandal. *Curr Biol* 26:
- 922 R233-235. doi: 10.1016/j.cub.2016.01.034
- 923 Signorovitch A, Hur J, Gladyshev E, Meselson M. 2015. Allele sharing and evidence
- for sexuality in a mitochondrial clade of bdelloid rotifers. *Genetics* 200: 581-590.
- 925 doi: 10.1534/genetics.115.176719
- 926 Simko I, Haynes KG, Jones RW. 2006. Assessment of linkage disequilibrium in
- 927 potato genome with single nucleotide polymorphism markers. *Genetics* 173:
- 928 2237-2245. doi: 10.1534/genetics.106.060905
- 929 Siol M, Bonnin I, Olivieri I, Prosperi JM, Ronfort J. 2007. Effective population size
- associated with self-fertilization: lessons from temporal changes in allele
- 931 frequencies in the selfing annual *Medicago truncatula*. *J Evolution Biol* 20:
- 932 2349-2360. doi: 10.1111/j.1420-9101.2007.01409.x

933	Strand AE,	Williams LM,	Oleksiak MF.	Sotka EE. 2012.	Can divers	ifying selection	be

- distinguished from history in geographic clines? A population genomic study of
- killifish (Fundulus heteroclitus). PLoS One 7: e45138. doi:
- 936 10.1371/journal.pone.0045138
- 937 Sun Y, Deng T, Zhang A, Moore MJ, Landis JB, Lin N, Zhang H, Zhang X, Huang J,
- 238 Zhang X, Sun H, et al. 2020. Genome Sequencing of the Endangered Kingdonia
- 939 *uniflora* (Circaeasteraceae, Ranunculales) Reveals Potential Mechanisms of
- 940 Evolutionary Specialization. *iScience* 23: 101124. doi:
- 941 10.1186/s12864-017-3956-3
- ⁹⁴² Tian S, Lopez-Pujol J, Wang HW, Ge S, Zhang ZY. 2010. Molecular evidence for
- glacial expansion and interglacial retreat during Quaternary climatic changes in a
- 944 montane temperate pine (*Pinus kwangtungensis* Chun ex Tsiang) in southern

945 China. Plant Syst Evol 284: 219–229. doi: 10.1007/s00606-009-0246-9

- 946 Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Su Z. 2017. agrigo v2.0: A GO analysis
- 947 toolkit for the agricultural community, 2017 update. *Nucleic Acids Res* 45:
- 948 W122–W129. doi: 10.1093/nar/gkx382
- 949 Vakhrusheva OA, Mnatsakanova EA, Galimov YR, Neretina TV, Gerasimov ES,
- 950 Naumenko SA, Ozerova SG, Zalevsky AO, Yushenova IA, Rodriguez F, et al.
- 951 2020. Genomic signatures of recombination in a natural population of the
- bdelloid rotifer *Adineta vaga*. *Nat Commun* 11: 6421. doi:
- 953 10.1038/s41467-020-19614-y
- 954 Weir B, Cockerham C. 1984. Estimating F-statistics for the analysis of population

955	structure. Evolution 38: 1358–1370. doi: 10.1111/j.1558-5646.1984.tb05657.x
956	Xu J, Cao B, Bai C. 2015. Prediction of potential suitable distribution of endangered
957	plant Kingdonia uniflora in China with MaxEnt. Chinese Journal of Ecology 34:
958	3354-3359.
959	Zhang C, Dong SS, Xu JY, He WM, Yang TL. 2019. PopLDdecay: a fast and effective
960	tool for linkage disequilibrium decay analysis based on variant call format files.
961	Bioinformatics 35: 1786-1788. doi: 10.1093/bioinformatics/bty875
962	Zhang X, Sun Y, Landis JB, Zhang J, Yang L, Lin N, Zhang H, Guo R, Li L, Zhang Y,
963	et al. 2020. Genomic insights into adaptation to heterogeneous environments for
964	the ancient relictual Circaeaster agrestis (Circaeasteraceae, Ranunculales). New
965	Phytol 228: 285-301. doi: 10.1111/nph.16669
966	Zheng B, Xu Q, Shen Y. 2002. The relationship between climate change and
967	Quaternary glacial cycles on the Qinghai-Tibetan Plateau: review and
968	speculation. Quatern Int 97: 93-101. doi: 10.1016/S1040-6182(02)00054-X
969	Zimmer C. 2009. Origins. On the origin of sexual reproduction. Science 324:
970	1254-1256. doi: 10.1126/science.324_1254

971