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Abstract
Mass spectrometry is widely used for quantitative proteomics studies, relative protein quantification,

and differential expression analysis of proteins. Nevertheless, there is a need for a flexible and easy-to-use
application programming interface in R that transparently supports a variety of well principled statistical
procedures. The prolfqua package can model simple experimental designs with a single explanatory
variable and complex experiments with multiple factors and hypothesis testing. It integrates essential
steps of the mass spectrometry-based differential expression analysis workflow: quality control, data
normalization, protein aggregation, statistical modeling, hypothesis testing, and sample size estimation.
The application programmer interface strives to be clear, predictable, discoverable, and consistent to make
proteomics data analysis easy and exciting. Furthermore, the package implements benchmark functionality
that can help to compare data acquisition, data preprocessing, or data modeling methods using a gold
standard dataset. Finally, we show that the implemented methods allow sensitive and specific differential
expression analysis. The prolfqua R package is available on GitHub https://github.com/fgcz/prolfqua,
distributed under the MIT licence, and runs on all platforms supported by the R free software environment
for statistical computing and graphics.
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1 Introduction
To paraphrase provocatively, ‘machine learning is statistics minus any checking of models and
assumptions’.

– Brian D. Ripley, useR! 2004, Vienna.

Proteins carry out most crucial functions and give structure to living cells. Hence, measuring changes in
protein abundance is the subject of active research (Vidova and Spacil 2017). Bottom-up mass spectrometric
methods, where proteins are specifically and reproducibly digested into protein fragments - peptides, are
employed to identify and quantify proteins in complex samples containing hundreds to thousand of proteins
(Bubis et al. 2017; Veiga Leprevost et al. 2020). The peptides are first separated by their chemical and
physical properties using liquid chromatography (LC). Afterward, they are ionised, weighed, identified, and
quantified using mass spectrometric techniques, e.g., electro-spray-ionization mass spectrometry (ESI-MS).
Finally, peptide identification is achieved by fragmenting and matching the measured fragment masses to
theoretical masses computed from known peptide sequences (Eng et al. 2015; Yu, Li, and Yu 2016; Kong
et al. 2017). For quantification, intact peptide ions (Yu et al. 2020; Cox and Mann 2008) or products of
peptide ion fragmentation (Röst et al. 2014; Demichev et al. 2020) are counted and aggregated to obtain
peptide abundances. Finally, the identified and quantified peptides are assigned to proteins based on protein
sequence information.

Proteomics quantification experiments enable monitoring relative abundances of thousands of proteins in
biological samples. Most studies use parallel-group designs, where one or many treatment groups are compared
to the control group (Leeuw et al. 2022; Laubscher et al. 2021). More recently, more complex experimental
designs with an increasing number of samples are studied, e.g., factorial designs and longitudinal studies (time
series), sometimes with repeated measurements on the same subject (Tan et al. 2022; Meier-Abt et al. 2021).
The data can be modeled using linear fixed-, mixed-, or random-effects models (Bates et al. 2015). Based on
these models, tests can be applied to examine whether specific factors and factor interactions are significant,
e.g., it can be tested if differences in protein abundance between groups are statistically significant.

An important aspect of mass spectrometric data are missing peptide and protein quantifications. Rubin
(1976) classified missing data problems into three categories: missing completely at random (MCAR), missing
at random (MAR), and missing not at random (MNAR). For instance, in data-dependent acquisition (DDA)
MS, only a limited number of MS1 signals are selected for fragmentation and identified. Peptide quantification
algorithms transfer identification information between MS1 features in different samples by aligning the data
using retention time and mass information, thus reducing the amount of missing data. Nevertheless, highly
abundant proteins can suppress the detection of other proteins in a sample, a MAR mechanism. Furthermore,
a weak correlation between the number of missing measurements in a group and the abundance of the
quantified protein can be observed, which is caused by the limit of detection (LOD), a MNAR mechanism
(McGurk et al. 2020).

Several data analysis packages exist to model mass spectrometry protein quantification experiments, e.g.,
limma (Ritchie et al. 2015), MSstats (Choi et al. 2014), PECA (Suomi and Elo 2017), msqrob2 (Goeminne,
Gevaert, and Clement 2016) or proDA (Ahlmann-Eltze and Anders 2020), to mention some, all implemented
in R. Each of them has some unique features, for example, MSstats infers the model and generates the model
formula from the sample annotation, allowing users with limited statistical knowledge to perform differential
expression analysis (DEA). At the same time, limma allows to specify a design matrix using a linear model
formula and implements the empirical Bayes variance shrinkage method. The package PECA, performs a
roll-up of peptide level differences and peptide level p-value estimates, obtained from limma or PECA, to
protein level estimates. Furthermore, msqrob2 implements two models: robust linear models fitted to protein
intensities and robust ridge regression fitted to peptide intensities, and combines them with empirical Bayes
variance shrinkage. The proDA package implements a linear probabilistic dropout model to account for
missing data without imputation. MSstats handles missing data by feature filtering and using imputation.
Other means of modelling missing observations are the Hurdle model discussed by Goeminne et al. (2020),
while the R package proDA models missingness using probabilistic dropout models (Ahlmann-Eltze and
Anders 2020).
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Table 1: Rows - R package, Columns - types of models supported: pd - parallel design, rm - repeated
measurements, fd - factorial design, int - interactions among factors, mem - mixed effect models, eb - empirical
Bayes, md - missing data modelling. Y - yes, * - repeated measurements are modeled using a fixed effect. ? -
the hurdle model was published but is not available in the msqrob2 package.

pd rm mem fd int eb md
MSstats Y Y Y NA NA NA NA
ROPECA Y Y* NA Y Y Y NA
limma Y Y* NA Y Y Y NA
MSqRob2_rlm Y Y* NA Y Y Y ?
proDA Y Y* NA Y Y Y Y
prolfqua Y Y Y Y Y Y Y

When analyzing parallel-group designs using a single explanatory variable, and contrasting groups, we can
use all R packages; but, we can use only some of them if we want to model factorial designs or repeated
measurements. Table 1 gives an overview of the models and features supported by these packages. We see
that packages such as limma and proDA allow us to fit a comprehensive variety of models and test various
hypotheses; however, in-depth knowledge of design matrix specification using the R formula interface is
required (Law et al. 2020).

When developing the R package prolfqua we were inspired by the R package caret (Kuhn 2008), which
enables us to call various machine learning (ML) methods, and makes selecting the best ML algorithm for
your problem easy. We aimed for a similar R package for the differential expression analysis of proteomics
data. However, after examining the R packages for modeling proteomics quantification data, we observed
that model specification, input, and output formats differ widely. At the same time, they have in common
that: they fit linear models either to peptide or protein intensities, determine differences among groups, and
afterward apply empirical Bayes variance shrinkage. Therefore, the revised goal was to provide a modular
object-oriented (OO) design, with R linear models as a core, where we can add features such as p-value
aggregation, e.g., PECA, variance shrinkage, or modeling of missing observations.

Furthermore, the functionality of prolfqua also includes methods specific to proteomics data. For example, we
implemented strategies to estimate protein intensities from peptide intensities: top N (Grossmann et al. 2010),
Tukey’s median polish (Tukey and others 1977), robust linear models (Goeminne et al. 2020). Furthermore,
peptide or protein abundances can be scaled and transformed, using robust scaling, quantile normalization
or vsn to remove systematic differences among samples and heteroscedasticity. In this respect, prolfqua
can be compared with other R packages such as DEP (Zhang et al. 2018) or POMA (Castellano-Escuder,
Andrés-Lacueva, and Sánchez-Pla 2021) which support the entire differential expression analysis pipeline.

We also implemented functionality and use the Ionstar (Shen et al. 2018) dataset to benchmark the modeling
methods implemented within prolfqua and to compare our results with those of MSstats and proDA. Since
group sizes are relatively small, typically with four or five subjects per group, the high power of the tests
is a relevant criterion to assess the modeling method. The quantified proteins can be ranked using the
estimated fold-change, t-statistics, or scaled p-value, and afterward subjected to gene set enrichment (GSEA)
or over-representation analysis (Subramanian et al. 2005) to determine up or down-regulated groups of
proteins. Furthermore, the statistical model must provide an unbiased estimate of the false discovery rate
(FDR) to manage expectations when selecting protein lists for follow-up experiments. We will use the partial
area under the receiver operator curve (ROC) to assess the power of the tests and compare the FDR with the
false discovery proportion (FDP).
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2 Methods
2.1 Implementation
We store all the data needed for analysis in a tidy table, i.e., every column is a variable, every row is an
observation, and every cell is a single value (Wickham 2014). Using an R6 (Chang 2020) configuration object
(Figure 1), we specify what variable is in which column, making it easy to integrate new inputs in prolfqua if
provided as a tidy table. For example, to visualize tidy Spectronaut(Bruderer et al. 2015), DiaNN(Demichev
et al. 2020), or Skyline(MacLean et al. 2010) outputs, or data in MSstats(Choi et al. 2014) format, only
a few lines of code are needed to update the prolfqua AnalysisTableConfiguration configuration. The
configuration encapsulates the differences in column names among the various input formats, and enables the
use of the methods without additional arguments. We show an example code for creating an MSFragger(Yu
et al. 2020) configuration in the Appendix. For popular software like MaxQuant(Cox and Mann 2008), or
MSFragger, which stores the same variable, e.g., intensity, in multiple columns, one for each sample, we
implemented methods that transform the data into tidy tables. Relying on the tidy data table enables us
to interface with many data manipulation, visualization, and modeling methods, implemented in base R
(R Core Team 2021) and the tidyverse (Wickham et al. 2019), easily. We use R6 classes to structure the
functionality of the package (see Figure 1 and Figure 2). R6 classes are well supported by command-line
completion features in RStudio (RStudio Team 2022), and help to implement argument free functions (Figure
6.

Figure 1: Class Diagram of classes representing the proteomics data. The LFQData class encapsulates the
quantitative proteomics data stored in a tidy table. An instance of the AnalysisTableConfiguration class
specifies a mapping of columns in the tidy table. The LFQDataPlotter class and other classes decorate the
LFQData class with additional functionality. Similarly, the LFQDataStats and LFQDataSummary reference
the LFQData class and group methods for variance and sample size estimation or summarizing peptide and
protein counts.

In addition, we implement features specific to high throughput experiments, such as the experimental Bayes
variance and p-value moderation, which utilizes the parallel structure of the protein measurements and the
analysis (Ritchie et al. 2015). We also compute probabilities of differential protein regulation based on peptide
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level models (Suomi and Elo 2017). We used R6 classes to encapsulate the statistical modelling functionality
in prolfqua (see Figure 2). We specify a contrast interface (ContrastsInterface). Several implementations
allow to perform differential expression analysis given linear or mixed effect models (Contrasts), variance
shrinkage (ContrastsModerated), or to impute contrasts in cases when observations are missing for an
entire group of samples (ContrastsSimpleImpute). Further implementations of the interface encapsulate
and integrate differential expression analysis results of external tools such as proDA or of SAINTexpress (Teo
et al. 2014) used to analyze data from protein interaction studies.

Figure 2: The UML (unified modeling language) diagram of modeling and contrast related classes. Different
strategies, e.g., lm, lmer, and glm (Table 3), can fit various types of models. The model builder method fits
the statistical model given the data and a strategy. The obtained model can then be used for the analysis of
variance or to estimate contrasts. All classes estimating contrasts implement the Contrasts interface. Results
of external tools, e.g., SAINTexpress, can be adapted by implementing the Contrasts Interface.

2.2 Dataset for benchmarking
To evaluate the performance of differential expression analysis, we use the IonStar benchmark dataset(Shen
et al. 2018), available from the Proteomics Identifications Database (PRIDE) identifier PXD003881. DH5α
E. coli lysate was spiked in human pancreatic cancer cells (Panc-1) lysate at five different levels: 3% E. coli,
4.5% E. coli, 6% E. coli, 7.5% E. coli and 9% E. coli. We annotated these dilutions from smallest to largest
with the letters a, b, c, d, e. By comparing the various dilutions, we obtain different effect sizes, e.g., when
comparing dilution e (9%) against dilution d (7.5%), the expected difference is 1.2 for E. coli proteins and 1
for human proteins. There are four technical replicates for each dilution, and hence 20 raw files in total. We
processed the raw data using MaxQuant (Cox and Mann 2008) version Version 1.6.10.43, with MaxQuant
default settings. The text files generated by MaxQuant are available in the prolfquadata R package (Wolski
2021). To compare the performance of the various methods implemented in prolfqua we use only the contrasts
resulting in minor differences ∆ = (1.20, 1.25, 1.30, 1.50), because for bigger differences all models perform
similarly.
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Table 2: Confusion matrix, TP - true positive, FP - false positive, FN - false negative, TN - true negatives, P
- all positive cases (all E. coli proteins), N - all negative cases (all H. sapiens proteins), m - all proteins.

Prediction \ Truth E.coli H.sapiens Total
beta != 0 TP FP R
beta == 0 FN TN
Total P N m

2.3 Data preprocessing for model comparison
The peptide abundances (from the MaxQuant peptide.txt file) were log2 transformed and subsequently scaled,
where median and the mean average deviation (mad) were obtained from the human proteins only. We
removed one hit wonders, i.e., proteins with a single peptide assignment. Protein abundances are inferred
from the peptide intensities using Tukey’s median polish. Finally, we fitted the fixed effect linear models, the
dropout model proDA to protein abundances, the mixed effect linear model, and the PECA model to peptide
intensities.

2.4 Benchmark metrics
The IonStar dataset contains H. sapiens proteins with constant concentrations and E. coli proteins with
varying concentrations. We know that for H. sapiens proteins, the difference β between two dilutions should
be β = 0, while for E. coli proteins, we know that the difference between dilutions should be β 6= 0.

We can use various statistics to examine the alternative hypothesis β 6= 0: the contrast estimate, i.e. the
log2 fold-change β, the t-statistic β√

var(β)
, or the p-value and moderated p-value. For each statistic and each

value of the statistics we then compute a confusion matrix (see Table 2). From the confusion matrix we
obtain measures such as true positive rate (TPR), false positive rate (FPR), or false discovery proportion
(FDP ) which are given by:

with

TPR = TP
TP+FN = TP

P (1)
FPR = FP

FP+TN = FP
N (2)

FDP = FP
TP+FP = FP

R (3)

By plotting the TPR versus the FPR we obtain the receiver operator characteristic curve (ROC curve).
The area under the curve (AUC) or partial areas under the curve (pAUC), at various values of the FPR,
are measures of performance derived from the ROC curve. By using these measures we can compare the
performances of the statistics produced by the various methods examined.

In order to compute the confusion matrices based on the p-value we first need to rescale it (see Equation
(11)). Thus, the p-value is a function of the t-statistics and the degrees of freedom.

2.5 Modelling
2.5.1 Robust scaling of the data

Välikangas, Suomi, and Elo (2016) discuss and benchmark various methods of peptide or protein intensity
normalization, such as variance stabilizing normalization (Huber et al. 2002) or quantile normalization
(Bolstad et al. 2003). In this work, we use a robust version of the z-score, where instead of the mean x̄ we
use the median, and instead of the standard deviation S̃ we use the median absolute deviation (mad):
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z = x− x̃
S̃

(4)

Because we need to estimate the differences among groups on the original scale, we must multiply the z-score
by the average variance of all the n samples in the experiment.

z′ = z · 1
n

n∑
i=1

Si (5)

To apply this transformation, we need to estimate two parameters per sample, therefore it works for
experiments with thousands of proteins and experiments where only a few hundred proteins per sample are
measured. For the Ionstar dataset, we used the intensities of H. sapiens proteins, whose concentrations do
not change, to determine x̄ and S and then applied it to all the intensities (including E. coli) in the sample.

2.5.2 Estimating differences between groups

Given a linear model y = βX, we can compute the difference βc between two groups by a linear combination
c of linear model parameters β, where c is a column vector with as many elements as there are coefficients
β in the linear model. If c has 0 for one or more of its rows, then the corresponding coefficient in β is not
involved in determining the contrast (Irizarry and Love 2018).

The difference estimate βc, is given by the dot product:

β̂c = cTβ (6)

and the variance of βc by:

var(β̂c) =
√
cTσ2(XTX)−1c (7)

with X being the design matrix. The degrees of freedom for the contrast are equal to the residual degrees
of freedom of the linear model. For estimating contrasts from mixed effects models we used the function
contest implemented in the R package lmerTest and used the Satterthwaite (Kuznetsova, Brockhoff, and
Christensen 2017) method to estimate the denominator degrees of freedom. These methods are available in
the class Contrast (see Figure 2)

2.5.3 Determining linear parameter combinations for treatment comparison

The package prolfqua provides a function to determine the vector of parameter weights c, from a linear
models and a contrast specification string.

The linear model below explain the observed protein abundances using the explanatory variables factor_1
and factor_2 and the interaction among them factor_1:factor_2,

## Intensity ~ factor_1 + factor_2 + factor_1:factor_2

then the contrasts among group_1 and group_2 defined by factor_1 can be specified using the string below.
c("contrast_name" = "factor_1group_1 - factor_1group_2")

Furthermore, contrasts for subgroups can be specified using the code below,
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c("contrast_name" =
"`factor_1group_1:factor_2group_a` - `factor_1group_1:factor_2group_b`")

where factor_x is the name of the explanatory variable, and group_x are group labels.

The following code shows an example where we specify two contrast: the first to compare Cells of type
CMP/MEP with cells of type HSC, and the second to compare therapy NO with therapy NU for the celltype
CMP/MEP (Meier-Abt et al. 2021). Finally, we compute the array of weights defining the contrast, used to
multiply the model coefficient β.
Contrasts <-

c("CMP/MEPvsHSC" = "`CelltypeCMP/MEP` - `CelltypeHSC`",
"NOvsHU" = "`class_therapyc.NO:CelltypeCMP/MEP` - `class_therapyp.HU:CelltypeCMP/MEP`")

m <- prolfqua::prolfqua_data('data_basicModel_p1807')
linfct <- prolfqua::linfct_from_model(m,as_list = FALSE)

prolfqua::linfct_matrix_contrasts(linfct, Contrasts )

## (Intercept) class_therapyc.NO class_therapyp.NO
## CMP/MEPvsHSC 0 0 0
## NOvsHU 0 1 0
## CelltypeHSC
## CMP/MEPvsHSC -1
## NOvsHU 0

2.5.4 Contrast estimation in presence of missing data.

Missing observations lead to different group sizes, which results in unbalanced designs. Linear and mixed
effect models can handle unbalanced designs, as long as one observation per group is available, they will
produce unbiased estimates, and no imputation is needed.

If there is no observation in a group, we assume that the protein is unobserved because the protein abundance
is below the limit of detection (LOD) of the MS instrument. In this case, we will impute the mean using the
protein abundance at the detection limit ALOD. We estimate the abundance at the detection limit using the
abundances of the proteins observed only in one sample of a group of samples. Then, we compute the median
of the distribution and use it as the group mean if a protein is absent in a treatment group.

When computing differences ∆ among two groups a and b, we will use the group mean ā or b̄ estimated from
the data, or if no observations are present in a group, we use ALOD, e.g., If there are no observations in
group b then :

∆ =
{
ā−ALOD if ā > ALOD

0 if ā < ALOD.

To estimate the variance, we assume that the variance of the protein is constant in all the groups and use the
pooled variance based on all data:

s2
p =

∑k
i=1(ni − 1)s2

i∑k
i=1(ni − 1)

(8)

with ni the number of observations, and si the standard deviation in each group. The standard deviation for
the t-statistics is then given by:
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s =
√

2ngs2
p

n
, (9)

Where, ng is the number of groups and n is the number of observations. If variance can not be estimated for
a protein, we will use the median pooled variance of all the proteins.

This methods are implemented in the class ContrastSimpleImpute (see Figure 2).

2.5.5 p-value moderation

From the linear and the mixed effect models, we can obtain the residual standard deviation σ, and degrees of
freedom df . Smyth (2004) discuss how, to use the σ and df of all models to estimate a prior σ and prior df ,
and posterior σ̃. These can be used to moderate the t-statistics by:

t̃pj = tpjsp
s̃p

. (10)

We implemented this method in the class ContrastModerated (Figure 2).

2.5.6 Summarizing peptide level differences and p-values on protein level

To summarize peptide level models to protein models, we apply the method suggested by Suomi and Elo
(2017) that use the median scaled p-value of the peptide models and the cumulative distribution function of
the Beta distribution (CDF) to determine a regulation probability of the protein.

To obtain the p̃ of a protein, we first rescaled the peptide p-values by taking the sign of the fold-change β̂
into account, i.e.:

ps =
{

1− p, if β̂ > 0
p− 1, otherwise

(11)

Afterwards, the median scaled p-value p̃s is determined and using the transformation below, transformed
back onto the original scale:

p̃ = 1− |p̃s| (12)

Because we use the median, with the i-th order statistic i = n
2 + 0.5, we parametrize the CDF of the Beta

distribution with γ = i = n
2 + 0.5 and δ = n− i+ 1 = n− (n2 + 0.5) + 1 = n

2 + 0.5 = γ. We implemented this
method in the class ContrastROPECA (Figure 2).

3 Results and Discussion.
3.1 Example analysis workflow
The code snippets in this section demonstrate how a differential expression analysis workflow can be
implemented using the prolfqua R package. To speed up the computation of these examples, we use a
random subset of the Ionstar dataset containing 163 proteins and 1258 peptides. Peptide abundances are
log2 transformed and robust z-score scaled using the method robscale. Using the LFQDataPlotter class,
we show the distribution of the normalized peptide abundances in Figure 3 Panel A. Afterwards, protein
intensities are estimated from peptide intensities using Tukey’s median polish. Figure 3 Panel B shows the
peptide intensities and the estimated protein intensities. Next, we compute the standard deviation of all the
proteins in each group and display their distribution using violin plots (Panel C). Finally, we create a boxplot
(Panel D) showing the abundance of one protein.
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## load peptide level data
d <- prolfqua::prolfqua_data('data_ionstar')$filtered()

## create R6 obejct
lfqd <- prolfqua::LFQData$new(d$data, d$config)

## transform intensities
t <- lfqd$get_Transformer()

lfqd <- t$log2()$robscale()$lfq
lfqd$rename_response("peptide_abundance")

## infer protein intensities from peptide intensity
agr <- lfqd$get_Aggregator()
lfqp <- agr$medpolish()
lfqp$rename_response("protein_abundance")

## plot panels A-D
pl <- lfqd$get_Plotter()
panelA <- pl$intensity_distribution_density() +

ggplot2::labs(tag = "A") + ggplot2::theme(legend.position = "none")
panelB <- agr$plot()$plots[[1]] + ggplot2::labs(tag = "B")
panelC <- lfqp$get_Stats()$violin() + ggplot2::labs(tag = "C")
pl <- lfqp$get_Plotter()
panelD <- pl$boxplots()$boxplot[[1]] + ggplot2::labs(tag = "D")
ggpubr::ggarrange(panelA, panelB, panelC, panelD)

The following code example illustrates how we compute differences among groups. First, the linear model
and the differences are specified. Afterward, the model is fitted to the data using the build_model function.
Next, we estimate the contrasts either from the linear model using the Contrasts class or directly from
the data using the ContrastsSimpleImpute class. Afterward, we apply t-statistic moderation using the
ContrastModerated class. Finally, the addContrastResults function merges both sets of contrast estimates,
preferring the one obtained from the linear model if both are available. Then we create the plots shown
in Figure 4. Panel A shows the distribution of the p-values, while Panel B shows the volcano plot for each
comparison.
# specify differences among groups
contrasts <- c(

"dilution_(9/7.5)_1.2" = "dilution.e - dilution.d",
"dilution_(7.5/6)_1.25" = "dilution.d - dilution.c"

)
## fit model
lmmodel <- paste(lfqp$intensity_column()," ~ dilution.")
modelFunction <- prolfqua::strategy_lm( lmmodel, model_name = "lm")
models <- prolfqua::build_model(lfqp, modelFunction)

## compute contrasts from linear model, moderate t-statistics and p-values
contr <- prolfqua::Contrasts$new(models, contrasts) |>

prolfqua::ContrastsModerated$new()

# compute contrasts using imputation imputation and moderate
conI <- prolfqua::ContrastsSimpleImpute$new( lfqp, contrasts) |>

prolfqua::ContrastsModerated$new()
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Figure 3: Panel A - Peptide intensity distributions for 20 samples. For each sample a line with a different
colour is shown. Panel B - Peptide intensities for protein 5NTD are shown using a line of different colour, and
the protein intensity estimate is shown using a fat black line, Panel C - distribution of standard deviations of
all proteins in each dilution group (a, b, c, d, e) and overall (all), Panel D - Distribution of protein intensities
for protein 5NTD.
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# merge contrasts, to obtain differences for all proteins
contrasts <- prolfqua::addContrastResults(prefer = contr, add = conI)

## visualize results in panels
pl <- contrasts$merged$get_Plotter()
panelA <- pl$histogram()$p.value + ggplot2::labs(tag = "A")
panelB <- pl$volcano()$FDR +

ggplot2::theme(legend.position = "bottom") +
ggplot2::labs(tag = "B")

gridExtra::grid.arrange(panelA, panelB, ncol = 2)
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Figure 4: Panel A - Histogram showing the distribution of p-values for 163 proteins. Panel B - Volcano plot
showing − log10 transformed FDR as function of the difference between groups for 163 proteins.

R linear model and linear mixed effect models allow modeling parallel designs, repeated measurements,
factorial designs, and many more. Models in prolfqua are specified using R’s linear model and mixed model
formula interface. Therefore, knowledge of the R regression model infrastructure (Faraway 2016; Venables
and Ripley 2002) is advantageous when using our package. Furthermore, this glass box approach should make
it easy to reimplement an analysis performed with prolfqua using base R or other programming languages by
reading the analysis script. However, acknowledging the R formula interface’s complexity to non-statisticians
and the popularity of MSstats, we provide the functionality to suggest a model formula from the sample
annotation provided in tabular form similarly to MSstats.

Using the tidy table to model the data ensures interoperability with other proteomics-related packages
that manage their data with tidy-tables, e.g., protti (Quast, Schuster, and Picotti 2022). The use of R6
classes, which encapsulate the configuration and the data, allows for writing very concise code (no function
arguments needed). Auto-completion support in the Rstudio editor makes it easy for novices to explore
prolfquas functionality (Figure 6). To simplify integration of prolfqua with Bioconductor based workflows
there is a method to convert the LFQData class into a SummarizedExperiment.
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To ease the usage barriers of the R package to users not being familiar with statistics and R programming, we
integrated some workflows into our data management platform b-fabric (Türker et al. 2010). This integration
enables our users to select the input and basic settings in a graphical user interface. Then, as an output, the
user receives a report including input files, the R markdown file, and R scripts necessary to replicate the
analysis using their in-house R installation. The b-fabric system runs a computing infrastructure controlled
by a local resource management system that supports cloud-bursting (Aleksiev et al. 2013). In this way,
b-fabric helps scientists to meet requirements from funding agencies, journals, and academic institutions to
publish data according to the FAIR (Findable, Accessible, Interoperable and Reusable) (Wilkinson et al.
2016) data principles.

3.2 Benchmarking modelling approaches
The Benchmark functionality of prolfqua includes receiver operator curves (ROC) and computes partial areas
under those curves (pAUC) and other scores, e.g., the false discovery proportion FDP. We use those scores,
i.e. the pAUC at 10 FDR and the FDP, to examine how well the methods implemented in prolfqua model
quantitative mass spectrometric high throughput data and compare them with results produced by MSstats
and proDA. Table 4 summarizes all modelling methods we evaluated.

When comparing differential expression analysis performance, a relevant parameter is the number of proteins
for which a method estimated differences (see Figure 5 Panel A), which indicates how robust the procedure
works in the presence of missing observations. For each protein, we tried to determine four differences
(∆ = (1.20, 1.25, 1.30, 1.50)). Given 4046 proteins with at least two peptides, there are in total 16184 possible
differences. However, some methods can not estimate all of them. The set of proteins with effect size estimates
might differ for each method, biasing direct comparison of scores such as pAUC. For instance, we observe
that MSstats estimates 16058 group differences while the mixed effect models estimates the fewest with 15940.
Hence, to conclude that one method shows a better performance, it does not suffice if the pAUC is greater,
but the number of proteins with differential expression results needs to be equal or larger.

Figure 5 Panel B shows how various estimates obtained from the models, i.e., the difference between groups,
t-statistics, and scaled p-values allow identifying true positives (TP) given a false positive rate (FPR) of 10,
by displaying the partial area under the ROC. Ordering proteins by the t-statistic or p-value leads to a higher
pAUC10 than when ordering by the estimated difference among groups. Suppose an accurate estimate of the
difference among groups is essential. In that case, the linear models fitted to protein intensities, calculated
using Tukey’s median polish, perform better than those directly modeling peptide intensities, e.g., ropeca or
prot_mixed_effect_moderated (see Table 4 Abundance column). We speculate that outliers at the peptide
level do not affect the protein estimates when using Tukey’s median polish method, a non-parametric method
to infer protein abundances. This hypothesis could be examined, by including other forms of protein intensity
inferences implemented in prolfqua, e.g. top-N or rlm, into the benchmark.

There are only minor differences in the pAUC10 between the t-statistics or the scaled p-value (see Figure 5
Panel A). Interestingly, the pAUC increases when using p-values instead of the t-statistics for linear models,
while it decreases for mixed effect models. The reason is an erroneous denominator degrees of freedom
estimation for many proteins in the case of the mixed effect models.

We also benchmark if the FDR obtained from a model is an unbiased estimate of the false discovery proportion
FDP . Figure 5 Panel C draws on the horizontal axis the FDR determined from the model, and on the
vertical axis, the FDP obtained from the confusion matrix. Most lines are below the diagonal, indicating
that the FDR estimates are modestly conservative for this benchmark dataset. In the case of MSstats, we
observe a high proportion of false discoveries for small FDR values. In the case of PECA, the FDR estimates,
obtained by Benjamini-Hochberg correcting the regulation probabilities, strongly overestimate the FDP .

Using a benchmark dataset whose ground truth is known (see Methods), we assessed the performance
of different modeling approaches implemented in prolfqua (Tables 3 and 4), MSstats and proDA. Table 4
summarizes which methods we have evaluated, which MaxQuant results we used, and if the models are fitted
to peptide or protein intensities. We make the R-markdown files to replicate the benchmarking available at
prolfquabenchamrk and at BenchmarkingIonstarData.
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Figure 5: Panel A - Number of estimated contrasts for each modeling method (higher is better). Panel B
- Partial area under the ROC curve at 10% FPR (pAUC10) for all contrasts and three different statistics:
the difference among groups, the scaled p-value (sign(diff) · p.value) and the t-statistics (higher is better).
The red line indicates the average area under the curve of all methods. Panel C - Plots the false discovery
proportion (FDP) as a function of the FDR. Ideally, the FDR should be equal to the FDP. Therefore larger
distances from the diagonal are worse.

Table 3: Prolfqua functions to fit various models.

prolfqua functions model
strategy_lm, Contrasts linear modelling of peptide or protein abundances and group difference estimation
strategy_lmer, Contrasts mixed effect modelling of peptide or protein abundances and group differences estimation
ContrastsSimpleImpute group difference estimation when no observations in one of the groups
ContrastsROPECA estimating group differences for proteins by summarizing peptide differences
ContrastsModerated empirical Bayes variance shrinkage for group difference estimates (limma)
runSaint, ContrastsSaintExpress protein interaction scoring (SAINTExpress)
strategy_proDA*, Contrasts_proDA* adapter to the probabilistic dropout model implemented in proDA
a in development
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Table 4: All benchmarked models. Description - prolfqua function names, Abudances - indicates if model is
fitted to peptide or protein abundances, Input File - name of MaxQuant file used as input.

Label Description Abundance Input File
MSstats preprocess with default parameters evidence.txt
proDA probabilistic dropout model protein peptide.txt
prot_imputation ContrastsSimpleImpute, ContrastsModerated protein peptide.txt
prot_med_lm_moderated strategy_lm, Contrasts, ContrastsModerated protein peptide.txt
prot_merged addContrastResults( prefer = prot_med_lm_moderated , add = prot_imputation) * protein peptide.txt
prot_mixed_effect_moderated strategy_lmer, Contrasts, ContrastsModerated peptide peptide.txt
ropeca strategy_lm, Contrasts, ContrastsModerated, ContrastsROPECA peptide peptide.txt
a Merges results of the ’prot_med_lm_moderated’ and ’prot_imputation’ modeling pipeline, preferring those of
’prot_med_lm_moderated’ if available.

Since only technical replicates are available for each dilution, essential sources of variation present in every
experiment, such as the biochemical and biological, are not measured. Therefore, the dataset captures only
the variance from the chromatography, electro-spray, and mass spectrometric measurement method. Thus,
while we can extrapolate some of the results obtained to more realistic datasets, we need to be careful not to
over-interpret the results. Specifically, the observed variances will be higher in more realistic experiments,
and the power will be lower for the same sample sizes. Furthermore, the proportion of missing observations
in real-life datasets might also be higher.

We can conclude that if we want to sort the proteins according to the likelihood of being differentially
regulated to perform gene set enrichment analysis (Subramanian et al. 2005), the t-statistic is better suited
than the fold-change estimate. Modeling the degrees of freedom when computing the p-values might improve
the inference. However, this improvement is minuscule (see Figure 5 panel B). There is no such improvement
for the mixed effect model, most likely because the degrees of freedom are erroneously estimated for many
models. Furthermore, for the fixed effect linear model, the empirical Bayes variance shrinkage, as suggested
by Smyth (2004), consistently improves the ranking of proteins compared with the unmoderated estimates
(not shown) and fails to do so for mixed effect models.

Computing the statistics at the peptide level, e.g., the t-statistics or p-value, then summarizing these statistics
using their median produces the highest AUC scores among all the tested models (see Figure 5 Panel A left).
Furthermore, by using the Beta distribution to model the number of peptides observed, we can further improve
the pAUC scores (see Figure 5 Panel A center). However, the properties of Beta-based probabilities are not
well understood; for instance, the p-values are not uniformly distributed under the null hypothesis (not shown).
Furthermore, the FDR estimates obtained when correcting for multiple testing with the Benjamini-Hochberg
method are biased and overestimate the false discovery proportion (see Figure 5 Panel C). Therefore, we
can not recommend this method if an unbiased estimate of FDR is essential, which is frequently the case.
In addition, peptides are stronger affected by missing values, reducing the number of contrasts we could
estimate for the dataset using this method (see Figure 5 Panel C).

The probabilistic dropout analysis implemented in the proDA produces inferences comparable to those of
other methods (Figure 5 Panel A). Because of the robustness of the dropout model to missing observations
we obtain difference estimates for all proteins and contrasts (Figure 5 Panel B). Moreover, the estimated
differences are unbiased and show high diagnostic accuracy (Figure 5 Panel A). Furthermore, the performance
of the scaled p-values or the t-statistics is comparable with that of the linear model with variance moderation
(prot_med_lm_moderated). Therefore, we are planning to integrate the proDA package as an additional
modeling option into prolfqua (see Figure 2).

The R-package proDA and prolfqua model the missing data directly, while MSstats imputes the data using an
accelerated failure model. Despite imputation, MSstats does not estimate group differences for more proteins
and does not achieve a higher pAUC score than prolfqua. Furthermore, Figure 5 Panel C shows that when
using MSstats the proportion of false discoveries might be very high even when filtering for a low FDR.

We focused our benchmark on comparing the statistical modeling methods using three different scores, while
we fixed the pre-processing steps. However, there are other equally or even more important parameters of a
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protein quantification pipeline (Fröhlich et al. 2022). One of them is the normalization of the intensities within
the samples to remove systematic differences (Pursiheimo et al. 2015). The method used to infer protein
intensities from peptide intensities is an additional important factor (Grossmann et al. 2010). For instance,
the original proDA publication uses MaxLFQ (Cox et al. 2014) protein estimates. However, when using
MaxLFQ intensities reported by MaxQuant, the pAUC10 is significantly lower (pAUC10(t-statistics) = 66)
compared with results obtained when protein abundances are estimated from peptide abundances using
Tukey’s median polish (pAUC10(t-statistics) = 73). Last but not least, the software (Cox and Mann 2008;
Yu et al. 2020), identifying proteins and generating the quantification values can also significantly contribute
to the performance of the entire pipeline, altering the number of identified proteins and the sensitivity and
specificity of the differential expression analysis.

4 Conclusion
prolfqua allows for considerable flexibility to model quantitative proteomics experiments. Various types of
models are available (see Figure 2 and Table 3), and the contrast specification is explicit and consistent for all
models. The modular design of prolfqua, allows for adding new features, e.g., generalized linear models (glm’s)
to model the presence or absence information of a protein, or robust linear models (rlm’s), in the future. R’s
formula interface for linear models is flexible, widely used, and well documented (Faraway 2016). We use the
formula interface to specify the models, making it easy to reproduce an analysis performed with prolfqua in
other statistical methods programming languages. However, the developed framework is flexible enough to
in the future integrate other modeling methods, e.g., the probabilistic dropout model (Ahlmann-Eltze and
Anders 2020) or accurate variance estimation (Zhu et al. 2020). Hence, prolfqua enables you to call various
methods and makes selecting the best differential expression analysis algorithm for your problem easy.

When comparing statistical modeling methods for the differential expression analysis, we assessed performance
measures such as the number of estimated contrasts, the pAUC, and if the FDR is an unbiased estimate of the
FDR. It is relevant that an analysis pipeline shows good performance in all these categories. Leveraging these
computer experiments, we can provide the following advice: i) estimate protein abundances from peptide
abundances using a robust or nonparametric regression method; ii) use linear models because they show
good performance in all categories; iii) if the measurements are correlated, as for technical replicates, mixed
effect models might work if the sample sizes are large; if not, aggregate the replicates and fit a linear model
instead; iv) if you use fixed-effect linear models, apply variance moderation to improve the t-statistics and
p-value estimates; v) If you want to sort your protein lists to perform gene set enrichment analysis, use the
t-statistic instead of the difference; vi) do not impute missing observation but statistically model missingness
to estimate parameters, i.e., group differences. Finally, the differential expression analysis result obtained
with prolfqua are comparable to or better than when using other differential expression analysis tools.

In summary, prolfqua is an easy-to-use and feature-rich R package to analyze quantitative mass spectrometric
data with simple or complex experimental designs. It also can generate conclusive reports and to benchmark MS
software and statistical methods. Furthermore, with minimal adaptations, this R package can analyze different
quantitative proteomics data (e.g., labeling-based TMT-, PRM- DIA-data). We provide documentation,
in vignette format, at the website https://github.com/fgcz/prolfqua/. This document was created using
Rmarkdown. All the code needed to replicate the document or the benchmark results is available at:
https://github.com/wolski/prolfquabenchmark.
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Abbreviations

Abbreviations Explaination
AUC Area Under the Curve
CDF Cumulative Distribution Function
ESI-MS Electro-Spray-Ionization Mass Spectrometry
FDP False Discovery Proportion
FDR False Discovery Rate
LC Liquid Chromatography
LC-MS Liquid Chromatography followed by Mass Spectrometry
LOD Limit Of Detection
MAR Missing At Random
MCAR Missing Completely At Random
MS mass spectrometry
OO Object-Oriented
UML Unified Modeling Language
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Appendix
Creating a prolfqua configuration
The following code demonstrates how we use prolfqua to analyze protein intensities reported in the MSFragger
combined_protein.tsv file. First, we create a tidy table containing the protein abundances by reading
the combined_protein.tsv file using tidy_MSFragger_combined_protein. Then, we read the sample
annotation from the file annotation.xlsx file. Next, we create an AnalysisTableAnnotation R6 object.
Bottom-up proteomics data is hierarchical, i.e., a protein has peptides, peptides might be modified, etc.
Therefore, the AnalysisTableAnnotation has a hierarchy field storing a list with an entry for each hierarchy
level. Since combined_portein.tsv only holds protein level data, the hierarchy list has one element, and we
use it to specify which column contains the protein identifiers. We also need to define which column contains
the protein abundances we want to use for the data analysis. Finally, we have to specify which columns
contain the explanatory variables of the analysis. The AnalysisTableAnnotation has the field factors, a
list with as many entries as explanatory variables. Here we include two explanatory variables, the dilution,
specified in the column ‘sample’, and ‘run’ stored in the column ‘run_ID’, representing the order of the
measurement.
datadir <- file.path(find.package("prolfquadata") , "quantdata")
inputFragfile <- file.path(datadir, "MSFragger_IonStar2018_PXD003881.zip")
inputAnnotation <- file.path(datadir, "annotation_Ionstar2018_PXD003881.xlsx")
# read input annotation
annotation <- readxl::read_xlsx(inputAnnotation)

protein <- tibble::as_tibble(
read.csv(unz(inputFragfile,"IonstarWithMSFragger/combined_protein.tsv"),

header = TRUE, sep = "\t", stringsAsFactors = FALSE))

# read combined_protein.tsv
protein <- prolfqua::tidy_MSFragger_combined_protein(protein)
# remove proteins identified by a single peptide
protein <- protein |> dplyr::filter(unique.stripped.peptides > 1)

# annotate the data
merged <- dplyr::inner_join(annotation, protein)
atable <- prolfqua::AnalysisTableAnnotation$new()
atable$fileName = "raw.file"
# specify column containing protein identifiers
atable$hierarchy[["protein_Id"]] = "protein"

# column with protein abundances
atable$setWorkIntensity("total.intensity")

# the factors of the analysis
atable$factors[["dilution."]] = "sample"
atable$factors[["run"]] = "run_ID"

config <- prolfqua::AnalysisConfiguration$new(atable)

adata <- prolfqua::setup_analysis(merged, config)
lfqdata <- prolfqua::LFQData$new(adata, config)
# remove small intensities
lfqdata$remove_small_intensities()
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Miscellaneous

Figure 6: The screenshot displays the command-line completion (tab completion) of RStudio on the
prolfqua::LFQData R6 object. In the example, it shows the getter methods of the object.

file.path(system.file(package = "prolfqua"),
"Figures/hexStickerProlfqua.png") |>

knitr::include_graphics()

Figure 7: Sticker maintainer: Witold E. Wolski; License: Creative Commons Attribution CC-BY. Feel free to
share and adapt, but don’t forget to credit the author.

Session information
## R version 4.2.0 (2022-04-22)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Debian GNU/Linux 11 (bullseye)
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.13.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
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## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods
## [7] base
##
## other attached packages:
## [1] lmerTest_3.1-3 lme4_1.1-29 Matrix_1.4-1
##
## loaded via a namespace (and not attached):
## [1] nlme_3.1-157 webshot_0.5.3 RColorBrewer_1.1-2
## [4] progress_1.2.2 httr_1.4.2 prolfqua_0.3.8
## [7] numDeriv_2016.8-1.1 tools_4.2.0 backports_1.4.1
## [10] R6_2.5.1 vipor_0.4.5 DBI_1.1.1
## [13] lazyeval_0.2.2 colorspace_2.0-0 tidyselect_1.1.0
## [16] gridExtra_2.3 prettyunits_1.1.1 compiler_4.2.0
## [19] cli_3.3.0 rvest_1.0.2 xml2_1.3.2
## [22] plotly_4.10.0 labeling_0.4.2 bookdown_0.26
## [25] scales_1.1.1 systemfonts_1.0.0 stringr_1.4.0
## [28] digest_0.6.29 minqa_1.2.4 rmarkdown_2.14
## [31] svglite_2.1.0 pkgconfig_2.0.3 htmltools_0.5.2
## [34] fastmap_1.1.0 htmlwidgets_1.5.3 rlang_1.0.2
## [37] readxl_1.4.0 rstudioapi_0.13 generics_0.1.0
## [40] farver_2.0.3 jsonlite_1.8.0 dplyr_1.0.4
## [43] car_3.0-13 magrittr_2.0.3 kableExtra_1.3.4
## [46] Rcpp_1.0.8.3 ggbeeswarm_0.6.0 munsell_0.5.0
## [49] abind_1.4-5 lifecycle_1.0.1 stringi_1.5.3
## [52] yaml_2.2.1 carData_3.0-5 MASS_7.3-57
## [55] grid_4.2.0 ggrepel_0.9.1 forcats_0.5.1
## [58] crayon_1.5.1 lattice_0.20-45 cowplot_1.1.1
## [61] splines_4.2.0 hms_1.0.0 knitr_1.31
## [64] pillar_1.4.7 ggpubr_0.4.0 boot_1.3-28
## [67] ggsignif_0.6.3 glue_1.6.2 evaluate_0.14
## [70] data.table_1.13.6 BiocManager_1.30.17 png_0.1-7
## [73] vctrs_0.4.1 nloptr_2.0.3 cellranger_1.1.0
## [76] gtable_0.3.0 purrr_0.3.4 tidyr_1.1.2
## [79] assertthat_0.2.1 cachem_1.0.6 ggplot2_3.3.6
## [82] conflicted_1.1.0 xfun_0.31 broom_0.8.0
## [85] rstatix_0.7.0 viridisLite_0.3.0 tibble_3.0.6
## [88] pheatmap_1.0.12 beeswarm_0.4.0 memoise_2.0.0
## [91] ellipsis_0.3.2 BiocStyle_2.24.0
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