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Abstract 
Deconvolution methods infer levels of immune and stromal infiltration from bulk expression of 
tumor samples. These methods allow projection of characteristics of the tumor 
microenvironment, known to affect patient outcome and therapeutic response, onto the millions 
of bulk transcriptional profiles in public databases, many focused on uniquely valuable and 
clinically-annotated cohorts. Despite the wide development of such methods, a standardized 
dataset with ground truth to evaluate their performance has been lacking. We generated and 
sequenced in vitro and in silico admixtures of tumor, immune, and stromal cells and used them 
as ground truth in a community-wide DREAM Challenge that provided an objective, unbiased 
assessment of six widely-used published deconvolution methods and of 22 new analytical 
approaches developed by international teams. Our results demonstrate that existing methods 
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predict many cell types well, while team-contributed methods highlight the potential to resolve 
functional states of T cells that were either not covered by published reference signatures or 
estimated poorly by some published methods. Our assessment and the open-source 
implementations of top-performing methods will allow researchers to apply the deconvolution 
approach most appropriate to querying their cell type of interest. Further, our publicly-available 
admixed and purified expression profiles will be a valuable resource  to those developing 
deconvolution methods, including in non-malignant settings involving immune cells. 

Introduction 
Tissues are comprised of multiple cell types that interact to confer diverse functions. Cells of the 
immune system are increasingly recognized for their critical function in both normal and 
diseased tissues, and many diseases have been linked to changes in the immune context of 
tissues, including cancer, Alzheimer’s disease, arthritis and the recent SARS-CoV-2 virus, 
responsible for the COVID19 pandemic. In the field of oncology, the immune system has 
emerged as a critical factor in determining disease progression, patient survival and response to 
therapy. The tumor microenvironment (TME) also presents a number of actionable therapeutic 
targets.1 Notably, immune checkpoint inhibitors, which are designed to re-potentiate cytotoxic T-
cells to  engage and kill malignant cells, have led to spectacular clinical outcomes for a subset 
of patients with previously dire prognoses. The precise reasons why some patients respond, but 
others do not, are poorly understood, indicating that a more detailed understanding of the TME 
and its cellular components is needed. A recent DREAM Challenge is aimed specifically at 
predicting response to anti PD-L1 therapy in lung cancer using demographic and gene 
expression data.2 
 
Defining and characterizing the TME is the aim of numerous experimental and computational 
approaches.3,4 Well-established techniques, such as flow cytometry and immunohistochemistry, 
can rapidly and accurately count cells of specific types from a tissue, but are limited by the 
number of markers (and therefore cell types) they can simultaneously assay. Single-cell 
proteomic technologies, including mass cytometry (CyTOF), can quantify ~100s of proteins in 
millions of cells at once, but require validated, high-quality antibodies for each marker of 
interest.5 Single-cell RNA-seq (scRNA-seq) platforms are increasingly cost-effective and 
provide, in principle, an unbiased view of tissue content.6 However, artifacts are introduced by 
tissue preparation steps including dissociation and other manipulations, leading to preferential 
loss of specific cell types, such as plasma cells and neutrophils, as well as perturbation of cell 
state, with attendant transcriptome and proteome changes.7–11 Such methods also cannot 
currently be applied to archival tissues and instead require prospective sample collection. In situ 
molecular imaging platforms, such as cyclic immunofluorescence,12 imaging mass cytometry,13 
CODEX,14 and multiplex ion beam imaging,15 can spatially resolve individual cells, but rely on 
predefined markers and appropriately prepared tissue. Newly emerging spatial transcriptomics 
technologies are able to measure expression for thousands of genes, are applicable to formalin 
fixed paraffin embedded as well as fresh frozen tissue, and are rapidly advancing to single-cell 
resolution.16–18 
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Beyond these experimental and analytical challenges, the number of clinically annotated single 
cell-based samples is dwarfed by those derived from bulk genomic and transcriptomic data. 
Consequently, to leverage the large databases of clinically-annotated samples with bulk data 
such as The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO), 
methods for computational “deconvolution” of bulk tissue transcriptomic profiles have been 
developed to estimate the relative amounts of specific cell types in an admixture leveraging both 
RNA-seq and legacy microarray platforms.19–24   
 
Computational deconvolution approaches applied to bulk transcriptional profiles circumvent 
limitations of experimental approaches that could skew estimates of cell type frequencies. In 
particular they can be applied to expression profiles derived from intact fresh frozen or archival 
tissues, and do not perturb cell state or relative cell population abundances. Unsupervised (i.e., 
“complete” or “reference-free” deconvolution) methods dissect cellular composition without a 
priori information about the cell types such as marker genes or expression profiles.25 Supervised 
approaches can be classified as “partial” deconvolution methods, which estimate the fractions of 
cell types in a mixture (more strictly, their RNA contribution to the total RNA of the mixture), or 
enrichment-/marker-based methods, which assign a per-cell-type score that can be used to 
compare the relative prevalence of a specific cell type across samples, but cannot compare 
different cell types. Enrichment-based  methods can sensitively distinguish between “coarse-
grained” cell types (e.g., B versus T cells), but often have low specificity in discriminating 
between “fine-grained” cell types (e.g. sub-populations of T cells such as central memory CD4+ 
T cells, effector CD8+ T cells, or T-regs).26 Partial deconvolution methods are typically more 
specific than enrichment-based methods, but may be less sensitive. The tradeoff between these 
properties is important when considering their application to particular questions. 
 
Several benchmarking efforts have used in silico simulation to evaluate factors that impact the 
accuracy of published deconvolution methods, including expression normalization,27 technical 
noise,28 and the specificity of marker genes.26 Sturm and colleagues concluded one of these 
assessments with a call to refine population signatures.26 In order to address some of these 
issues, we designed and ran a community-wide DREAM Challenge to encourage development 
of novel methods for deconvolving cellular composition from bulk gene expression and to 
objectively assess these methods alongside state-of-the-art published methods. We chose to 
focus on supervised methods, both partial deconvolution and enrichment-based, as these are 
most widely used in the cancer community. We use the overarching term “deconvolution” to 
refer to both. In contrast to prior benchmarking efforts, we simulated tumor expression profiles 
through in vitro mixing of RNA from different cell types in proportions intended to be 
representative of real solid tumors, then performed RNA-seq on the admixtures. Additionally, we 
generated in silico admixtures from the expression profiles of purified cell types. In both cases, 
the known mixing proportions were used as ground truth in assessing method predictions from 
the resulting bulk “tissue” expression using correlation as a metric. Simulating (in vitro or in 
silico) admixtures allowed us to define controlled ground truth in isolation from experimental 
biases due to technical and biological variability. Our findings, based on participation of 22 
international teams, revealed that most methods were able to predict major or “coarse-grained” 
populations well, alongside pervasive difficulty in predicting a subset of “fine-grained” sub-
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populations accurately. The expression profiles of purified populations and in vitro admixtures 
generated for this Challenge are available as a resource for developing and training 
deconvolution methods in contexts where quantifying immune and stromal cells is of interest.  

Results 
Novel purified and admixed expression profiles enable unbiased 
assessment of deconvolution methods 
Immune cell infiltration has prognostic significance across multiple levels of immune cell 
specialization and polarization. For example, CD8+ T cells, broadly encompassing memory and 
naïve compartments, have positive prognostic value in many cancer types, whereas regulatory 
T cells, a specific subset of CD4+ T cells, generally have negative prognostic associations.29 To 
assess deconvolution across these levels, we divided the Tumor Deconvolution DREAM 
Challenge into “coarse-grained” and “fine-grained” sub-Challenges. In the coarse-grained sub-
Challenge, participants predicted levels of eight major immune and stromal cell populations: B 
cells, CD4+ and CD8+ T cells, NK cells, neutrophils, cells of  monocytic lineage (monocytes, 
macrophages, and dendritic cells), endothelial cells, and fibroblasts, whereas in the fine-grained 
sub-Challenge they further dissected these populations into 14 sub-populations, e.g., memory, 
naïve, and regulatory CD4+ T cells (Fig. 1A).  
 
To facilitate benchmarking and create a ground truth dataset, we generated in vitro and in silico 
expression profiles of cell populations admixed at predefined ratios. We isolated immune cells 
from healthy donors and obtained stromal, endothelial, and cancer cells from cell lines (Tables 
S1 and S2; Methods). Cell type-specific marker expression was confirmed on the purified cells 
through RNA sequencing (Fig. S1). To robustly test algorithm performance across diverse 
conditions, we defined mixing proportions and generated admixtures from them, grouped into 
one of six datasets according to whether they: (1) included breast or colon cancer cells; (2) had 
proportions that were unconstrained or constrained by biologically-reasonable expectations 
(“biological” distribution); or (3) were created in silico or in vitro (Methods; Tables S3-S8). This 
resulted in a total of 96 in vitro admixtures and 140 in silico admixtures, with at least 18 
admixtures in each dataset to ensure adequate sample size (Table S9). We generated in silico 
admixtures as a linear combination of the mixing proportions and the purified expression profiles 
and in vitro admixtures by extracting RNA from the purified cells, mixing them at the specified 
proportions, and sequencing (Fig. 1B).  
 
We provided participants with GEO microarray and RNA-seq sample identifiers curated as to 
inferred purified cell type for use in training (Tables S10 and S11). Significantly, these were 
publicly available samples that did not include those used in generating our own admixtures. 
Methods were evaluated against the admixtures by correlating the predictions of cell type 
proportions with the predefined (“ground truth”) proportions, independently for each cell type. 
Since the aim of the Challenge concerns the microenvironment populations, we only assessed 
participants' predictions based on inference of immune and stromal cell content, with the 
admixed cancer cells effectively treated as contaminating noise.  In order to rank methods, we 
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defined an aggregate score that averaged correlations across cell types and validation datasets 
(Methods). Methods were first assessed using a "primary" Pearson correlation-based score. 
Statistical ties were resolved relative to the top-performing method (as determined by a Bayes 
factor; Methods) by a "secondary" Spearman correlation-based score. To account for sampling 
variability, we reported these Pearson-based (r) and Spearman-based (ρ) scores as their means 
across bootstraps (Methods).  
 
 

 

Fig. 1: Generation of in silico and in vitro admixtures of immune, stromal, and cancer cells 
and their use as validation data for a DREAM Challenge. (A) Cell populations predicted within 
Challenge. Populations used in coarse-grained sub-Challenge shaded in blue, in fine-grained 
sub-Challenge shaded in orange, and in both sub-Challenges shaded in both orange and 
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blue. Cell types aggregated together in coarse-grained sub-Challenge connected with blue 
shading (e.g., monocytes, myeloid dendritic cells, and macrophages were classified as 
monocytic lineage). Immune populations are depicted within the haematopoietic hierarchy. (B) 
Admixture generation and use for validation. (Left) Purified cell populations (from vendors, 
volunteers, and cell lines) were subjected to RNA-seq to define population-specific signatures. 
In silico admixtures were then defined as a linear combination of these signatures and 
specified ratios (unconstrained or constrained according to biologically reasonable 
expectation). (Right) In vitro admixtures were created by mixing mRNA from purified cell 
populations in specified ratios (unconstrained or biologically reasonable) and then subjected 
to RNA-seq. Deconvolution methods executed in the cloud against in silico and in vitro 
admixtures yielded predictions that were then compared to the input ratios using correlation.  

 
As in previous DREAM Challenges,30 participants submitted their methods as Docker 
containers, which were executed in the cloud against sequestered validation data. This “model-
to-data”31 approach ensured that data were not leaked to participants, prevented model over-
fitting, and allowed complete reproducibility of the Challenge. Twenty-two  teams contributed 39 
submissions (i.e., unique methods) to the coarse-grained sub-Challenge, while 16 teams 
contributed 48 submissions to the fine-grained sub-Challenge. Additionally, we applied six 
widely-used published tools (CIBERSORT,19 CIBERSORTx,32 EPIC,20 MCP-counter,21 
quanTIseq,23 and xCell24) as baseline comparator methods (Methods). Comparator methods 
were run by Sage Bionetworks independent of method developers to ensure unbiased 
assessments, using default parameters and published reference signatures. No optimization 
was applied to tune their performance. 

Diverse algorithmic approaches deconvolve immune populations 
well in aggregate across samples 
We tested the performance of the six “comparator” methods, as well as Challenge participant 
methods. The median Pearson correlation-based score across participant and comparator 
methods was 0.75  [interquartile range (IQR): 0.43 - 0.81; Fig. 2A] for the coarse-grained sub-
Challenge and 0.61 (IQR: 0.53 - 0.62; Fig. 2B) for the fine-grained sub-Challenge. Methods 
differed in their output. Some produce an arbitrary score proportional to the presence of a cell 
type, which can be used to compare the same cell type across samples, but not across cell 
types. Others generate normalized scores, non-negative proportions summing to one, or non-
negative fractions that need not sum to one, which can be compared both across samples and 
cell types.  
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Fig. 2: Aggregate cross-sample performance of participant and comparator deconvolution 
methods. Aggregate score (primary metric: Pearson correlation; secondary metric: Spearman 
correlation) of participant (first submission only) and comparator methods in (A) coarse- and 
(B) fine-grained sub-Challenges over (n=1,000) bootstraps (Methods). Reported Spearman-
based score is median over bootstraps. Comparator methods (bold) are shown only if their 
published reference signatures include all cell types in each respective sub-Challenge: 
CIBERSORTx (coarse-grained only) and xCell. DNN: deep neural network; ENS: ensemble; 
NMF: non-negative matrix factorization; NNLS: non-negative least squares; OTH: other; PI: 
probabilistic inference; REG: other regression; SUM: summary; SVR: support vector 
regression; UNK: unknown/unspecified; Frac: unnormalized fractions that need not sum to 
one; Norm: normalized scores (comparable across cell types and samples); Prop: proportions 
that sum to one 

 
 
 
Across both comparator and participant approaches, CIBERSORTx was the top-performing 
method in the coarse-grained sub-Challenge according to both metrics (r = 0.90; ρ = 0.83; Fig. 
2A). The next highest-scoring methods and the top-performing participant methods were 
Aginome-XMU (r = 0.85; https://doi.org/10.1016/j.patter.2022.100440) and Cancer_Decon (ρ = 
0.79) according to the primary Pearson-based and secondary Spearman-based scores, 
respectively. Aginome-XMU was the top-performing method (participant or comparator) in the 
fine-grained sub-Challenge (r = 0.76; ρ = 0.64; Fig. 2B). Methods whose published reference 
signatures do not include all cell types in a sub-Challenge (e.g., five of six comparator methods, 
CIBERSORT, CIBERSORTx, EPIC, MCP-counter, and quanTIseq, in the fine-grained sub-
Challenge) were not considered in that sub-Challenge’s aggregate ranking. Additionally, there 
was broad consistency in method ranking across the two sub-Challenges, with the three top-
ranked participant methods in the coarse-grained sub-Challenge (Aginome-XMU, DA_505, and 
Biogem) amongst the top seven evaluable methods in the fine-grained sub-Challenge. 
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Conversely, the three top-ranked evaluable teams in the fine-grained sub-Challenge (Aginome-
XMU, mitten_TDC19, and DA_505) were amongst the top seven in the coarse-grained sub-
Challenge. 
 
We compared the performance of deconvolution methods to an ensemble combination of their 
outputs, since the latter has often been shown to outperform individual algorithms and thus 
represents a potential upper bound. As the scale of predicted values vary according to the type 
of method output (scores, normalized scores, or fractions/proportions), they cannot be 
combined by simple averaging. Instead, we defined an ensemble prediction as the consensus 
rank across individual methods (Methods). Though this is only evaluable for Spearman 
correlation, we found that overall it outperformed any individual method in both the coarse- (ρ = 
0.84; Fig. 2A) and fine-grained (ρ = 0.67; Fig. 2B) sub-Challenges. However, there was only 
modest improvement of the ensemble method relative to the top-scoring individual methods by 
Spearman correlation in the coarse- (CIBERSORTx ρ = 0.83) and fine-grained (Aginome-XMU 
ρ = 0.64) sub-Challenges suggesting that individual methods are not leveraging independent or 
orthogonal signals in the data despite their diverse approaches. 
 
Several core algorithmic approaches were common across submissions, including those based 
on non-negative least squares (NNLS; 6 in the coarse-grained and 6 in the fine-grained sub-
Challenge, respectively; Fig. 2A, B) and summarization (SUM; 5 and 4). Nevertheless, there 
was wide methodological diversity amongst top performers. CIBERSORTx uses ν-SVR to 
simultaneously solve for all fractional abundances relating admixed and purified expression 
profiles using a signature matrix of ~525 differentially expressed genes spanning 22 immune 
cells types (LM22).19,32 Aginome-XMU, published subsequent to the Challenge33, utilizes a 
neural network composed of an input layer, five fully-connected hidden layers, and an output 
layer (Supplemental Methods; https://github.com/xmuyulab/DCTD_Team_Aginome-XMU; Table 
S12). The network effectively applies feature selection automatically and was trained here using 
synthetic admixtures. DA_505 applies a rank-based normalization, selects features by applying 
random forests to synthetic admixtures, and ultimately applies regression to predict abundance 
of each cell type independently (Supplemental Methods; 
https://github.com/martinguerrero89/Dream_Deconv_Challenge_Team_DA505; Fig. S2; Table 
S13). mitten_TDC19 calculates a summarization score as the sum of the expression of selected 
markers, with the cell type-specific markers first nominated from expression profiles in purified 
bulk data or identified34,35 from single-cell data expression profiles and then prioritized according 
to their correlation with that cell type’s proportion over synthetic admixtures (Supplemental 
Methods; https://github.com/sdomanskyi/mitten_TDC19; Table S14). Finally, Biogem, based on 
a previously published method,36 uses robust linear modeling to perform deconvolution and 
differential expression-based feature selection to define the purified expression profiles 
(Supplemental Methods; https://github.com/giannimonaco/DREAMChallenge_Deconvolution; 
Fig. S3; Table S15). Hence, despite their algorithmic differences, three of the top-performing 
methods were trained using synthetic admixtures, generated in silico from publicly available 
purified expression profiles (Table S16). Importantly, the purified profiles that we created to 
generate Challenge admixtures were not made available to participants.  
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Method performance improved for most teams over three allowed submissions (Fig. S4), as 
they were permitted to revise their method with each submission. Since we provided teams with 
both aggregate and per-cell type scores following each submission, we can not exclude the 
possibility that these were used to tune methods between submissions. As this could result in 
over-fitting, we focused our analyses on  the first submission, unless otherwise explicitly stated 
(Fig. S5).   

Deconvolution performance differs by cell type 
In addition to a ranked average performance across cell types, we assessed methods in their 
ability to predict individual cell type levels within an admixture (Fig. 3 and Figs S6-S15).  
All major lineage cell types could be predicted robustly by at least one method (max row of Fig. 
3A and Figs S8A, S12A, and S15A). For example, though CD4+ T cell levels were most 
difficult to predict on average, even these could be predicted with a Pearson correlation of 0.86 
by CIBERSORTx and xCell. Neutrophil levels were predicted best on average, with 18 of 28 
methods having a Pearson correlation of at least 0.90. 
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Fig. 3: Per-cell type performance of participant and comparator deconvolution methods. (A) 
Pearson correlation of method (left axis) prediction versus known proportion from admixture 
for each cell type (bottom axis). Pearson correlation is first averaged over validation dataset 
and then (n=1,000) over bootstraps (Methods) and subsequently averaged over coarse- and 
fine-grained sub-Challenges for cell types occurring in both. Black entry indicates cell type not 
predicted by corresponding method. Bottom two rows (“mean” and "max") are the mean and 
maximum correlation, respectively, for corresponding cell type across methods. Rightmost 
column ("mean") is mean correlation for corresponding method across predicted cell types. 
Highest correlations for each cell type highlighted in bold italics. (B) Performance (Pearson 
correlation; x axis) of comparator baseline methods and participant methods ranking within 
the top three in either or both sub-Challenges (y axis) for each cell type (facet label). 
Distribution of Pearson correlations over bootstraps (n=1,000; Methods), computed as 
average over validation datasets and subsequently over coarse- and fine-grained sub-
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Challenges for cell types occurring in both. Blank row indicates cell type not reported by the 
corresponding method. Comparator methods in bold. 

 
Baseline comparator methods, other than xCell, were not trained to predict all the fine-grained 
immune subtypes used in the Challenge. For example, none of quanTIseq, MCP-counter, or 
EPIC differentiate between memory and naïve CD4+ T cells; and only xCell differentiates 
between memory and naïve CD8+ T cells, though with low accuracy for both (Fig. 3; r <= 0.40). 
Participant submitted models showed potential at predicting these poorly covered cell types. For 
example, mitten_TDC19 dramatically improved upon comparator performance in predicting both 
naïve CD8+ T cells (r = 0.90 vs xCell r = 0.15) and memory CD8+ T cells (r = 0.82 vs xCell r = 
0.40), with Aboensis IV outperforming both for naïve CD8+ T cells (r = 0.91). Further, Aginome-
XMU performance on macrophages (r = 0.66 vs xCell r = 0.58)  and DA_505 performance on 
memory CD4+ T cells (r = 0.62 vs CIBERSORTx r = 0.54) improved upon their respective best-
performing comparator methods. In all other cases, participant methods showed at best only 
modest improvement (change in r < 0.05) relative to comparator methods. Notwithstanding 
these advances, the seven most difficult populations to predict were functional subsets of CD4+ 
and CD8+ T cells and sub-populations of the monocytic lineage (Fig. 3). 
 
The methods that performed well in aggregate also performed well based on individual cell 
types, though none dominated across all populations. Nominally, 10 methods were the top 
performers across one or more of the 17 individual cell populations. For most of these 
populations, multiple methods achieved similar performance to the top-ranked one (Fig. 3B and 
Figs S6, S7, S9, S11, S13, S14). Exceptions in which the top method outperformed the nearest 
competitor (comparator or participant) by a large margin (change in r > 0.05) were: xCell on 
myeloid dendritic cells (r = 0.80 vs Cancer_Decon r = 0.63), mitten_TDC19 on memory CD8+ T 
cells (r = 0.82 vs Biogem r = 0.66), and DA_505 on memory CD4+ T cells (r = 0.62 vs 
CIBERSORTX r = 0.54). In all other cases, the top-performing method showed at best a 
marginal improvement (change in r < 0.05) relative to the next best-performing method 
(comparator or participant). 

Intra-sample, inter-cell type deconvolution performance is worse 
than inter-sample, intra-cell type performance 
We next assessed prediction performance across cell types within samples for those methods  
that produced normalized scores, proportions, and fractions (Fig. 4). To do so, we computed a 
correlation (Pearson and Spearman) and the root-mean-square error (RMSE) across cell types 
within a sample and then reported the median of these respective values across samples. Top-
performing methods varied across sub-Challenge and metric (Tables 1 and S11), though 
several methods performed well in both the above aggregate inter-sample/intra-cell type 
comparison and in this intra-sample/inter-cell type comparison: CIBERSORTx was amongst the 
top performers (i.e., having the highest score or showing no statistical difference from the 
method with the highest score) across all metrics in the coarse-grained sub-Challenge; DA_505 
was a top performer based on RMSE and Spearman correlation in the coarse-grained sub-
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Challenge; Biogem was a top performer based on Spearman correlation in the coarse-grained 
sub-Challenge; and Aginome-XMU was a top performer based on RMSE and and Pearson 
correlation in the fine-grained sub-Challenge. Additionally, several other methods were amongst 
the top performers across one or more metrics in one or both sub-Challenges, including: (1) 
xCell, which computes a score for each cell type by applying single sample gene set enrichment 
analysis (ssGEA) to a set of marker genes, transforms the scores to proportions using a 
calibration function, and finally compensates for spillover between similar cell types; (2) CCB, 
which extends the published NNLS-based EPIC method by applying ssGSEA to those 
populations not treated by EPIC and by relating those ssGSEA scores to proportions via a 
calibration function; and (3) Patrick, which uses excludes tumor-associated genes from the 
immune and stromal reference signatures and then performs constrained optimization in 
logarithmic space.  
 
 
 

 

Fig. 4: Aggregate cross-cell type performance of participant and comparator deconvolution 
methods. Performance [Pearson correlation, Spearman correlation, and root mean square 
error (RMSE)] of methods capable of intra-sample, cross-cell type comparison to ground truth 
proportions in (A) coarse- and (B) fine-grained sub-Challenges. Distribution over n=166 
samples (methods ordered by median Pearson correlation in respective sub-Challenge). 
Comparator methods in bold. DNN: deep neural network; ENS: ensemble; NNLS: non-
negative least squares; OTH: other; PI: probabilistic inference; REG: other regression; SUM: 
summary; SVR: support vector regression; UNK: unknown/unspecified; Frac: fraction; Norm: 
normalized score (comparable across cell types and samples); Prop: proportion.  
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sub-Challenge Metric Top Performers (median) 

Coarse Pearson CIBERSORTx (0.76) 

Spearman CIBERSORTx (0.67), CCB 
(0.64), Biogem (0.63), 
Patrick (0.62), DA_505 
(0.60),  

RMSE DA_505 (0.06), 
CIBERSORTx (0.06) 

Fine Pearson xCell (0.62), Aginome-XMU 
(0.61) 

Spearman xCell (0.53) 

RMSE Aginome-XMU (0.04) 
 

Table 1: Top-ranked methods based on intra-sample performance. Median value (across 
samples) for corresponding metric provided in parentheses. Multiple top performing methods 
listed when they show no statistical evidence of difference (p > 0.05) from the method with 
largest median score. Several comparator methods were excluded from the fine-grained 
challenge since their published reference profiles did not include all of the evaluated cell 
types.  

 

Deconvolution specificity is lower for T cells than for other cell 
types 
Methods sometimes attribute signal from one cell type to a different cell type. This could 
particularly be the case for highly similar cell types such as sub-populations of CD4 T cells. To 
assess specificity, we quantified the “spillover” between cell types as a method’s prediction for a 
particular cell type X within a sample purified for cell type Y !"X (Fig. 5A and Fig. S16). Based 
on median spillover, methods had greatest specificity for neutrophils. Expectedly, methods had 
greater specificity for the coarse- relative to the fine-grained populations (Fig. 5B): the second 
largest increase in median spillover separates a group enriched in major cell types [neutrophils, 
NK cells, naïve and “parental” (naïve and memory) B cells, endothelial cells, 
monocytes/monocytic lineage cells, and fibroblasts] from a group enriched in minor cell types 
(macrophages, memory/naïve/regulatory/parental CD4+ T cells, memory/naïve/parental CD8+ T 
cells, and myeloid dendritic cells).  The single largest increase in median spillover separates 
memory CD4+ T cells, as the population for which methods have the worst specificity, from the 
remaining cell types. Across cell types, CCB had the lowest (median) spillover in both the 
coarse- (Fig. 5C) and fine-grained (Fig. 5D) sub-Challenges. In both cases, it was followed by 
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Aboensis IV, a summarization-based approach that defined robust marker genes within a cell 
type mutually correlated with one another. The top-performing methods (Aginome-XMU, 
Biogem, CIBERSORTx, DA_505, and mitten_TDC19) rank within the top half of methods in both 
sub-Challenges.  
 
 

 

Fig. 5: Specificity of participant and comparator deconvolution methods. (A) Normalized 
prediction of cell type indicated on x axis in purified sample indicated on y axis. (B) 
Distribution over methods of spillover into cell type c indicated on y axis (averaged first over 
samples purified for any other cell type, then over sub-Challenges; Methods). (C, D) 
Distribution of spillover over cell types c for each method in (C) coarse- and (D) fine-grained 
sub-Challenges. Comparator methods in bold. 

 

Deconvolution sensitivity is lower for CD4+ T cells than for other 
cell types  
In real tumors, the representation of different cell types can range from only a fraction of a 
percent to a large proportion of the tissue. The limit of detection by deconvolution is likely to 
vary from cell type to cell type dependent on the uniqueness and strength of their transcriptional 
signal. We assessed deconvolution sensitivity using in silico spike-in experiments (Methods). 
We spiked each cell type at a given frequency (ranging from 0% to 40%) into an unconstrained 
admixture of all other cell types. We then determined the minimum frequency at and above 
which that cell type could be distinguished from the baseline (0% spike in; Fig. 6A and Fig. 
S17). The lowest limit of detection for any cell type was <0.2% (CIBERSORTx and Patrick for 
neutrophils and MCP-counter for CD8+ T cells), similar to that observed in prior microarray 
studies.21 Seven methods showed similar mean limits of detection (3-4%) within the coarse-
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grained sub-Challenge (Fig. 6A), including top-ranked methods Biogem, CIBERSORTx, and 
Aginome-XMU. Neutrophils, fibroblasts, (naïve) B, and CD8+ T cells were sensitively identified 
by at least one method in both the coarse- (Fig. 6B) and fine-grained (Fig. 6C) sub-Challenges. 
All methods had low sensitivity in detecting CD4+ T cells (and their naïve and memory 
orientations) and macrophages, though several methods performed considerably better than 
others for both (CD4+ T cells: Aginome-XMU = 6%; D3Team = 7%; others >= 10% and 
macrophages: DA_505 = 8%; mitten_TDC19 = 8%; others >= 12%).   
 
 

 

Fig. 6: Sensitivity of participant and comparator deconvolution methods. (A) Aginome-XMU 
predictions for CD4+ T cells (y axis) for unconstrained admixtures including the level of CD4+ 
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T cells indicated (x axis). Limit of detection (LoD) is the least frequency at and above which all 
admixtures are statistically distinct from the baseline admixture (0% spike in), which is 6% in 
this case. (B, C) Limits of detection for indicated methods (rows) and cell types (columns) in 
the (B) coarse- and (C) fine-grained sub-Challenges. Best/lowest LoD for each cell type 
highlighted in bold italics. Comparator methods in bold. 

 

Discussion 
Existing (and growing) repositories of bulk gene expression data describe large cohorts of 
patients through rich annotations, making them invaluable in addressing questions across 
biological domains.  Computational deconvolution methods for  “unmixing” gene expression 
profiles from such bulk samples provide additional information – an estimation of cell type 
composition – shown to correlate with cancer phenotypes. However, benchmarking such 
methods has been hampered by the absence of “ground truth” data.  
 
Here, we developed a novel resource and DREAM Challenge evaluation framework for a 
community assessment of deconvolution methods. We profiled major immune and stromal 
populations likely to be found in tumors using RNA-seq and derived both in silico and 
experimentally-generated in vitro admixtures against which to evaluate method performance. 
We objectively benchmarked six published and 22 novel methods and found that they could 
predict most major lineages well, with CIBERSORTx and Aginome-XMU narrowly emerging as 
leaders. As expected, prediction performance was lower for finer-grained dissections, 
particularly of the T cell compartment and of the monocytic lineage. Several novel methods 
showed potential performance gains in predicting memory CD4+ T cells and macrophages and 
in distinguishing between memory and naïve CD8+ T cells, which only one published method 
was trained to do. However, because comparator approaches were applied with their published 
reference signatures and default settings, we can not conclude whether performance gains 
were attributable to differences in algorithmic approach, reference signatures, or some 
combination. Overall, among methods formally evaluated on both coarse- and fine-grained sub-
Challenges, Aginome-XMU, DA_505, and mitten_TDC19 had the best aggregate performance. 
That said, most comparator methods could not be included in the latter assessment since their 
published reference profiles did not include all the cell types required for scoring. Among such 
methods, CIBERSORTx was run on all cell types except naïve and memory CD8 T cells in the 
fine-grained sub-Challenge and exhibited comparable performance to other leading methods. 
MCP-counter could only predict half the specified cell types, but achieved high performance 
aggregated across those. Notably, no single method performed best on all cell types, nor did we 
observe that a particular high-level algorithmic approach dominated. This suggests that the 
“best” method may be problem specific and could be tailored to cell types of interest in a 
particular context. Our results provide the community cell type-level method performance to 
assist in making that decision, as well as novel datasets for benchmarking new approaches.  
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Prediction performance was lowest for memory and naïve CD4+ T cells, macrophages, and 
monocytes, despite potential strides made by novel Challenge methods for these sub-
populations.  We can partially diagnose potential causes of this reduced performance by 
leveraging the sequenced purified populations to assess specificity, i.e., “spillover” from the 
purified population to others, and sensitivity, assessed as the limit of detection of in silico spike 
ins. We observed that memory CD4+ T cells had poor specificity and sensitivity – ranking last in 
both metrics, with a median spillover across methods of 21%. Their best-case limit of detection 
was 22%, at which level they could be predicted above background by the most sensitive 
method. In contrast, other infiltrating immune cells had spillovers as low as ~5% for neutrophils 
and NK cells, and could be detected down to a threshold of ~0.2% (neutrophils for 
CIBERSORTx and Patrick and CD8+ T cells for MCP-counter). Naïve and parental CD4+ T 
cells also had poor sensitivity, with best-case limits of detection of 6%; and poor specificity, with 
spillovers of 15% and 16%, respectively. On one hand, poor prediction performance of 
macrophages may similarly be attributable to both low sensitivity, with a best-case limit of 
detection of 8%; and specificity indicated by 12% spillover. On the other hand, prediction 
performance of monocytes seems most likely due to low sensitivity (8% spillover) given the high 
specificity in detecting them, where the best-case limit of detection was ~1%. These difficulties 
in accurately predicting levels of CD4+ T cells and macrophages have important implications for 
tumor immunology given their importance as therapeutic targets.37  
 
Our assessment has several limitations, including: (1) its focus on mRNA expression; (2) its use 
of immune cells from healthy donor PBMCs to simulate the tumor microenvironment; and (3) its 
admixing of cells (in vitro or in silico) in ratios that imperfectly represent in vivo distributions. 
With respect to the first of these, DNA methylation profiles have also proven to be a valuable 
source of information for tumor content deconvolution and it is possible to integrate multiple 
modalities to improve accuracy.38 Nevertheless, the generated data here offer two principal 
advantages: they allow the objective definition of ground truth used in our evaluation and they 
can now be flexibly applied by others. In particular, the purified expression profiles can be used 
to simulate other admixtures in silico in proportions relevant to particular and diverse disease 
settings. Further, as highly-multiplexed imaging (or other technologies) elucidate cellular 
distributions of intact tissue, these may be used to simulate admixtures with our data. As such, 
we believe the (purified and admixed) expression profiles generated for this DREAM Challenge 
will be a valuable resource as the community continues to improve deconvolution methodology, 
including for CD4+ T cell and macrophage populations, in cancer and non-malignant, immune-
involved diseases.  
 
Our community-wide comparison of 28 novel and published deconvolution methods revealed 
that levels of most major immune and stromal lineages were well predicted by most 
approaches. As such, our assessment suggests they provide robust signals for downstream 
correlative analyses. We observed considerable variability in predictive performance for minor 
lineages across methods. Though finer dissection was difficult for most sub-populations and 
most methods, even levels of the most challenging cell type, memory CD4+ T cells, were 
predicted at an accuracy (r = 0.62) that may be sufficient for some applications. Hence, our 
results allow researchers to choose the most appropriate method for studying an individual cell 
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type. Where greater accuracy is needed, the purified immune and stromal expression profiles 
we generated should be a useful resource to the community in refining marker genes and 
“signature matrices” for deconvolution of the tumor microenvironment or of non-malignant 
contexts with significant immune modulation. 
 
Data and Code Availability: 
The data discussed in this publication have been deposited in NCBI's Gene Expression 
Omnibus39 and are accessible through GEO Series accession number GSE199324 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE199324). Additionally, they are 
hosted on the Synapse data-sharing platform at syn21557721 and syn21571479, respectively. 
Round one code implementations are available for Aginome-XMU 
(https://github.com/xmuyulab/DCTD_Team_Aginome-XMU), DA_505 
(https://github.com/martinguerrero89/Dream_Deconv_Challenge_Team_DA505), mitten_TDC19 
(https://github.com/sdomanskyi/mitten_TDC19), and Biogem 
(https://github.com/giannimonaco/DREAMChallenge_Deconvolution). 
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Online Methods 

Cell isolation 
Cells were obtained from four sources, StemExpress (Folsom, CA), AllCells (Alameda, CA), 
ATCC (Manassas, VA), and the Human Immune Monitoring Centering (HIMC) at Stanford 
University. Immune and stromal cells provided by StemExpress and AllCells were isolated 
according to vendor protocols (Table S1).   
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Neutrophils and CD8+ memory T cells were isolated by HIMC as follows. Human whole blood 
samples were collected under informed consent in EDTA-coated tubes. After 2h resting, whole 
blood samples were split for neutrophils and CD8 memory T cell isolation. 

Neutrophil isolation was performed with MACSxpress® Whole Blood Neutrophil Isolation Kit 
(Miltenyi Biotec) according to manufacturer instructions. Briefly, the whole blood samples were 
mixed with the appropriate amount of isolation mix buffer consisting of magnetically-coated 
beads conjugated to antibodies targeting all the immune populations in the peripheral blood 
except for the neutrophils. The cell suspension containing the isolation mix was incubated for 5 
min at room temperature on a low-speed rotator. Then magnetic separation was performed for 
15 minutes prior to collecting the untouched neutrophils in a clean tube. 

For CD8+ memory T cell isolation, PBMCs were first isolated by density gradient centrifugation 
using Ficoll-Paque™ Plus (Cytiva). After washes, cell counts were obtained using a Vi-Cell XR 
cell viability analyzer (Beckman Coulter). Actual isolation was performed using a CD8+ Memory 
T Cell Isolation Kit (Miltenyi Biotec) per the manufacturer’s instructions. Briefly, PBMCs were 
incubated at 4°C for 10 min with a cocktail of biotin-conjugated monoclonal antibodies against 
CD4, CD11c, CD14, CD15, CD16, CD19, CD34, CD36, CD45RA, CD56, CD57, CD61, CD123, 
CD141, TCRgd and CD235a. After washing, cells were resuspended in a solution of anti-biotin 
magnetic microbeads and incubated for 15 min at 4°C. After another wash, magnetic separation 
was performed using LS columns (Miltenyi Biotec), and we collected the cell fraction 
corresponding to CD45RO+CD45RA-CD56-CD57-CD8+ T cells. 

Finally, isolated neutrophils and CD8+ memory T cells were resuspended in RNAprotect Cell 
Reagent (Qiagen) for RNA extraction. 

Library preparation, RNA sequencing, and data processing 
Libraries were prepared using the Clontech SMARTer Stranded Total RNA-Seq  v2 kit (Takara 
Bio) according to manufacturer instructions. Paired-end RNA sequencing of all in vitro 
admixtures and purified samples was performed by MedGenome Inc, by pooling the indexed 
libraries across four lanes of an Illumina NovaSeq S4 flowcell. 
 
Estimated transcript read counts and transcripts per million (tpm) were generated via pseudo-
alignment with Kallisto v0.46.0 to hg38 using Homo_sapiens.GRCh38.cdna.all.idx. A translation 
table of Ensembl transcript ID to Ensembl gene ID and gene symbol was derived using biomaRt 
and stored on the Synapse platform at syn21574276. Estimated gene read counts and counts 
per million were calculated as the sum of transcript counts and tpms, respectively, associated 
with the gene via the translation table. 

Training data curation 
Participants were provided with a curated list of purified expression profiles in GEO.40 GEO 
annotations were queried using regular expressions corresponding to cell populations of interest 
(e.g., with patterns “T.reg”, “regulatory”, and “FOXP3” for regulatory T-cells). Specifically, GEO 
annotations for fields “source_name” or involving “characteristic” (e.g., “characteristics_ch1”) 
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were accessed via GEOmetadb in R.41 Cell type patterns are available at: 
https://github.com/Sage-Bionetworks/Tumor-Deconvolution-
Challenge/blob/master/scripts/training-data-curation/phenotypes-to-query.tsv. Matches identified 
via grepl were manually curated, resulting in tables associating cell populations with GEO 
samples. These were further summarized according to dataset, listing the cell populations and 
the number of cell populations represented by each dataset. This was intended to help 
participants prioritize datasets representing many or multiple cell types of interest. Per-sample 
and per-dataset tables were created separately for microarray (Table S10, 
https://www.synapse.org/#!Synapse:syn18728081, and 
https://www.synapse.org/#!Synapse:syn18728088) and RNA-seq (Table S11, 
https://www.synapse.org/#!Synapse:syn18751454, and 
https://www.synapse.org/#!Synapse:syn18751460) platforms. Microarray expression datasets 
were identified as those having ‘Expression profiling by array’ in ‘type’ field of the ‘gse’ SQLite 
table available in GEOmetadb and as being assayed in human [i.e., as having the pattern 
‘sapiens’ in the ‘organism’ field of the ‘gpl’ (platform) SQLite table]. RNA-seq expression 
datasets were similarly identified as having ‘Expression profiling by high throughput sequencing’ 
in the ‘gse’ table and as being assayed in human. Additionally, RNA-seq datasets were limited 
to those generated on Illumina platforms (i.e., as having a pattern of ‘illumina’ in the ‘title’ field of 
the ‘gpl’ table), specifically the HiSeq (with pattern ‘hiseq’ in the ‘title’ field) or NextSeq (with 
pattern ‘nextseq’ in the ‘title’ field) platforms. Participants were provided only identifiers of GEO 
datasets (GSMxxx) and samples (GSExxx). In particular, cross dataset normalization to account 
for batch effects was not performed, but rather was left to participants.  

Unconstrained admixture generation 
Unconstrained admixtures were defined in two stages: (1) a broken-stick approach partitioned 
the entire admixture across n cell types and (2) the proportion of each cell type c was restricted 
to be within minc and maxc. In particular, for n cell types contributing a proportion p <= 1 (i.e., 
100%) of the admixture total, the range 0 to p was randomly broken into n segments by 
choosing n-1 boundaries of those segments. The n-1 boundaries were uniformly sampled 
between a minimum cell population size of 0.01, i.e., 1%, and p in fixed-sized steps (of 0.01 
unless otherwise specified), thus ensuring that each of the n populations was represented at a 
frequency of at least 1%. The resulting candidate proportions were excluded if the proportion pc 
for any of the n cell types c was outside the bounds [minc, maxc]. minc was set to 0 and maxc 
was set to 1 (i.e., 100%), unless otherwise specified. Setting p < 1 allows the remaining 1-p 
proportion to be allocated to an (n+1)st cell type, e.g., fixing a spike in population at proportion 1-
p.  

Biological admixture generation 
Biologically-constrained admixtures were defined such that cell population proportions were 
within biologically-reasonable limits, in particular those detected by CyTOF in PBMCs and 
aggregated in the 10,000 Immunomes (“10KIP”) database 42  (downloaded on July 9, 2018), 
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observed in single-cell (sc)RNA-seq studies of breast cancer (“Azizi”43) or melanoma 
(“Tirosh”44), or inferred by CIBERSORT in the “Thorsson” TCGA pan-cancer study.45  
 
As none of these resources included all (coarse- or fine-grained) cell types to be deconvolved, 
several were combined in a hierarchical fashion. Two such hierarchical models, one based on 
the Thorsson study and the second based on the Azizi study, were created. At each level of the 
hierarchy, the models defined a minimum and maximum proportion for each population relative 
to its parent population. The minimum and maximum proportions for a particular cell type in a 
particular dataset were defined as two standard deviations above (~98th percentile) or below 
(~2nd percentile), respectively, the mean of proportions observed for that cell type in that 
dataset. The root of the model corresponds to the admixture of n cell populations. In both 
hierarchical models, the entire admixture was partitioned into cancer cell, leukocyte, and non-
leukocyte stromal compartments, with minimum and maximum proportions for each 
compartment defined using the Thorsson study. Specifically, from the stromal fraction (SF), or 
total non-tumor cellular fraction, and the leukocyte fraction (LF) defined by Thorsson, we define 
the cancer cell proportion as 1 - SF, the leukocyte proportion as LF, and the non-leukocyte 
stromal proportion as 1 - SF - LF. Both hierarchical models next subdivided the non-leukocyte 
stromal compartment into (cancer associated) fibroblasts and endothelial cells using proportions 
of single cells observed in the Tirosh study. The original publication noted that four samples 
(CY58, CY67, CY72, and CY74) were experimentally enriched for immune infiltrates (CD45+). 
As such, the proportions inferred from them would not have represented cellular proportions 
relative to the entire cellular population. Hence, we excluded from analysis these samples, as 
well as CY75, which also did not have any tumor cells. 
 
The Thorsson-based hierarchical model subdivided the leukocyte component into those inferred 
using CIBERSORT in the original study. Specifically, the leukocyte fraction was subdivided into 
the following sub-compartments: memory CD4+ T (i.e., T.Cells.CD4.Memory.Activated + 
T.Cells.CD4.Memory.Resting in the original publication), naïve CD4+ T (i.e., 
T.Cells.CD4.Naive), regulatory CD4+ T (i.e., T.Cells.Regulatory.Tregs), CD8+ T (i.e., 
T.Cells.CD8), memory B (i.e., B.Cells.Memory), naïve B (i.e., B.Cells.Naive), natural killer (i.e., 
NK_cells), neutrophils (i.e., Neutrophils), dendritic cells (i.e., Dendritic.Cells.Activated + 
Dendritic.Cells.Resting), monocytes (i.e., Monocytes), and macrophages (i.e., Macrophages.M0 
+ Macrophages.M1 + Macrophages.M2). Finally, the CD8+ T cell proportion was subdivided into 
memory and naïve CD8+ T cells using the KIP database. 
 
The Azizi-based hierarchical model subdivided the leukocyte component into those reported in 
the Azizi study, specifically: T (i.e., T.cell in the original study), B (i.e., B.cell), natural killer (i.e., 
NK.cell), neutrophils (i.e., Neutrophil), dendritic cells (i.e., DC), monocytes (i.e., Monocyte), 
macrophages (i.e., Macrophage). Using the KIP database, the T cell compartment was further 
subdivided into memory, naïve, and regulatory CD4 T cells and memory and naïve CD8+ T 
cells, while the B cell compartment was further subdivided into memory and naïve B cells.  
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A single, final model was created from the Thorsson and Azizi models with minimum proportion 
for cell type c as the maximum of 0.01 and the minimum of the two model minimums for cell 
type c and with the maximum proportion as the maximum of the two model maximums.  
 
The biologically-constrained admixtures were generated using the “Hit and Run” Markov Chain 
Monte Carlo (MCMC) method for sampling uniformly from convex samples defined by linear 
(equality and inequality) constraints, as implemented in the hitandrun library in R 
(https://github.com/gertvv/hitandrun). The system of linear constraints included a variable for 
each of the n populations. As in the unconstrained admixtures, the corresponding n proportions 
sum to p <= 1, with p < 1 allowing the remaining 1-p proportion to be allocated to an (n+1)st cell 
type. The resulting equality constraint was passed to the solution.basis function, whose 
output was in turn passed to the createTransform function. 2n linear inequality constraints 
were defined from the minimum and maximum proportions of each of the n populations. These 
were passed along with the output of createTransform to the transformConstraints 
function. An initial guess was created by passing these transformed constraints to 
createSeedPoint along with arguments homogeneous=TRUE and randomize=TRUE. 
Admixtures were sampled by passing the resulting seed and the transformed constraints to the 
har function along with parameters N, the number of iterations to run, set to 1000n3 and 
N.thin, the thinning factor indicating how many iterations to skip between samples, set to n3.  

Selection of extremal candidate admixtures 
Unless otherwise indicated, we ordered candidate admixtures so as to prioritize those most 
different from another. In particular, we select as the first two candidate admixtures those having 
maximum sum of squared (proportion) differences. Then, we greedily selected admixtures that 
maximized the minimal sum of squared differences to those admixtures already selected.  

In vitro validation admixture generation 
60 biological admixtures and 36 unconstrained admixtures were defined using the procedures 
described in “Biological admixture generation” and “Unconstrained admixture generation,” 
respectively, with the exceptions noted below. Admixtures were defined over the cell 
populations having samples with sufficient mass and high RNA integrity number upon first 
assessment (Table S2): breast or colorectal cancer, endothelial cells, neutrophils, dendritic 
cells, monocytes, macrophages, NK, regulatory T, naïve CD4+ T, memory CD4+ T, naïve CD8+ 
T, memory CD8+ T, naïve B, and memory B cells. Admixtures were designed so as to minimize 
batch effects across vendors, with half of the biological and half of the unconstrained admixtures 
assigned immune cells from Stem Express wherever availability allowed (Tables S3 and S4, 
respectively) and the rest assigned immune cells from AllCells wherever availability allowed 
(Tables S5 and S6). However, following subsequent experimental quantification, several cell 
populations (neutrophils, naïve CD8+ T cells, and memory B cells) did not have sufficient 
material for inclusion in the admixtures. As such, the final in vitro admixtures used during the 
Challenge validation phase included: breast or colorectal cancer, endothelial cells, fibroblasts, 
dendritic cells, monocytes, macrophages, NK, regulatory T, naïveCD4+ T, memory CD4+ T, 
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memory CD8+ T, and naïve B cells. The final relative concentrations were rescaled relative to 
those designed computationally after excluding neutrophils, naïve CD8+ T cells, and memory B 
cells. The final in vitro admixtures used during the Challenge validation phase are provided in 
Tables S7 and S8. 
 
Biological admixtures were generated with a fixed tumor proportion 1-p in the range 0.2 to 0.8 in 
steps of 0.01 (i.e., such that the n populations excluding the tumor cells have proportions 
summing to 1-p). This fixed tumor proportion overrode the tumor proportion bounds defined in 
the Thorsson-based and Azizi-based biological models. 
 
To assess the ability of methods to differentiate between closely-related “signal / decoy” pairs of 
cell types (e.g., memory vs naïve CD4+ T cells) and to improve our sensitivity in measuring this 
ability, within each unconstrained in vitro admixture we included a signal cell type with a high 
proportion (minc of 0.2 and maxc of 0.35) and we excluded the decoy cell type (minc and maxc of 
0). For all other non-cancer cell types c, minc was set to 0.01 and maxc to 0.5. We considered 
three ranges of cancer cell proportions: mincancer = 0.2 to maxcancer = 0.3, mincancer = 0.4 to 
maxcancer = 0.5 and mincancer = 0.6 to maxcancer = 0.7. For each combination of these three cancer 
ranges and 11 signal / decoy pairs, we generated 1,000 candidate admixtures. Finally, we 
applied the strategy described in ‘Selection of extremal candidate admixtures’ with a minor 
modification: in each selection round, we only considered candidate admixtures generated for a 
particular signal / decoy pair and we iterated through the list of pairs with each round (recycling 
pairs as necessary). 
 
Table: Signal / decoy cell type pairs 

Source Decoy 

Monocytes Dendritic cells 

Macrophages Monocytes 

Dendritic cells Macrophages 

Naïve CD4+ T cells Memory CD4+ T cells 

Memory CD4+ T cells Naïve CD4+ T cells 

Naïve CD8+ T cells Memory CD8+ T cells 

Memory CD8+ T cells Naïve CD8+ T cells 

Naïve B cells Memory B cells 

Memory B cells Naïve B cells 

Tregs Naïve CD4+ T cells 

Naïve CD4+ T cells Tregs 
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Code to generate the (unconstrained and biological) in vitro validation admixtures is in 
analysis/admixtures/new-admixtures/gen-admixtures-061819.R. The admixture 
expression data (i.e., represented as TPM and as read counts) are in Synapse folder 
syn21821096 and the (ground truth) admixtures are in Synapse folder syn21820011. They are 
the datasets designated ‘DS1’, ‘DS2’, ‘DS3’, and ‘DS4.’ Participants were told the cancer cell 
type included in each dataset (BRCA or CRC), which was BRCA for DS1 and DS3 and CRC for 
DS2 and DS4. 

In silico validation admixture generation 
Insufficient RNA was available to include naïve CD8+ T cells and neutrophils in the in vitro 
admixtures. However, material was available to sequence the purified samples. This allowed us 
to generate in silico admixtures using the above biological and unconstrained procedures, such 
that the final in silico admixtures used during the Challenge validation phase included: breast or 
colorectal cancer, endothelial cells, fibroblasts, dendritic cells, monocytes, macrophages, 
neutrophils, NK, regulatory T, naïve CD4+ T, memory CD4+T, memory CD8+ T, naïve CD8+ T, 
and naïve B cells. Memory B cells were unavailable to be included in either the in vitro or in 
silico admixtures. 
 
For each of the two cancers (breast or colorectal cancer) and each of the two vendor batches 
(i.e., Stem Express-enriched or AllCells-enriched, as described in “In vitro validation admixture 
generation”), we generated 15 coarse- and 15 fine-grained unconstrained admixtures and 20 
coarse- and 20 fine-grained biological admixtures. Unconstrained admixtures were generated 
as described in “Unconstrained admixture generation,” except with a step size of 0.001. Further, 
we did not diversify admixtures by attempting to maximize the distance between them (as 
described  in “Selection of extremal candidate admixtures”). We did diversify the biological 
admixtures, by generating each of the 20 coarse-grained admixtures (and similarly for the fine-
grained admixtures) in five batches and by applying the distance maximization procedure to 
select the four most distant admixtures from those in each batch of MCMC samples. 
 
The transcripts per million (TPM)-based expression of in silico admixtures were generated as 
the weighted sum of the purified TPM expression profiles. For counts-based expression of the 
admixtures, we first normalized the gene counts for each purified sample by the total counts for 
that sample, multiplied by the median across samples of sample total counts to obtain pseudo-
counts on the same scale for each sample, and finally derived the admixtures as the weighted 
sum of the pseudo-counts.  
 
Code to generate the (unconstrained and biological) in silico validation admixtures is in 
analysis/validation_data/qc/generate-validation-in-silico-admixtures.R.  
The admixture expression data (i.e., represented as TPM and as read counts) and (ground 
truth) admixtures are in the same Synapse folders as the corresponding in vitro data — i.e., 
syn21821096 and syn21820011, respectively. They are the datasets designated ‘AA’, ‘AB’, ‘AE’, 
and ‘AF.’ Participants were told the cancer cell type included in each dataset (BRCA or CRC), 
which was BRCA for AA and AE and CRC for AB and AF. 
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Comparator method evaluation 
All comparator methods were executed by Sage Bionetworks (A. L. or B. S. W.) and without 
modification. All methods were passed expression in linear form. 
 
CIBERSORT19 was executed with arguments abs_method = “sig.score”, absmean = 
TRUE, QN = FALSE, and all other arguments default (including absolute = FALSE) via the 
script CIBERSORT.R. Outputs from CIBERSORT were translated into Challenge populations 
according to: 

Challenge population CIBERSORT output 

B.cells B cells naive + B cells memory 

memory.B.cells B cells memory 

naive.B.cells B cells naive 

CD4.T.cells T cells CD4 naive + T cells CD4 memory resting + T cells 
CD4 memory activated + T cells regulatory (Tregs) + T 
cells follicular helper 

memory.CD4.T.cells T cells CD4 memory activated + T cells CD4 memory 
resting 

naive.CD4.T.cells T cells CD4 naive 

regulatory.T.cells T cells regulatory (Tregs) 

CD8.T.cells T cells CD8 + T cells gamma delta 

memory.CD8.T.cells NA 

naive.CD8.T.cells NA 

NK.cells NK cells resting + NK cells activated 

neutrophils Neutrophils 

monocytic.lineage Monocytes + Macrophages M0 + Macrophages M1 + 
Macrophages M2 + Dendritic cells resting + Dendritic cells 
activated 

macrophages Macrophages M0 + Macrophages M1 + Macrophages M2 

monocytes Monocytes 

myeloid.dendritic.cells Dendritic cells resting + Dendritic cells activated 

endothelial cells NA 

fibroblasts NA 

 
 
CIBERSORTx32 was run in two phases: (1) The first phase separates immune cells (expressing 
CD45), endothelial cells (CD31), fibroblasts (CD10), and epithelial / tumor cells (EpCAM) using 
a signature matrix (Supplementary Table 2L of Ref32) derived from FACS purification of these 
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four cell types within 26 surgically-resected primary non-small cell lung cancer biopsies. (2) The 
second phase further divides the immune compartment into the 22 immune sub-populations 
represented by the same LM22 signature matrix originally published with CIBERSORT.19 In both 
cases, CIBERSORTx was executed using the cibersortx/fractions docker container obtained 
from https://cibersortx.stanford.edu/, with arguments  --rmbatchBmode TRUE --perm 1 -
-verbose TRUE --QN FALSE. The --sigmatrix parameter was used to specify the 
appropriate signature matrix.  
 
Outputs from the two phases of CIBERSORTx were translated into Challenge populations by 
scaling the output of LM22 phase by the CD45 output from the first phase according to: 

Challenge population CIBERSORTx output 

B.cells CD45 * [ B cells naive + B cells memory ] 

memory.B.cells CD45 * [ B cells memory ] 

naive.B.cells CD45 * [ B cells naive ] 

CD4.T.cells CD45 * [ T cells CD4 naive + T cells CD4 memory resting + 
T cells CD4 memory activated + T cells regulatory (Tregs) 
+ T cells follicular helper ] 

memory.CD4.T.cells CD45 * [ T cells CD4 memory activated + T cells CD4 
memory resting ] 

naive.CD4.T.cells CD45 * [ T cells CD4 naive ] 

regulatory.T.cells CD45 * [ T cells regulatory (Tregs) ] 

CD8.T.cells CD45 * [ T cells CD8 + T cells gamma delta ] 

memory.CD8.T.cells NA 

naive.CD8.T.cells NA 

NK.cells CD45 * [ NK cells resting + NK cells activated ] 

neutrophils CD45 * [ Neutrophils ] 

monocytic.lineage CD45 * [ Monocytes + Macrophages M0 + Macrophages 
M1 + Macrophages M2 + Dendritic cells resting + Dendritic 
cells activated ] 

macrophages CD45 * [ Macrophages M0 + Macrophages M1 + 
Macrophages M2 ] 

monocytes CD45 * [ Monocytes ] 

myeloid.dendritic.cells CD45 * [ Dendritic cells resting + Dendritic cells activated ] 

endothelial cells CD31 

fibroblasts CD10 
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EPIC20 was executed using the EPIC function from the EPIC R library, with the arguments 
reference = “BRef” and mRNA_cell = FALSE.  
 
Outputs from EPIC were translated into Challenge populations according to: 

Challenge population EPIC output 

B.cells Bcells 

memory.B.cells NA 

naive.B.cells NA 

CD4.T.cells CD4_Tcells 

memory.CD4.T.cells NA 

naive.CD4.T.cells NA 

regulatory.T.cells NA 

CD8.T.cells CD8_Tcells 

memory.CD8.T.cells NA 

naive.CD8.T.cells NA 

NK.cells NKcells 

neutrophils Neutrophils 

monocytic.lineage NA 

macrophages Macrophages 

monocytes Monocytes 

myeloid.dendritic.cells NA 

endothelial cells Endothelial 

fibroblasts CAFs 

 
 
 
 
MCP-counter21 was executed using the MCPcounter.estimate function from the 
MCPcounter R library, with the argument featuresType = ‘HUGO_symbols’. 
 
Outputs from MCP-counter were translated into Challenge populations according to: 

Challenge population MCP-counter output 

B.cells B lineage 

memory.B.cells NA 

naive.B.cells NA 
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CD4.T.cells NA 

memory.CD4.T.cells NA 

naive.CD4.T.cells NA 

regulatory.T.cells NA 

CD8.T.cells CD8 T cells 

memory.CD8.T.cells NA 

naive.CD8.T.cells NA 

NK.cells NK cells 

neutrophils Neutrophils 

monocytic.lineage Monocytic lineage 

macrophages NA 

monocytes NA 

myeloid.dendritic.cells Myeloid dendritic cells 

endothelial cells Endothelial cells 

fibroblasts Fibroblasts 

 
quanTIseq23 was executed using the deconvolute_quantiseq function implemented in the 
immundeconv R library.26 deconvolute_quantiseq was passed the arguments tumor = 
TRUE, arrays = FALSE, and scale_mrna = FALSE. If parameterization of 
deconvolute_quantiseq returned any invalid (“not-a-number”) results, it was re-run with the 
additional argument method = “huber”. 
 
Outputs from quanTIseq were translated into Challenge populations according to: 

Challenge population quanTIseq output 

B.cells B.cells 

memory.B.cells NA 

naive.B.cells NA 

CD4.T.cells T.cells.CD4 

memory.CD4.T.cells NA 

naive.CD4.T.cells NA 

regulatory.T.cells Tregs 

CD8.T.cells T.cells.CD8 

memory.CD8.T.cells NA 
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naive.CD8.T.cells NA 

NK.cells NK.cells 

neutrophils Neutrophils 

monocytic.lineage Macrophages.M1 + Macrophages.M2 + Monocytes + 
Dendritic.cells 

macrophages Macrophages.M1 + Macrophages.M2 

monocytes Monocytes 

myeloid.dendritic.cells Dendritic cells 

endothelial cells NA 

fibroblasts NA 

 
 
xCell (29141660) was executed using the xCellAnalysis function of the xCell R library, 
with the argument rnaseq = TRUE and the argument cell.types.use set to the 
corresponding cell types within each challenge [i.e., to c(“B-cells”, “CD4+ T-cells”, 
“CD8+ T-cells”, “NK cells”, “Neutrophils”, “Monocytes”, “Fibroblasts”, 
and “Endothelial cells”) in the coarse-grained sub-Challenge and to c(“Memory B-
cells”, “naive B-cells”, “CD4+ memory T-cells”, “CD4+ naive T-cells”, 
“Treg”, “CD8+ Tem”, “CD8+ naive T-cells”, “NK cells”, “Neutrophils”, 
“Monocytes”, “DC”, “Macrophages”, “Fibroblasts”, “Endothelial cells”) in 
the fine-grained sub-Challenge]. 
 
Outputs from xCell were translated into Challenge populations according to: 

Challenge population xCell output 

B.cells B-cells 

memory.B.cells Memory B-cells 

naive.B.cells naive B-cells 

CD4.T.cells CD4+ T-cells 

memory.CD4.T.cells CD4+ memory T-cells 

naive.CD4.T.cells CD4+ naive T-cells 

regulatory.T.cells Tregs 

CD8.T.cells CD8+ T-cells 

memory.CD8.T.cells CD8+ Tem 

naive.CD8.T.cells CD8+ naive T-cells 

NK.cells NK cells 
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neutrophils Neutrophils 

monocytic.lineage Monocytes 

macrophages Macrophages 

monocytes Monocytes 

myeloid.dendritic.cells DC 

endothelial cells Endothelial cells 

fibroblasts Fibroblasts 

 

Deconvolution method scoring and comparison 
Pearson and Spearman correlation-based scores were calculated hierarchically for a given 
method : For each cell type  and validation dataset  (i.e., DS1, DS2, DS3, DS4, AA, AB, AE, 
and AF), the correlation between the values predicted by  and the ground truth was calculated. 
These correlations were then averaged over all cell types  to define the score of method  for 
dataset . These dataset-level scores were finally averaged over all datasets  to define the 
aggregate score for method . 
 
To assess scoring differences in the primary metric between a top-performing method  and 
another method , we computed a Bayes factor  over 1000 bootstrap samples and 
considered  as indicating a significant difference. More specifically, we bootstrap 
sampled (i.e., sampled with replacement) prediction scores separately within each dataset (i.e., 
DS1, DS2, DS3, DS4, AA, AB, AE, and AF), calculated a Pearson correlation-based score  
between the predictions in bootstrap sample  for method  and the corresponding ground truth 
values (and similarly for  and method ), and calculated  as 

 
where  is the indicator function that equals  if and only if  is true and is  otherwise. A tie 
between methods  and  (i.e.,  ) would have been resolved using the secondary 
Spearman correlation-based metric. However, this did not occur in the first submission results. 
Distributions, medians, and means over the  are reported for the Pearson correlation-based 
scores in the figures (e.g., Fig. 2A) and main text in lieu of a single score on the original 
validation data. Similar bootstrapped distributions, medians, and means were calculated for the 
Spearman correlation-based scores and are likewise reported. 

Intra-sample deconvolution method assessment 
We assessed prediction performance across cell types within samples for those methods  
outputting normalized scores ( CCB, D3Team, NYIT_glomerular), proportions (Patrick), and 
fractions (Aginome-XMU, Biogem, CIBERSORTx, DA_505, HM159, IZI, jbkcose, jdroz, LeiliLab, 
NPU,REGGEN_LAB, Rubbernecks, Tonys Boys, xCell). We computed the Pearson correlation, 
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Spearman correlation, and root-mean-square-error (RMSE) across cell types within a sample. 
To assess ties across teams, we fit a linear model whose response was the metric value and 
whose dependent variable was the team. The top-scoring team (based on ordering of the 
median value across samples) was used as the reference in the linear model, which was fit 
using lm in R. Teams were considered tied with the top performer if their corresponding t-
statistic p-value was > 0.05, as computed from the model fit using summary. 
 
Several outliers were excluded from the RMSE sub-plots of Fig. 4 (Patrick from Figs. 6A and 
6B and NYIT_glomerular from Fig. 6A). 

Deconvolution method specificity assessment 
To assess deconvolution method specificity, we calculated the (min-max) normalized prediction 
for a cell type c in a sample s’ purified for some cell type c’. These normalized predictions are 
displayed in the heatmap of Fig. 7A, with cell types as columns and samples as rows. 
Predictions were normalized so as to be comparable across methods independent of the scale 
of the prediction (e.g., both unnormalized scores comparable across samples and proportions 
comparable across samples and cell types). The min-max normalization of a prediction pred(c’, 
s’, m) for cell type c’, method m, and purified sample s’ was defined as  
[	𝑝𝑟𝑒𝑑(𝑐, 𝑠′,𝑚) 	−	𝑚𝑖𝑛!""	𝑝𝑟𝑒𝑑(𝑐, 𝑠′′, 𝑚) ]	/	[	𝑚𝑎𝑥!""	𝑝𝑟𝑒𝑑(𝑐, 𝑠′′, 𝑚) −	𝑚𝑖𝑛!""	𝑝𝑟𝑒𝑑(𝑐, 𝑠′′, 𝑚) ]. 

“Spillover” into (predicted) cell type c for method m was calculated as the above normalized 
prediction for cell type c and method m averaged over samples s’ purified for some cell type c’ !"
c (i.e., the mean of the column corresponding to cell type c in Fig. 7A that excludes elements in 
which c is in the sample corresponding to the row). These spillovers were then averaged over 
sub-Challenges and the resulting distributions were plotted in Fig. 7B. Distributions of spillovers 
over cell types are plotted for each method in the coarse- (Fig. 7C) and fine-grained (Fig. 7D) 
sub-Challenges. 
 
Code to generate the format the purified expression profiles is in analysis/specificity-
analysis/create-spillover-dataset.R.  
The processed expression data (i.e., represented as TPM and as read counts) and the (ground 
truth) admixtures are in Synapse folder syn22392130. 

Deconvolution method sensitivity assessment 
To assess deconvolution method sensitivity in detecting each cell type c, we generated in silico 
admixtures in which we computationally spiked in c at regular proportions. We considered 49 
spike-in levels from 0% to 0.1% in increments of 0.01%, from 0.1% to 1% in increments of 0.1%, 
from 1% to 20% in increments of 1%, and from 20% to 40% in increments of 2%. Cancer cells 
were neither used as spike ins nor included within the admixtures. Otherwise, all cell types with 
available purified expression profiles were included, namely endothelial cells, fibroblasts, 
dendritic cells, monocytes, macrophages, neutrophils, NK, regulatory T, naïve CD4+ T, memory 
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CD4+ T, memory CD8+ T, naïve CD8+ T, and naïve B cells. Expression profiles of in silico 
admixtures were generated as described in “In silico validation admixture generation.”  
 
We defined the limit of detection (LoD) for cell type c and method m as the least frequency at 
and above which m’s prediction for c is statistically distinct from the baseline admixture (0% 
spike in). We assessed statistical significance using the Wilcoxon test as implemented in the 
compare_means function of the ggpubr library and using a raw (uncorrected) p-value cutoff of 
0.01.  
 
We generated both unconstrained and biological admixtures, using both fine- and coarse-
grained populations. For unconstrained admixtures, we used the broken stick procedure 
described in “Unconstrained admixture generation,” except with a step size of 0.001 and without 
diversifying admixtures as described in “Selection of extremal candidate admixtures.” For each 
of the two vendor batches (i.e., Stem Express-enriched or AllCells-enriched, as described in “In 
vitro validation admixture generation”) and each spike in level s, we generated five coarse- and 
five fine-grained unconstrained admixtures such that the proportions of the n populations 
summed to 1-s. We used these same five admixtures for each of the spike-in experiments by 
simply assigning the population with fixed proportion s the name of the population to be spiked 
in.  
 
For unconstrained coarse-grained populations, we wanted to fix the level of the parental 
population (e.g., CD8+ T cells) rather than the sub-populations comprising it (i.e., memory and 
naïve CD8+ T cells). We defined coarse-grained admixtures at the level of the coarse-grained 
populations, but to concretely instantiate them we distributed the proportion of each parental 
population into its corresponding sub-populations. We did so by randomly dividing the 
proportion into m sub-populations using a flat Dirichlet distribution (using the rdirichlet 
function in the dirichlet library) whose m parameters were set to 1/m.  
 
We generated biological spike-in admixtures using a similar approach as for the unconstrained 
spike-in admixtures, except using the procedure described in “Biological admixture generation.” 
For each of the two vendor batches, we generated five coarse- and five fine-grained 
unconstrained admixtures such that the proportions of the n populations summed to 1-s. We 
again used a Dirichlet distribution to distribute proportions from a parental population to sub-
populations. For both coarse- and fine-grained admixtures, we diversified the admixtures as 
described in “Selection of extremal candidate admixtures.” 
 
Code to generate the in silico spike in admixtures is in analysis/in-silico-
admixtures/generate-in-silico-admixtures.R.  
The processed expression data (i.e., represented as TPM and as read counts) and the (ground 
truth) admixtures are in Synapse folder syn22361008. 

Ensemble method 
We sought to define an ensemble method to aggregate predictions across all participant and 
comparator methods. Since the scales of predicted values vary according to the type of method 
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output (scores, normalized scores, or fractions), we decided to aggregate the ranks of the 
predicted values across methods rather than the predicted values themselves. This is an 
instance of the consensus ranking, or social choice, problem in which we seek a ranking that 
summarizes the individual rankings of n judges (or, in our case, methods) for m objects (here, 
samples). We could define a consensus rank-based ensemble method using ConsRank,46 for 
example, which uses heuristic algorithms to define one or more consensus rankings. However, 
as the (approximate) solutions are not guaranteed to be unique, we decided instead to take the 
more straightforward and more computationally-efficient approach of simply defining the 
ensemble ranking as the mean of the individual rankings. 
 

Aginome-XMU deconvolution method 

Summary Sentence 

We used a deep learning-based prediction model for cell fraction prediction from bulk RNA-seq 
data. 

Introduction 

Numerous computational deconvolution methods have been proposed to estimate the 
abundance of individual cell types from bulk RNA-seq data of heterogeneous tissues. 
Unfortunately, there are still many difficulties hindering the performance of these algorithms, 
such as the collinearity of expression from different cell types, lack of specific marker genes, 
and the difficulty in dealing with batch effects of technical variation of data from different 
platforms. 

In recent years, we have witnessed a paradigm shift in the machine learning community. In 
contrast to traditional feature engineering approaches where feature extraction and 
classification are optimized separately, new techniques based on learning internal 
representations from data directly have been explored. These data-driven approaches, 
especially deep learning, have allowed significant research breakthroughs and have rapidly 
spread across multiple application domains such as computer vision, audio recognition, and 
human language processing. 

In this work, we hypothesized that by using deep learning, we could capture the intrinsic 
relationship between cellular composition of tissue and its bulky gene expression profile without 
the need for manual feature selection or marker gene identification. To test this hypothesis, we 
developed a deep learning-based cell type fraction prediction model with in silico mixing training 
data from multiple microarray and RNA-seq (Table S12), as well as scRNA-seq, datasets. We 
tested its performance on our testing sets comprised of nine public datasets (GSE64385, 
GSE65133, GSE106898, GSE107011, GSE64655, GSE127813, SDY67, GSE59654, 
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GSE107990) and datasets from three public leaderboard rounds. We found that the algorithm 
shows better accuracy and stability in comparison with existing methods on our testing sets. 

Methods 

sub-Challenge 1 

Prediction method 

We used a deep learning-based prediction model for cell fraction prediction from bulk RNA-seq 
data. Briefly, we trained deep feed-forward, fully connected neural networks (multilayer 
perceptron networks) on in silico mixed training data. The network consists of one input layer, 
five fully-connected hidden layers and one output layer and was implemented with the PyTorch 
framework (v1.0.1) in Python (v3.7.3). The detailed description of this deep learning-based 
model have been published.33 

In addition to the deep learning-based method, in our submission we use an ensemble method 
to further improve the prediction results. Specifically, we noticed that summarization method 
(MCP-counter21) performs better on neutrophils, fibroblasts, and endothelial cells on our testing 
sets. Therefore, MCP-counter was used to predict the cell type proportion in our second 
submission to sub-Challenge 1. 

Prediction output 

Our deep learning-based method outputs the absolute fraction of target cell types. Hence, the 
results can be compared across both cell types and samples. The method can score all cell 
types present in the sample including immune, stroma and cancer. Non-negative or sum to one 
constraint were currently not enforced in our model. As the deep learning model produces 
absolute cell fraction prediction, the fraction of “other” cell types can be calculated by 
subtracting the total of the predicted fractions of all the supported cell types from 1. 

Normalization/pre-processing data 

We use min-max scaling to normalize the expression data. In the deep-learning model, we do 
not apply feature selection. Instead, all the available gene expression data, after intersection of 
the genes of the training data with the genes of the test data, were used as our input to the deep 
learning model. 

Training models 

We mixed the purified expressions of 8 cell types in random proportions, and at the same time 
mixed a part of the unknown cell lines (e.g., cancer cell line). These purified expression samples 
came from microarray, RNA-seq, scRNA-seq. The expression of a simulated sample  was 
calculated as 
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, 
where  is the number of cell types involved in mixing, ,  are random variables 
with Dirichlet distribution that determined the fractions of different cells in the in silico mixed 
sample, and  is the expression profile of a randomly selected purified sample of cell type  
from the respective RNA-seq or microarray dataset.  

For scRNA-seq dataset,  is given by 

, 

where  is the number of cells of type  extracted randomly from scRNA-seq 
datasets for mixing, and  denote their expression profiles. Note that in this case  were further 
TPM-normalized before used as training data. 

In this way, the expression of heterogeneous samples in the real-world tumor microenvironment 
is simulated, and large number of samples can be generated as training data. 

In addition, we also used a previously-described33 in silico mixing method to expand a large 
number of training samples through mixing RNA-seq dataset SDY67 with ground truth and 
scRNA-seq data. 

We used bagging to select 30%-100% training datasets for model training. In model training, we 
used cross-validation through selecting 20% training data as a validation set to evaluate the 
training degree of the model. We used early stopping such that training is stopped when the 
loss on the validation set is not reduced after 10 epochs. 

sub-Challenge 2 

We used a similar approach as in sub-Challenge 1 to create our prediction model. The only 
exception is that in our third submission, xCell24 was used to create prediction of cell type 
myeloid dendritic cells as it performs better than other methods on this cell type on our testing 
sets. 

Results 

Table: Pearson correlation results of the coarse-grained cell type deconvolution track 

Team Aginome-XMU Aginome-XMU 

objectId 9704292 9704388 

submission first submission second submission 
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B.cells 0.894/DNN 0.894/DNN 

CD4.T.cells 0.862/DNN 0.862/DNN 

CD8.T.cells 0.896/DNN 0.896/DNN 

monocytic.lineage 0.931/DNN 0.931/DNN 

NK.cells 0.826/DNN 0.826/DNN 

neutrophils 0.94/DNN 0.993/MCP-counter 

fibroblasts 0.851/DNN 0.98/MCP-counter 

endothelial.cells 0.864/DNN 0.98/MCP-counter 

Grand mean 0.883 0.92 
 
In the coarse cell type track, we made two submissions. In the first submission, we use a deep 
learning-based prediction model as described above on all cell types. For each cell type, we 
chose the best model that achieved the highest Pearson correlation results on our testing 
datasets. The grand mean of the Pearson correlation over all cell types was 88.3%. 

We noticed that on our testing datasets, the deep learning-based model did not outperform 
marker gene-based models such as MCP-counter on some cell types, namely, neutrophils, 
fibroblasts, and endothelial cells. We believe that these cell types have highly specific marker 
genes, therefore it is relatively easy to predict using marker gene-based models. Therefore, we 
replaced the method with MCP-counter on these three cell types to profile the abundance of the 
cells in the second submission. The grand mean of the Pearson correlation over all cell types 
increased to 92% in this submission. 

Table: Pearson correlation results of the fine-grained cell type deconvolution track 

Team Aginome-XMU Aginome-XMU Aginome-XMU 

objectId 9704261 9704399 9704690 

submission first submission second submission third submission 

naive.B.cells 0.939/DNN 0.939/DNN 0.939/DNN 

naive.CD4.T.cells 0.771/DNN 0.771/DNN 0.771/DNN 

memory.CD4.T.cells 0.523/DNN 0.523/DNN 0.523/DNN 

regulatory.T.cells 0.8/DNN 0.8/DNN 0.8/DNN 

naive.CD8.T.cells 0.875/DNN 0.868/DNN 0.875/DNN 
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memory.CD8.T.cells 0.645/DNN 0.573/DNN 0.645/DNN 

NK.cells 0.91/DNN 0.91/DNN 0.91/DNN 

monocytes 0.733/DNN 0.733/DNN 0.733/DNN 

myeloid.dendritic.cell
s 

0.468/DNN 0.468/DNN 0.815/xCell 

macrophages 0.672/DNN 0.672/DNN 0.672/DNN 

neutrophils 0.915/DNN 0.999/MCP-counter 0.999/MCP-counter 

fibroblasts 0.928/DNN 0.981/MCP-counter 0.981/MCP-counter 

endothelial.cells 0.95/DNN 0.979/MCP-counter 0.979/MCP-counter 

Grand mean 0.779 0.786 0.819 
 
In the fine cell type track, we made three submissions. In the first submission, we used a deep 
learning model to predict the fraction of 13 fine cell types. The grand mean of the Pearson 
correlation was 77.9%. To further improve the performance, we replaced deep learning-based 
model with MCP-counter for three cell types (neutrophils, fibroblasts, and endothelial cells) on 
which marker gene-based model performs better than deep learning-based model in the testing 
set, and obtained a grand mean of 78.6%. In the final submission, we further replaced the 
model for myeloid dendritic cells to xCell, which performed very well on this cell type in our test 
data. The final grand mean score was 81.9%. 

Conclusion/Discussion 

Looking forward, we believe that the following points can be further elaborated to improve the 
cell fraction deconvolution performance. 

First, we used all the gene expression data for genes available in both training and testing 
datasets as the input of our prediction model. However, further analysis showed that different 
genes contribute differently to the prediction results. Therefore, it is possible to significantly 
reduce the number of genes used as prediction input by identifying a small subset of genes that 
contribute most to the prediction results. 

Secondly, we found that although the deep learning-based model performs relatively well on all 
cell types, for some cell types, shallow models such as MCP-counter or xCell perform better. 
Therefore, it seems that both deep and shallow models provide complementary information to 
some extent, and a late fusion strategy to combine both models could potentially be used to 
further improve the performance. Note that although shallow models such as MCP-counter or 
xCell perform better on those cell types, they do not produce absolute cell fractions as the deep 
learning-based model does. Hence, the late fusion strategy could potentially bring additional 
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advantage to unify different kinds of output scores to absolute scores that can be compared 
across cell types and samples. 

Finally, as suggested in reported results,33 it may be challenging to produce a “one-size-fits-all” 
prediction model that consistently performs well across datasets of different sources due to the 
existence of batch effects and technical variations from different experiment sites. A better 
solution seems to be training a “dataset-specific prediction model”. Preliminary results on 
datasets with a small number of calibration samples with ground truth cell fractions are very 
promising in our experiments. 

 

DA_505 deconvolution method 

Summary Sentence 

Our method utilizes Random Forest regression to select the most significant features associated 
with cell-type proportions and (support vector or penalized linear) regression to predict different 
cell type proportions in complex RNA admixtures using a novel approach to normalize and mix 
samples of purified cell types. 

Background/Intro 

Usually, RNA-Seq gene expression analysis is approached by applying a plethora of scaling 
and normalization methods to the sample's raw counts to apply different data analysis methods 
on the processed estimates. Although current techniques have proven to be solid and robust, 
many rely on inter-sample information gathering to perform their normalization procedures such 
as quantile normalization or using the library size to scale the expression counts (Voom 
normalization). This presents great obstacles when these methods are applied to samples that 
share the same biological origin but are from different technical contexts. These issues 
represent a great obstacle not only when we want to train a model using multiple datasets from 
different research centers, but also when we wish to apply our prediction models to new unseen 
samples from different centers or as isolated cases (i.e., when we desire to apply the model as 
a product to aid medical diagnosis and decide treatment). 

Here we propose a normalization method to adjust count values measured on different scales 
into a common scale disregarding the sample counts’ prior probability distribution or library size, 
utilizing a transformed ranking system under the assumption that the features expression order 
in a given sample would be unaltered under different scales and probability distributions. In 
particular, this approach allowed us to mix RNA-Seq experiments of purified cell lines into 
complex admixtures to train different machine learning models to predict cell-type proportions in 
new unseen cases. 
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To test our hypothesis we trained three mainstream Machine Learning models for each cell type 
using the admixtures created from 23 different datasets of bulk RNA-Seq experiments of 
purified cell types. Partial Least Squares (PLS), Penalized linear regression (GLMNET), and 
Support Vector Regressors (SVR) were used combined with a feature selection approach using 
Random Forest (RF) to reduce the dimensionality of the problem. 

Methods 

In both sub-Challenge 1 and sub-Challenge 2 the same approach was used with a variation in 
the creation of the admixtures used to train the models. In both cases, our approach performed 
well, which shows the versatility of the framework proposed. 

Intuitively, the workflow can be divided into three phases: 1) Data curation, downloading, and 
pre-processing. 2) Data normalization, quality control and admixture creation, and 3) model 
training, hyperparameter tuning, and model selection. Since the SVR was the model with the 
best results, we will describe only that model here. The SVR model was used for our third 
submissions, whereas GLMNET was used for our first two submissions. The whole workflow is 
depicted in Fig. S2 and each step will be explained in the subsequent sections. 

Normalization/pre-processing data 

We believe that the most important step in our framework was the data pre-processing and 
normalization. 

To train our model 23 different sequencing datasets were manually curated and download from 
public repositories where purified immune, stromal, and cancer cell types from different origins 
and conditions were sequenced using different sequencing platforms (Genome Analyzer II, 
NextSeq500, Hiseq2000, 2500, 4000, Novaseq600, etc). The selection criteria to choose the 
different experiments were: 

● Human isolated stromal, immune or cancer cell types 
● No molecular modifications of the cells were performed on the samples 
● The samples represent biologically plausible conditions 

Once downloaded, samples were manually labeled in a unified coarse-grain or fine-grain 
classification. For the coarse-grain class the subtypes “cancer”, “fibroblast”, “endothelial”, “NK 
cells”, “Neutrophils”, “monocytic lineage”, “B cells”, “CD4 T cells”, “CD8 T cells” and 
“Adipocytes” were considered. Other cell types present in the used datasets were classified as 
“others”. For the fine-grain labels, immune cells were further categorized. “Monocytic lineage” 
was divided into “monocytes”, “macrophages” and “myeloid dendritic cells”. B, CD4, and CD8 
cells were further classified into “naïve” and “memory”, and the “regulatory T cell” label was also 
included for CD4 cells. Also, the “others” label was used. 

The metadata of the datasets is included in Table S13.  
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Once all the samples were downloaded, a quality control analysis was performed upon all 
available samples using FASTQC software.47 

After performing the first fastqc analysis we noticed that some sample sets, e.g. ERP002049, 
had samples with reads of very poor quality which lead us to trial a series of trimmomatic 
settings to filter out poor quality reads.48 Our strategy was to seek a balance between achieving 
the highest quality and retaining the most number of fragments possible for each sample. As the 
alignment software used (Kallisto) only looks for exact matches,49 we placed strong value on 
high quality reads to reduce the possibility of misalignments. By default Kallisto uses 31 bp 
kmers to align the reads to features, considering this we opted for a MINLEN setting of 36 and 
used the trimmomatic MAXINFO option to perform an adaptive quality trim, balancing the 
benefits of retaining longer reads against the costs of retaining bases with errors. Using these 
settings mean fragment lengths for each sample set typically ranged from 40 - 49 bp. Eight 
samples from SRP031776 had read lengths of 27bp before trimming and were omitted from our 
analysis. 

Kallisto pseudoalignment requires the strandedness of the library to be provided, which we 
verified prior to transcript count quantification using Kallisto’s default parameters. The transcript 
– count matrix was then collapsed to a gene – count matrix using the tximport R package.50  

Once the count matrix was obtained, all samples were normalized using an ad-hoc developed 
normalization procedure we named ‘RHINO’. The rationale behind this approach is based on 
the observation of methods that use library size to scale counts, such as Voom transformation,51 
usually perform satisfactorily when comparing samples from the same origin, but fails to correct 
probability distribution differences between samples from different experimental contexts. Due 
to this observation, other widely used methods (i.e. quantile normalization) rely on taking all the 
samples to a single probability distribution under the assumption that all the sample counts 
come from the same underlying distribution. This second approach usually corrects satisfactorily 
the inequalities found from different sample centers, nevertheless, it fails to correct for 
systematic overdispersion of the counts from low expression genes (own observations, 
manuscript under preparation). 

Taking these observations into consideration, we propose a new transformation method to 
normalize sample counts across datasets of different origins; 

 

Where  is the count matrix of a given sample with dimensions , with  being the number 
of features in the count matrix. With this method, we only take into account the ranks of the 
expressed features using the ‘max’ form to account for ties in the rankings. 

Once samples were collected and normalized, a sample selection procedure was performed to 
discard possible low quality or mislabeled purified samples. Briefly, a penalized multinomial 
classifier was trained with the complete dataset. Then, we selected the non-zero coefficients of 
the model and used this subset of features to calculate Pearson’s distance between samples. 
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Since some cell types might be similar or related in their origin (for example CD4 and CD8 T 
cells), we used a community detection clustering approach to detect communities of samples 
from the same origin. In particular, samples with Pearson’s correlation coefficients greater than 
0.8 were considered to be similar, information that was used to perform a Louvain clustering 
procedure that detected clearly defined communities of unique cell populations.52 Samples 
belonging to these clearly defined clusters were used to create the admixtures while samples 
not falling into these groups were discarded. 

Once the prototypic samples for each cell type were defined, 75% of the samples of each cell 
population were used in a training set, and the remaining 25% of the samples were used as a 
validation set to perform parameter tuning. 

To create the admixtures to perform the model training, a data augmentation approach was 
used where samples from within the same cell type population were mixed to create ‘new’ 
purified samples, and these ‘new’ samples were mixed in silico with samples from other cell 
populations in known proportions to create a training and validation admixture set of 2000 and 
500 samples respectively. 

Using these two sets a Random Forest (RF) for feature selection was performed.53  

The RF algorithm consists of a collection of tree-structured regressors. In general, each tree 
grows with respect to a random subset of the input dataset independent and identically 
distributed. The strategy known as Random Input Selection (RIS) is used to generate different 
trees. The algorithm chooses randomly a subset S with M features from the original set of n 
features and seeks within S the best feature to split a node of the tree according to some purity 
measure. Therefore a regression tree is found with M feature subset for each subset S. The 
final output for a given input data point is calculated using the average of all the regression trees 
predicted values. The parameters considered during the tuning process of the algorithm are the 
number of trees (ntree) and the number of features considered on each tree (mrty). The 
parameter ntree was fixed in 500 while the mrty was exponentially ranged between 2 and 200. 

By using RF it is possible to obtain a rank of the most important features used for the 
deconvolution problem. By default, RF uses the mean decrease impurity and is related to the 
total decrease in node impurity averaged over all trees The use of RF for feature selection over 
linear regressors coefficients is preferred because of its capability of dealing with non-linear 
regression as well as a simple straightforward approach for measuring feature importance. 

Prediction method 

Once we obtained the training and validation In Silico admixtures we decided to use three 
classical regression methods to predict the different cell type proportions under the assumption 
that some features (genes) alone or in combination can act as specific cell subtype biomarkers 
that can be detected over biologically common or unspecific gene expression patterns. The 
three methods tested were Support Vector Regression (SVR), Partial Least Squares (PLS), and 
Penalized Linear regression (GLMNET) but other methods could also be applied. In particular, 
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for each cell line, we trained a model that was fine-tuned using a validation set made out of a 
set of left out samples for this purpose and the decision of the best performing method was 
made by the comparison of the mean Pearson’s correlation coefficient over all cell lines 
prediction in the test sets provided in the first three phases of the challenge. 

Here we will further explain the SVR approach since it was the best performing submitted model 
in the final submission. 

The results of our tested models for the coarse-grained sub-Challenge are here 
(https://rpubs.com/harpomaxx/devcon2020-5-newmix) and for the fine-grained sub-Challenge 
here (https://rpubs.com/harpomaxx/devcon2020-finegrain).  

Support Vector Regression (SVR)54 applies the same support-vectors based approach from 
Support Vector Machines to form a flexible tube of minimal radius around the estimated 
function. The points outside the tube suffer a penalization, but those within the tube will not be 
penalized. One of the advantages of SVR is that it has excellent generalization capability. Also, 
its computational complexity does not depend on the dimensionality of the input space. SVR is 
capable of dealing with non-linear data by simply transforming the data into a different feature 
space by the so-called kernel trick. Since in the deconvolution problem we assumed it can be 
explained by a non-linear regression function, we decided to apply a Gaussian/radial kernel to 
the epsilon-SVR variant: Four parameters were considered during the tuning process: 

cost: cost of constraints violation 

gamma: the inverse of the radius of influence of samples selected by the model as support 
vectors. 

epsilon: Defines a margin of tolerance where no penalty is given to errors. 

Nfeatures: the different number of features according to the rank provided by the Random 
Forest model. 

Prediction output 

The final model consists of a single sub-model for each cell type, so for instance, in both the 
coarse and fine grain sub-Challenges we used an SVR model for each of the cell lineages 
requested, other cell types can be easily added and detected if they are also included in the 
model. For example, some cell types not included in the challenge were also detected and 
estimated in our model, like cancer cells or other polymorphonuclear leukocytes. 

The input to the prediction resulting model is a vector of ‘Rhino’ normalized gene expression 
values (or an expression matrix for multiple samples) and the result is a numeric vector (or 
matrix) with the estimated cell-type proportion of each cell type in the model. In these regards, it 
is important to notice that all the cell type models were trained with the same admixture sets, 
which were bound to contain known purified sample proportions that add up to 1. For instance, 
one training sample could have 0.2 fibroblast, 0.5 B cells and 0.3 of ‘others’ cells while another 
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sample could have 0.5 of endothelial cell and 0.5 of cancer cells, which allowed our model to 
detect different cell type proportions independently one of the other, allowing the possibility of 
having unseen or unknown cell types in the admixtures without affecting the predicted output 
and making the predicted proportions comparable across different cell types. 

This design should limit the results to have a maximum sum of 1 if there are not unknown cell 
types present in the mixture but the sum can be less than 1 if otherwise. Of note, no constraints 
were included in the submitted model but they could be included turning negative prediction to 
be 0 and rescaling the predictions to 1 if the sum of the predictions is greater than 1, although 
these alternatives have not been explored thoroughly. 

Another important issue to address is that the normalization preprocessing of the training 
samples and that to perform predictions on new cases is done using the information within each 
sample independently, which allows the results to be comparable between samples even from 
different centers, which is of great importance when multi-institution studies are designed or 
when analyzing isolated samples for the decision-making process in a practical context (i.e. 
decide treatment in a patient) 

These issues must be further explored and specifically addressed by additional research 
directed at this subject specifically, nevertheless, we believe the rationale of our method is 
supported by the results obtained using this approach within the current study. 

Conclusion/Discussion 

In conclusion, we believe our method yields a very flexible, yet robust, approach to the tumor 
deconvolution problem with several desired features that might be of interest for the community: 

● It includes bulk RNA-seq experiments from a wide range of sequencing platforms and 
different research centers that were successfully used to train well-performing models 
with a reduced set of samples (843 purified samples in total). In these regards, the same 
approach could be applied with a bigger number of samples possibly improving the 
model accuracy or it also could be extended to single-cell RNA-Seq experiments, which 
might be able to detect ‘pure’ cell types that could be used for training the model. 

● It relies on a within-sample normalization procedure that improves the generalization of 
our method and unlocks the prediction of cell-type proportions from single samples 
which could be of great importance in future health applications. 

● It allows the possibility to include new cell types not studied here. 
● It is able to account for unknown cell types in the sample. 
● All the model training can be performed on a desktop computer and does not require 

exceptional computer resources, making it accessible for use by the community and for 
further research and development. 

As future directions, we would like to test our method in real complex tissue samples like tumor 
samples to evaluate the performance of our method in a real context. As a limitation, we know 
that immune, cancer and stromal cells suffer from important changes in their phenotype and 
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gene expression patterns in these complex scenarios and that the isolated samples might not 
represent the true gene expression patterns displayed by the different cell types when they 
interact with each other. 

Also we would like to further validate our proposed normalization procedure “RHINO”, which we 
believe could be added to the transcriptomic analysis toolbox. 

Authors Statement 

M Guerrero-Gimenez designed the overall approach and methodology including the 
normalization procedure. B Lang and M Guerrero-Gimenez curated the datasets and metadata. 
B Lang downloaded the data, performed sample quality control, trimming and Kallisto aligning. 
C Catania aided in the overall design and led the machine learning process of the project 
performing all the model training, hyperparameter tuning, and testing. 

mitten_TDC19 deconvolution method 

Summary Sentence 

We used a score calculated as the sum of the expression of a selected set of markers for each 
sample. 

Background/Intro 

The key idea of the method was to focus on identifying new markers that are predictive of the 
relative cell type fractions. This was achieved by first identifying bulk and single-cell datasets of 
pure cell populations. For single-cell data, we also used non-pure populations and extracted 
pure populations using previously-published methods.34,35 We then used a Monte Carlo 
procedure to create random mixtures and identified genes that correlated better with the 
generated fractions. This took into account the overall distribution of each candidate marker in 
correlating with the cell fraction. 

Methods 

Fourteen pure cell type RNA-seq datasets were collected from GEO (Table S14). Only control 
samples, i.e., samples from healthy human donors without treatment, were retained, except for 
two datasets including samples with breast and colon cancer. Gene expression values were 
converted to TPM if not in TPM originally. To convert Raw data to TPM, gene length information 
was obtained from Gencode v31. 

We used the above datasets of pure-cell types to create training datasets  where  
are genes and are cell  types . We then constructed samples of randomly mixed 
pure cell type populations,  where  is the in silico sample index with fractions 
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. The random fractions  were drawn from a non-uniform distribution enriched for smaller 
fractions. 

Using the  ensemble, we calculated the Pearson correlation coefficient between the 
concentration of cell type   (i.e., ) in the  ensemble and the expression of genes. We kept 
the most correlated genes as   in a signature matrix , and   otherwise. 

In the deconvolution, each dataset , where  is a sample and     is a gene, was converted to 
a linear scale. Each sample   was assigned a score for each cell type  according to 

, which was submitted as a prediction. 

The same method was used for the two sub-Challenges. 

Conclusion/Discussion 

We focused on the selection of markers and used a basic algorithmic approach for the 
predictions. The fact that we still ended in the top three performing groups indicates that the 
selection of markers is probably the most important aspect of this challenge. 

Authors Statement 
 
SD, TB, and CP designed the algorithms. SD and TB performed calculations. TB submitted 
models to challenge. 

Biogem deconvolution method 

Summary Sentence 

The method uses robust linear modeling from the R package MASS together with a signature 
matrix made of harmonized gene expression data normalized by mRNA abundance. 

Background/Intro 

The approach used in this challenge is based on work that was previously published.36 The 
feature selection of the approach is done through differential expression and filtering for specific 
and low-noisy genes. The deconvolution method is robust linear model, which is robust to 
collinearity and outliers. The signature matrix was normalized by mRNA abundance to take into 
account the different mRNA yields of the various immune cell types. 

The main variation in respect to the published paper36 is the utilization of a large harmonized 
dataset for the generation of the signature matrix. The benefit of this approach over other 
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popular approaches is that it allows to achieve top level results without the utilization of more 
complex algorithms based on machine and deep learning. 

Methods 

Data collection and preprocessing 

The publicly available data used to generate the signature matrix were taken from the following 
datasets: PRJEB14751, PRJEB36933, PRJNA218851, PRJNA272556, PRJNA327180, 
PRJNA338944, PRJNA352224, PRJNA418779, PRJNA430418, PRJNA449980, 
PRJNA471906, PRJNA483877, PRJNA484735, PRJNA489270, PRJNA490870, 
PRJNA495625, PRJNA540256, PRJNA559359, PRJNA562113, PRJNA598222 (Table S15).  

The samples were selected independently of the condition or tissue they were derived from and 
for some datasets only a subset of samples were downloaded and processed for this challenge. 
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Dataset Cell type Condition Platform Submissions 

PRJEB14751 Endothelial cells HUVEC cell line Illumina HiSeq 
2500 

1, 2, 3 

PRJEB36933 Tregs healthy donors Illumina HiSeq 
4000 

2, 3 

PRJNA218851  CRC primary tumor Illumina HiSeq 
2000 

1, 2, 3 

PRJNA272556  CRC cell lines Illumina HiSeq 
1000 

1, 2, 3 

PRJNA327180  Fibroblasts cell lines Illumina HiSeq 
2000 

1, 2, 3 

PRJNA338944  Fibroblasts human cancer Illumina HiSeq 
2500 

1, 2, 3 

PRJNA352224  mDCs healthy 
stimulated and 
non 

Illumina HiSeq 
2000 

2, 3 

PRJNA418779 various immune 
cells 

healthy Illumina HiSeq 
2000 

1, 2, 3 

PRJNA430418 Endothelial cells stimulated and 
non 

Illumina HiSeq 
2500 

1, 2, 3 

PRJNA449980  Macrophages healthy 
simulated and 
non 

Illumina HiSeq 
2500 

3 

PRJNA471906  Endothelial cells healthy Illumina HiSeq 
2500 

1, 2, 3 

PRJNA483877  Monocytes breast cancer Illumina HiSeq 
2500 

1, 2 

PRJNA484735  Various immune 
cells 

healthy 
stimulated and 
non 

Illumina 
NovaSeq 6000 

1, 2, 3 

PRJNA489270  BRCA cell lines Illumina HiSeq 
2000 

1, 2, 3 

PRJNA490870 CRC primary tumor Illumina HiSeq 
4000 

1, 2, 3 

PRJNA495625 BRCA cell lines Illumina HiSeq 
2000 

1, 2, 3 
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PRJNA540256  Macrophages from 
endometrium 

Illumina HiSeq 
4000 

1, 2 

PRJNA559359  Macrophages healthy Illumina HiSeq 
2500 

3 

PRJNA562113  CRC primary and 
metastatic tumor 

Illumina HiSeq 
2500 

1, 2, 3 

PRJNA598222 BRCA primary tumor Illumina HiSeq 
2000  

1, 2, 3 

 
The fastq files were downloaded from the ENA archive and kallisto (version 0.46.2)36,49 was 
used to obtain gene expression data. The pseudo-alignment was done against the GENCODE 
transcriptome (release 33, genome assembly GRCh38). 

Feature selection 

The first feature selection step consists in performing differential expression analysis between 
each cell type and remaining ones. This was done using the voom and limma methods.51  

The second feature selection step consists in filtering out genes that are not beneficial for 
deconvolution. These are: 

1. highly expressed genes -- any gene that has a TPM value > 3000 in at least one sample; 
2. low expressed genes -- any gene with a summed up expression value < 5 across all 

samples; 
3. specificity -- any gene g from the differential analysis between cell type c and the 

remaining cell types that has an effect size < 0.1 between its median log2 values in c and 
the cell type c’ with the second highest expression (after c) of g. 

The third feature selection step consists of a hard threshold filter to avoid the over-
representation of cell types with many remaining genes. Hence, no more than 70 genes and 90 
genes were kept for each cell type for the Coarse and Fine sub-Challenges, respectively. 

Signature matrix 

For the signature matrix, for each cell type the median value of counts per million (CPM) was 
generated. Next, the values were scaled by a factor that accounts for mRNA abundance.36 The 
previously-published36 scaling factors were only for cell types from Peripheral Blood 
Mononuclear Cells (PBMCs). Hence, the scaling factors for tumor cells, endothelial cells and 
fibroblasts were conventionally set to 1. 

Prediction method 
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The prediction method used for deconvolution is the Robust Linear Model, which was 
implemented using the rlm function from the R package MASS. The method is robust to noise 
and collinearity and its performance has been shown to be comparable to support vector 
regression as used in CIBERSORT.19,36 

The method expects CPM as input and the code includes a step that checks that the sum of 
every sample of the input data is 10^6. 

Prediction output 

The values generated by the robust linear model are interpretable as fractions. 

The negative values are dealt with in the following two steps: 1) any value lower than -2 is set 
as -2; 2) scale values so that the minimum value is 0. 

The output values can be used for both comparison between and within samples. 

To allow comparison between samples, the approach does not implement any constraints. In 
this way, if the sample has an amount of unknown content that is not predicted by the method, 
there is no inflation of the fractions due to a method constraint. 

To allow comparison within samples, the approach implements normalization of mRNA 
abundance to the signature matrix.36 Normalization for mRNA abundance takes into 
consideration the higher mRNA content of certain cell types (such as monocytes) and thereby 
avoids inflation of their predicted fractions. 

Therefore, this method allows the deconvolution of absolute abundance of immune cell types 
present in the mixture sample. 

Variations in 2nd and 3rd submission 

The variation included in the 2nd and 3rd submission do not affect the method, but only the 
implementation of batch effect correction and the inclusion and exclusion of various datasets. 

For the 2nd and 3rd submission, the outlier samples to exclude were evaluated visually through 
a PCA analysis and were excluded from subsequent analyses. The data were also corrected for 
batch effects using Combat. 

Fig. S3 shows that after batch effect correction of some immune cell datasets, the samples do 
not cluster according to dataset anymore. 

Regarding specific datasets that allowed us to achieve better performance, we noticed that we 
could improve the scores obtained on T regulatory cells only after adding the dataset 
PRJEB36933. Moreover, to improve the results obtained for macrophages, we excluded the 
samples from the datasets PRJNA483877 and PRJNA540256, and we added samples from the 
datasets PRJNA449980 and PRJNA559359. 
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The table below shows the number of samples used for each cell type in the coarse-grained 
sub-Challenge: 

Cell Type Submission 1 Submission 2 Submission 3 

B.cells 38 38 38 

BRCA 10 10 10 

CD4.T.cells 88 100 98 

CD8.T.cells 51 51 51 

CRC 20 20 20 

endothelial.cells 19 19 19 

fibroblasts 10 10 10 

monocytic.lineage 58 61 53 

neutrophils 4 4 4 

NK.cells 15 15 15 

SUM 313 328 318 

 

The table below shows the number of samples used for each cell type in the fine-grained  sub-
Challenge: 

Cell Type Submission 1 Submission 2 Submission 3 

BRCA 10 10 10 

CRC 20 20 20 

endothelial.cells 19 19 19 

fibroblasts 10 10 10 

macrophages 22 22 20 

memory.B.cells 19 19 19 

memory.CD4.T.cells 40 40 40 

memory.CD8.T.cells 27 27 27 

monocytes 29 29 18 
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myeloid.dendritic.cell
s 

7 10 15 

naive.B.cells 12 12 12 

naive.CD4.T.cells 4 4 4 

naive.CD8.T.cells 12 12 12 

neutrophils 4 4 4 

NK.cells 15 15 15 

regulatory.T.cells 23 33 33 

SUM 273 286 278 
 
 
Through these variations, a substantial improvement of the approach was achieved for the fine 
challenge, although not much for the coarse challenge. 

Variations between sub-Challenge 1 (coarse-grained sub-Challenge) and sub-
Challenge 2 (fine-grained sub-Challenge) 

The data processing and methodology used for the fine-grained sub-Challenge are identical to 
the ones for the coarse-grained sub-Challenge. 

There are only these two consideration to make: 

● regarding the normalization for mRNA abundance, for macrophages we used the same 
scaling factor calculated for classical monocytes as they belong to the same lineage. 

● for the hard threshold of the number of genes to include for cell type, we kept no more 
than 70 genes for the coarse-grained sub-Challenge and no more than 90 genes for the 
fine-grained sub-Challenge. 

Conclusion/Discussion 

In conclusion, we believe we reached a good deconvolution performance using robust linear 
modeling on a signature matrix generated from a large harmonized dataset. We believe that 
more datasets are necessary to assess the variability across certain cell types and to establish 
which isolation strategies or biological conditions increase such variability. This is especially the 
case if one is trying to perform deconvolution on subtypes of the same lineage, such as memory 
T cell subtypes. 

Authors Statement 
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GM collected, processed the samples, and developed the methodology. FPC contributed to 
data collection and data analysis. MC contributed in the interpretation of the results. 

IZI deconvolution method 

The method aims to utilize a probabilistic description of the cell-type specific transcription 
composition. We gathered thousands of replicates for gene expression measurements per cell 
type from 75,720 different samples in hundreds of publicly available GEO datasets. The 
replicates include single cell RNA-seq, bulk RNA-seq and bulk expression microarray data. To 
harmonize the datasets, we selected genes and samples such that the amount of recovered 
samples and genes that are shared between all samples are maximized. This resulted in a total 
of 21,992 harmonized RNA-expression vectors for the coarse-grained sub-Challenge and 
13,317 for the fine-grained sub-Challenge. We then applied a pipeline of transformations and 
dimensional reduction that are both reversible and differentiable to the expression data. The 
goal was to find transcriptome representations such that the distribution per cell type can be 
described through normal distributions in a latent space where the Wasserstein distance 
between pairs of cell types is maximized. We assumed that the result of the RNA-seq 
experiment and counting process is a random process that is influenced by the composition of 
transcripts in the sequenced sample. Specifically, we assume that finding a read for a given 
sample is a Bernoulli experiment with a fixed probability for each sample. Bayes theorem gives 
rise to a probabilistic description of the transcriptome composition based on the raw observed 
counts through the Dirichlet distribution. The decomposition space can be transformed with an 
isometric log-ratio transformation to achieve approximate normal distributions. Through scaling 
such that the average covariance per cell type is the unit matrix and applying principal 
component analysis on the cell-type means, we found a dimensional reduction that 
approximately maximizes the Wasserstein distance between the cell-type specific distributions. 
A justification of this procedure has been previously described.55 The resulting distributions in 
dimensionally reduced space serve as characterization of the respective cell types and define a 
distribution of transcriptome compositions in expression space. We used these 
characterizations to define a Bayesian model that mixes the cell-type-specific transcriptomes 
with Dirichlet distributed weights to describe the expression profile of the mixed samples that 
ought to be deconvolved. Through the application of automatic variational differential inference 
(ADVI)56 in the pymc3 package57 we performed Bayesian inference without exceeding the 
computation resource constraints and use the posterior mean of the mixture weights as an 
output for the deconvolution. The algorithm aims to make very little assumptions about the data 
and could potentially achieve absolute cell mass quantifications of individual samples without 
knowing the context of the cohort. The main limitations are the approximation of the posterior 
through ADVI and inaccuracies of the cell type characterization through mislabeling or lack of 
transcriptome samples, e.g., we used only 42 memory CD8 T-cells. 
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Supplemental Figures 
 

 

Fig. S1: Marker gene expression within purified populations. Expression of markers (right 
axis) group by corresponding cell population (left axis) within each purified sample (columns). 
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Fig. S2: Workflow of DA_505 deconvolution method. 
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Fig. S3: Batch correction of data used to train Biogem deconvolution method. 
 
 

 

Fig. S4: Aggregate primary, Pearson-based score of participant methods over submissions 
and of comparator methods. (A, B) Aggregate Pearson-based score of methods in (A) coarse- 
and (B) fine-grained sub-Challenges over (n=1,000) bootstraps (Methods). Comparator 
methods (bold) are shown only if their published reference signatures include all cell types in 
each respective sub-Challenge: CIBERSORTx (coarse-grained only) and xCell. 
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Fig. S5: Aggregate method performance over rounds. Aggregate score (primary metric: 
Pearson correlation; secondary metric: Spearman correlation) of participant and comparator 
methods in (A, C, E) coarse- and (B, D, F) fine-grained sub-Challenges over (n=1,000) 
bootstraps (Methods). Scores reported from the (A, B) first submission, (C, D) second 
submission (or latest submission up to the second, if less than two submissions), or (E, F) 
third submission (or latest submission up to the third, if less than three submissions). 
Reported Spearman-based score is median over bootstraps. Comparator methods (bold) are 
shown only if their published reference signatures include all cell types in each respective 
sub-Challenge: CIBERSORTx (coarse-grained only) and xCell. 
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Fig. S6: Distribution of per-cell type method performance from first submission merged across 
coarse- and fine-grained sub-Challenges. Performance (Pearson correlation; x axis) of 
comparator baseline methods (bold) and participant methods (y axis) for each cell type (facet 
label). Distribution of Pearson correlations over bootstraps (n=1,000; Methods), computed as 
average over validation datasets and subsequently over coarse- and fine-grained sub-
Challenges for cell types occurring in both. Blank row indicates cell type not reported by the 
corresponding method. 

 

 

Fig. S7: Distribution of per-cell type method performance from first submission stratified by 
sub-Challenge. Performance (Pearson correlation; x axis) in (A) coarse- and (B) fine-grained 
sub-Challenges of comparator baseline methods (bold) and participant methods (y axis) for 
each cell type (facet label). Distribution of Pearson correlations over bootstraps (n=1,000; 
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Methods). Blank row indicates cell type not reported by the corresponding method. 
 
 
 

 

Fig. S8: Per-cell type method performance from first submission stratified by sub-Challenge. 
Pearson correlation of method (left axis) prediction versus known proportion from admixture 
for each cell type (bottom axis) in (A) coarse- or (B) fine-grained sub-Challenge. Pearson 
correlation is first averaged over validation dataset and then (n=1,000) over bootstraps 
(Methods). Black entry indicates cell type not predicted by corresponding method. Bottom two 
rows (“mean” and "max") are the mean and maximum correlation, respectively, for 
corresponding cell type across methods.  Rightmost column ("mean") is mean correlation for 
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corresponding method across predicted cell types. Highest correlation for each cell type 
highlighted in bold italics. Comparator methods in bold. 

 
 

 

Fig. S9: Distribution of per-cell type method performance from second submission merged 
across coarse- and fine-grained sub-Challenges. Performance (Pearson correlation; x axis) of 
comparator baseline methods (bold) and participant methods (y axis) for each cell type (facet 
label). Distribution of Pearson correlations over bootstraps (n=1,000; Methods), computed as 
average over validation datasets and subsequently over coarse- and fine-grained sub-
Challenges for cell types occurring in both. Results from latest submission up to the second, if 
less than two submissions for corresponding method. Blank row indicates cell type not 
reported by the corresponding method. 
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Fig. S10: Per-cell type method performance from second and third submissions merged 
across coarse- and fine-grained sub-Challenges. Pearson correlation of method (left axis) 
prediction versus known proportion from admixture for each cell type (bottom axis) for (A) 
second or (B) third submission. Pearson correlation is first averaged over validation dataset 
and then (n=1,000) over bootstraps (Methods). Results from latest submission up to (A) 
second or (B) third submission for those methods with fewer than two or three submissions, 
respectively.  Black entry indicates cell type not predicted by corresponding method. Bottom 
two rows (“mean” and "max") are the mean and maximum correlation, respectively, for 
corresponding cell type across methods.  Rightmost column ("mean") is mean correlation for 
corresponding method across predicted cell types. Highest correlation for each cell type 
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highlighted in bold italics. Comparator methods in bold. 
 
 

 

Fig. S11: Distribution of per-cell type method performance from second submission stratified 
by sub-Challenge. Performance (Pearson correlation; x axis) in (A) coarse- and (B) fine-
grained sub-Challenges of comparator baseline methods (bold) and participant methods (y 
axis) for each cell type (facet label). Distribution of Pearson correlations over bootstraps 
(n=1,000; Methods). Results from latest submission up to the second, if less than two 
submissions for corresponding method. Blank row indicates cell type not reported by the 
corresponding method. 
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Fig. S12: Per-cell type method performance from second submission stratified by sub-
Challenge. Pearson correlation of method (left axis) prediction versus known proportion from 
admixture for each cell type (bottom axis) in (A) coarse- or (B) fine-grained sub-Challenge. 
Pearson correlation is first averaged over validation dataset and then (n=1,000) over 
bootstraps (Methods). Results from latest submission up to second for those methods with 
fewer than two submissions. Black entry indicates cell type not predicted by corresponding 
method. Bottom two rows (“mean” and "max") are the mean and maximum correlation, 
respectively, for corresponding cell type across methods.  Rightmost column ("mean") is 
mean correlation for corresponding method across predicted cell types. Highest correlation for 
each cell type highlighted in bold italics. Comparator methods in bold. 
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Fig. S13: Distribution of per-cell type method performance from third submission merged 
across coarse- and fine-grained sub-Challenges. Performance (Pearson correlation; x axis) of 
comparator baseline methods (bold) and participant methods (y axis) for each cell type (facet 
label). Distribution of Pearson correlations over bootstraps (n=1,000; Methods), computed as 
average over validation datasets and subsequently over coarse- and fine-grained sub-
Challenges for cell types occurring in both. Results from latest submission up to the third, if 
less than three submissions for corresponding method. Blank row indicates cell type not 
reported by the corresponding method. 
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Fig. S14: Distribution of per-cell type method performance from third submission stratified by 
sub-Challenge. Performance (Pearson correlation; x axis) in (A) coarse- and (B) fine-grained 
sub-Challenges of comparator baseline methods (bold) and participant methods (y axis) for 
each cell type (facet label). Distribution of Pearson correlations over bootstraps (n=1,000; 
Methods). Results from latest submission up to the third, if less than three submissions for 
corresponding method. Blank row indicates cell type not reported by the corresponding 
method. 
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Fig. S15: Per-cell type method performance from third submission stratified by sub-Challenge. 
Pearson correlation of method (left axis) prediction versus known proportion from admixture 
for each cell type (bottom axis) in (A) coarse- or (B) fine-grained sub-Challenge. Pearson 
correlation is first averaged over validation dataset and then (n=1,000) over bootstraps 
(Methods). Results from latest submission up to third for those methods with fewer than three 
submissions. Black entry indicates cell type not predicted by corresponding method. Bottom 
two rows (“mean” and "max") are the mean and maximum correlation, respectively, for 
corresponding cell type across methods.  Rightmost column ("mean") is mean correlation for 
corresponding method across predicted cell types. Highest correlation for each cell type 
highlighted in bold italics. Comparator methods in bold. 
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Fig. S16: Assessing specificity in coarse-grained sub-Challenge. Normalized prediction of cell 
type indicated on x axis in purified sample indicated on y axis. 

 
 

 

Fig. S17: Assessing specificity in fine-grained sub-Challenge. Normalized prediction of cell 
type indicated on x axis in purified sample indicated on y axis. 
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