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Abstract (250 words maximum) 47 

Insect silk is an incredibly versatile biomaterial. Lepidoptera and their sister lineage, Trichoptera, 48 

display some of the most diverse uses of silk with varying strength, adhesive qualities and elastic 49 

properties. It is well known that silk fibroin genes are long (> 20 kb) and have many repetitive 50 

motifs. These features make these genes challenging to sequence. Most research thus far has 51 

focused on conserved N- and C-terminal regions of fibroin genes because a full comparison of 52 

repetitive regions across taxa has not been possible. Using the PacBio Sequel II system and 53 

SMRT sequencing, we generated high fidelity (HiFi) long-read genomic and transcriptomic 54 

sequences for the Indianmeal moth (Plodia interpunctella) and genomic sequences for the 55 

caddisfly, Eubasilissa regina. Both genomes were highly contiguous (N50 = 9.7 Mbp/32.4 Mbp, 56 

L50 = 13/11) and complete (BUSCO Complete = 99.3%/95.2%), with complete and contiguous 57 

recovery of silk heavy fibroin gene sequences. This study demonstrates that HiFi long-read 58 

sequencing can significantly help our understanding of genes with highly contiguous, repetitive 59 

regions. 60 

 61 

Keywords: 62 

Caddisfly, data description, Indianmeal moth, Lepidoptera, moth, PacBio, transcriptome, 63 

Trichoptera 64 
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Many phenotypic traits across the tree of life are controlled by repeat-rich genes [1]. 69 

There are many examples, such as antifreeze proteins in fish [2], keratin in mammals, and resilin 70 

in insects [1]. Silk is a fundamental biomaterial that is produced by many arthropods, and silk 71 

genes are often long (> 20 kb) and contain repetitive motifs [3]. Accurately sequencing through 72 

repeat-rich genomic regions is critical to understand how functional genes dictate phenotypes, 73 

but research thus far has been unable to quantify these regions. In the case of silk genes, this is 74 

essential as these regions control the strength and elasticity properties of silk fibers [4-6].  75 

Lepidoptera (moths and butterflies) and their sister lineage Trichoptera (caddisflies) 76 

display some of the most diverse uses of silk from spinning cocoons to prey capture nets and 77 

protective armorment [7]. A complete heavy fibroin for the model silkworm moth, Bombyx mori, 78 

was assembled over two decades ago using BAC libraries [8]. Recently, a combination of 79 

nanopore and Illumina sequencing technologies helped generate a full heavy fibroin sequence of 80 

B. mori, but large regions of the genome remain unassembled [3]. Similarly, we have had similar 81 

problems from the Nanopore and  Illumina hybrid assemblies in caddisfly genomes [e.g., 9], 82 

where we were unable to assemble the complete H-Fibroin genes despite intensive efforts for 83 

~20 species. In these assemblies, the biggest hindrance was sequencing single strands across 84 

large repeat regions and limited illumina polishing due to higher error rates in Nanopore data. 85 

The lack of full coverage was largely due to the fact that Nanopore and Illumina sequencing 86 

approaches introduce uncertainty for direct inference of function. Therefore, most research thus 87 

far has been limited, and focused only on conserved N- and C-terminal regions [e.g., 10]. 88 

Complete high-fidelity fully phased fibroin sequences are critical for advancing biomaterials 89 

discovery for insect silks.  90 

 91 
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Context 92 

We generated HiFi long-read genomic sequences for the Indianmeal moth (Plodia 93 

interpunctella), and the caddisfly species Eubasilissa regina, with the PacBio Sequel II system. 94 

Our goal was to recover the area of the genome that has been nearly impossible to sequence due 95 

to its repeated regions. We chose these two taxa as they represent two species with very different 96 

life histories – Plodia interpunctella is an important model organism in Lepidoptera whose 97 

larvae feed on a wide variety of grains and stored food products, and secrete large amounts of 98 

thin silken webbing at their feeding sites; they also use silk to create a cocoon during pupation 99 

[11-12]. Eubasilissa regina, on the other hand, is a member of Trichoptera, whose larvae secrete 100 

silk in aquatic environments in order to produce protective silk cases made of broader leaf pieces 101 

from deciduous trees, cut to size [13]. These new resources not only expand our knowledge of a 102 

primary silk gene in Lepidoptera and Trichoptera, but also contribute new, high-quality genomic 103 

resources for aquatic insects and arthropods which have thus far been underrepresented in 104 

genome biology [14-16]. 105 

 106 

Methods 107 

Sample information and sequencing 108 

A single adult specimen of each species was sampled for inclusion in the present study. 109 

For P. interpunctella, we used a specimen from the PiW3 colony line at the USDA lab (1600 SW 110 

23 Dr. Gainesville, FL, USA), and its entire body was used for extraction, given its small size. 111 

For E. regina, a wild-caught female adult specimen (#AK0WP01) from Enzan, Yamanashi, 112 

Japan (N35°43’24” E138°50’33”, elevation ~4,840 ft), originally deposited in the Smithsonian 113 

Institution, National Museum of Natural History (USNMENT01414923), was used. The head 114 
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and thorax were macerated and DNA was extracted. The remainder of the body is preserved as a 115 

frozen tissue sample in the lab of PRB at BYU. Both specimens were flash frozen in LN2 and 116 

DNA was extracted using Quick-DNA HMW MagBead Kit (Zymo Research). Extractions with 117 

at least 1 μg of high-molecular weight (> 40kb) were sheared and the BluePippin system (Sage 118 

Science, Beverly, MA, USA) was used to collect fractions containing 15 kb fragments for library 119 

preparation. Sequencing libraries were prepared for each species using the SMRTbell Express 120 

Template Prep Kit 2.0 (PacBio, Menlo Park, CA, USA) and following the ultra-low protocol. All 121 

sequencing was performed using the PacBio Sequel II system. For P. interpunctella, the genomic 122 

library was sequenced on a single 8M SMRTcell and E. regina was sequenced on three 8M 123 

SMRTcells, all with 30 hour movie times. For the P. interpunctella Iso-seq transcriptome, RNA 124 

was extracted using TRIzol (Invitrogen) from freshly dissected silk glands of caterpillars and 125 

following manufacturer's protocol. This species has relatively small body size compared to other 126 

Lepidoptera, so we waited until caterpillars reached their maximum size (during the fifth instar) 127 

before dissection, in order to maximize yield. Sequencing libraries were prepared following the 128 

PacBio IsoSeq Express 2.0 Workflow and using the NEBNext Single Cell/Low Input cDNA 129 

Synthesis & Amplification Module for the SMRTbell Express Template Prep Kit 2.0. The 130 

resulting library was multiplexed and sequenced on a single Sequel II PacBio SMRT cell for 30 131 

hrs. Library preparation and sequencing was carried out at DNA Sequencing Center at Brigham 132 

Young University (Provo, UT, USA).  133 

Genomic HiFi reads were generated by circular consensus sequencing (CCS) where 134 

consensus sequences have three or more passes with quality values equal to or greater than 20, 135 

from the subreads.bam files and using pbccs tool (v.6.0.0) in the pbbioconda package 136 

(https://github.com /PacificBiosciences/pbbioconda). Using the same pbbioconda package and 137 
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the Iso-seq v3 tools, high quality (> Q30) transcripts were generated from HiFi read clustering 138 

without polishing. 139 

 140 

Genome size estimations and genome profiling 141 

Estimation of genome characteristics such as size, heterozygosity, and repetitiveness were 142 

conducted using a k-mer distribution–based approach. After counting k-mers with K-Mer 143 

Counter (KMC) v.3.1.1 and a k-mer length of 21 (-m 21), we generated a histogram of k-mer 144 

frequencies with KMC transform histogram [17]. We then generated genome k-mer profiles on 145 

the k-mer count histogram using the GenomeScope 2.0 web tool [18] with the k-mer length set to 146 

21 and the ploidy set to 2.  147 

 148 

Sequence assembly and analysis 149 

For both genomes, reads were then assembled into contigs using the assembler Hifiasm 150 

v0.13-r307 with aggressive duplicate purging enabled (option -l 2) [19]. The primary contig 151 

assembly was used for all downstream analyses. Genome contiguity was measured using 152 

assembly_stats.py [20] and genome completeness was determined using Busco v.5.2.2 [21] and 153 

the obd10 reference Endopterygota. Contamination in the genome was assessed by creating 154 

Taxon-annotated GC-coverage (TAGC) plots using BlobTools v1.0 [22]. First, assemblies were 155 

indexed using samtools faidx then HiFi reads were mapped back to the indexed assemblies using 156 

minimap2 [23] with -ax asm20. The resulting bam files were sorted with samtools sort. 157 

Taxonomic assignment was performed via Megablast and using the NCBI nucleotide database 158 

with parameters -outfmt 6 qseqid staxids bitscore std' -max_target_seqs 1 -max_hsps 1-e value 159 

1e-25. BlobPlots were created by making a blobtools database from the assembly file, blast 160 

results, and mapping results using blobtools create and plots were created using blobtools plot. 161 
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 162 

Genome statistics  163 

 All samples, raw sequence reads, and assemblies were deposited to GenBank (Table 1). 164 

We generated 35.7 Gbp (41x coverage) and 15.7 Gbp (44x coverage) of PacBio HiFi sequence 165 

for E. regina and P. interpunctella, respectively. We assembled those reads into two contiguous 166 

genome assemblies. The assembly for E. regina has the highest contig N50 of any Trichoptera 167 

genome assembly to date. It contains 123 contigs, a contig N50 of 32.4 Mbp, GC content of 168 

32.68%, and a total length of 917,780,411�bp. GenomeScope 2.0 estimated a genome size of 169 

854,331,742 bp with 75.3% unique sequence 170 

(http://genomescope.org/genomescope2.0/analysis.php?code=ghDHLpAQUkIKK4e5yH88). 171 

Despite recent analyses showing no evidence of whole-genome duplication in caddisflies 172 

(Heckenhauer et al. 2022), the findings in this study may be an indication of tetraploidy. Future 173 

research should be done to further examine these patterns. 174 

The P. interpunctella assembly represents a substantial improvement to existing, publicly 175 

available genome assemblies (Table 2). After contaminated contigs were removed (three contigs 176 

contaminated with Wolbachia were identified), the resulting assembly comprises 118 contigs 177 

with a cumulative length of 300,731,903�bp. It exhibits a contig N50 of 9.7Mbp and a GC 178 

content of 35.41%. The genome size estimated by GenomeScope 2.0 was 275,458,564 bp with 179 

87.1% unique sequence (http://genomescope.org/genomescope2.0/ 180 

analysis.php?code=96nVnnk42W5nlBWIfHFj). 181 

 182 

Heavy fibroin gene annotation 183 
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We extracted heavy fibroin (H-fibroin) silk genes from both the P. interpunctella and E. 184 

regina assemblies. For P. interpunctella, we also searched existing, short-read based assemblies. 185 

We downloaded two short-read based genome assemblies for P. interpunctella, 186 

GCA_001368715.1 and GCA_900182495.1 from NCBI (https://www.ncbi.nlm.nih.gov/).  Since 187 

the internal region of H-fibroin is known to be repetitive, the more conserved N- and C-termini 188 

amino acids were blasted against the genomes with tblastn. For P. interpunctella, we used the 189 

terminal sequences published in [24] and for E. regina, we used the terminal sequences 190 

published in [5]. We then extracted the sequences and 500 bps of flanking regions from the 191 

assembly and annotated them using Augustus v.3.3.2 [25]. Spurious introns (those that did not 192 

affect reading frames and were not supported by transcript evidence) were manually removed. 193 

Annotated sequences are provided in the Gigascience GigaDB repository [26]. 194 

We recovered full-length H-fibroin sequences in both genomes. To our knowledge, the 195 

only other previously published full-length lepidopteran H-fibroin sequence was from a BAC 196 

library-based sequence of the model organism, B. mori. We compared our assembly of the P. 197 

interpunctella H-fibroin sequence with that from a previously published Illumina-based genome 198 

assembly of the same species (Table 2). Where the Illumina-based assembly only recovered the 199 

conserved terminal regions and a small number of repetitive elements, our assembly recovered 200 

the full-length gene, including the full complement of repetitive motifs (Figures 1, 2). 201 

Specifically, the P. interpunctella genome had a H-fibroin sequence that was 14,866 bp (whole 202 

gene with introns; 4,714 AA), and a molecular weight of 413,334.41 Da. For E. regina, we 203 

recovered the full-length sequence of H-fibroin, which was 25,250 bp (whole gene with introns; 204 

8,386 AA), and a molecular weight of 815,864.95 Da, with repeated regions (Figure 3). The 205 

recovery of this H-fibroin sequence marks the third complete, published H-fibroin sequence in 206 
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Trichoptera [27-28]. Our work shows that high quality, long-read sequencing can be used to 207 

successfully assemble difficult regions of non-model organisms without the use of expensive and 208 

tedious BAC methods. While our study is focused on the repetitive silk gene, H-fibroin, these 209 

results likely extend to other long, repetitive proteins that have previously proven difficult to 210 

assemble. 211 

 212 

Genome annotation 213 

For the structural annotations of the genomes, we masked and annotated repetitive 214 

elements using RepeatMasker [29] after identifying and classifying them de novo with 215 

RepeatModeler2 [30] following [31]. For species specific gene model training, we used BUSCO 216 

v.4.1.4 [21] with the Endopterygota odb10 core ortholog sets [32] with the –long option in 217 

genome mode. In addition, we predicted genes with the homology–based gene prediction 218 

GeMoMaPipeline of GeMoMa v1.6.4 [33-34] using previously published genomes. For E. 219 

regina we used the genome of Agypnia vestita (JADDOH000000000.1) [35] and for P. 220 

interpunctella we used the genome of Bombyx mori (GCF_014905235) as reference. We then 221 

used the MAKER v3.01.03 pipeline [36] to generate additional ab initio gene predictions with 222 

the proteins predicted from GeMoMa for protein homology evidence and the augustus-generated 223 

gene prediction models from BUSCO for gene prediction. For EST evidence, we used the 224 

transcriptome of Ptilostomis semifasciata (111015_I297_FCD05HRACXX_ 225 

L1_INSbttTHRAAPEI-17, 1kite.org) for E. regina and Iso-seq data for P. interpunctella. 226 

Evidence used in Maker and the Maker config files can be found in the Gigascience GigaDB 227 

repository [26].  228 
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To add functional annotations to the predicted proteins, we blasted the predicted proteins 229 

against the ncbi-blast protein database using BlastP in blast.2.9 with an e-value cutoff of 10−4 230 

and –max_target_seqs set to 10 (see repository). We then used the command line version of 231 

Blast2GO v.1.4.4 [37] to assign functional annotation and GO terms. 232 

 233 

Validation and quality control  234 

In addition to full-length H-fibroin sequences, we recovered a high number of single copy 235 

orthologs in each genome with BUSCO. The E. regina genome contained 95.2% of an 236 

Endopterygota core gene collection (comprised of 2124 genes) indicating an almost complete 237 

coverage of known single copy orthologs in the coding fraction. While the number of single-238 

copy orthologs recovered in the new P. interpunctella genome was similar to earlier published 239 

genomes (99.3% of the Endopterygota core gene collection, 99.1% of the Lepidoptera core gene 240 

collection), the full-length sequence of H-fibroin only recovered in the HiFi based genome gives 241 

some indication of how other portions of the genome may have assembled. Following 242 

contamination screening by NCBI, we filtered out three instances of Wolbachia contamination in 243 

the P. interpunctella genome. BlobPlots for both genomes revealed low levels of contamination 244 

(Supplementary Figures 1, 2). 245 

 246 

Structural and functional annotation  247 

A total of 56.26% of the E. regina genome was classified as repetitive (54.2% interspersed 248 

repeats). More than half of the interspersed repeats, 29.87%, could not be classified by 249 

comparison with known repeat databases, and therefore may be specific for Trichoptera. Of the 250 

repeats that were classified, retroelements were the most abundant, comprising 15.35% (of which 251 
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14.55% are LINEs) of the genome. The relatively high proportion of repetitive sequence 252 

supports previous studies which suggest that repetitive element expansion occurred in lineages of 253 

tube case-making caddisflies, such as the closely related genera Agrypnia and Hesperophylax [9, 254 

35]. In contrast, a total of 31.94% of the P. interpunctella genome assembly was masked as 255 

repeats. A total of 23.04% of the annotated repeats were interspersed repeats. Details on the 256 

repeat classes are given in the Gigascience GigaDB repository [26]. 257 

The genome annotations resulted in the prediction of 16,937 and 60,686 proteins in P. 258 

interpunctella and E. regina, respectively. Of the annotated proteins, for E. regina, 28,358 259 

showed significant sequence similarity to entries in the NCBI nr database, of those 12,550 were 260 

mapped to GO terms, and 5,652 were functionally annotated with Blast2GO. For P. 261 

interpunctella, 16,349 were verified by BLAST, 12,410 were mapped to GO terms, and  9,711 262 

were functionally annotated in Blast2GO. 263 

 The major biological process found in the two genomes were cellular (E. regina: 2,326 264 

genes; P. interpunctella: 4,725 genes) and metabolic (E. regina: 2,454 genes; P. interpunctella: 265 

3,699 genes) processes. Binding (E. regina: 2,382 genes; P. interpunctella: 4,405 genes) and 266 

catalytic activity (E. regina: 2,778 genes; P. interpunctella: 3,893 genes) were the largest 267 

subcategories in molecular function. Regarding the cellular component category, most genes 268 

were assigned to the cell (1,553 genes) and membrane (1,491 genes) subcategory in E. regina 269 

and to the cellular anatomical entity subcategory in P. interpunctella (5,602 genes). The major 270 

biological process found in both genomes were cellular and metabolic processes.  271 

Re-use potential  272 

We provide a complete genome of two species of silk-producing insects in the superorder 273 

Amphiesmenoptera, the moth P. interpunctella and the caddisfly E. regina, and recover the 274 
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difficult-to-sequence repetitive regions of both genomes with HiFi sequencing. P. interpunctella 275 

is currently being developed in multiple labs as a model organism and this genome assembly will 276 

facilitate molecular genetics research on this species. We show that PacBio HiFi sequencing 277 

allows for accurate generation of repetitive protein-coding regions of the genome (silk fibroins), 278 

and this likely applies to other similarly repetitive regions of the genome. For Trichoptera, there 279 

are only four other HiFi genome assemblies available on Genbank, only one of which has been 280 

published [38] and insects have generally been neglected (relative to their total species diversity) 281 

with respect to genome sequencing efforts [15-16], which is especially true for aquatic insects 282 

[14]. These data serve as the first step to study the evolution of adhesive silk in 283 

Amphiesmenoptera, which is an innovation that is beneficial for survival in aquatic and 284 

terrestrial environments. Finally, the Iso-seq data that we provide serve as useful resources for 285 

the translational aspects of silk – these data provide information on how Amphiesmenoptera 286 

genetically modulate and regulate different silk properties, that allow them using silk for 287 

different purposes such as for  nets, cases, and cocoons in both terrestrial and aquatic 288 

environments. 289 

Availability of source code and requirements 290 

All custom-made scripts used in this study are available on GitHub 291 

(https://github.com/AshlynPowell/silk-gene-visualization/tree/main). 292 

Availability of supporting data 293 

Raw sequence data, genome assemblies, and sample information are all available from NCBI 294 

(accession can be found in Table 1). All supporting data and materials are available on GigaDB. 295 
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Table 1. Specimen accession and data type information. 474 

 BioProject BioSample Assembly SRA Sequence type 

P. interpunctella PRJNA741212 SAMN20990134 NA SRR15699974 Transcriptome 

P. interpunctella PRJNA741212 SAMN19857939 JAJAFS000000000 SRR15658214 Genome 

E. regina PRJNA741212 SAMN20522324 JAINEB000000000 SRR15651978 Genome 

 475 

Table 2. Assembly genome stats for the species sampled in this study. 476 

 P. interpunctella E. regina P. interpunctella P. interpunctella 

Reference This study This study GCA_001368715.1 GCA_900182495.1 

Platform PacBio Sequel II PacBio Sequel II Illumina MiSeq/HiSeq Illumina MiSeq/HiSeq 

Coverage 44x 41x 100x 50x 

Total ungapped 

length 300,731,903 917,780,411 364,621,386 364,623,808 

Total gapped length NA NA 382,235,502 381,952,380 

Number of 

scaffolds NA NA 7,743 10,542 

Scaffold N50 NA NA 5,094,612 1,270,674 

Scaffold L50 NA NA 23 75 

Number of contigs 118 123 17,717 17,725 

Contig N50 9,707,027 32,427,664 302,097 298,497 

Contig L50 13 11 314 319 

GC content 35.41% 32.68% 35.1% 35.1% 

Shortest Contig 452 15,452 258 258 

Longest Contig 13,555,736 57,864,696 2,314,344 2,314,344 
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Median Contig 161,724 36,760 1,714 1,719 

Mean Contig 2,548,575 7,401,455 20,580 20,571 

 477 

 478 

 479 

Table 3. Genome completeness by sample studied. Values shown are BUSCO scores for the 480 

Endopterygota ODB10 data set. 481 

 

P. 

interpunctella E. regina P. interpunctella P. interpunctella 

 This study This study GCA_001368715 GCA_900182495 

Complete BUSCOs 2110 2021 2103 2105 

Complete and single-copy 2097 2013 2074 2077 

Complete and duplicated 13 14 29 28 

Fragmented 5 63 10 8 

Missing 9 34 11 11 

Total groups searched 2124 2124 2124 2124 

% complete 99.3 95.2 99.0 99.1 

 482 
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 483 

Figure 1. Length of assembled heavy fibroin (HFib) gene with two approaches (HiFi, top; 484 

Illumina, bottom) for P. interpunctella. In the HiFi genome, we were able to recover the entire 485 

length of sequence, but in the latter we were unable to assemble the genome through the 486 

repetitive region. 487 

 488 

489 

 490 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2022. ; https://doi.org/10.1101/2022.06.01.494423doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.01.494423
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

Figure 2. Schematic of the identity and ordering of repeat motifs in P. interpunctella. On the 491 

right panel are the repetitive units with the N-terminus at the beginning and the C-terminus at the 492 

end. The number in parenthesis refers to the number of times that particular motif is repeated 493 

across the gene. The color corresponds with the ordering of the repeats shown on the left. The 494 

gene is split into two panels, starting in the left panel and continuing in the right panel. “X” 495 

implies a site that is variable. 496 

497 

Figure 3. Schematic of the identity and ordering of repeat motifs in E. regina. On the right panel 498 

are the repetitive units with the n-terminus at the beginning and the c-terminus at the end. The 499 

number in parenthesis refers to the number of times that particular motif is repeated across the 500 

gene. The color corresponds with the ordering of the repeats shown on the left. The gene is split 501 

into two panels, starting in the left panel and continuing in the right panel. 502 
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Supplementary Files 512 

 513 

Supplementary Figure 1 (in GigaDB). BlobPlot for E. regina.  514 

 515 
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 516 

Supplementary Figure 2 (in GigaDB). BlobPlot for P. interpunctella. 517 
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