
The sulfur cycle connects microbiomes and biogeochemistry  1 

in deep-sea hydrothermal plumes 2 

 3 
 4 
Zhichao Zhou1, Patricia Q. Tran1,2, Alyssa M. Adams1, Kristopher Kieft1,3, John A. Breier4, Rupesh K. 5 
Sinha5, Kottekkatu P. Krishnan5, P. John Kurian5, Caroline S. Fortunato6, Cody S. Sheik7, Julie A. 6 
Huber8, Meng Li9,10, Gregory J. Dick11,12, Karthik Anantharaman1,* 7 
 8 
1 Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, 53706, USA 9 
2 Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI, 53706, USA 10 
3 Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, 53706, 11 
USA 12 
4 School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, 13 
TX, 78539, USA 14 
5 National Center for Polar and Ocean Research, Ministry of Earth Sciences, Head land Sada, Vasco 15 
da Gama, Goa, 403804, India 16 
6 Department of Biology, Widener University, Chester, PA, 19013, USA 17 
7 Department of Biology and Large Lakes Observatory, University of Minnesota Duluth, Duluth, MN, 18 
55812, USA 19 
8 Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 20 
02543, USA 21 
9 Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, 22 
China 23 
10 Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, 24 
Shenzhen University, Shenzhen 518060, China 25 
11 Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, 48109, 26 
USA 27 
12 Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, 48109, 28 
USA 29 
 30 
 31 
*Correspondence and requests for materials should be addressed to K.A. (email: 32 
karthik@bact.wisc.edu)  33 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2022. ; https://doi.org/10.1101/2022.06.02.494589doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.02.494589
http://creativecommons.org/licenses/by-nc/4.0/


Abstract  34 
In globally distributed deep-sea hydrothermal vent plumes, microbiomes are shaped by the redox 35 
energy landscapes created by reduced hydrothermal vent fluids mixing with oxidized seawater. Plumes 36 
can disperse over thousands of kilometers and are complex. Their characteristics are determined by 37 
geochemical sources from hydrothermal vents, e.g., hydrothermal inputs, nutrients, and trace metals. 38 
However, the impacts of plume biogeochemistry on the oceans are poorly constrained due to a lack of 39 
integrated understanding of microbiomes, population genetics, and geochemistry. Here, we use 40 
microbial genomes to understand links between biogeography, evolution, and metabolic connectivity, 41 
and elucidate their impacts on biogeochemical cycling in the deep sea. Using data from 37 diverse 42 
plumes from 8 ocean basins, we show that sulfur metabolism defines the core microbiome of plumes 43 
and drives metabolic connectivity. Amongst all microbial metabolisms, sulfur transformations had the 44 
highest MW-score, a measure of metabolic connectivity in microbial communities. Our findings 45 
provide the ecological and evolutionary basis of change in sulfur-driven microbial communities and 46 
their population genetics in adaptation to changing geochemical gradients in the oceans.  47 
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Main 48 
Hydrothermal vents are abundant and widely distributed across the deep oceans. The mixing of hot 49 
hydrothermally-derived fluids rich in reduced elements, compounds, and gasses, with cold seawater 50 
forms hydrothermal plumes1, 2. Usually, plumes rise up to hundreds of meters from the seafloor and 51 
can disperse over hundreds to thousands of kilometers through the pelagic oceans3. Surrounding 52 
microbes migrate into the plume and thrive on substantial reductants as the energy sources, making 53 
plumes ‘hotspots’ of microbial activity and geochemical transformations1, 2. Plumes constitute a 54 
relatively closed ecosystem that depends on chemical energy-based primary production and is mostly 55 
removed from receiving inputs of energy from the outside4, 5. Thus, plumes serve as an ideal natural 56 
bioreactor to study the processes and links between microbiome and biogeochemistry and the 57 
underlying ecological and evolutionary basis of microbial adaptation to contrasting conditions between 58 
energy-rich plumes and the energy-starved deep-sea2. 59 
 60 
The most abundant energy substrates for microorganisms in hydrothermal plumes include reduced 61 
sulfur compounds, hydrogen, ammonia, methane, and iron2. Amongst these, sulfur is a major energy 62 
substrate for diverse microorganisms in plumes across the globe2, 6, 7, 8. Sulfur transformations in 63 
plumes are dominated by oxidation of reduced sulfur species, primarily hydrogen sulfide and elemental 64 
sulfur. The metabolic pathways include oxidation of sulfide to elemental sulfur (fcc, sqr), oxidation of 65 
sulfur to sulfite (dsr, sor, and sdo), disproportionation of thiosulfate (phs) to hydrogen sulfide and 66 
sulfite, disproportionation of thiosulfate to elemental sulfur and sulfate (sox), thiosulfate oxidation to 67 
sulfate (sox, tst, and glpE), and sulfite oxidation to sulfate (sat, apr)7, 9, 10, 11. Complete oxidation of 68 
sulfur would involve oxidation of hydrogen sulfide all the way to sulfate. However, recent observations 69 
in other ecosystems indicate that individual microbes rarely possess a full set of the complete 70 
sulfide/sulfur oxidation pathway10, 12, instead individual steps are distributed across different 71 
community members. This likely suggests that sulfur oxidation is a microbial community-driven 72 
process that is dependent on metabolic interactions, and asks for revisiting sulfur metabolism and 73 
biogeochemistry based on a holistic perspective of the entire community. 74 
 75 
Recent microbiome-based ecological studies have focused on elucidating a genome-centric view of 76 
ecology and biogeochemistry7, 10, 12, 13, 14, 15. This approach has expanded our understanding of 77 
microbial diversity associated with specific energy metabolisms, including sulfur transformations in 78 
hydrothermal plumes, the deep sea, and beyond7, 14, 16, 17, 18, 19. However, the dynamics and 79 
microdiversity of the plume microbiome, and relevant biogeochemical impacts remain relatively 80 
underexplored20, 21, 22, 23, 24. Understanding how environmental constraints and selection shape the 81 
microdiversity and the genetic structure of plume microbial populations after migration from 82 
background seawater can provide fundamental insights into adaptation mechanisms. These insights 83 
can also inform future predictions of microbial responses to the changing oceans. 84 
 85 
Here, we characterized the ecological and evolutionary bases of the assembly of the plume microbiome, 86 
and their strategies for sulfur cycling-based energy metabolisms. First, we studied globally distributed 87 
hydrothermal plume datasets to define a core plume microbiome. We followed this up with synthesis 88 
of genome-resolved metagenomics, metatranscriptomics, and geochemistry from three hydrothermal 89 
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vent sites (Guaymas Basin, Mid-Cayman Rise, and Lau Basin) to unravel community structure and 90 
functional links to biogeochemistry, metabolic connectivity within plume and deep-sea communities, 91 
and microdiversity in abundant microbial populations. We demonstrate that plume microbiomes have 92 
a distinctive community composition and function, that is adapted towards energy conservation, 93 
metabolic interactions, and stress response. 94 

Results 95 
We used publicly available microbiome data from hydrothermal vent plumes across the globe to (1) 96 
define the core plume microbiome, (2) investigate plume microbiome structure, function, and activity, 97 
and (3) identify links between plume microbiomes and geochemistry. To investigate the core 98 
microbiome, we studied publicly available 16S rRNA gene datasets of hydrothermal plumes (n = 37) 99 
and background deep-sea samples (n = 14) from eight ocean basins across the globe. To study the 100 
microbiome structure, function, and activity, we reconstructed metagenome-assembled genomes 101 
(MAGs) from three hydrothermal vent sites (containing both plume and background samples from 102 
Guaymas Basin, Mid-Cayman Rise, and Lau Basin). We also mapped paired metatranscriptomes from 103 
the same sites for some samples (Fig. 1, Fig. S1, and Supplementary Data 1). To study links between 104 
biogeochemistry and the microbiome, we analyzed paired geochemical data from the above three 105 
hydrothermal vent sites. To provide clarity on the plume and background samples, and DNA/cDNA 106 
libraries used in this study, we provided a schematic diagram describing the locations of all samples in 107 
the context of a hydrothermal vent system (Fig. S1). 108 
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 109 
 110 
Defining the core hydrothermal plume microbiome 111 
To identify and study the core hydrothermal plume microbiome, we used 16S rRNA gene datasets from 112 
51 hydrothermal plume and background deep-sea samples spread across eight ocean basins 113 
(Supplementary Data 2). Biogeographic patterns were delineated by Unifrac metrics of distance and 114 
PCoA-based ordination. Sample location had a stronger influence on biogeographic patterns than 115 
sample characteristics (plume/background) (Fig. S2, S3). Unweighted Unifrac PCoA plots indicated 116 
that paired plume/background deep-sea samples within the same site were closely correlated (Fig. S3). 117 
As revealed previously2, 25, 26, this supports the understanding that the hydrothermal plume 118 
environment has its main constitutional microorganisms derived from surrounding seawaters, with 119 

Fig. 1 | Sampling sites, distribution, and 
metabolic profile of the core plume 
microbiome. a Sampling site maps of 
hydrothermal plume samples from which 
the 16S rRNA gene datasets were sourced. 
Numbers in brackets indicate dataset 
quantities. Three hydrothermal sites that 
have metagenome and metatranscriptome 
datasets in this study were specifically 
represented by inset maps. Ocean maps 
were remodified from ArcGIS online map 
(containing layers of “World Ocean Base” 
and “World Ocean Reference”; 
https://www.arcgis.com/). b Membership 
and distribution of the core plume 
microbiome. Heatmap shows the 
presence/absence of core plume microbial 
groups (tracing back to known taxonomic 
ranks from the genus-level taxa) in 37 
hydrothermal plume 16S rRNA gene 
datasets across the world. c Metabolic 
profile of the core plume microbiome. 
From this study, MAGs that have 16S 
rRNA genes affiliated to the core plume 
microbiome were used as representatives 
(numbers labeled in brackets). This 
subpanel shows the presence or absence 
of metabolic potential associated with 
sulfur, carbon, nitrogen, hydrogen, and 
metal biogeochemical transformations. 
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dispersal limitation having little effects locally.  120 
 121 
We then identified genus-level taxa significantly distributed in plumes with high prevalence and 122 
relative abundance. The core plume microbiome consists of 14 microbial groups (Fig. 1a, b) as 123 
revealed from the 37 plume datasets with a cutoff of being distributed in at least two third of all plume 124 
datasets and having at least 1% relative abundance on average. By choosing MAGs reconstructed from 125 
this study that were affiliated to the same taxa, we characterized metabolic profiles for the core plume 126 
microbiome which demonstrated highly versatile metabolic potential for utilizing various plume 127 
substrates2, including HS-, S0, H2, CH4, methyl-/C1 carbohydrates, arsenite, and iron (Fig. 1c). Most 128 
plume microorganisms are of seawater origin, consistent with prior reports26 (Supplementary Table 1). 129 
We also observed a small number of seafloor/subsurface dwelling and endosymbiotic microorganisms 130 
that might be entrained in plumes2, 27 (Supplementary Table 1). Collectively, our data suggest that 131 
sulfur and other reduced organic/inorganic compounds significantly shape the global core plume 132 
microbiome that are originally derived from the surrounding seawater.  133 
          134 
Distinctive plume geochemistries influence energy landscapes and promote microbial 135 
growth 136 
Previous thermodynamic modeling analyses have reflected energy landscapes for various 137 
hydrothermal ecosystems4, 7, 10, 16 by representing free energy yields for reactions of various energy 138 
sources for microbial metabolism in hydrothermal fluids. Some of them have demonstrated the 139 
consistency of thermodynamic modeling and omics-based biogeochemical estimation in individual 140 
ecosytems7, 10, 16. Here based on geochemical parameters and predicted functions from reconstructed 141 
MAGs (Fig. S4, S5, and Supplementary Data 3), we conducted an across-site comparison of 142 
thermodynamic modeling and omics-based biogeochemical estimations to reflect the influences of 143 
distinctive plume geochemical characteristics on plume microbes. We also conducted growth rate 144 
analyses to identify whether microbial energy contributors are promoted with higher growth rates in 145 
responding to differing geochemical conditions across plumes. To address these, we first reconstructed 146 
plume energy landscapes through thermodynamic modeling (Fig. 2a).  147 
 148 
Distinctive geochemical characteristics support the predicted energy landscapes when compared 149 
among sites. Methane was the highest in end-member fluids from Guaymas Basin (63.4 mmol/kg)7, 150 
which supported the dominance of methane oxidation in the Guaymas Basin plume in the 151 
thermodynamic model (Fig. 2a), and significant contributions of methane oxidation in metagenomics 152 
datasets were also found (~40.5%) (Fig. 2b). Meanwhile, Lau Basin hydrothermal fluids had high Mn 153 
and Fe concentrations (Mn: 3.9-6.3 mmol/kg, Fe: 3.8-13.1 mmol/kg)28, 29 in the Mariner hydrothermal 154 
field compared to other samples. This manifested in Fe and Mn oxidation contributing the highest 155 
fractions (Mn: ~4-5%, Fe: 13%) in thermodynamic modeling (Fig. 2a) and the highest fractions (Mn: 156 
0.3-6.4%, Fe: 6.7-66.6%) in omics-based estimations of Mariner among all sites (Fig. 2b). Similarly 157 
in Mid-Cayman Rise, high hydrogen concentrations in the vent fluids were associated with high 158 
contribution of hydrogen oxidation in the model, and in omics-based estimations (Fig. 2a, 2b, 159 
Supplementary Table 2). Overall, reduced sulfur is the major energy source as reflected in both 160 
thermodynamic modeling and omics-based biogeochemical estimations in all three sites. However, 161 
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individual plume geochemical conditions vary with diverse minor energy sources, such as iron, 162 
methane, and hydrogen, leading to different energy landscapes which are mediated by microbes. 163 
 164 
To study whether abundant organisms conducting biogeochemical transformations in each site were 165 
also growing actively, we predicted microbial growth rates from metagenomic data using iRep30. iRep 166 
can use a combination of cumulative GC skews and abundance of metagenomic reads to calculate the 167 
difference in read abundance at the origin and terminus of a genome which is a proxy for the replication 168 
or growth rate of organism30, 31, 32. The results suggest potential associations between growth rates and 169 
geochemically-influenced energy landscapes for individual sites (Fig. 2c). A consistent pattern of the 170 
abundant microorganisms in plumes having a higher predicted growth rate was also observed in certain 171 
sites. For instance, LS-SOB and Thiomicrospirales both had the capacities for sulfur and iron oxidation, 172 
and were predicted to have a higher growth rate than other microorganisms in Guaymas Basin plume 173 
(Fig. 2c). Similarly, Methylococcales and Chromatiales were the major contributors to iron, methane, 174 
and sulfur oxidation in Lau Basin (Abe plume) and their growth rates were higher than other organisms 175 
(Fig. 2c). Collectively, we found a consistent pattern demonstrating that the abundant microorganisms 176 
also have higher predicted growth rates potentially due to their ability to respond to varying 177 
geochemistry in hydrothermal plumes.  178 
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 179 

 180 
Across- and within-site comparisons for plumes show consistent links between 181 
geochemistry, function, and taxonomy 182 
MAGs reconstructed from Guaymas Basin, Mid-Cayman Rise, and Lau Basin hydrothermal vents and 183 
corresponding omics-based profiling enabled taxonomic and functional comparisons among the three 184 
sites (Fig. S4, S5, and Supplementary Data 3). Across-site analyses of functional traits in MAGs 185 
indicate that different functions were significantly enriched in different plumes, e.g., arsenate reduction 186 
and long-chain alkane (C6+) degradation in Lau Basin, CO and methanol oxidation in Mid-Cayman 187 

Fig. 2 | Thermodynamic estimation of available free energies and biomass yields from electron donors, metagenomics-based 
contribution of electron donors to energy, and growth rates of major microbial contributors. a Thermodynamic estimation 
diagram of available free energy and biomass. For each hydrothermal environment, the contribution fraction of each electron donor 
species was labeled accordingly in the rings. The total available free energies and biomass were labeled accordingly to individual 
plumes. Two temperatures (3°C and 4.9°C) were picked to represent in situ temperatures in the upper and lower plume. Light yellow 
represents aerobic sulfur oxidation, dark yellow represents anaerobic sulfur oxidation. b Metagenomics-based estimation of energy 
contribution. Energy contribution for each electron donor was calculated based on metagenomic abundance of each reaction of electron 
donors and free energy yield of each reaction. The contribution ratio of electron donor species was calculated for individual 
environments respectively. c Growth rate of major microbial contributors in each hydrothermal environment. The y-axis for each 
barplot indicates the replication rate. The microbial groups starting with “α-”, “γ-”, and “δ-” represent Alphaproteobacteria, 
Gammaproteobacteria, and Deltaproteobacteria, respectively. Plume microbial groups were colored by dark yellow, background 
microbial groups were colored by light yellow and they were also all labeled with “(P)” or “(B)”, respectively. Numbers in brackets 
indicate MAG numbers in each microbial group. Star-labeled plume microbial groups had higher growth rates than the ‘Rest’ plume 
microbial groups. 
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Rise, and toluene and benzene degradation in Guaymas Basin (Fig. 1c, Fig. S7b). In parallel, the 188 
distribution and abundance of some microbial groups were also significantly enriched in the same 189 
samples accordingly (Fig. S7a) and underlay the functional differentiation, e.g., arsenate reduction in 190 
Lau Basin background deep-sea was attributed to members of Bacteroidetes and Thiomicrospirales 191 
while that same function in Lau Basin plumes was attributed to only Thiomicrospirales. CO oxidation 192 
in Mid-Cayman plumes was attributed to Chloroflexi, and toluene and benzene degradation in 193 
Guaymas Basin plume attributable to Methylococcales and Pseudomonadales (Supplementary Data 5). 194 
These observations are consistent with hydrothermal vent fluid geochemistry, e.g. Lau Basin 195 
hydrothermal vents have high arsenic end-member concentrations33 (ranging from 2.1-11 μmol/kg) 196 
and Guaymas Basin fluids contain aromatic hydrocarbons (primarily benzene and toluene)34.  197 
 198 
As for within-site comparisons, the data indicate that the top three contributing taxa for major functions 199 
(including eight categories, carbon fixation, denitrification, sulfur cycling, hydrogen oxidation, 200 
methane oxidation, aerobic oxidation, iron oxidation, and manganese oxidation) are largely shared 201 
between plume and background deep seawater in Mid-Cayman Rise and Lau Basin, indicating 202 
functional consistency which was linked to taxonomy (Supplementary Data 5). Nevertheless, taxa 203 
abundance differed between plume and background, as reflected by both DNA and cDNA datasets 204 
associated with important functions (Supplementary Data 5, 6). Based on the results from energy 205 
landscape and MAG-based comparisons, our results suggest the adaptation of the plume microbiome, 206 
and demonstrate the consistency of links between taxonomy, function, and geochemistry. 207 
 208 
Sulfur cycling drives metabolic interactions in hydrothermal plumes 209 
Building on our findings from both thermodynamic modeling and omics-based biogeochemical 210 
estimations which indicated the importance of sulfur-based metabolisms, we studied microbial 211 
metabolic interactions associated with sulfur cycling in all plumes. We recently developed a metric, 212 
metabolic weight score (MW-score)35 to measure the contribution of metabolic/biogeochemical steps, 213 
and their metabolic connectivity in a microbial community. More frequently shared functions and their 214 
higher abundances in a microbial community lead to higher MW-scores35. Both metagenomics and 215 
metatranscriptomic data showed elemental sulfur oxidation to be the key reaction in the sulfur cycle 216 
(Fig. 3a). In each community, sulfur oxidation had the highest MW-score (Fig. 4b, Fig. S10). Major 217 
contributors (dsrAB and sdo containing MAGs) to sulfur oxidation varied in different hydrothermal 218 
vent sites (Fig. 3b), indicating core sulfur oxidizers can have distinct distributions locally. Metabolic 219 
overlaps existed as some sulfur oxidizers had additional metabolic potential associated with utilizing 220 
various small carbon substrates and hydrogen, reducing nitrate/nitrite, and oxidizing 221 
iron/manganese/arsenite36 (Fig. 3c). Additionally, numerous connections of sulfur oxidation with other 222 
electron-transferring reactions were observed in the functional network (Fig. 4b, c, d, and Fig. S10). 223 
Previously, sulfur-oxidizing bacteria belonging to SUP05 (Thiomicrospirales in GTDB R83 or PS1 in 224 
GTDB R202) and SAR324 lineages were identified to have metabolic plasticity involving the ability 225 
to conduct hydrogen oxidation and nitrate reduction7, 37 (in case of SUP05) and alkane/methane/carbon 226 
monoxide oxidation17, 38 (in case of SAR324) in plume and deep-sea environments, suggesting that 227 
plume microorganisms are optimized to mediate energy transformations upon available electron 228 
donors and acceptors. Here, our study indicates sulfur oxidizers are the primary group associated with 229 
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energy scavenging from plume substrates. Sulfur oxidizers have metabolic plasticity to connect sulfur 230 
metabolism with other elemental transformations, are adapted to plume environments, and contribute 231 
significantly to biogeochemical cycles in the deep sea. 232 
 233 
While sulfur oxidation connects other metabolic reactions in the overall functional network and has 234 
significant energy yields, its role on the overall network complexity remains elusive. Specifically, we 235 
investigated the impact of sulfur metabolism on overall plume microbial metabolism. To address this, 236 
we built networks based on reactions and the percent energy yields, and investigated reaction influence 237 
on network complexity39, 40, 41 (Fig. 4a, Fig. S11). The network of reactions works as a whole 238 
mechanism where each reaction is one part40 and high ΔC reactions are key features of the networks. 239 
Most of these ΔC (complexity change) values are positive except for two points (Fig. 4a, Fig. S11). 240 
This indicates that all but two of these reaction nodes drive the system away from randomness and 241 
significantly contribute to the complexity of the network as a whole40. Meanwhile, in general, it seems 242 
that most reactions that are closer to smaller ΔC have higher percent energy yields associated with 243 
their reactions (Fig. 4a, Fig. S11). This phenomenon suggests that reaction nodes that result in higher 244 
changes of percent energy yields are not necessarily contributing to the reaction network’s complexity 245 
the most. Overall, this suggests that while sulfur oxidation tends to have higher energy yields, other 246 
reactions are also important components in plumes, and together cohesively contribute to the energy 247 
landscape. 248 
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 249 
 250 
Fig. 3 | Sulfur metabolism and metabolic plasticity of sulfur oxidizers. a Details of sulfur metabolism pathways in the hydrothermal 
plume. The gene abundance (coverage normalized by 100M reads) and transcript expression level (TPM) for each step were calculated 
based on plume metagenomic and metatranscriptomic read mapping results. Log10-transformed values of gene abundance and transcript 
expression level were labeled accordingly in the diagram. b Major contributors to sulfur metabolizing genes. For each sulfur 
metabolizing gene, microbial groups that occupied > 10% of the total gene abundance (by metagenome) or transcript expression (by 
metatranscriptome) values were labeled in the diagram. For some genes with only three or less than three contributors, all contributors 
were labeled. c Metabolic plasticity of sulfur oxidizers. For each hydrothermal vent site, three parameters were given to show the 
metabolic plasticity of sulfur oxidizers in conducting each electron transferring reaction related to carbon, nitrogen, hydrogen, and metal 
biogeochemical cyclings: the number of sulfur-oxidizing gene containing MAGs, gene abundance percentage, and transcript abundance 
percentage. 
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 251 
 252 

 253 
Low diversity, short migration history, and gene-specific sweeps in plume populations 254 
Metagenomes provide full repertoires of genomic variation and facilitate interpreting fine-scale 255 
evolutionary mechanisms42, 43, 44. Here, we used Tara Ocean metagenomic datasets45 from the 256 
mesopelagic oceans to compare metagenomes from hydrothermal plume environments to the wider 257 
pelagic oceans and study the population genetic diversity of each MAG. We discovered that a large 258 
portion of MAGs exhibited a similar tendency of normalized single nucleotide variation (SNV) counts, 259 
nonsynonymous/synonymous substitution ratio of SNV (N/S SNV), and genome-wide mean r2 (Fig. 260 
5a and Supplementary Data 11). In hydrothermal plumes, their SNV count is lower than Tara Ocean 261 
samples, N/S SNV ratio is higher than Tara Ocean samples, and mean r2 is higher than Tara Ocean 262 
samples. This suggests that in the plume: (1) Less SNVs are present, and population diversity is lower; 263 

Fig. 4 | Network complexity, MW-scores (metabolic weight scores), and functional network diagrams of the three hydrothermal 
vent sites. a Network complexity diagram representing each reaction’s influence on the complexity of the network. In the figure, different 
colors represent different hydrothermal environments, different symbol shapes represent different reactions. The substrates (including 
electron donors and acceptors) were listed for each reaction in the legend. The x-axis is the change in complexity (ΔC) of the whole 
network for a node (a reaction here) and the y-axis is the percent energy yield of that reaction in the whole community. This network 
complexity diagram was based on thermodynamic estimation results at 3°C. b MW-scores of three major energy contributing reactions. 
c Functional network diagram of Guaymas Basin. d Functional network diagram of Mid-Cayman Rise. e Functional network diagram of 
Lau Basin. A group of metabolic cycling steps that are important in reflecting the plume substrate metabolisms were selected from 
METABOLIC-C regular MW-score results to make these functional network diagrams (c, d, e), respectively. In each functional network 
diagram, the size of a node is proportional to gene coverage associated with the metabolic/biogeochemical cycling step. The thickness of 
the edge represents the average gene coverage values of the two connected metabolic/biogeochemical cycling steps. Edges related to two 
reactions of sulfur oxidation were colored accordingly in each diagram. 
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(2) The population is younger with a short migration history. The higher N/S SNV ratio indicates that 264 
younger populations are less subjected to purifying (negative) selection to remove deleterious 265 
mutations; (3) The population is less subjected to recombination. The higher mean r2 reflects higher 266 
SNV linkage frequency at the genome-wide scale, indicating a lower recombination rate among 267 
population members.  268 
 269 
Next, we investigated potential signals of genome/gene sweeps using fine-scale evolutionary 270 
parameters. Consensus base frequency (frequency of reads supporting the consensus base), N SNV, 271 
and S SNV all showed no significant differences between plumes and the pelagic ocean 272 
(Supplementary Data 11). This indicates that these populations are unlikely to have undergone 273 
selective genome sweeps and clonal expansion during migration. We calculated fixation index FST46 274 
based on gene allele frequencies between these two environments (Fig. 5b and Supplementary Data 275 
12) to investigate environmental selection. High FST genes are potential loci where selective pressures 276 
act on and indicate niche-specific adaptation. Further stringent criteria require the lower gene 277 
nucleotide diversity and higher N/S SNV ratio (Fig. 5b and Supplementary Data 12). Decreases of 278 
nucleotide diversity indicate gene-specific selective sweeps in the hydrothermal plume environment, 279 
and higher N to S SNV ratios suggest that these genes underwent a recent selection. Amongst 260 280 
identified high FST genes using our stringent criteria, many of them involved transporters, aerobic 281 
oxidation, and stress responses (Fig. 5b and Supplementary Data 12). Transporters were associated 282 
with diverse substrates, e.g., metals (Co, Fe, and Mg), amino acids, Na+/H+, anions 283 
(nitrate/sulfonate/bicarbonate), carbohydrates (ribose/xylose/arabinose/galactoside), and aliphatic 284 
polyamines (spermidine/putrescine); meanwhile, these transporters are associated with many 285 
transporter families (Supplementary Data 12), including ABC superfamily, tripartite ATP-independent 286 
periplasmic (TRAP) family, tripartite tricarboxylate transporter (TTT) family, etc.  287 
 288 
Given the observed importance of sulfur metabolism in plumes, we focused on the 238 identified sulfur 289 
metabolism genes. 23 of these genes had signals of being fixed after migration with FST values higher 290 
than the genome average (Fig. 5c and Supplementary Data 13). These genes were associated with 291 
sulfur oxidation, thiosulfate oxidation, and sulfite oxidation/sulfate reduction (sat, aprA, sdo, oxidative 292 
dsrAB, and soxBC) (Supplementary Data 13). This provides evidence that though not reaching the 293 
level of gene-specific selection sweeps, these genes were still being selected across the genome. 294 
Overall, this suggests a genetic adaptation to a sulfur-dominated environment after migration. An 295 
underlying evolutionary paradigm can be outlined from our population-level microdiversity analyses 296 
(Fig. 5c). As microbes enter the hydrothermal plume, some groups are selected for, and thrive due to 297 
substrates provided locally. This stimulates the growth of certain populations; meanwhile, constraints 298 
in the plume environment also induce selection effects and reduce the diversity of the population 299 
majority. Higher N/S SNV indicates they are young populations and are growing in the plume, 300 
consistent with the higher growth rates of major energy contributors. Gene-specific sweeps indicate 301 
local adaptation to the plume environment, and partially change population genetic structures after 302 
migration. Plume microbial populations are still in the early stage of evolution; as time goes on, 303 
mutations will progressively accumulate and deleterious SNVs will be gradually purged. 304 
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 306 

Fig. 5 | Evolutionary mechanism of plume microbial populations during migration. a Schematic diagram showing the changing trend 
of microdiversity parameters during migration. Individual solid dots with various colors represent microbial populations. Two scenarios 
were depicted in this panel: unrepresentative strains and strains that have detectable read mapping results in both environments. b Two 
representative charts showing FST distribution in MAGs that contain high FST genes. In each chart, the x-axis represents gene numbers 
(only genes with detectable FST; negative values were removed). Dot sizes were proportional to SNV numbers in individual genes, and 
FST genome-wide mean was depicted in each chart with dash lines. Red-colored dots represent high FST genes that also passed the 
requirements of FST, nucleotide diversity, N/S SNV ratios, and coverages (see methods). The nucleotide diversity and N/S SNV ratio 
distribution for high FST genes and genome-wide mean of all genes in different environments were depicted in the chart on the right side. 
Details of high FST genes and related parameters in individual genomes (all hits, also including these two representative genomes) were 
listed in Supplementary Data 12. c Two representative charts showing FST distribution in MAGs that contain sulfur metabolizing genes 
with signals of being fixed. In each chart, the x-axis represents gene numbers (only genes with detectable FST; negative values were 
removed). Dot sizes were proportional to SNV numbers in individual genes, and FST genome-wide mean was depicted in each chart with 
dash lines. Red-colored dots represent sulfur metabolizing genes that passed the requirements of FST, nucleotide diversity, N/S SNV ratios, 
and coverages (see methods). The nucleotide diversity and N/S SNV ratio distribution for sulfur metabolizing genes in different 
environments were depicted in the chart on the right side. Details of sulfur metabolizing genes with signals of being fixed and related 
parameters in individual genomes (all hits, also including these two representative genomes) were listed in Supplementary Data 13. d 
Frame diagram showing the underlying evolutionary processes during migration. Circles represent microbial populations. Dash line 
arrows indicate the direction of the next evolutionary step. 
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Discussion 307 
In this study, we observed that distinctive plume geochemistry influences the energy landscape across 308 
three different hydrothermal vent sites4, 29. Sulfur oxidation is the major energy-yielding reaction, while 309 
different sites are also represented by different energy landscapes influenced by differing vent 310 
geochemistry. For instance, other important energy sources like methane and hydrogen also have 311 
important roles in the energy landscape of hydrothermal plumes. The existence of a core plume 312 
microbiome indicates that a general biogeochemical feature – energy and substrate supply – within 313 
hydrothermal plumes supports the growth of these globally dispersed cosmopolitan microorganisms. 314 
As a consequence, the core plume microbiome is likely a result of the sulfur oxidation-based energy 315 
landscapes shared among many hydrothermal plumes around the globe. The increased taxa abundance 316 
and higher growth rates of major energy contributing taxa supports the interpretation that microbiomes 317 
act in response to geochemically-influenced energy landscapes with some taxa fueled by plume 318 
substrates. These analyses support the theory of an ocean seed bank origin of the hydrothermal plume 319 
microbiome47. Plume geochemistry defines the energy availability, serving as a key control on the 320 
microbiome distribution and abundance2, 9. The consistent taxonomy-function-geochemistry links 321 
demonstrated by us suggest that omics-based profiling that reflects the full genetic repertoire of plume 322 
microorganisms can be a powerful tool to unravel the relationship between environments and 323 
microbiomes. 324 
 325 
Characterization of sulfur metabolism in plumes reveals that though all plumes have sulfur oxidation 326 
as the reaction with the highest MW-score, and sulfur-oxidizing genes were highly expressed, the 327 
major populations contributing to these processes (dsrAB and sdo containing MAGs) vary in different 328 
hydrothermal vent sites. This indicates the variable composition of core sulfur oxidizers in individual 329 
environments which suggests the endemicity of microbial community structure. Core sulfur oxidizers 330 
can be derived from the pelagic ocean through stochastic processes that can be influenced by dormancy 331 
capacity to provide resilient seed microbes, ocean currents to overcome dispersal limitations, and 332 
adaptive strategies to nutrient and temperature fluctuations2. Core members of the plume microbiome 333 
derived in this manner likely thrive under favorable geochemical conditions48. For example, 334 
Pseudomonadales, Thiomicrospirales, and SAR324 are members of the core plume microbiome, but 335 
are also known to be abundant cosmopolitan bacteria in the pelagic oceans. These microorganisms can 336 
be distributed as seed banks in the global oceans, triggered by plume sulfur substrates, and 337 
subsequently become active sulfur oxidizers in hydrothermal plumes9, 48. Sulfur oxidizers within the 338 
community have metabolic plasticity to connect other energy transformation activities, e.g., small 339 
carbon substrate utilization, nitrate/nitrite reduction, and iron/manganese/arsenite oxidation, etc. This 340 
indicates that sulfur and other energy sources can be simultaneously utilized for energy conservation 341 
by sulfur oxidizers even in various plume environments with different energy landscapes. At the same 342 
time, as described in the network complexity analysis, though sulfur oxidation dominates in energy 343 
generation, other reactions are also important components in the metabolic network connected to sulfur 344 
oxidation, and cohesively contribute to the energy landscape. 345 
 346 
Finally, the microdiversity patterns observed in plume microorganisms depict a scheme of populations 347 
selected by environmental constraints. Low population diversity and high N/S SNV ratio indicate that 348 
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microbes are selected by plume conditions and actively grow after a short migration history. Evidence 349 
shows that gene-specific sweeps within certain plume populations are related to nutrient uptake, 350 
aerobic oxidation, and stress responses, and some sulfur metabolizing genes are also selected during 351 
the environmental change. These traits help microbial cells to be more adaptable and resilient in sulfur 352 
oxidation-dominated hydrothermal plume conditions. Collectively, the plume microbiome has a 353 
distinctive composition, function, and genetic structure focused on allowing organisms to better adapt 354 
to hydrothermal plume conditions. Population alteration in plumes compared to the background deep 355 
sea involves both reshaping community-level structure and fine-scale strain-level genetic adjustments 356 
that includes advantageous metabolisms being fixed. These nuanced microdiversity changes can lead 357 
to fundamental changes in population fitness towards niche adaptation. Overall, the plume microbial 358 
community is associated with energy conservation, metabolic distribution, and cell stress response 359 
which likely facilitates more efficient adaptation of the plume microbiome in mediating 360 
biogeochemical cycles. The connected relationship between microbiome and biogeochemistry we 361 
demonstrate reflects the overall ecological and evolutionary basis of microbial strategies for thriving 362 
in geochemically-rich energy landscapes.  363 
 364 

Data availability 365 
The MAG genomic sequences are deposited into the NCBI Genome database under the BioProject ID 366 
of PRJNA488180. The genome annotation results from this study are publicly available at 367 
https://doi.org/10.5281/zenodo.5034800 (all plume MAG annotations are deposited to this location). 368 
 369 

Code availability  370 
The Perl and R codes for parsing, calculating, and visualizing in this study are publicly available at 371 
https://github.com/AnantharamanLab/Hydrothermal_plume_omics_Zhou_et_al._2021. 372 
 373 
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Methods 398 
Sample information and omics sequencing 399 
Hydrothermal plume and surrounding background samples were collected from the corresponding 400 
cruises: R/V New Horizon sampling in Guaymas Basin, Gulf of California (July 2004), R/V Atlantis 401 
and R/V Falkor sampling in Mid-Cayman Rise, Caribbean Sea (Jan 2012 and June 2013), two 402 
consecutive cruises on the R/V Thomas G Thompson sampling in Eastern Lau Spreading Center 403 
(ELSC), Lau Basin, western Pacific Ocean (May-July 2009), R/V MGS Sagar sampling in Central 404 
Indian Ridge and Southwest Indian Ridge (Jan-Mar 2017), and R/V Thomas G Thompson sampling in 405 
Axial Seamount, Juan de Fuca Ridge, northeastern Pacific Ocean (Aug 2015). In brief, Guaymas Basin 406 
plume and background samples were collected by 10 L CTD-Rosette bottles and N2-pressure filtered 407 
on board for microbial specimen collection by 0.2 µm pore size, 142 mm polycarbonate membranes11. 408 
The samples were preserved immediately in RNAlater. Mid-Cayman hydrothermal plume and 409 
surrounding background samples were collected by Suspended Particulate Rosette (SUPR) filtration 410 
device49 mounted to the remotely operated vehicle Jason II. SUPR collected water with the amount of 411 
10-60 L from different sampling locations, and these samples were in-situ filtered for microbial 412 
specimens by 0.2 μm pore size SUPOR polyethersulfone membranes and preserved in RNAlater 413 
flooded conical vials and frozen at -80°C. For Lau Basin samples, SUPR-collected samples were in-414 
situ filtered by SUPOR polyethersulfone membranes with 0.8 μm and 0.2/0.8 μm pore size for 415 
geochemical analysis and microbial specimen collection, respectively26. Samples were preserved in 416 
RNAlater flooded conical vials and frozen at -80°C. Central Indian Ridge and Southwest Indian Ridge 417 
samples were collected by 10 L CTD-Rosette bottles and filtered by 0.2 µm pore size, 47 mm SUPOR 418 
polyethersulfone membranes, and preserved in RNAlater flooded conical vials and frozen at -80oC. 419 
For Axial Seamount samples, both plume and background samples were collected by a Seabird 420 
SBE911 CTD and 10L Niskin bottles50. Samples of 3 L were then transferred into cubitainers, filtered 421 
through 0.22 μm Sterivex filters, and preserved for downstream analysis50. 422 
 423 
Details for sample collection, preservation, geochemical analysis, and 424 
metagenomic/metatranscriptomic sequencing refer to the previous publications22, 50, 51. Detailed cruises 425 
and sampling information refer to Supplementary Data 1. The geological map and schematic diagram 426 
represent the details of sampling locations (Fig. 1a, Fig. S1). The metagenomic DNA and 427 
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metatranscriptomic cDNA were extracted and synthesized from corresponding samples and processed 428 
for Illumina HiSeq 2000/2500 sequencing as described previously11, 14, 18, 25, 50. The distribution of 429 
acquired metagenomes (DNAs, labeled as “D”) and metatranscriptomes (cDNA, labeled as “C”) was 430 
represented in Fig. S1b (only for samples with detailed location and physicochemical characterization; 431 
distribution of other samples refers to Supplementary Data 1). The raw reads (both DNA/cDNA reads) 432 
were dereplicated by SeqTools v4.28 (https://www.sanger.ac.uk/tool/seqtools/) and processed by 433 
Sickle v1.33 (https://github.com/najoshi/sickle) to trim reads of low quality with default settings. 434 
Command “reformat.sh” in BBTools (last modified on Feb 11, 2019; 435 
https://www.sourceforge.net/projects/bbmap/) was used to calculate fastq sequence and nucleotide 436 
numbers. 437 
 438 
Core hydrothermal plume microbiome analysis 439 
In total, 51 hydrothermal plume and background 16S rRNA gene datasets were used for analyzing the 440 
microbiome of hydrothermal plume, within which 24 datasets were obtained in this study, containing 441 
datasets from samples of Mid-Cayman Rise, Guaymas Basin, Lau Basin, Central and Southwestern 442 
Indian Ridge, and Axial Seamount plume (Supplementary Data 2). For hydrothermal plume and 443 
background samples with only metagenome datasets, 16S rRNA gene sequences were parsed out from 444 
metagenomes and these sequences were weighted according to their coverages. Simulated 16S rRNA 445 
gene datasets were used in subsequent analysis. The original datasets of paired-end reads were merged 446 
into combined 16S tags by FLASH v1.2.1152 with default settings. The bioinformatic analyses, 447 
including pre-analysis quality control, 16S chimera checking, open-reference OTU picking, taxonomy 448 
assigning, OTU table file ‘biom’ generating and rarefying, OTU representative sequences filtering and 449 
aligning, alignment filtering, and phylogenetic tree reconstructing, were performed according to the 450 
instructions of QIIME v1.9.153, respectively. The 16S rRNA reference database was based on 451 
“SILVA_132_QIIME_release”54. The resulted ‘biom’ (OTU table file), ‘tre’ (phylogenetic tree), and 452 
“map” (sample characterization map) files were imported into R (using R package ‘phyloseq’) for 453 
downstream analysis and visualization. Taxa summary and principal coordinates analysis (PCoA) were 454 
conducted accordingly to delineate the community structure and biogeographic pattern of 455 
hydrothermal plume and background seawater microbiome. Genus-level taxa summary table was used 456 
to find core hydrothermal plume microbiome from 37 hydrothermal plume datasets by filtering genera 457 
that exist in > 67% plume datasets and have > 1% relative abundance on average. Core plume 458 
microbiome metabolic profiles were conducted by choosing MAGs (see the following sections of 459 
obtaining these MAGs) from this study that contain 16S rRNA genes affiliated to the core plume 460 
microbial genera. Metabolic profiling for these MAGs was based on the result from “MAGs genomic 461 
property and annotation”. 462 
 463 
Assembling and metagenomic binning 464 
QC-processed reads were assembled de novo by MEGAHIT v1.1.255 with settings as “--k-min 45 --k-465 
max 95 --k-step 10”. Hydrothermal plume and background metagenomes from the same hydrothermal 466 
site were assembled together. QC-processed reads were re-mapped to assemblies by Bowtie 2 v2.2.856 467 
with default settings. For each hydrothermal site, hydrothermal plume and background reads were 468 
mapped to corresponding assemblies separately; bam files by plume and background samples for 469 
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individual assemblies were used for downstream binning, Subsequently, the assemblies were subjected 470 
to a MetaBAT v0.32.457 based binning with 12 combinations of parameters. Afterward, DAS Tool 471 
v1.058 was applied to screen MetaBAT MAGs, resulting in high quality and completeness MAGs. This 472 
MetaBAT/DAS Tool method enables a comprehensive “slice-layer profiling” for searching potential 473 
MAGs with a better outcome (in-house tested). CheckM v1.0.759 was used to assess MAG quality and 474 
phylogeny. Outlier scaffolds with abnormal coverage, tetranucleotide signals, and GC pattern within 475 
potential high contamination MAGs (by CheckM) and erroneous SSU sequences within MAGs were 476 
screened out and decontaminated by RefineM v0.0.2060 with default settings. Afterwards, further 477 
MAG refinement for decontaminating certain MAGs was manually inspected based on VizBin61. 478 
MAGs are picked using a threshold of < 10% contamination (namely genome redundancy) and > 50% 479 
completeness.  480 
 481 
MAG genomic property and annotation 482 
Genome phylogeny was determined by RefineM and GTDB-Tk v 0.2.162 (GTDB database, release 83). 483 
Additionally, phylogenies of those genomes that could not be assigned to a meaningful microbial group 484 
were inferred from ribosomal protein (RP) trees using the phylogenetic reconstruction method 485 
described below. Genomic properties, including genome coverage, genome and 16S rRNA taxonomy, 486 
tRNAs, genome completeness, and scaffold parameters, were parsed from results that were calculated 487 
by CheckM and tRNAscan-SE 2.063. Relative genome coverages were normalized by setting each 488 
metagenomic dataset size as 100M paired-end reads. MAG ORFs were parsed out by the Prokka 489 
annotation pipeline v1.1264 with default settings. For ORF annotation, GhostKOALA v2.027, KAAS 490 
v2.126, and eggNOG-mapper v4.5.128 were applied to thoroughly annotate ORFs to KOs. For eggNOG-491 
mapper annotation, we used its first KO hit as annotation result; if there was only COG annotation, we 492 
translated it into KO using ‘ko2cog.xl’ provided by KEGG database. When combining three software 493 
annotations, we use resulted KO from the first software as the final annotation; if there is no annotation 494 
from the first software, then we will move to the next software accordingly. Annotation by NCBI nr 495 
database (Mar 6, 2017 updated) was conducted with default settings and for each annotation the first 496 
meaningful hit (hit not assigned as ‘hypothetical protein’) was extracted. Genomic-specific metabolic 497 
traits were searched against TIGRfam, Pfam, Kofam, and custom HMM profiles using hmmscan65 and 498 
custom protein database using DIAMOND BLASTP66. For searching against custom HMM databases, 499 
noise cutoff values are determined according to previous settings12, respectively. For DIAMOND 500 
BLASTP searching, a stringent criterion as “-e 1e-20 --query-cover 65 --id 65” was applied. 501 
Carbohydrate active enzymes (CAZymes) were searched against dbCAN2 with default settings67; 502 
Peptidases were searched against MEROPS ‘pepunit’ database with stringent DIAMOND BLASTP 503 
settings as “-e 1e-10 --subject-cover 80 --id 50”68.  504 
 505 
Phylogenetic tree reconstruction 506 
The syntenic block of universal 16 ribosomal proteins (RPs) (L2-L6, L14-L16, L18, L22, L24, S3, S8, 507 
S10, S17, and S19) were used for inferring RP phylogenetic tree, after hmmscan-based65 searching for 508 
RPs from all MAGs. The individual RP was pre-aligned with local custom RP database by MAFFT 509 
v7.123b69 and curated in Geneious Prime v2019.0.470 by manually masking out begin and end regions 510 
with lots of gaps. Out of 206 MAGs, 177 containing > 4 RPs were used; the concatenated and curated 511 
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16RP-alignment (7741 aligned columns) was used for phylogenetic inference by IQTREE-based 512 
maximum likelihood method (IQ-TREE multicore v1.6.371) with settings of “-m MFP -bb 1000 -redo 513 
-mset WAG,LG,JTT,Dayhoff -mrate E,I,G,I+G -mfreq FU -wbtl”. The resulted phylogenetic tree was 514 
rooted by archaea lineages and visualized by iTOL72. Functional traits were added accordingly to each 515 
MAG on the tree. Bacterial and archaeal SSU sequences (> 300 bp and the longest from individual 516 
MAG) parsed out by local pipeline (use CheckM ssuFinder59 to pick and RefineM to filter erroneous 517 
hits) were aligned in SINA aligner73 with default settings. The 16S sequence taxonomy was checked 518 
by BLASTn searching against SILVA_128_SSUParc_tax_silva database54 and 16S sequences with 519 
resulted taxonomy different from their MAG phylogeny (at the phylum level) were filtered due to the 520 
high possibility of contamination. IQTREE-based71 phylogenetic inference was conducted with 521 
settings of “-st DNA -m MFP -bb 1000 -alrt 1000”. The 16S rRNA gene tree based on the alignment 522 
of 85 sequences with 50000 columns was rooted by archaea lineages, visualized by iTOL72, and 523 
manually curated. 524 
 525 
Metagenomic and metatranscriptomic mapping 526 
QC-passed metagenomic reads were mapped to MAGs separately (metagenomic datasets from 527 
Guaymas Basin, Mid-Cayman Rise, and Lau Basin sites were mapped individually to the 528 
corresponding MAGs) using Bowtie 2 v2.2.8 with default settings56. MetaBAT integrated 529 
“jgi_summarize_bam_contig_depths” script and homemade Perl scripts were used to calculate MAG 530 
coverage (normalized coverage with each metagenomic dataset size set as 100M paired-end reads). 531 
QC-passed metatranscriptomic reads (use the same QC-process as described above with an additional 532 
SortMeRNA v2.174 rRNA filtering step) were mapped to MAGs separately, with TPM (Transcripts Per 533 
Kilobase Million) calculated for individual genes within each genome. 534 
 535 
Statistical comparison on MAG and functional trait abundance 536 
Metagenome/metatranscriptome-based MAG mapping results and functional annotations for all the 537 
MAGs were summarized individually. Afterwards, significance tests on the differentiation pattern of 538 
MAG (also MAG taxonomic group) and functional trait abundances across all the 539 
metagenomic/metatranscriptomic samples were calculated by R package DESeq275. Log2 Fold 540 
Change value with adjusted P-value (by nbinomWaldTest) < 0.05 was considered as significant. 541 
Relative abundances of MAG (also MAG taxonomic group) and functional traits were visualized by 542 
R (using R package ‘pheatmap’) with the relative abundance at row normalized by removing the mean 543 
(centering) and dividing by the standard deviation (scaling). Sunburst figures were generated to depict 544 
the relative abundance of MAGs based on metagenomic/metatranscriptomic mapping results, with the 545 
significant Log2 Fold Change values labeled to individual MAGs that have differential abundances 546 
between different hydrothermal ecological niches, e.g., plume and background. 547 
 548 
To find taxa in microbial community that are responsible for enriched functions (functions that are 549 
significantly enriched in each environment), major functions (including functions that are in the 550 
categories of carbon fixation, denitrification, sulfur cycling, hydrogen oxidation, methane oxidation, 551 
aerobic oxidation, iron oxidation, and manganese oxidation), and specific functions, custom Perl 552 
scripts were written to get the corresponding microbial community contribution information (scripts 553 
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deposited in https://github.com/AnantharamanLab/Hydrothermal_plume_omics_Zhou_et_al._2021). 554 
Functional trait results of all MAGs, MAG coverage within the community, and targeted function list 555 
were used as inputs to conduct the calculation. For environments with metatranscriptomic reads, we 556 
also used active MAG coverage (calculated by metatranscriptomic reads mapping result) as the input 557 
to calculate microbial community contribution information based on metatranscriptomes. 558 
 559 
Bioenergetic and thermodynamic modeling 560 
Equilibrium thermodynamic reaction path modeling was used to predict chemical concentrations and 561 
activity coefficients resulting from the mixing of seawater with end-member vent fluids 562 
(Supplementary Table 2). Our thermodynamic modeling builds on the specific plume model 563 
implementation described in Breier et al76. The estimated temperature of bottom seawater is according 564 
to the previous report10. The original chemical data is derived from Reeves et al77 and Anantharaman 565 
et al10. For each hydrothermal vent system, we choose at least one representative end-member fluid 566 
sample(s), respectively (1 for Guaymas Basin, 2 for Mid-Cayman Rise, and 3 for Lau Basin) 567 
(Supplementary Table 2).  568 
 569 
Bioenergetic and thermodynamic modeling procedures were conducted as described in Anantharaman 570 
et al7 and Li et al18 (More details refer to Supplementary Information and Tables). Reaction path 571 
modeling was performed with REACT, part of the Geochemist’s Workbench package78. Conductive 572 
cooling was neglected and mixture temperatures were a strict function of conservative end-member 573 
mixing. Precipitated minerals were allowed to dissolve and their constituents to re-precipitate based 574 
on thermodynamic equilibrium constraints. Thermodynamic data were predicted by SUPCRT9579 for 575 
the temperature range of 2°C to end-member vent fluid temperature and a pressure of 500 bar. The 576 
estimated biomasses and free energies of individual environments were calculated and their relative 577 
abundance change along the temperature range (2 - 121°C) was visualized by R. Two temperatures (3 578 
and 4.9°C) were picked to conduct the biomass and free energy estimation for representing typical 579 
plume temperatures in nature. 580 
 581 
Energy contribution and MAG growth rate calculation   582 
Based on metabolic prediction of each MAG and MAG gene coverage and expression level within 583 
each environment, energy contribution for each electron donor was calculated based on gene 584 
coverage/expression level and free energy of each catabolic reaction. The contribution ratio of electron 585 
donor species was calculated for individual samples respectively. We also included influence of the 586 
presence of electron acceptors to energy contribution calculation. To simplify the hydrothermal 587 
condition, we only included two major electron acceptors (O2 and NO3-) and used the ratio of these 588 
two electron acceptors to infer energy contribution of electron donors at different oxidative conditions.  589 
 590 
Microbial genome replication starts directionally from a single origin31. Based on metagenomic 591 
mapping, at a single time-point the coverage ratio between the replicating origin and terminus of a 592 
microbial genome can be used as a proxy to represent the replication rate/growth rate30, 32. Growth rate 593 
for each MAG was calculated by iRep v1.1030 with default settings. MAGs that are from the same 594 
environments were pooled together as the input genomes. Sam files that were generated by 595 
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metagenomic mapping described above were used as the iRep input. Barcharts that reflect the growth 596 
rate and significant difference test result (by t-test) of MAG taxonomic groups were generated using 597 
R package ‘ggplot2’ and ‘PairedData’.  598 
 599 
Network complexity analysis 600 
For each community, a bipartite network was built based on reaction/substrate relationships and the 601 
percent energy yields for each reaction. Briefly, the plume chemical reaction table for each reaction 602 
was stored; within the table, the substrate and product for a reaction were recorded39. Then, for each 603 
community, reactions (represented as one set of nodes in the bipartite network) with different percent 604 
energy yields were connected with substrates and products in the network (represented as the second 605 
set of nodes) via directed edges between both sets of nodes. The energy yields are based on the result 606 
from “Bioenergetic and thermodynamic modeling” and are represented on the network as node size 607 
proportional to the percent energy yield. These networks were constructed using the Python package 608 
‘networkx’80 (https://networkx.org/).   609 
 610 
The network complexity change as a function of reaction energy yield was calculated by the following 611 
steps40. For each plume community network, the complexity of the network’s structure was measured.  612 
A node was taken from the network; as a consequence, the change in complexity (ΔC) before and after 613 
the node was taken was calculated accordingly. The ΔC was assigned to that node as a property 614 
representing that node’s contribution to the network’s overall complexity. Then this node was placed 615 
back and these steps were repeated for each reaction node40. 616 
 617 
In this study, complexity (C) was calculated by estimating the algorithmic complexity. Because 618 
algorithmic complexity cannot be directly computed, we used an estimate known as the Block 619 
Decomposition Method (BDM)41. The perturbation analysis to calculate each node’s complexity 620 
contribution (ΔC) is called Minimal Information Loss Selection, MILS32; in this study, successive edge 621 
deletion was replaced as node deletion which also works with good performance33. This method has 622 
been used to characterize complex properties of biological networks and is proven to be a good 623 
measure among many other algorithms40, 41. For all reaction nodes in each community plume reaction 624 
network, we conducted this measurement for each reaction node and came up with the scatterplots.  625 
 626 
Community-level metabolic analysis 627 
Resulted MAGs and plume metagenomic reads were used to conduct community-level metabolic 628 
analysis using METABOLIC-C v4.035 with default settings. For Guaymas Basin, Mid-Cayman Rise, 629 
and Lau Basin sites, all MAGs and plume metagenomic reads from each site were used separately. 630 
From METABOLIC-C regular MW-score results, a group of metabolic cycling steps that are important 631 
in reflecting the plume substrate metabolisms were specifically selected to make functional network 632 
diagrams (using R script ‘draw_functional_network.R’ from METABOLIC-C). For each site, MW-633 
score table and functional network diagram (based on both all and selected metabolic steps) were 634 
generated, respectively.  635 
 636 
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Evolution analysis 637 
Metagenomic reads from mesopelagic Tara Ocean metagenomic datasets (with > 800m depth)45 were 638 
used as the regular ocean environment representatives to compare microdiversity characteristics with 639 
that of hydrothermal environments from this study. To simplify analyses, Tara Ocean reads from 640 
samples collected by filtration with various filter sizes at each station were pooled as one to represent 641 
all reads from that station. Both Tara Ocean reads and hydrothermal environment reads (including 642 
both background and plume environments; background and plume reads were also pooled together 643 
individually to simplify analyses and satisfy coverage requirement of each MAG) from this study were 644 
first mapped to hydrothermal environment MAGs recovered from individual sites by Bowtie 256 with 645 
default settings. After mapping, reads within resulted bam files were filtered according to the following 646 
rules to calculate downstream microdiversity parameters: (1) minimum percent identity of read pairs 647 
to reference > 95%; (2) maximum insert size between two reads < 3× median insert size and minimum 648 
insert size > 50bp (so only paired reads are retained). Filter steps were either conducted by inStrain 649 
v1.4.142 or inStrain_lite v0.4.081 (for generating bam files) with the same rules. Software inStrain was 650 
further employed to calculate microdiversity parameters for each MAG in individual sites from this 651 
study. Subsequently, interested parameters42 were picked and parsed accordingly from resulted folders, 652 
including ‘coverage’ (average coverage depth of all scaffolds of one genome), ‘breadth minCov’ 653 
(percentage of bases in the scaffold that have at least ‘min_cov’ coverage), ‘SNV count / (breadth 654 
minCov × length)’ (total number of SNVs called on one genome normalized by genome length and 655 
breadth minCov), ‘N/S SNV ratio’ (nonsynonymous to synonymous SNV ratio of one genome), 656 
‘r2_mean’ (r2 mean between linked SNVs), ‘con freq mean’ (mean value of fraction of reads supporting 657 
the consensus base within one genome), ‘con freq mean for N SNV’ (mean value of con freq on all 658 
nonsynonymous SNV sites), and ‘con freq mean for S SNV’ (mean value of con freq on all 659 
synonymous SNV sites). MAGs that have breadth_minCov value < 50% or do not pass the ‘min_cov’ 660 
requirement by inStrain were removed from microdiversity analysis in each site. 661 
 662 
In order to identify gene-specific selective sweep in hydrothermal environment, we further pooled 663 
reads together into two categories, one contains hydrothermal environment datasets (including both 664 
background and plume environment datasets) and the other contains Tara Ocean samples (all Tara 665 
Ocean sample datasets are pooled together). After reads mapping and filtering as described above, FST 666 
(fixation index) between hydrothermal and Tara Ocean environments was calculated using scikit-allel 667 
package82 (Hudson method83) within inStrain_lite to identify genes with skewed allele frequencies 668 
across the whole genome. Subsequently, high FST genes from each MAG within each hydrothermal 669 
vent site were identified if they have FST value > FST mean (genome-wide FST average) + 2.5 × FST std 670 
(genome-wide FST standard deviation) and the lowest gene coverage in either hydrothermal and Tara 671 
Ocean environment samples should be higher than 5×. Meanwhile, for each genome the number of 672 
genes with empty FST value should not be more than half of all genes, otherwise high FST genes will 673 
not be taken into account for this genome. We set gene coverage in both environments to be at least 674 
5× due to the fact that reduction of gene coverage (or loss of coverage in some genome regions) can 675 
also lead to low nucleotide diversity. Furthermore, to confirm that these genes are specifically selected 676 
in hydrothermal environment, additional requirements were added: (1) gene nucleotide diversity in 677 
hydrothermal environment < nucleotide diversity genome average in hydrothermal environment; (2) 678 
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gene N/S SNV ratio in hydrothermal environment > N/S SNV ratio genome average in hydrothermal 679 
environment; (3) gene nucleotide diversity in hydrothermal environment < gene nucleotide diversity 680 
in Tara Ocean samples; (4) gene N/S SNV ratio in hydrothermal environment > gene N/S SNV ratio 681 
in Tara Ocean samples.  682 
 683 
To find sulfur metabolizing genes that have signals of being fixed after migration, a relatively less 684 
stringent set of criteria were used to screen gene FST values compared to high FST gene identification 685 
method in the above paragraph. For each sulfur metabolizing gene (including genes of sat, aprA, sdo, 686 
oxidative dsrAB, and soxBCY) containing MAGs, the identified genes should meet the following 687 
criteria: (1) FST value > FST mean (genome-wide FST average) and both FST and FST mean should be 688 
positive values; (2) gene nucleotide diversity in hydrothermal environment < gene nucleotide diversity 689 
in Tara Ocean samples; (3) gene N/S SNV ratio in hydrothermal environment > gene N/S SNV ratio 690 
in Tara Ocean samples; (4) gene coverages in hydrothermal environments and Tara Ocean samples 691 
both > 5×. Sulfur metabolizing genes that meet all the four criteria were indicated to have positive 692 
gene fixation signals though the selective power across the genome did not reach the level of gene-693 
specific selective sweeps as indicated by the above method.694 
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Figure Captions 695 

Fig. 1 | Sampling sites, distribution, and metabolic profile of the core plume microbiome. a 696 
Sampling site maps of hydrothermal plume samples from which the 16S rRNA gene datasets were 697 
sourced. Numbers in brackets indicate dataset quantities. Three hydrothermal sites that have 698 
metagenome and metatranscriptome datasets in this study were specifically represented by inset maps. 699 
Ocean maps were remodified from ArcGIS online map (containing layers of “World Ocean Base” and 700 
“World Ocean Reference”; https://www.arcgis.com/). b Membership and distribution of the core plume 701 
microbiome. Heatmap shows the presence/absence of core plume microbial groups (tracing back to 702 
known taxonomic ranks from the genus-level taxa) in 37 hydrothermal plume 16S rRNA gene datasets 703 
across the world. c Metabolic profile of the core plume microbiome. From this study, MAGs that have 704 
16S rRNA genes affiliated to the core plume microbiome were used as representatives (numbers 705 
labeled in brackets). This subpanel shows the presence or absence of metabolic potential associated 706 
with sulfur, carbon, nitrogen, hydrogen, and metal biogeochemical transformations. 707 
 708 
Fig. 2 | Thermodynamic estimation of available free energies and biomass yields from electron 709 
donors, metagenomics-based contribution of electron donors to energy, and growth rates of 710 
major microbial contributors. a Thermodynamic estimation diagram of available free energy and 711 
biomass. For each hydrothermal environment, the contribution fraction of each electron donor species 712 
was labeled accordingly in the rings. The total available free energies and biomass were labeled 713 
accordingly to individual plumes. Two temperatures (3°C and 4.9°C) were picked to represent in situ 714 
temperatures in the upper and lower plume. Light yellow represents aerobic sulfur oxidation, dark 715 
yellow represents anaerobic sulfur oxidation. b Metagenomics-based estimation of energy contribution. 716 
Energy contribution for each electron donor was calculated based on metagenomic abundance of each 717 
reaction of electron donors and free energy yield of each reaction. The contribution ratio of electron 718 
donor species was calculated for individual environments respectively. c Growth rate of major 719 
microbial contributors in each hydrothermal environment. The y-axis for each barplot indicates the 720 
replication rate. The microbial groups starting with “α-”, “γ-”, and “δ-” represent Alphaproteobacteria, 721 
Gammaproteobacteria, and Deltaproteobacteria, respectively. Plume microbial groups were colored by 722 
dark yellow, background microbial groups were colored by light yellow and they were also all labeled 723 
with “(P)” or “(B)”, respectively. Numbers in brackets indicate MAG numbers in each microbial group. 724 
Star-labeled plume microbial groups had higher growth rates than the ‘Rest’ plume microbial groups. 725 
 726 
Fig. 3 | Sulfur metabolism and metabolic plasticity of sulfur oxidizers. a Details of sulfur 727 
metabolism pathways in the hydrothermal plume. The gene abundance (coverage normalized by 100M 728 
reads) and transcript expression level (TPM) for each step were calculated based on plume 729 
metagenomic and metatranscriptomic read mapping results. Log10-transformed values of gene 730 
abundance and transcript expression level were labeled accordingly in the diagram. b Major 731 
contributors to sulfur metabolizing genes. For each sulfur metabolizing gene, microbial groups that 732 
occupied > 10% of the total gene abundance (by metagenome) or transcript expression (by 733 
metatranscriptome) values were labeled in the diagram. For some genes with only three or less than 734 
three contributors, all contributors were labeled. c Metabolic plasticity of sulfur oxidizers. For each 735 
hydrothermal vent site, three parameters were given to show the metabolic plasticity of sulfur oxidizers 736 
in conducting each electron transferring reaction related to carbon, nitrogen, hydrogen, and metal 737 
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biogeochemical cyclings: the number of sulfur-oxidizing gene containing MAGs, gene abundance 738 
percentage, and transcript abundance percentage. 739 
 740 
Fig. 4 | Network complexity, MW-scores (metabolic weight scores), and functional network 741 
diagrams of the three hydrothermal vent sites. a Network complexity diagram representing each 742 
reaction’s influence on the complexity of the network. In the figure, different colors represent different 743 
hydrothermal environments, different symbol shapes represent different reactions. The substrates 744 
(including electron donors and acceptors) were listed for each reaction in the legend. The x-axis is the 745 
change in complexity (ΔC) of the whole network for a node (a reaction here) and the y-axis is the 746 
percent energy yield of that reaction in the whole community. This network complexity diagram was 747 
based on thermodynamic estimation results at 3°C. b MW-scores of three major energy contributing 748 
reactions. c Functional network diagram of Guaymas Basin. d Functional network diagram of Mid-749 
Cayman Rise. e Functional network diagram of Lau Basin. A group of metabolic cycling steps that 750 
are important in reflecting the plume substrate metabolisms were selected from METABOLIC-C 751 
regular MW-score results to make these functional network diagrams (c, d, e), respectively. In each 752 
functional network diagram, the size of a node is proportional to gene coverage associated with the 753 
metabolic/biogeochemical cycling step. The thickness of the edge represents the average gene 754 
coverage values of the two connected metabolic/biogeochemical cycling steps. Edges related to two 755 
reactions of sulfur oxidation were colored accordingly in each diagram. 756 
 757 
Fig. 5 | Evolutionary mechanism of plume microbial populations during migration. a Schematic 758 
diagram showing the changing trend of microdiversity parameters during migration. Individual solid 759 
dots with various colors represent microbial populations. Two scenarios were depicted in this panel: 760 
unrepresentative strains and strains that have detectable read mapping results in both environments. b 761 
Two representative charts showing FST distribution in MAGs that contain high FST genes. In each chart, 762 
the x-axis represents gene numbers (only genes with detectable FST; negative values were removed). 763 
Dot sizes were proportional to SNV numbers in individual genes, and FST genome-wide mean was 764 
depicted in each chart with dash lines. Red-colored dots represent high FST genes that also passed the 765 
requirements of FST, nucleotide diversity, N/S SNV ratios, and coverages (see methods). The 766 
nucleotide diversity and N/S SNV ratio distribution for high FST genes and genome-wide mean of all 767 
genes in different environments were depicted in the chart on the right side. Details of high FST genes 768 
and related parameters in individual genomes (all hits, also including these two representative genomes) 769 
were listed in Supplementary Data 12. c Two representative charts showing FST distribution in MAGs 770 
that contain sulfur metabolizing genes with signals of being fixed. In each chart, the x-axis represents 771 
gene numbers (only genes with detectable FST; negative values were removed). Dot sizes were 772 
proportional to SNV numbers in individual genes, and FST genome-wide mean was depicted in each 773 
chart with dash lines. Red-colored dots represent sulfur metabolizing genes that passed the 774 
requirements of FST, nucleotide diversity, N/S SNV ratios, and coverages (see methods). The 775 
nucleotide diversity and N/S SNV ratio distribution for sulfur metabolizing genes in different 776 
environments were depicted in the chart on the right side. Details of sulfur metabolizing genes with 777 
signals of being fixed and related parameters in individual genomes (all hits, also including these two 778 
representative genomes) were listed in Supplementary Data 13. d Frame diagram showing the 779 
underlying evolutionary processes during migration. Circles represent microbial populations. Dash 780 
line arrows indicate the direction of the next evolutionary step. 781 
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