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ABSTRACT

The human eye possesses a natural asymmetry of its optical components and an inhomogeneous
distribution of photoreceptors causing optical aberrations and providing high acuity only at a 2-degree
visual angle. Although these features greatly impact the visual system functions, they have not been
supported by the geometric formulation of the fundamental binocular concepts. The author recently
constructed a geometric theory of the binocular system with asymmetric eyes (AEs) integrated with
the eyes’ movement to address these problems. This theory suggests that a symmetric framework can
fully represent the asymmetric properties of this binocular system with the AEs. Pursuing this idea
leads to the conformal eye model furnished by the Riemann sphere. The conformal geometry of the
Riemann sphere establishes efficient image representation in terms of the projective Fourier transform
(PFT)—the Fourier transform on the group of image projective transformations representing images
covariantly to these transformations. The PFT is fast computable by an FFT algorithm in log-polar
coordinates known to approximate the retina-cortical mapping of the human brain’s visual pathways.
The retinotopy modeling here with PFT is compared to Schwartz’s modeling with the exponential
chirp transform showing clear advantages of PFT in both physiological conformity and numerical
efficacy. Finally, the conformal eye model is extended to the AE, which can be implemented into
the binocular system with AEs making PFT available for image processing. The PFT combined
with the conformal eye model allows binocular extensions of the previous monocular algorithms for
modeling visual stability during the saccade and smooth pursuit eye movements needed to offset the
eye’s acuity limitation.

Keywords Asymmetric eye · Riemann sphere · Conformal geometry · Conformal eye · Fourier analysis on groups ·
Projective Fourier transform · Retinotopy

1 Introduction

The human eye is an optical system comprising the cornea, the crystalline lens, and the nonuniform light-sensitive
retina with a high acuity fovea limited to a two-degree visual angle. The human eye has an imperfect optical design: the
fovea’s temporalward displacement from the posterior pole produces the eyeball’s global asymmetry, and the lens is
tilted relative to the cornea. The fovea’s displacement and the asphericity of corneal surfaces are the main sources of
optical aberrations. The lens’ tilt and distribution of the gradient refractive index, on the other hand, are part of the
eye’s aplanatic design that produces nearly aberration-free perception near the visual axis [3, 34]. However, the two
eyes working in unison in the binocular system improve visual acuity and assist visually guided tasks with precise eye
movements [16, 47].

Because our two eyes are separated laterally in the head, they receive two-dimensional disparate projections of the world.
Despite this disparity, we usually perceive one world with the impression of stereoscopic depth. The basic concepts
underlying binocular vision and stereopsis are retinal correspondence and horopter. For a given binocular fixation,
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the horopter is the locus of points in space such that each point on the horopter projects to a pair of corresponding
retinal elements, one in each eye. Each pair of corresponding elements is distinguished by the quality of seeing a small
object that projects onto them in a specific but subjective direction. We say that the corresponding elements have zero
disparity.

Normal correspondence occurs when the fovea of one eye corresponds to the fovea of the other eye; their single visual
direction is called the principal visual direction, or the Cyclopean direction. The visual directions of all other pairs of
stimulated corresponding elements are perceived relative to this principal direction, the hallmark of a single binocular
vision. Points far from the horopter are projected on noncorresponding elements such that they have non-zero disparity
and are generally seen as double.

However, each point in the so-called Panum’s fusional region around the horopter is seen as single. Then, the brain uses
the extracted disparity to create our sense of depth relative to the horopter. Further, the disparity between two spatial
points in the Panum’s area provides us with stereopsis–the ability to perceive form. Even objects far from the horopter
curve that we see double provide the sense of depth [23], which gives us the spatial order of objects and, hence, the
phenomenal space geometry.

The author developed two binocular systems, each with a more advanced fidelity of eye model. In the reduced eye
model, the eye optics is represented by one refractive spherical surface with the nodal point at its curvature center and
the fovea at the posterior pole. The nodal point and the fovea located on the optical axis define the eye’s axial symmetry.
The nodal point is located 0.6 cm anterior to the eye’s rotation center. The image on the retina is impinged by the pencil
of light rays based at the nodal point.

This symmetric eye (SE) model was used in [40] to correct the 200-year-old Vieth-Müller circle (VMC) model of the
geometric horopter that is still used today in research and education. The analytic form of the VMC has been known for
an arbitrary fixation only when the nodal point is placed incorrectly in the eye’s rotation center. In this case, when the
eyes’ are fixating on points on the VMC, it remains stationary. Otherwise, the VMC has only been known for symmetric
fixations for all other nodal point locations. In [40], the analytical form of the geometric horopter when the eye’s nodal
point is anatomically located was given for arbitrary horizontal bifoveal fixations for the first time. The relative disparity
was in the range of binocular acuity, and its significance for fine aspects of binocular perception was discussed.

The asymmetric eye (AE) model is introduced and comprehensively discussed in [43] and slightly modified in [44].
It extends the reduced eye with the eye’s natural misalignment of human optics. The AE is comprised of the fovea’s
anatomical displacement from the posterior pole by angle α = 5.2◦ and the crystalline lens’ tilt relative to the cornea by
angle β. Angle α is relatively stable in the human population, and angle β varies between −0.4◦ and 4.6◦. In the human
eye, the fovea’s displacement from the posterior pole and the cornea’s asphericity contribute to optical aberrations
that the lens’ tilt then partially compensates for [Artal 2014]. Further, a geometric theory of the binocular system
with the AEs’ developed in [44] in the framework of bicentric perspective projections advanced the work by Ogle
[22] and Amigo [2] on modeling empirical horopters as conic sections. In contrast with their theory, the biologically
supported horopteric conics in [44] pass through the nodal points, are integrated with eye movement, and their geometric
transformations during eye movements are visualized in a computer simulation.

When eyes are binocularly fixated straight ahead such that the image planes of the AEs, defined as parallel to the lens’s
equatorial planes and passing through the eye’s center, are coplanar, the constructed horopter is a straight frontal line
parallel to the image planes; see Figure 4 in [44]. The distance to this fixation point is called the abathic distance
explicitly given in this reference in terms of the ocular separation and the AE’s parameters α and β. This case of linear
horopter proves that the unequal distribution of retinal corresponding points for asymmetric eyes can be defined in
terms of the image plane’s symmetrical distribution of projected retinal points into the plane [44]. This geometric result
suggests that one can fully dispense with the spherical retina in the AE.

To do this, however, I need to show that the receptive fields on the circular retina—the units of neural circuits processing
visual information— are preserved to a large degree when projected into the image plane and, hence, the retinal
illuminance is also preserved. The consequences of this property will take us well beyond concepts typically associated
with the horopter.

The paper is organized as follows. I first discuss the SE model, that is, the AE with α = β = 0, emphasizing the
geometric properties of the projection of the retina onto the image plane for three different locations of the nodal point:
the pupil identified with the north pole of the unit sphere, the approximate anatomical location of 0.6 cm anterior the
eye’s rotation center and the rotation center. The nodal point can be depicted in publications in any of these locations
but is located most often at the rotation center, especially in vision sciences computational study; see [28] for example.

The north pole location of the nodal point is distinguished for providing anatomically acceptable numerical approxi-
mation and efficient tools for image processing. In particular, the projection from the retina to the image plane is the
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conformal stereographic mapping: it preserves under the projection the angle of the two intersecting curves. It also
maps circles in the retina that do not contain the north pole to circles in the image plane. Thus, stereographic mapping
preserves receptive fields and retinal illuminance such that the image plane can faithfully represent the retina.

I will explain later that the nodal point placed at the north pole preserves the qualitative properties of the anatomically
correct location of the nodal point with a very good numerical approximation for the anthropomorphic binocular
system’s parameters. On the other hand, when the nodal point is placed at the eye’s rotation center, the eye model
degenerates binocular geometry even though the numerical approximation is good.

Because stereographic mapping is not defined at the nodal point identified with the north pole, it is extended one-to-one
and onto by appending to the image plane the point at infinity, which is the image of the nodal point under this mapping.
The image plane with the appended point at infinity is the celebrated object in geometry, and mathematical analysis is
known as the Riemann sphere [21]. Thus, the SE with the extended image plane that substitutes for the retina is given
by the Riemann sphere—the newest and most compelling eye model referred to as the conformal eye (CE).

The Riemann sphere’s conformal geometry identifies the structure of the one-dimensional complex projective geometry
[6] with the Möbius geometry [14]. This identification means the group of image projective transformations resulting
from the change of perspective between the scene and the eye’s orientation agrees with the group of Möbius transforma-
tions. The CE provides a unique geometric environment that is relevant to the intermediate-level vision computational
aspects of natural scene understanding [39, 41].

Further, the Riemann sphere’s conformal geometry establishes image representation in terms of the projective Fourier
transform constructed in the noncompact picture of the Fourier analysis on the semisimple group SL(2,C) of image
projective transformations [36, 37]. This image representation changes covariantly with the image transformations
induced by eye rotations. It is fast computable by FFT in log-polar coordinates that are known to approximate the
retina-cortical mapping of the human brain’s visual pathways [38, 41]. Although the CE model is introduced and
discussed for the SE model, in the last section, it is extended to the AEs.

2 The Conformal Geometry in Imaging

The geometric theory in [44] shows that the non-symmetrical distribution of the corresponding retinal elements,
determined by the asymmetry parameters of the AE, can be fully formulated in terms of the symmetrical distribution
of their projection points in the image plane. This relationship is established by the image planes being coplanar for
fixations at the abathic distance that implies the horopter through the fixation point a straight line parallel to the image
planes. This fact suggests that the nodal point and the image plane can fully specify the AE model.

However, to fully dispense with the retina in the AE model, I need to show that the receptive fields and retinal illuminance
are preserved under the projection from the retina to the image plane. This simple requirement will take us in the
remaining part of the paper on a much longer journey through sophisticated mathematics that has striking relevance to
retino-cortical image processing. Moreover, it can provide algorithms for visual stability in anthropomorphic vision
systems of mobile robots.

2.1 The Nodal Point Location and Geometry of the Image Plane

Before discussing the geometries of idealized eye models and their implication for processing visual information, I
introduce a SE model that includes some additional anatomical details shown in Figure 1.

The retina is represented by its projection from the nodal point to the image plane perpendicular to the optical axis and
passing through the center C. The nodal point N is located 0.6 cm anterior to the eye’s rotation center C as required by
the eye’s anatomy. The retina’s sensory layer extends below the ora serrata line, which divides it from the non-sensory
layer. The ray through N and point K on the circle at the upper boundary of the non-sensory layer is parallel to the
image plane. This upper boundary connects to the zonule—the fiber band attached to the lens that changes its curvature
during accommodation. The projections through N of the circles on the retina representing receptive fields below
the ora serrata are ellipses in the image plane. The ratios of the ellipses axes in the image plane region subtended by
visual angle of 110◦ at the nodal point varies from 0.7 at the high eccentricity to 1 at the foveal region. Details of the
calculations are presented in Appendix A.

Two projections from a sphere to a plane define two different projective geometries. The first projection, shown in
Figure 2 (A), is the stereographic projection from the north pole N to the plane that passes through the sphere’s center
C and is perpendicular to the line through N and C. Stereographic projection is ubiquitous in physics and mathematics
and has been used for millennia in making maps. Even to mapmakers, it was well known that stereographic projection
is conformal, i.e., it preserves angles of intersecting curves. Further, it maps circles in the sphere that do not contain
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Figure 1: Figure 1: The SE model shows the non-sensory layer separated from the rest of the retina by the ora serrata.
The image plane is perpendicular to the optical axis and passes through C. An ellipse is a circle on the retina below the
ora serrata projected into the image plane. The nodal point N is located 0.6 cm anterior to the rotation center C at the
level of the upper boundary of the non-sensory layer.

N to circles in the image plane, while any circle containing N projects onto a straight line. The plane is extended by
the stereographic image of N, with the topology extended by the complement of the compact sets in the plane. The
extended plane with the stereographic image of N, referred to as the point at infinity, is the Riemann sphere. The
resulting conformal geometry of the extended plane with its remarkable features is carefully discussed in the next
sections.

Equally important in physics and mathematics is the sphere’s gnomonic, or central, projection from its center C to the
plane tangent in the south pole S, shown in Figure 2 (B). The real projective plane is obtained when (1) the line at
infinity is appended to the plane as the image of the sphere’s equator under the projection and (2) the sphere’s diagonal
points are identified to make the projection one-to-one. Under the gnomonic projection, a circle on the sphere that does
not intersect the equator is mapped to an ellipse. Otherwise, a tangent circle to the equator is mapped to a parabola
(shown). In contrast, a circle intersecting the equator in two points is mapped to a hyperbola (not shown)—finally, the
great circles other than the equator project onto straight lines.

Figure 2: The two geometries are defined by projections of a unit sphere to the plane. (A) Conformal geometry of the
unit sphere’s stereographic projection from the north pole N to the horizontal plane passing through the sphere’s center.
A circle on the sphere that does not contain N projects to a circle in the plane, while a circle containing N projects onto
a straight line. (B) Real projective geometry of the gnomonic projection from the center C. A tangent circle to the
equator is mapped to a parabola (shown), while a circle intersecting the equator in two points is mapped to a hyperbola
(not shown). The great circles other than the equator project onto straight lines.

Both projections discussed above are related to the two eye models that were used in [40] to study geometric horopters.
The stereographic projection corresponds to the nodal point identified with the eye’s pupil, while the gnomonic
projection corresponds to the nodal point identified with the eye’s rotation center. The results in [40], where the
geometric horopters were studied for any location of the nodal point between the eye’s pupil and rotation center, show
good numerical approximations of disparities near the fixation point. However, only the family of horopters for the
nodal point at the pupil retains qualitative properties of the family of horopters for the anatomically correct location of
the nodal point because, in both cases, the relative disparity depends on eye movements. On the other hand, the family
of horopters for the nodal point at the eye’s rotation center degenerates to the family of VMCs. Because for VMCs, the
relative disparity is independent of eye movements, the finest aspects of binocular vision are lost [40].
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2.2 The Conformal Eye Model

The stereographic projection is shown in Figure 2 (A), denoted here by σ is not defined at the nodal point. It is extended
to one-to-one and onto mapping by appending σ(N) to the image plane. This additional point is usually denoted by ∞
and called the point at infinity. The image plane, denoted by C, is the Gaussian plane with points (x1, x2) identified
with complex numbers z = x1 + ix2. The extended image plane, Ĉ = C ∪ {∞}, identified with the spherical retina by
stereographic projection, is the celebrated object in geometry and mathematical analysis known as the Riemann sphere,
[21]. The Riemann sphere is shown in Figure 3. Stereographic projection is conformal; it preserves the angle of two
intersecting curves. Further, it maps circles in the spherical retina that do not contain the nodal point to circles in the
image plane, while any circle containing the nodal point projects to a straight line.

Figure 3: The Riemann sphere. The spatial points are projected through the sphere’s north pole N to the sphere and the
plane. Stereographic projection σ maps circles in the sphere that are not passing through N to circles in the plane. For
any two circles in the plane, there is the Möbius transformation, M, that maps one circle onto the other. A circle that
contains N is projected by σ to a line. Lines are regarded as circles passing through ∞.

We note that the sphere’s conformal projection to the plane, already known to Hipparchus in about 130 BC, was first
named "stereographic" in 1613 by Aguilonius in Six Books of Optics Useful for Philosophers and Mathematicians, the
treaties in which he named horopter as well.

When the eye rotates about the eyeball center to change its gaze, simultaneously, the gaze rotates at the nodal point by
the same amount, and the nodal point translates. The resulting transformation on the image plane can be decomposed
into two components: (1) the translation of the image out of the image plane and stereographically projected back to the
image plane and (2) stereographic projection of the image on the sphere, rotating it with the sphere, and stereographically
projecting back to the image plane [35, 36, 37]. Then, as it is demonstrated in these references, the finite iterations of
the transformations (1) and (2) induce the group SL(2,C) of 2× 2 complex matrices of determinant 1 action on the
image plane by linear-fractional mappings,

SL(2,C) ∋ g =

[
a b
c d

]
· z =

az + b

cz + d
. (1)

This action defines the Möbius transformations; one of these transformations, denoted by M, is shown in Figure
3. However, because −g · z = +g · z, the group of Möbius transformations is the quotient group PSL(2,C =
SL(2,C/{±Id}) in which matrices ±g are identified [11].

Now, if f(z) is the image intensity function on the image plane, its projective transformations are the Möbius
transformations that are given as follows:

PSL(2,C) ∋ g =

[
a b
c d

]
7−→ f

(
g−1 · z

)
= f

(
dz − c

−bz + a

)
. (2)

The image of a small neighborhood of any point on the sphere U that does not contain N differs from σ(U) in the
image plane mainly by a dilation which is small for the viewing angle up to mid-periphery of about 60◦ and modest for
the visual angle of 110◦ that restricts the binocular field limited by the nasal obstruction. Therefore, this conformal
geometry preserves to a great degree the receptive fields and, hence, retinal illuminance as well as pixels, providing
constructive properties for human vision [39, 41].
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2.3 Geometry of the Conformal Eye

The group SL(2,C) with the action (1) is known as the Möbius group of holomorphic automorphisms of the complex
structure on the Riemann sphere Ĉ [17]. The invariants under these automorphisms furnish Möbius geometry [14].
Further, SL(2,C) with the action (1) is the projective group of a one-dimensional complex geometry [6]. Thus, we
have the isomorphism of the complex projective line and the Riemann sphere. This isomorphism means that the
Riemann sphere synthesizes geometric and analytic (numerical) complex structures to provide a unique computational
environment that is geometrically precise and numerically efficient.

The image plane does not admit a distance invariant under image projective transformations. Therefore, the camera’s
geometry does not possess a Riemann metric; for instance, there is no curvature. However, these transformations map
circles to circles and, therefore, circles can play the role of geodesics. This fact makes the conformal model eye relevant
to the intermediate-level vision computational aspects of natural scene understanding [39, 41].

3 The Projective Fourier Analysis

In the conformal eye model given by the Riemann sphere, the image can be represented in terms of the projective
Fourier transform. The mathematical framework of this image representation is provided by Fourier analysis on the
simplest semisimple group SL(2,C), the direction in well-understood representation theory of general semisimple
groups initiated by Gelfand’s school and completed by Harish-Chandra [15]—one of the greatest achievements of
20th-century mathematics.

The main idea of the Fourier analysis on groups is to decompose a space of functions defined on a set on which the
group acts naturally in terms of the simplest homomorphisms of the group into the set of unitary linear operators
on a Hilbert space. These simplest homomorphisms are the irreducible unitary representations of the group. In this
framework, the generalized Fourier transform plays the same role on any group as the classical Fourier transform on the
additive group of real numbers, where the irreducible unitary representations are homomorphisms between the additive
group and the multiplicative group of complex numbers of modulus one (the circle group), given by the complex
exponential functions one finds in the definition of the standard Fourier integral [27].

3.1 Projective Fourier Transform

The projective Fourier transform (PFT) was obtained in [36, 37] by restricting Fourier analysis on the group SL(2,C)
to the image plane of the conformal model eye. The PFT of an image intensity function, f(z), has the following
expression:

f̂(k, s) =
i

2

∫
f(z)

(
z

|z|

)−k

|z|−is|z|−1dzdz, (3)

where (k, s) ∈ Z×R, and, if z = x1 + ix2, then (i/2)dzdz = dx1dx2. The functions Πk,s(z) = (z/|z|)k |z|is in (3)
play the role of complex exponentials in the classical Fourier transform; their graphs for some values of k and s are
shown in Figure 4.

In log-polar coordinates (u, θ) given by the complex logarithm,

ln z = ln reiθ = ln r + iθ = u+ iθ, (4)
(3) takes on the form of the standard Fourier integral

f̂(k, s) =

∫
f(eu+iθ)e−i(us+θk)eududθ. (5)

In spite of the logarithmic singularity of log-polar coordinates, an image f is integrable on C\{0}. Therefore, we can
remove a disk |z| ≤ ra to regularize f such that (u, θ) ∈ (ln ra, ln rb)× [0, 2π). This is important in the derivation of
the discrete PFT.

3.2 Discrete Projective Fourier Transform

The PFT in log-polar coordinates, the Fourier integral in (5), can be approximated by a double (M,N)-Riemann sum,

f̂m,n =
M−1∑
k=0

N−1∑
l=0

fk,le
uke−i2πmk/Me−i2πnl/N (6)
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Figure 4: Graphs of the real and imaginary parts of the functions Πk,s for the selected values of k and s.

and its inverse,

fk,l =
1

MN

M−1∑
m=0

N−1∑
n=0

f̂m,ne
−ukei2πmk/Mei2πnl/N . (7)

In these expressions, fk,l = (2πT/MN)f(eukeiθl) are image plane samples and fk,l = (2πT/MN)f(uk, θl) are
log-polar samples where T = ln(rb/ra). I stress that f(eukeiθl) differs from f(uk, θl); the first is defined on the image
plane of the SE and the second is defined in cortical, log-polar coordinates. Both (6) and (7) can be computed efficiently
by FFT.

Finally, by introducing zk,l = euk+iθl into (8) and (7) we arrive at (M,N)-point discrete projective Fourier transform
(DPFT) and its inverse:

f̂m,n =
M−1∑
k=0

N−1∑
l=0

fk,l

(
zk,l
|zk,l|

)−2πn/N

|zk,l|−i2πmT+1 (8)

and its inverse,

fk,l =
1

MN

M−1∑
m=0

N−1∑
n=0

f̂m,n

(
zk,l
|zk,l|

)2πn/N

|zk,l|i2πmT−1. (9)

The covariant properties of the PFT are expressed as follows:

f ′
k,l =

1

MN

M−1∑
m=0

N−1∑
n=0

f̂m,n

(
z′k,l
|z′k,l|

)2πn/N

|z′k,l|i2πmT−1, (10)

where z′k,l = g−1 · zk,l, g ∈ SL(2,C) and f ′
k,l = (2πT/MN)f(z′k,l). For the covariance to image transformations

demonstration in image processing, see [35, 36, 37].

3.3 PFT and Retinotopy

How are the conformal eye model and the image representation in terms of PFT related to human vision? The human
brain functions in physical space and receives information carried by light beams centrally projected onto the eyes’
retinae and transduced by photoreceptors into electrochemical signals. After initial processing by the retinal circuitry,
this visual information is mainly sent to the primary visual cortex (V1), where it produces specific retino-cortical
mappings and forms input to other cortical areas [45]. This immensely complex processing decodes the environment
from retinal stimulation and creates a neural representation of space [30], our subjective visual space.
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The log-polar coordinates (4) approximate the retino-cortical mapping of the brain’s visual pathway that topographically
organizes visual and oculomotor brain areas [12]. Thus, whenever the retinal image changes as the effect of gaze
rotations, the retinotopic map in V1 undergoes the corresponding changes that form the input for all next topographically
organized areas that send feedback projections modulating the topographic maps.

The DPFT provides the data model for image representation that FFT can efficiently compute only in log-polar
coordinates given by the complex logarithm w = ln(z). As mentioned before, the central foveal region |z| ≥ ra
must be removed to regularize the projective Fourier integral. The simplest, straightforward extension of the mapping
w = u+ iθ, where u = ln(r) with r > ra, to the region 0 ≤ |z| ≤ ra can be obtained by taking linear extension of
the radial part as follows

u =
r − ra
ra

+ ln ra, 0 ≤ r ≤ ra,

which gives the model of retinotopy required when working with the DPFT.

This model differs from the often used in literature retinotopy model of V1. Moreover, the superior colliculus area
[29, 33] described by the mappings w = ln(z ± a) − ln a where a > 0 removes logarithmic singularity and ±a
indicates, for different signs, the left or right brain hemisphere. However, both complex logarithmic mappings modeling
retinotopy give similar approximations for the peripheral region. In fact, for |z| ≪ a, ln(z± a)− ln a is approximately
linear, while for |z| ≫ a, it is dominated by ln z.

In his model of retinotopy [29], Schwartz and his coworker proposed in [7] image processing in terms of the exponential
chirp transform (ECT). The ECT is constructed by making the substitution:

(x, y) = (eu cos θ, eu sin θ) (11)

in the standard 2D Fourier integral. Because the Jacobian of the transformation is translation-invariant, this substitution
makes the ECT well adapted to translations in Cartesian coordinates. There is a clear dissonance between the nonuniform
retinal image polar sampling grid and this Euclidean-shift invariance of the ECT.

On the other hand, the PFT is a genuine Fourier transform constructed from irreducible unitary representations of the
group of image projective transformations. Further, the change of variables by u = ln r transforms the PFT into the
standard Fourier integral, which is well regularized at the logarithmic singularity. Thus, the discrete PFT is computable
by FFT in log-polar coordinates that approximate the retinotopy. The difference between (11) and (4) implies that the
PFT does not experience the problem of exponentially-growing frequencies, like the ECT does, and for a band-limited
original image, there is no difficulty with the Nyquist sampling condition in log-polar space, [36, 37].

Moreover, by the distinctive features of the complex logarithm ln z, ln(eiϕz) = ln z + iϕ, ln(ρz) = ln z + ln ρ, the
rotation and dilation transformations of an intensity function f(eueiθ) expressed in exp-polar coordinates correspond
to simple translations of the log-polar image f(u, θ) via f(eiϕeueiθ) = f(euei(θ+ϕ)) = f(u, θ + ϕ) and f(ρeueiθ) =
f(eu+veiθ) = f(u+ v, θ), where f and f were introduced in the previous section. These translation are very useful
in the development of image identification and recognition algorithms. The Schwartz model of retinotopy, therefore,
results in the destruction of these properties so critical to computational vision.

Further, there are also psychophysiological facts that support our modeling with DPFT. The accumulated evidence
points to the fact that the fovea and periphery have different functional roles in vision and very likely involve different
principles underlying image processing [31, 50]. Strikingly, the authors in [31] argue that the perceptual puzzle of
the curveball, when batters often report that the flight of the ball undergoes a dramatic and nearly discontinuous shift
in position as the ball nears the home plate, can be explained by the difference between the foveal and peripheral
processing of the ball’s image passing the boundary on the retina between these two regions.

Finally, sampling an image in log-polar coordinates conforms to the biological convergence of the retinal image
sampled by photoreceptors on ganglion cells that send visual information to the visual cortex. The light carrying visual
information about the external world impinged upon the retina is initially sampled by about 125 million photoreceptors.
Then, after the retinal circuitry processes it, this visual information converges on about 1.5 million of ganglion cell
axons that carry out the output from the eye to the brain’s visual areas. In the numerical example [38], the original
image has 262, 144 pixels, whereas this image sampled in log-polar coordinates contains only 2, 664 pixels. Thus, there
are about 100 times fewer pixels in the sampled image in log-polar coordinates than in the original image.

Figure 5 shows a Matlab simulation of retinotopy with DPFT. In this simulation, the original San Diego harbor picture
in Figure 5 (a) of the size 1024× 1024 is resampled with 74 rings distributed exponentially and 128 sectors distributed
uniformly (the exp-polar sampling). The inverse DPFT renders Figure 5 (c); both transforms, DPFT and its inverse,
are computed in Matlab with FFT. Figure 5 (b) shows remapped pixel-by-pixel log-polar image in Figure 5 (c) to the
Cartesian coordinates to represent the nonuniform sampling by the retina photoreceptors. The foveal region and the
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Figure 5: The model of retinotopy. See the text for the discussion.

vertical strip are excluded from regularizing PFT, which conforms to the different image processing in the foveal and
extrafoveal regions and the split theory of hemispherical image representation.

According to the split theory, the foveal region has a functional split along the vertical meridian, with each half processed
in a different brain hemisphere [19]. The global retinotopy, shown in Figure 5 (d), was simulated by the cut-and-paste
transformation applied to Figure 5 (c). As it was demonstrated in [38], the global retinotopy can be done with FFT in
log-polar coordinates.

I should note that in a robotic camera with anthropomorphic sensors, the retinal visual information represented by
Figure 5 (b) will be given by the output from the silicon retina. Then, using the DPFT representation, this output data
will be processed with FFT to emphasize brightness variations in retinal illuminance and rendered, also with FFT, as the
log-polar (cortical) image.

4 Extension to AEs

In AE, an object’s point projects to the point zβ on the image plane rotated by the angle β at the eye’s rotation center C
rather than to the point z in the image plane of SE, see Figure 6. I recall that β specifies the tilt of the effective lens
such that the image plane in AE is parallel to the lens’s equatorial plane. Because the visual axis is rotated by α degrees
relative to the optical axis, the visual center on the image plane shifts from C to O where the visual axis intersects this
plane. I need to find the transformation from z measured relative to C to zβ measured relative to O. Likewise, yβ is
measured relative to O.

With this rule in mind, I use the right triangles ∆NyβC, ∆Nyβzβ , ∆NyβO and ∆NCz to get |Nyβ | = cosβ,
zβ − yβ = cosβ tan(α − β + φ), yβ = − cosβ tan(α − β) and z = tan(α + φ). Then, using these relations in
zβ = (zβ − yβ) + yβ and standard trigonometric identities, we obtain

zβ = cosβ [tan(α− β + φ)− tan(α− β)]

= cosβ

[
z − tanβ

z tanβ + 1
− tan(α− β)

]
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Figure 6: The extension of the CE model to the AE. The eyes asymmetry of optical components in the conformal eye
model is represented as follows. The fovea’s displacement from the posterior point by a constant angle α = 5.2◦ gives
the eyeball’s global asymmetry. The lens-cornea system is given by the image plane tilted by angle β from the plane
perpendicular to the optical axis and the north pole N of the unit sphere. β varies between people from −0.4◦ to 4.6◦

and N represents the nodal point. The imaging in this asymmetric CE is discussed in the text.

which can be written as

zβ =
z[1− tan(α− β) tanβ] cos3/2 β − [tan(α− β) + tanβ] cos3/2 β

z[tanβ cos1/2 β] + cos1/2 β

=

(
[1− tan(α− β) tanβ] cos3/2 β −[tan(α− β) + tanβ] cos3/2 β

tanβ cos1/2 β cos1/2 β

)
· z (12)

= mβ · z
with mβ ∈ SL(2,C) given in terms of AE parameters. The expressions in (12) correct the result obtained in [41] where
one of terms was left out.

If z′ = g · z, then zβ = mβ · z and z′β = mβ · z′ give mβ · z′ = mβgm
−1
β mβ · z so that

z′β = gβ · zβ where gβ = mβgm
−1
β . (13)

This establishes the group SL(2,C) inner automorphism: SL(2,C) ∋g 7−→ mβgm
−1
β ∈ SL(2,C) established by

(g1)β(g2)β = (g1g2)β (14)

and

(gβ)
−1 =

(
g−1

)
β

. (15)

From the definition of image projective transformation, we can write,

Tgf(z) = f(m−1
β mβg

−1m−1
β mβ · z) = fβ(g

−1
β · zβ) = Tgβfβ(zβ)

where fβ(zβ) = f(m−1
β · zβ) = f(z). The relation between g and gβ makes the diagram

Ĉ g−→ Ĉ
mβ ↓ ↓ mβ

Ĉ
gβ−→ Ĉ

commutative such that mβ can be considered a coordinate transformation in the complex structure on Ĉ. Since g and
gβ have the same algebraic properties by (14) and (15), they behave geometrically in the same way. In another way
of expressing the inner automorphism (13), it is to say that g and gβ are the same mappings in SL(2,C) expressed in
different coordinates (geometer’s point of view) or as the perceiving from a different perspective (physicist’s point of
view).

I summarize the symmetric CE and the asymmetric CE models as follows:

10

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 8, 2022. ; https://doi.org/10.1101/2022.06.06.494878doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.06.494878


A PREPRINT - JUNE 6, 2022

1. The image projective transformations the symmetric CE

f : D −→ R, g ∈ SL(2,C)
f(z) −→ Tgf(z) = f(g−1 · z).

2. The image projective transformation for the asymmetric CE

fβ : D′ −→ R, gβ = mβgm
−1
β ∈ SL(2,C)

fβ(z
′) −→ Tgβfβ(z

′) = fβ(g
−1
β · z′)

where the AE parameters α and β define coordinates change mβ in (12).

To conclude this section, I can say that the result of tilting and translating the image plane does not affect the asymmetric
CE’s geometric and computational frameworks; this can be phrased as putting ‘conformal glasses’ on the symmetric
CE.

5 Discussion

In [43, 44], the horopters closely resembling empirical horopters were constructed as conic sections in the binocular
system with the AE model. The AE comprises two parameters: the fovea’s anatomical displacement from the eyeball’s
posterior pole by angle α and the crystalline lens’s tilt by angle β. In human eyes, the foveal displacement and the
cornea asphericity contribute to the eye’s optical aberrations that the lens’ tilt is partially compensating.

It was demonstrated in [44] that the non-symmetrical distribution of retinal corresponding points, due to the natural
eye’s asymmetry, can be defined in the binocular system with the AEs in terms of the symmetrical distribution of the
projected corresponding points into the AE’s image plane. This geometric result suggests that one can fully describe the
eye imaging function with the image plane of the AE, dispensing with the spherical retina.

To this end, I first considered the AE with α = β = 0, the SE with a single refractive surface schematic eye. Following
the tradition in vision science, I study three locations of the nodal point: the anatomically correct location at 0.6 cm
anterior to the eye’s rotation center, the pupil’s location at the north pole of the unit sphere, and the location at the eye’s
rotation center. Only for the north pole location, two crucial properties of the eye model are satisfied. First, in addition
to very good approximations for anthropomorphic binocular system’s parameters, only for the nodal point placed at the
north pole, it retains qualitative properties of the eye model with the correct location of the nodal point. Second, its
image plane with the appended image of the north pole, i.e., the point at infinity, can be identified with the Riemann
sphere. Thus, the image plane has conformal geometry. This eye model is referred to as the conformal eye.

Maybe unfamiliar to vision researchers, the automorphism group SL(2,C) of the Riemann sphere, which provides the
projective image transformations of a rotating eye, has the subgroup SU(2) isomorphic to the group of unit quaternions
[1] that have been used for a long time in vision science [49]. Moreover, this geometry provides a unique computational
environment that is relevant to the intermediate-level vision computational aspects of natural scene understanding
[39, 41].

Further, the conformal eye model established image representation in terms of the projective Fourier transform
[35, 36, 37]—the model eye’s intrinsic Fourier transform on the group of image projective transformations. This image
representation changes covariantly with image transformations induced by eye movements. It is fast computable by FFT
in log-polar coordinates that are known to approximate the retina-cortical mapping of the human brain’s visual pathways
[38, 41]. The image sampling in log-polar coordinates conforms to the biological convergence of the photoreceptors
sampling the retinal image on the ganglion cells that send visual information to the visual cortex with about 100 times
fewer pixels than in the original image [38].

Finally, the conformal eye model established first for the SE was extended to the AE. It corrects this extension proposed
in [41] for the conformal camera. Therefore, the theory in [44] that integrates binocular vision with eye movement
can be supported by the Riemann sphere’s conformal geometry. Thus, this conformal AE model allows the image
processing with the projective Fourier analysis developed by the author and reviewed in this article.

To conclude this discussion, I mention the future applications in the human binocular vision. The theory in [44]
integrates binocular vision with eye movement. The importance of this becomes apparent when we realize that during
natural viewing, the human eye’s rotational speeds during saccades are as fast as 700◦/s, with an acceleration exceeding
20, 000◦/s2 [47]. Saccadic eye movements are performed about 3-4 times/s, meaning that the brain mainly acquires
visual information during 3-4 brief fixations within a second. Thus, the visual information is acquired in a sequence of
discrete snapshots, but we perceive a clear and stable world. In addition, we are not only able to execute smooth pursuit
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eye movements that keep the foveae focused on a slowly moving object up to 100◦/s; we also employ a combination
of smooth pursuit and saccades to track an object moving unpredictably or moving faster than 30◦/s [48, 20]. By
stabilizing the tracked object’s image on the fovea, smooth pursuit eye movements (SPEMs) superimpose additional
motion on the retinal images of the stationary background and the other moving objects.

The initial modeling of visual information during saccades and SPEM was carried out in [38, 42] for monocular vision.
In [38], the perisaccadic predictive remapping of receptive fields by intended eye movement (via efference copy) [32]
that is believed to maintain visual stability was modeled using the shift property of the projective Fourier transform
in log-polar coordinates. This modeling remaps the current receptive fields to the future receptive fields before the
incoming saccade takes them there. Also, it accounts for the observed in laboratory experiments the perisaccadic
mislocalization of briefly flashed probes around of incoming saccade’s target [26]. In [42], in the framework of the
conformal eye model, the images of the stationary background sweeping across the retina during the pursuit of a small
object moving in the front of the background were obtained in the initial image plane of a discrete sequence of small
rotation angle approximation of the horizontal SPAM. Thus, modeling the visual information during smooth pursuit
with the conformal eye can support anticipatory image processing. This anticipation can support the stability of visual
information during tracking movements by an anthropomorphic camera needed for an autonomous robot’s efficient
interaction with the real world in real-time.

We saw that the basic feature underlying natural viewing is the occurrence of intricate dynamic disparities that are
processed to maintain our clear vision that appears continuous and stable. In this regard, the theory in [44] provides the
binocular conics’ transformations during eye movement and, therefore, allows the monocular vision stability in [38, 42]
to be extended to the binocular framework.

APPENDIX

A Projecting Retina into Image Plane in SE Model

I demonstrate here that the projections of circles (the receptive fields) on the retina to the image plane of the SE model
are conics as claimed before in Figure 1. The planar intersection of this SE model is abstracted in the following figure.

Figure 7: The SE model’s planar intersection. The projection through the nodal point (0, 0, b) from the retina to the
image plane is shown with solid rays. In general, it maps circles in the retina to conic sections in the image plane. The
stereographic projection is depicted with dashed rays. It maps circles in the retina (located below the horizontal gashed
line) onto circles in the image plane.

The projection from the north pole (0, 0, 1) (the eye’s pupil) of the sphere to the image plane passing through the
sphere’s center is the stereographic projection. It maps circles in the sphere (the intersection of the sphere with a plane)
that do not contain the north pole to the circles in the plane, see Figure 3. I will demonstrate that the projections from the
nodal point (0, 0, b) of the retina’s circles into the image plane are conic sections. Moreover, I estimate the eccentricity
range of the ellipses (the ratio of their axes) in the image plane region subtended the visual angle at the nodal point of
110◦ for b = 0.6.

The points (c, y2, y3) on the sphere y21 + y22 + y23 = 1 form the circle y22 + y23 = 1− c2. The points of the circle with
c < 1 but close to 1 projected through (0, 0, b) to the image plane are
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x1 =
bc

b− y3
, x2 =

by2
b− y3

(16)

These equations are solved for y2 and y3,

y2 =
cx2

x1
, y3 = b− bc

x1
(17)

and substituted into the circle y22 + y23 = 1− c2 yields the equation

c2x2
2

x2
1

+

(
b− bc

x1

)2

= 1− c2.

This equation can be rewritten as

b2 + c2 − 1

b2c2(1− c2

(
x1 −

b2c

b2 + c2 − 1

)2

+
b2 + c2 − 1

b2(1− c2
x2
2 = 1 (18)

The equation (18) is an ellipse if c2 > 1− b2 and c2 < 1, that is, if

c ∈
(
−1,−

√
1− b2

)
∪
(√

1− b2, 1
)
. (19)

Further, the equation (18) is a parabola for c = ±
√
1− b2 and hyperbola for c ∈

(
−
√
1− b2,

√
1− b2

)
.

Before I estimate the ellipses shapes, we first note that the circle y21 + y22 = 1− d2 in the sphere is projected through
(0, 0, b) to a circle in the image plane because the symmetry of projection: the center of this circle on the retina is at
(0, 0, d) and the projection is from (0, 0, b), cf. Figure 7. Now, the ellipses axes ratios in the image plane region that is
subtending visual angle 110◦ are in the interval (0.7, 1). The ration 1 is corresponding to a circle.
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