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Abstract 
 

Antibodies are widely developed and used as therapeutics to treat cancer, infectious disease, and 

inflammation. During development, initial leads routinely undergo additional engineering to 

increase their target affinity. Experimental methods for affinity maturation are expensive, 

laborious, and time-consuming and rarely allow the efficient exploration of the full design space. 

Deep learning (DL) models are transforming the field of protein structure-prediction, engineering, 

and design. While several DL-based protein design methods have shown promise, the antibody 

design problem is distinct, and specialized models for antibody design are desirable. Inspired by 

hallucination frameworks that leverage accurate structure prediction DL models, we propose the 

FvHallucinator for designing antibody sequences, especially the CDR loops, conditioned on a 

target antibody structure. On a benchmark set of 60 antibodies, FvHallucinator recovers over 50% 

of the wildtype sequence for amino acid recovery on all six CDRs and recapitulates perplexity of 

canonical CDR clusters. Furthermore, the FvHallucinator designs amino acid substitutions at the 

VH-VL interface that are enriched in human antibody repertoires and therapeutic antibodies. We 

propose a pipeline that screens FvHallucinator designs to obtain a library enriched in binders for 

an antigen of interest. We apply this pipeline to the CDR H3 of the Trastuzumab-HER2 complex 

to generate in silico designs that retain the original binding mode while also improving upon the 

binding affinity and interfacial properties of the original antibody. Thus, the FvHallucinator 

pipeline enables generation of inexpensive, diverse, and structure-conditioned antibody libraries 

enriched in binders for antibody affinity maturation. 

 

Introduction 
 

Antibodies recognize and bind an extremely large repertoire of antigens via six hypervariable loop 

regions (H1, H2, H3, L1, L2, L3) in their variable domain (Fv) known as the complementarity 

determining regions (CDRs). The CDRs leverage a vast sequence space to target the immensely 
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diverse range of antigens that challenge the immune system. CDR diversity results from V(D)J 

gene recombination prior to antigen exposure followed by somatic hypermutation after antigen 

exposure.[1] Hence, antibodies achieve the ability to target a diverse range of epitopes by both 

diversifying the CDR sequences prior to antigen exposure and by antigen-specific hypermutation 

post antigenic exposure. The process of evolution of an antibody to bind an antigen with higher 

affinity and specificity is known as affinity maturation. 

 

In the laboratory, affinity maturation is achieved broadly in two steps. First, large libraries of CDR 

regions are diversified via methods such as random mutagenesis, targeted mutagenesis, and chain 

shuffling. Second, the libraries are screened for expression and binding through display 

technologies such as yeast or phage display. These steps are repeated until enough “hits” are found 

with the desired affinity. Such approaches to affinity maturation can be expensive and time-

consuming, and rarely allow the efficient exploration of the full design space.[2] Computational 

methods offer faster and inexpensive alternatives to experimental affinity maturation. 

Conventional computational approaches for antibody design or affinity maturation include rational 

or structure-guided design strategies[3,4], general protein design methods such as FastDesign[5], 

and antibody-specific design methods such as AbDesign[6] and RosettaAntibodyDesign[7] 

(RAbD). RAbD is notable because it allows the design of CDR sequences and conformations in 

the context of the antigen. However, RAbD requires 10-20 hours for a single design. Further, 

RAbD only samples CDR sequences from PyIgClassify[8] clusters that have arbitrary 

classification cutoffs and are context (surrounding residues) agnostic. Further, Rosetta (like other 

methods) has challenges in accurate modeling of CDR H3.[9]  

 

Deep learning (DL) models are transforming the field of protein structure-prediction, engineering, 

and design.[10–12] Over the last few years, DL models have emerged as the leaders in predicting 

protein structures with high accuracy, and they are increasingly being applied to protein 

design.[11,13,14] For the purpose of protein design, DL models fall in three broad categories, 1) 

Sequence generation with language models[15,16] 2) Structure-conditioned sequence 

generation[17,18], and 3) Sequence agnostic structure or backbone generation[19,20]. Since the 

antibody design task is primarily focused on CDRs that are regions of high variability and 

flexibility, it may require specialized DL models.[21]. An example of an antibody-specific DL 

model is IgLM, a language model that generates variable-length CDR sequence libraries 

conditioned on chain type and/or species-of-origin.[22] IgLM designed synthetic libraries are akin 

to naïve libraries that can be further screened to obtain a lead antibody sequence. Another antibody-

specific DL model treats the problem of antibody CDR generation as an iterative sequence-

structure prediction problem.[23] It also proposes a sequence-based affinity maturation protocol 

that conditions design on known sequences of binders against a target antigen. This approach is 

promising when a sufficiently large library of sequences that bind an antigenic epitope is available.  

 

Here, we propose a fast and versatile DL framework for antibody design and engineering that is 

aimed at shortening the cycle of antibody library generation and affinity maturation. Given that 

structural information is becomingly increasingly abundant and accessible [11,24], our framework 

(like RAbD[7]) leverages structural information of both the antibody and the antigen. 

 

Our approach is inspired by “hallucination frameworks,” a special class of DL based design 

methods, that leverage highly accurate pretrained sequence to structure models for protein 
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design.[12,25,26] Hallucination frameworks have been used to design de novo sequence-structure 

pairs,[12] sequences that maximize the likelihood of a target structure,[25] and protein scaffolds 

that can host functional motifs[26].  

 

We adapted the trDesign[27] approach for the specific task of generating antibody libraries 

conditioned on a target antibody structure. Our framework (Figure 1A), FvHallucinator, differs 

from the previous hallucination frameworks in three important aspects. First, it is developed for 

the variable domains of conventional antibodies (Fv region). To estimate the likelihood of a 

structure given a sequence, we use an antibody specific sequence-to-structure model, DeepAb[28]. 

DeepAb improves the prediction of CDR H3 loop structure over conventional approaches such as 

RosettaAntibody.[28] Second, the framework can be applied to hallucinate sequences that 

optimize the heavy and light chain interface[29], a task that is not suitable for hallucination 

frameworks with models trained on single sequences (trRosetta[30], RoseTTAFold[31]). And 

lastly, though the framework is applicable to the design of any subset of residues in the Fv region, 

its main purpose is to generate libraries of CDRs, the hypervariable loop regions that bind the 

antigen. In this regard, the FvHallucinator is distinct from and complements existing hallucination 

approaches that either design full proteins that fold into a target structure or scaffolds that host 

fixed functional motifs. 

 

The FvHallucinator aims to achieve fast, high-throughput and combinatorial sampling of the CDR 

sequence space while maintaining the conformation of the original binder. To further select 

antigen-specific designs, we propose a pipeline to virtually screen the hallucinated sequences 

against a target antigen. This pipeline screens for sequences that retain binding to the antigen in 

the same mode as the original binder from a large and diverse structure-conditioned hallucinated 

library. We show that such targeted exploration of the sequence space enables in-silico 

improvements in binding energies and other desirable antibody-antigen interface metrics such as 

hydrogen bonding, shape complementarity and buried surface area at the interface. 

Results and Discussion 
 

Structure-conditioned subsequence generation 
 

A framework for Fv hallucination 
We aim to design sequences that fold into a desired Fv structure by leveraging a pretrained 

sequence-to-structure prediction DL model. We adapt the trDesign[27] approach where the 

problem of predicting sequence given structure has been reframed as the problem of maximizing 

the conditional probability of a sequence given structure. In the case of the Fv, we are primarily 

interested in designing a subset of the residues (CDRs, VH-VL interface), so we split the sequence 

S into fixed and designable positions, SF and SD. We then seek the design subsequence SD that 

maximizes the conditional probability of the sequence S given a target structure T and the fixed 

sequence SF: 

 

 max
𝑆𝐷

log 𝑃(𝑆|𝑇, 𝑆𝐹) =  max
𝑆𝐷

log 𝑃(𝑇|𝑆) + max
𝑆𝐷

 log 𝑃(𝑆). (1) 
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The  log 𝑃(𝑇|𝑆) is maximized by minimizing the categorical cross entropy loss of the DeepAb 

model (or geometric loss; 𝐿𝐺), for sequence S and structure T, with respect to the design 

subsequence SD. The log 𝑃(𝑆) term is constant for hallucination guided only by geometric losses 

or, to sample sequences biased toward a particular sequence or a motif, maximized by minimizing 

a sequence-based loss. Alternatively, we may alter 𝑃(𝑆) by initializing the design subsequence 

with an increased likelihood for a sequence (e.g., “Wildtype Seeding” for seeding initial sequence 

with the wildtype sequence) or by initializing from a subset of the amino acid alphabet (e.g., 

omitting sampling of a particular amino acid at design positions at the time of sequence 

initialization). For the full formulation, see Methods section. 

 

Figure 1 shows the workflow architecture. First, we randomly initialize subsequence SD from the 

amino acid alphabet. Second, we input the full sequence to the DeepAb model to predict inter-

residues distances and orientations (geometries), a proxy for structure. Third, we calculate the 

geometric loss (see methods) between the predicted structure representation and the target 

structure representation and, in some cases, additional non-geometric losses for restricting designs 

to relevant sequence spaces (detailed later). Fourth, to minimize the geometric loss, we calculate 

the gradient of the loss with respect to the design subsequence (SD) with the Stochastic Gradient 

Descent (SGD) optimizer and normalize the gradient[25], resulting in an updated subsequence 

matrix (number of design positions x 20) that represents the probability of each amino acid for 

each design position. Finally, we reduce this subsequence matrix to a sequence (one amino acid 

per design position) by choosing the amino acid with the maximum probability at each design 

position. This designed sequence is input back to the model by returning to step two. We repeat 

steps two to five until the loss is reduced to a small value to yield a designed sequence that folds 

into the target structure. Forty to sixty iterations are required to reach convergence for a single 

CDR design (SI Figure 1). A single sequence design requires under 3 mins on an NVIDIA A100 

GPU, and several designs can be generated in parallel. All design runs (50-1200 designs per task) 

reported in this work were accomplished in a few hours with little or no parallelization (1-5 GPUs). 

The framework (Figure 1) is fully automated, highly versatile, and customizable for different 

design objectives mostly implemented through different priors for the design sequence (P(S) in 

Equation 1).  

 

 
Figure 1. Hallucination framework (FvHallucinator) for generating antibody Fv libraries 

conditioned on structure. FvHallucinator is adapted from the trDesign[27] framework for the 
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specific purpose of antibody design. An ensemble of pretrained DeepAb[28] models is used to 

predict the structure of a designed sequence. The error/loss between predicted structure and target 

structure is minimized iteratively to arrive at a sequence that folds into the target structure as 

predicted by DeepAb. 

 

Structure-conditioned sequence design of CDRs and the VH-VL interface 
 

Hallucination recovers native-like sequences on benchmark set of 60 antibodies 
To test whether the FvHallucinator can recover native-like CDR sequences corresponding to the 

structures it was conditioned on, we measured the amino acid sequence recovery (AAR) for each 

CDR loop on a benchmark set of 60 antibodies first introduced in the RAbD study.[7] Fifty 

sequences were designed each for CDRs H1, H1, L1, L2 and L3, and 100 sequences for CDR H3 

(see Methods). We calculated AAR as the percentage of native residues recovered per designed 

CDR averaged over all 50 designs. 

 

We expect the AARs to be limited since CDRs are surface-exposed and evolve in the context of 

the antigen. Rotamer packing methods such as Rosetta report an AAR of less than 27% for surface 

residues.[32] Indeed, the probability of recovering the full wildtype sequence even when sampling 

directly from position specific scoring matrix of PyIgClassify cluster that corresponds to its target 

structure is vanishingly small (SI Figure 2). However, all CDR loops except H3 fold into a small 

number of “canonical structures” characterized by structural motifs conferred in part by a few key 

residues[33]. Therefore, we expect hallucinated sequences to recover the residues that are crucial 

for target structure realization. Moreover, if the algorithm is seeded to search in the vicinity of the 

native sequence, we expect to achieve higher AARs as the native residues will be retained with 

higher probability since the native sequence folds into the target structure. To this end, we also 

performed hallucination with “wildtype seeding” where the starting sequence of the design region 

is sampled using wildtype residue types with higher probability than random (see Methods). 

 

Figure 2A shows the sequence recovery on all six CDRs for the benchmark set conditioned on the 

native CDR loop conformation with (dark blue) and without (light blue) wildtype seeding. Without 

wildtype seeding, AAR is lower because the algorithm recovers only the more conserved residues 

(see SI Figure 3 for AAR for all, top 50% most conserved and top 30% most conserved residues). 

With wildtype seeding, the algorithm recovers over 50% of the wildtype residues. The AARs for 

all 6 CDRs with wildtype seeding is competitive with 50-70% AAR reported for RAbD (initialized 

with the wildtype sequence and amino acid sampling restricted to PyIgClassify cluster motif of the 

wildtype CDR when sampled without the antigen)[7]. 

 

To benchmark hallucination on a blind dataset, we also obtained sequence recovery on 20 

antibodies (SI Table 1) selected from the DeepAb test set[28]. The average sequence recoveries 

are comparable to those obtained for the RAbD dataset (SI Figure 4). 

 

Designed sequences’ distribution overlaps that of the target canonical cluster 
To test whether the hallucinated sequence profiles exhibit distributions similar to those of the 

known sequences that fold into the target conformation, we obtained sequence profiles from the 

PyIgClassify[8] database of CDR structure clusters. To measure the overlap between the 

hallucinated sequence profiles and the PyIgClassify sequence profiles, we calculated the average 
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Bhattacharyya coefficient (see Methods) over all positions on the CDR loop between the 

hallucinated sequence profiles and the PyIgClassify sequence profile of the target cluster and non-

target clusters (Figure 2B; SI Figure 5). For all CDRs, the average Bhattacharya coefficient is 

about 0.2 higher for the sequence profiles belonging to the target structure cluster than the non-

target clusters i.e., hallucinated sequence profiles have higher overlap with the known sequences 

that fold into the target cluster. This trend is observed for each target antibody (see SI Figure 6-10 

for BC for each target for all six loops). Although longer CDR H3 loops cannot always be 

categorized into well-resolved clusters due to higher sequence and structural diversity, in cases 

where there are multiple PyIgClassify clusters available for the target CDR H3, the hallucinated 

profiles have a higher overlap with the target cluster than the non-target clusters (SI Figures 6-10). 

 

CDR designs retain conserved sequence motifs and exhibit diversity 
As an example of the CDR sequence profiles generated from hallucination (with wildtype 

seeding), Figure 2C shows the sequences sampled for all six loops of the anti-neuraminidase 

influenza virus antibody[34] (PDB id: 1A14; RAbD dataset) as sequence logos. (SI Figure 11 for 

effect of wildtype seeding on the hallucinated sequence profile and SI Figure 12 for sequence logos 

without seeding). We juxtapose each sequence logo with the sequence logo for the PyIgClassify 

cluster corresponding to the target CDR loop structure. To compare whether hallucination 

correctly captures the conservation and diversity observed in native sequences given a target 

conformation, we compared the perplexity at each position on the CDR of the hallucinated profiles 

to those of the PyIgClassify target cluster (Figure 2C). Several low (H26, H29, H32, H52A, H101, 

L25, L26, L29, L54, L90, L95) and high (H31, H100, L30, L34, L53, L55, L91, L93) perplexity 

positions in canonical clusters are recapitulated in hallucinated profiles (also see SI Figure 12). 

However, at certain positions, hallucination perplexities differ from PyIgClassify. Hallucination 

suggests that positions H28, L27, and L28 can be varied more than the PyIgClassify profiles 

suggest, and conversely hallucination does not capture the diversity of observed profiles at 

positions H52, H53, H95, H96, and L96. In the case of the H3 residues (H95, H97, H97), 

hallucination suggests that the wildtype residues are more important to the H3 conformation than 

the PyIgClassify profile suggests. Also, some discrepancies between hallucinated and 

PyIgClassify profiles are expected as both DeepAb and PyIgClassify profiles are only estimates 

of a large and incompletely mapped sequence-structure space. 

 

As a control, we hallucinated designs with wildtype seeding but with scrambled geometric losses. 

These experiments showed that incorrect geometric losses generate random sequence sampling (SI 

Fig. 11). In a second control we removed the wildtype seeding. These experiments showed 

increased perplexities (that is, greater variation in designs) for most but not all positions (SI Fig. 

12). Several key conformation-determining positions retained critical motif residues (e.g., much 

of H1), and the H3 perplexities were similar to those of PyIgClassify. 

 

Hallucinated VH-VL interface designs accumulate mutations enriched in human repertoires and 
therapeutic antibodies 
Improvements in both stability and affinity can be achieved by optimizing the VH-VL interface[29]. 

Hence, we applied the FvHallucinator framework to design non-CDR VH-VL interface residues. 

Another important consideration in evaluating non-CDR designs is the likeness to human 

antibodies. Since humanization of mouse antibodies remains the primary route to therapeutic 
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antibody development, a design method that improves the humanness of antibodies while retaining 

original contacts and structure is desired.  
 

To evaluate the human-likeness of the hallucinated designs, we turned to the work of Petersen et 

al.[35], which investigated the amino acid preference for framework mutations in human 

repertoires and FDA approved therapeutic antibodies. Petersen et al.[35] calculated the frequency 

of amino acids in human repertoires at framework positions for 25 VH genes that represent the 

precursors of several FDA approved antibodies and many of the most common VH genes. They 

converted these frequencies into “FR scores”, a measure of amino acid enrichment over the 

germline residue at each framework position. They found that mutations with higher FR scores 

result in lower immunogenicity and are highly enriched in FDA approved antibodies.[35] Hence, 

we calculated the FR scores to evaluate the humanness of hallucination-designed mutations at the 

VH-VL interface.  

 

To evaluate the potential of hallucination in improving the humanness of the framework residues 

at the VH-VL interface, we collated a set of nine humanized antibodies and designed their VH-VL 

interfaces. A significant percentage of designs exhibited FR scores greater than the wildtype (Table 

1, SI Figure 13). Figure 2D shows the sequence profiles of the VH-VL interface designs for the 

antibody hu225, a humanized version of the mouse-derived therapeutic antibody Cetuximab[36]. 

Figure 2E shows the distribution of net FR scores per design (summed over 12 design positions) 

for 40 designs and the net FR score for the wildtype for comparison. These data show that 

hallucinated sequences have mutations that are preferentially accumulated in human repertoires 

during antibody maturation, suggesting that hallucinated antibodies are more human-like and less 

immunogenic than the starting antibody [35]. 
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Figure 2. Hallucinated, structure-conditioned sequence libraries for CDR loops and the VH-

VL interface. (A) Sequence recovery on the 60 antibody RAbD benchmark set [7] from 

hallucination with and without wildtype seeding. RAbD values as reported in [7] for sequence 

recovery without antigen. (RAbD sequence recovery is reported separately for contact and non-

contact residues. To obtain a single value per-CDR, we obtained the weighted average of contact 

and non-contact sequence recovery, weighted by the number of contact and non-contact residues 

for each CDR over the full dataset. Also see SI Figure 3 for AAR for all, Top 50% most conserved 

and Top 30% most conserved residues.) (B) Average Bhattacharya coefficient between 
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hallucination sequence profiles and PyIgClassify[8] sequence profiles of target and non-target 

clusters (with and without wildtype seeding). Averages are over all positions on the CDR. (C) 

Comparison of distribution perplexity of hallucinated sequence profiles for CDRs with 

PyIgClassify profile of the corresponding CDR cluster for anti-neuraminidase influenza virus 

antibody[34] (PDB ID: 1A14). Wildtype CDR sequence is colored in grey. Profiles were generated 

with wildtype seeding (SI Figure 12 shows the same for hallucinated profiles from runs without 

wildtype seeding.) (D) Hallucinated sequence profile for the VH-VL interface for humanized 

antibody hu225 [37] (no seeding). (E) Distribution of FR scores for VH-VL interface designs shown 

in (D). A higher FR score signifies amino acid residues with higher enrichment in human 

repertoires. 

 

Table 1. Percentage of VH-VL hallucinated designs with improved FR scores (over wildtype) 

for a selected set of 9 humanized therapeutic antibodies. A total of 60 designs were obtained 

for each case with no seeding. See SI Figure 13 for distribution of FR scores per target. 

PDB ID mAb Name 
% designs with improved 

total FR Scores 

1CE1[38] Alemtuzumab 21 

6BFT[39] Bevacizumab 74 

6NOV[40] Ixekizumab 24 

4LLU[41] Pertuzumab 85 

5WUV[42] Certolizumab 100 

5B8C[43] Pembrolizumab 34 

6TCS[44] Omalizumab 36 

5XXY[45] Atezolizumab 93 

1N8Z[37] Trastuzumab 43 

 

 

 

Sequence losses to restrict hallucination to relevant sequence spaces 
 

Many CDR sequences can fold into the same conformation. So, when sampling with the geometric 

loss, the solvent exposed residues of a CDR will sample a large and unrestricted sequence space.  

Unrestricted hallucination, guided solely by DeepAb’s geometric loss, is apt when the goal is to 

sample a large and diverse sequence space only restrained by loop conformation. However, 

sometimes we seek designs close to a known sequence, for example to retain core antigen-binding 

residues (Figure 3A). To address such design objectives, we developed two restricted modes of 

hallucination. In sequence-restricted hallucination, we apply a sequence loss to sample amino acid 

residues close to a given sequence. In motif-restricted hallucination, we apply a motif loss to 

sample amino acid residues in specified proportions at specified positions (e.g., 50% Y and 50% 

S at position 100A on the heavy chain). These sequence-based losses are added to the geometric 

loss during backpropagation to update the sequence at the design positions (Figure 3B, see 

Methods). 

 

Binding-motif restricted designs are consistent with experimentally screened binder sequences 
To compare hallucinated designs to experimentally generated CDR libraries, we chose a dataset 

of 11,300 unique CDR H3 sequences (Trastuzumab Binder Set; TBS). To obtain this dataset, 

Mason et al.[46] first constructed a single-site deep mutational scanning (DMS) library for the 
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CDR H3 of Trastuzumab (trade name Herceptin) displayed on yeast and screened them in 

multiple rounds of expression and binding to HER2. This resulting library was highly restricted 

at 4 positions, namely, H95, H99, H100 and H100A (Chothia numbered) to F/W/Y, G/S/A, 

F/L/M and Y/F, respectively, while the remaining positions varied. Mason et al. then combined 

this profile to generate a combinatorial library and screened it in multiple rounds for expression 

and binding to HER2. Next generation sequencing of the binding population from the final round 

yielded 11,300 unique CDR H3 binders (Figure 3C) that were highly diverse at 6 out of 10 

positions, suggesting that the CDR H3 may retain binding to the antigen with little to no overlap 

with the wildtype sequence.[46] 

 

To compare hallucinated designs to the TBS, we generated designs in three separate modes –

unrestricted hallucination, sequence-restricted hallucination (with wildtype as the target sequence) 

and with two different motif-restricted hallucinations. Figure 3D shows the sequence profiles of 

the designs generated from each mode. In Figure 3E, for each run, we show the joint distribution 

of the minimum Levenshtein distance (LD) of the designed sequences to the TBS sequences and 

the LD of the same to the wildtype sequence.  

 

With unrestricted hallucination, the largest fraction of designs (Figure 3E, black box) exhibit only 

10% identity (LD 9) with the wildtype yet recover 40% sequence positions of one or more binders 

in the TBS. Additionally, a small fraction of sequences exhibit about 50% sequence identity (LD 

5) with the wildtype sequence and 60% identity (LD 4) with one or more binders. 

 

Sequence restricted hallucination samples a sequence space that largely retains the wildtype 

sequence. Most designs are equidistant from the wildtype sequence and one or more binders 

(Figure 3E). 

 

Since the experimental library was generated with each position restricted to the relative fractions 

of amino acid residues in the DMS profile, motif-restricted hallucination is the most comparable 

mode of hallucination. For the motif-restricted hallucination, where we restricted only two (H95 

and H100A to F/W/Y and Y/F respectively) positions that form the core-binding motif between 

CDR H3 and the antigen, about 50% of hallucinated sequences show over 60% identity with one 

or more binders (Figure 3E, red line). A small fraction of hallucinated sequences exhibits 80% 

sequence identity (Figure 3E) with a binder. As expected, when we restricted all four positions 

that were restricted in the DMS library (H95, H99, H100 and H100A to F/W/Y, G/S/A, F/L/M and 

Y/F, respectively), the overlap with TBS increases (Figure 3E, rightmost panel). However, the 

maximum sequence identity obtained with four restrictions is 90% (Figure 3E, red box), 

considerably higher than the 40% sequence identity conferred just from restricting the four 

positions. Thus, restricting hallucination to relevant sequence spaces yields virtual libraries that 

have significant overlap with experimental libraries and is a useful strategy to generate structure-

conditioned libraries tailored towards a desired design objective. 
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Figure 3. Strategies for guiding hallucination to relevant sequence spaces. (A) Restricted 

hallucination allows restricting hallucination to relevant sequence spaces for specific design 

objectives such as sampling close to the wildtype sequence or retaining motifs for binding. (B) 

Guiding hallucination towards different sequence spaces via geometric losses (LG, unrestricted 

hallucination), geometric and motif loss (LM, motif restricted hallucination), and geometric and 

sequence loss (LS, sequence restricted hallucination). (C) Trastuzumab binders dataset (TBS) from 

Mason et al.[46] screening of single-site and combinatorial libraries for expression and binding. 

(D) Hallucinated sequences shown as sequence logos for 3 modes of hallucination for the CDR 

H3 loop of Trastuzumab. (E) Comparison of LDs of hallucinated sequences with different 

strategies with experimentally identified binders from the TBS dataset. 
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A pipeline for screening antigen-specific sequences from hallucinated libraries 
To enrich the hallucinated library in antigen-specific binders and to select for desired properties 

such as hydrogen bonding and high shape complementarity at the interface, the antigen-antibody 

structure can help. We propose a pipeline (Figure 4A) that first hallucinates a large library of 

structure-conditioned antibody sequences with or without additional restrictions. Next, we forward 

fold the designed sequences with DeepAb to validate that the sequences fold into the target 

structure, resulting in a structure-conditioned, antigen-agnostic library. Then, we virtually screen 

the library for antigen binding by refining a model antibody-antigen complex using Rosetta (based 

on the wildtype crystal structure) and measuring the free energy of binding to the antigen with 

Rosetta’s InterfaceAnalyzer[47,48]. Finally, we obtain the screened library by selecting the subset 

of designs (screened library) that satisfies both folding and binding thresholds. We characterize 

the screened library for various interface metrics to identify top designs for experimental 

characterization. 

 

We applied the full pipeline to generate a library of CDR H3s (positions 95 - 101) for the 

Trastuzumab antibody enriched in HER2 binders. We applied the pipeline to hallucinated libraries 

obtained from different hallucination modes described in the previous section and in Figures 3D 

and 3E.  

 

Over 70% of the designs retain target conformation when forward folded with DeepAb 
To screen the hallucinated designs for folding, we forward folded the designed sequences with 

DeepAb and measured the RMSD of the CDR H3 loop with respect to the Trastuzumab antibody 

structure used to condition hallucination. For the motif-restricted hallucination with positions 95 

and 100A restricted, 433 of 600 hallucinated sequences retained conformations with CDR H3 

RMSD ≤ 2.0 Å (Figure 4B). For almost all modes of hallucination explored in Figures 3D and 

E, over 70% of the hallucinated designs retained target conformation (CDR H3 RMSD ≤ 2.0 Å; 

SI Figure 14). We also measured the per-residue RMSD for the designed residues and found that 

the solvent exposed residues show the largest deviations, whereas the stem residues show little 

deviation from the target conformation (SI Figure 15). This is also apparent from the superposition 

of forward folded designs (pale green) with the wildtype antibody (black) as shown in Figure 4B. 

Hence, hallucination enables the exploration of a diverse sequence space distinct from the wildtype 

sequence, while also retaining a conformation close to the wildtype structure.  

 

Virtual screening recapitulates restrictions at positions 99, 100A 
To screen the hallucinated, structure-conditioned library for antigen binding, we measured the 

designs’ free energy of binding (ΔGbinding) with Rosetta’s InterfaceAnalyzer[48]. In Figure 4C, we 

show the distribution of ΔGbinding for hallucinations with positions 95 and 100A motif-restricted 

(SI Figure 16 shows the distributions for sequences from other modes of hallucination). Only a 

small fraction of hallucinated designs exhibit a ΔGbinding comparable to or better than the wildtype.  

 

To investigate why only a small fraction of hallucinated designs pass virtual screening, we 

analyzed the sequences of designs with favorable (relative to the wildtype) and unfavorable 

binding energies. Compared to the hallucinated sequence profiles (Figure 3D), the screened 

libraries are more restricted especially at positions 99 and 100A (Figure 4D). For the unrestricted 

mode of hallucination, the only mode where position 100A was not restricted, we also found that 

about 50% of the sequences screened for binding sampled a Tyr at 100A (Figure 4D), 
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recapitulating experimentally observed preference for Tyr at this position. Furthermore, for 

designs from all modes of hallucination where position 99 wasn’t explicitly restricted (Figure 4D 

and SI Figure 17), sequences with favorable binding energies preferred Gly (and other smaller 

residues to some extent) at this position—a preference which also aligns with experimentally 

identified binders (Figure 3C). 

 

This narrowing of preference at positions 99 and 100A is antigen-driven as the hallucinated library 

(antigen-agnostic) sampled a broad range of amino acid residues at these positions (Figure 3D) 

whereas the antigen-screened library reduced these positions to a small set of amino acid residues 

(Figure 4D).  

 

To understand the structural basis of this preference, we visualized the structures of favorable 

designs (almost always with Gly) and unfavorable designs (without Gly) at position 99 (Figure 

4C). The substitution of Gly with other residues (especially larger residues such as Ile) resulted in 

steric hindrance pushing the antigen away from the paratope leading to significant loss in binding 

energy. Here, the Rosetta binding energies proved to be useful in deciphering the structural context 

for the preference of Gly at position 99, showing that it can be advantageous to combine physics-

based approaches such as Rosetta with DL frameworks. 

 

Pipeline reveals a less restricted sequence space than experiments, amenable to further 
improvement in affinity 
In Figure 4D, we show the sequence logos of the screened libraries for the unrestricted and motif 

restricted (positions 95 and 100A restricted) modes of hallucination. The screened sequences show 

amino acid restrictions primarily at positions 99 and 100A, suggesting that the CDR H3 may be 

able to retain binding to HER2 with fewer restrictions (two) than those inferred from single-site 

DMS experiments (four). One possible explanation is that while DMS explores a single-site 

substitution space, scanning one position at a time and retaining the wildtype sequence at all other 

positions, hallucination explores a combinatorial space designing all positions simultaneously 

constrained only by geometry (and or sequence/motif). Hence, DMS may limit the sequence space 

too close to the starting sequence and miss out on a potentially larger sequence space available to 

the CDR H3 that may be amenable to binding HER2. 

 

To test this hypothesis computationally, we hallucinated designs with restrictions at positions 99 

and 100A only. Next, we calculated the binding free energy for this less-restricted library (Figure 

4E, orange bars). Remarkably, this scheme of hallucination yielded a library that was highly 

enriched in binders. Over 50% of the designs exhibited binding energies comparable or better than 

the wildtype (dashed line). Moreover, 27% designs exhibit lower binding free energies than the 

wildtype (Δ∆𝐺binding ≤  −2.5 REU). On the other hand, for DMS based hallucinated designs 

(restricted at 95, 99, 100 and 100A), only 11% designs exhibit lower binding free energies while 

74% exhibit binding energies identical to the wildtype (|Δ∆𝐺binding| ≤  2.5 REU; Figure 4E; grey 

bars peak at the wildtype binding energy). These calculated binding energies qualitatively align 

with the experimental affinity measurements from Mason et al., as most of the tested designs 

exhibited affinities comparable to or lower than the wildtype.[46] Indeed, only one of the thirty 

experimentally characterized binders exhibited affinity with slight improvement over the wildtype, 

suggesting that a DMS restricted library may limit the potential for improving affinity over the 

starting/wildtype sequence. 
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In summary, in silico tests suggest that hallucination may be applied to obtain less restricted 

sequences of CDR H3s (and other CDRs) that can bind HER2 (and other antigens) with improved 

affinities. 

 

Top designs exhibit favorable interface metrics 
We further characterized the antibody-antigen interfaces of the screened libraries. Specifically, we 

calculated the shape complementarity, the number of hydrogen bonds and the total, and polar 

buried surface area at the antibody-antigen interface. In Figure 4F, we show the distribution of 

these metrics as a function of calculated free energy of binding. We find many designs improve 

interface metrics (wildtype shown as dashed lines) with a greater number of hydrogen bonds, larger 

buried surface area at the interface and higher shape complementarity.   
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Figure 4. Application of hallucination pipeline to generate large number of unique designs 

with improved binding as characterized by various interface metrics. (A) A pipeline for 

screening the hallucinated library for folding into the target structure and binding the target 

epitope. The screened library is characterized in silico for interfacial metrics to select designs for 

experimental testing. (B) Comparison of structure of forward folded hallucinated sequences with 

wildtype structure: (Left) Randomly selected forward folded structures of hallucinated designs 
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(green) with DeepAb superposed with wildtype structure (black). (Right) The distribution of the 

H3 RMSD of the designs with respect to the wildtype. Dashed line at RMSD = 2 Å marks the 

threshold for selecting designs that fold into the wildtype structure.  RMSDs were calculated on all 

heavy atom backbone residues (N, CA, C) excluding (O) consistent with RMSD reported in 

DeepAb[28]. Distribution is shown for the motif-restricted hallucination I (95, 100A restricted) 

from Figures 3D and 3E. (C) Distribution of screened binding free energies against HER2 for the 

designs. The dashed line is the binding free energy of the wildtype Trastuzumab antibody. 

Popouts: (Left) Representative design with G at position 99 that exhibits binding energies better 

than or comparable to the wildtype. (Right) Representative design with an I at position 99 that 

exhibits binding energies significantly worse than the wildtype. (D) Sequence logos of screened 

libraries for the unrestricted hallucination and motif-restricted hallucination I (95 and 100A 

restricted). The unrestricted designs show strong preference for residues G and Y at positions 99 

and 100A respectively. The motif-restricted (95 and 100A) mode additionally confirms the 

preference for Gly at position 99. Both restrictions (at positions 99 and 100A) are also observed in 

experiments. (E) Comparison of distributions of binding free energies for designs from two motif-

restricted hallucinations: (gray) Motif-restricted hallucination with positions 95, 99, 100, 100A 

restricted to experimentally observed preferences, and (orange) motif-restricted hallucination with 

positions 99 and 100A restricted to hallucination-pipeline derived preferences from (D). Popout: 

Sequence logo for the screened library for designs from the latter hallucination. (F) Interface 

metrics for screened designs from motif-restricted hallucination (99 and 100A restricted). A 

significant fraction of designs exhibit metrics better than the wildtype (boxed quadrant); top 25 

designs (selected by binding free energy) highlighted in orange. 

Conclusion 
 

Antibody affinity maturation is a laborious, expensive, time-consuming, and routine task in the 

therapeutic antibody development pipeline. Affinity maturation is primarily centered on 

generating libraries of CDR regions followed by screening for expression and binding. Even a 

relatively short CDR H3 loop of 10 residues has a combinatorial design space of 2010. Such a large 

sequence space is difficult to sample or screen with most experimental or computational methods. 

As an alternative, we present a DL framework, FvHallucinator, to generate sequence libraries 

conditioned on the structure and partial sequence of a known antibody that can be further screened 

for stability, affinity, and other desired properties. The FvHallucinator provides a computational 

approach to sample the full combinatorial space available to a CDR loop only restricted by a target 

geometry or conformation.  

 

With FvHallucinator, we have extended the existing hallucination-based framework for protein 

design to the specific problem of the design of the antibody variable domain. While the previous 

hallucination frameworks have been aimed at designing protein scaffolds, our framework tackles 

the challenging task of generating highly variable subsequences for the CDR regions of antibodies 

that participate in antigen recognition. 

 

On a benchmark set of 60 antibodies, for all six CDRs, the FvHallucinator designs native-like CDR 

sequences with high sequence recovery (≥ 50%) when seeded with the wildtype sequence. The 

FvHallucinator designs the heavy and light chain interface with mutations enriched in human 

repertoires.  
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To guide hallucination to relevant sequence spaces, we developed sequence-based losses. We 

demonstrated the efficacy of such restricted modes in generating sequence libraries on a large 

dataset of HER2 binders. In a restricted hallucination with only two positions restricted, over 50% 

of the designs exhibited ≥ 60% sequence identity with the binders, while a small fraction of designs 

exhibited 80% sequence identity with experimentally identified binders.  

 

We further developed a pipeline that combines sequence libraries with physics-based models for 

screening for antigen binders. We tested our pipeline on the HER2 dataset and found that the 

pipeline recapitulates key residues for HER2 binding. We also show that the pipeline enables the 

in-silico generation of diverse screened libraries that can access significant improvements in 

affinity over the starting antibody.  

 

Compared to language-based models for CDR sequence design such as IgLM[22] and the CDR 

manifold sampler[49], the FvHallucinator pipeline enables targeted and controlled antibody 

subsequence design. Such a strategy could possibly lead to better and more predictable outcomes 

in the lab.  

 

While we present comparison of hallucinated sequences with over 480 CDR loops (80 target 

antibodies; six CDR loops per target), PyIgClassify canonical clusters that represent distributions 

over all known CDR structures and an experimental CDR H3 library for the Trastuzumab antibody, 

further experimental verification is needed to prove that these results are useful. With the fast pace 

of deep-learning research in protein design, these computational findings reveal the promise of 

hallucination towards the fast and cheap in-silico generation of diverse, structure-conditioned 

antibody libraries enriched in binders. The FvHallucinator framework is versatile and easily 

extendable to designing libraries conditioned on grafted loop conformations. Furthermore, the 

pipeline can be modified to screen for other engineering goals such as stability and developability.  

  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 6, 2022. ; https://doi.org/10.1101/2022.06.06.494991doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.06.494991
http://creativecommons.org/licenses/by-nc/4.0/


 18 

Methods 
 

Design Approach 
Like Anishchenko et al.[12] (Hallucination) and Norn et al.[27] (trDesign), we aim to design 

sequences that fold into a desired structure using a pre-trained sequence-to-structure deep learning 

model. The problem of predicting sequence given structure can be stated as the problem of 

maximizing the probability of a sequence (S) given target structure (T). Using Bayes theorem:  

 
𝑃(𝑆 | 𝑇)  =  𝑃(𝑇 | 𝑆)𝑃(𝑆) / 𝑃(𝑇)  

We split the sequence S into subsets of positions SD to be designed and SF to be fixed. To maximize 

𝑃(𝑆 | 𝑇), we maximize the product  𝑃(𝑇| 𝑆)𝑃(𝑆) with respect to SD with T and SF fixed: 

 max
𝑆𝐷

𝑃(𝑆 | 𝑇) =  max
𝑆𝐷

𝑃(𝑇 | 𝑆)𝑃(𝑆)  

Since logarithm is a monotonically increasing function, we can apply it to equation 1b, and 

maximize the logarithm of  𝑃(𝑆 | 𝑇) to obtain Equation 1. 

 max
𝑆𝐷

log 𝑃(𝑆 | 𝑇) =  max
𝑆𝐷

( log 𝑃(𝑇 | 𝑆)) + max
𝑆𝐷

(log 𝑃(𝑆)) (1) 

 

Geometric Losses 
In Equation 1, we estimate 𝑃(𝑇 | 𝑆) with an ensemble of pre-trained DeepAb models[28] that 

predict the probability of a target structure geometry (approximated by CA, CB, N, O distances and 

orientations).  

 

During a hallucination run, to maximize log 𝑃(𝑇 | 𝑆), we minimize the categorical cross entropy 

loss (LG) of the pre-trained DeepAb model with respect to the design subsequence, SD. We restrict 

loss calculation to pairs of residues with CA atoms within 10 Å of each other[25]. The cutoff value 

is chosen based on that used in the DeepAb study for variant prediction.[28] Thus, the objective 

function for minimizing geometric losses with respect to the design subsequence, SD, can be 

written as, 

 

min
𝑆𝐷

( 𝐿𝐺) = min
𝑆𝐷

[− 
1

2𝐶
∑ ∑ log 𝑝𝑋=𝑇(𝑆)

𝑘=𝐶

𝑘=1𝑋={𝑑𝐶𝐴,𝑑𝐶𝐵,𝑑𝑁−𝑂,𝜃,𝜙,𝜔}

] 

 (1) 

 

where, 𝑝𝑋=𝑇(𝑆) is DeepAb’s predicted probability of the target geometric label 𝑋 ∈
 {𝑑𝐶𝐴, 𝑑𝐶𝐵, 𝑑𝑁−𝑂 , 𝜃, 𝜙, 𝜔} for sequence S and C is the number of contacts under 10 Å: 

𝐶 =  ∑ ∑ 𝛿𝑖𝑗(𝑑𝑖𝑗
𝐶𝐴  ≤  10 Å )

𝑖 ∈ 𝑆𝐷𝑗 ∈𝑆
 

 

Sequence-based losses 
To maximize log(𝑃(𝑆)) in Equation 1, we define different priors for the sequence (𝑃(𝑆)) that are 

then reframed as sequence losses and minimized with respect to the design subsequence, SD. 

 

No sequence loss 
In unrestricted hallucination, we simply set 𝑃(𝑆) = 1 in Equation 1 resulting in a sequence loss of 

zero. 
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Sequence loss 
In sequence-restricted hallucination, we maximize P(S) such that categorical cross entropy loss of 

the designed amino acid (𝑧𝑖) at design position i is minimized with respect to the amino acid 

residue in the wildtype sequence at design position i, 𝑧𝑖
0. 

𝐿𝑆 =  ∑ log (𝑝𝑧𝑖=𝑧𝑖
0)

𝑖 ∈𝒟
, 

where 𝒟 is the set of positions to be designed. 

 

Motif or PSSM loss 
In motif-restricted hallucination, we maximize the term P(S) such that the KL divergence (𝐷𝐾𝐿) 

between the amino acid distribution of the designed sequence (SD) at the subset of motif positions 

M and the target distribution is minimized: 

𝐿𝑀 =  𝐷𝐾𝐿  =  ∑ ∑ 𝑞𝑖,𝐴𝐴
0 log (𝑞𝑖,𝐴𝐴

0 /𝑝𝑖,𝐴𝐴)

𝐴𝐴𝑖 ∈ℳ

, 

where 𝑞𝑖,𝐴𝐴
0  is the target/motif amino acid distribution at position i, 𝑝𝑖,𝐴𝐴 is hallucinated amino acid 

distribution at position i, and ℳ is subset of design positions at which the motif is specified. 

 

Geometric and sequence losses may be weighted to match their magnitudes with weights 𝑤𝐺 , 𝑤𝑆 

and 𝑤𝑀 :  

𝐿 = 𝑤𝐺 𝐿𝐺 + 𝑤𝑆𝐿𝑆 + 𝑤𝑀𝐿𝑀 . 

All weights are set to one by default. 

Design sequence initialization and wildtype seeding 
Each element (𝑎𝑖,𝐴𝐴) of the design subsequence matrix (number of design positions x 20 amino 

acids) is initialized with a random number from a uniform probability distribution. When wildtype 

seeding is enabled, at each position i in the design subsequence matrix, the probability of the amino 

acid at the same position in the wildtype sequence, 𝐴𝐴𝑖
𝑤𝑡, is skewed as follows: 

𝑎𝑖,𝐴𝐴 = 𝑟 + 0.5𝛿(𝐴𝐴 = 𝐴𝐴𝑖
𝑤𝑡)  

Finally, the amino acid (𝐴𝐴𝑖
0) initialized at design position i, is the amino acid with the maximum 

probability at design position i (argmax) in the normalized (softmax) design subsequence matrix, 

i.e., 

𝐴𝐴𝑖
0 = argmax𝐴𝐴 (softmax𝐴𝐴(𝑎𝑖,𝐴𝐴)). 

 

Sequence Recovery on RAbD dataset 
For sequence recovery benchmark on RAbD dataset[7], we generated 50 designs each for CDRs 

H1, H2, L1, L2 and L3 and 100 designs for CDR H3. Each hallucination was run with default 

settings (geometric loss only). Cysteine is disallowed at all positions by sampling from a reduced 

amino acid alphabet (see next section). 
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Sampling from reduced amino acid alphabet 
To sample from a reduced set of amino acids (e.g., to design out cysteine or proline), we initialize 

from a reduced alphabet and set the gradient of the loss with respect sequence equal to zero for the 

unwanted amino acid residues at all design positions. 

 

Comparison between designed sequences and PyIgClassify clusters 
We compared the distribution of designed sequences for CDR regions to the sequence profiles of 

PyIgClassify[8] clusters by calculating the Bhattacharya coefficient (BC) and the Bhattacharya 

distance (BD) at each design position. BC is a measure of the overlap between two statistical 

samples and the BD is a symmetric measure of the distance between two distributions.  

 

We converted both the designed sequences and the relevant PyIgClassify cluster into PSSMs, p 

and q respectively. Only non-starred (usually clusters with significant number of known structures) 

PyIgClassify clusters were analysed. For each position i, we calculated the BC as 

∑ √𝑝𝑖
𝐴𝐴𝑞𝑖

𝐴𝐴 𝐴𝐴 over all amino acids and BD as −log (∑ √𝑝𝑖
𝐴𝐴𝑞𝑖

𝐴𝐴 𝐴𝐴 ). To calculate the average 

BC (or BD) for a CDR sequence, we averaged the BC (or BD) over all positions i. To avoid infinite 

values for BD, we replaced all zero-valued arguments in the calculation of BD with a small number 

(10-6). 

 

For CDR H3 loops of lengths 17, 19 and higher, there is only one non-starred PyIgClassify cluster, 

hence, for CDR H3 targets with these lengths, no data is reported in Figure 2B and SI Figures 5-

10 for the non-target clusters. For all other CDR H3 targets, there is at least one, non-starred 

canonical cluster available in the PyIgClassify database. 

 

Calculation of perplexity 
The perplexity of a distribution 𝑝(𝑥) such as each residue position of a PyIgClassify cluster 

sequence profile or a hallucinated sequence profile was calculated as: 𝑃𝑃(𝑝(𝑥)) =

 2− ∑ 𝑝(𝑥) log2 𝑝(𝑥)𝐴𝐴 . 

 

Hallucination of VH-VL interface 
For data reported in Table 1, we generated 60 hallucinated sequences per antibody without 

wildtype seeding. Germline gene ids were obtained with ANARCI.[50] Cysteine is disallowed at 

all positions by sampling from a reduced amino acid alphabet. 

 

Hallucination for CDR H3 of Trastuzumab  
Each hallucination was run with default settings with additional sequence-based losses. Ten 

positions on CDR H3 (H95 – H101; Chothia numbered) were designed (to match experiments[46]) 

in each case. Cysteine is disallowed at all positions by sampling from a reduced amino acid 

alphabet. For motif-restricted hallucination, the weight for the motif-loss (𝑤𝑀) was set to 100. For 

sequence-restricted hallucination, the weight for the sequence loss (𝑤𝑆) was set to 25. For each 

hallucination run, we generated between 600 and 1,200 designs. More specifically, for data 

reported in Figures 3D and 3D, we generated 600 sequences for unrestricted, sequence restricted, 

and motif restricted (II) hallucination and 1200 sequences for the motif-restricted hallucination (I). 
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Folding sequences with DeepAb 
We follow Ruffolo et al.[28] to fold designed sequences with DeepAb. 

 

Calculation of free energy of binding and interface metrics with Rosetta 
The free energy of binding was calculated using the InterfaceAnalyzer[48] application in 

PyRosetta[51]. We assumed that the designed antibody retains the wildtype binding mode i.e., the 

epitope and paratope geometries are similar to the wildtype complex. That is, we simply threaded 

the designed sequences on the crystal structure of the complex and packed the side chains at the 

antibody-antigen interface with FastRelax. For each designed sequence, we generated 5 decoys 

and selected the decoy with the lowest free energy of binding (reported as dG_separated by 

InterfaceAnalyzer). The number of decoys (tested 2-25) did not significantly change the lowest 

free energy of binding. 

Availability 
The full pipeline will be made available on Github upon the acceptance of the paper. 

Hallucinated sequences for all benchmark sets reported in the work will be deposited on Zenodo. 
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