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. Abstract

2 Counting transcripts of mRNA is a key method of observation in modern biology. With advances in counting
13 transcripts in single cells (single-cell RNA sequencing or scRNA-seq), these data are routinely used to identify
1 cells by their transcriptional profile, and to identify genes with differential cellular expression. Because the
15 total number of transcripts counted per cell can vary for technical reasons, the first step of standard scRNA-
16 seq workflows is to normalize by sequencing depth, transforming counts into proportional abundances. The
17 primary objective of this step is to reshape the data such that cells with similar biological proportions of
18 transcripts end up with similar transformed measurements. But there is growing concern that normalization
10 and other transformations result in unintended distortions that hinder both analyses and the interpretation
20 of results. This has led to an intense focus on optimizing methods for normalization and transformation of
a1 scRNA-seq data. Here we take an alternative approach, by avoiding normalization altogether. We abandon
» the use of distances to compare cells, and instead use a restricted algebra, motivated by measurement theory
;3 and abstract algebra, that preserves the count nature of the data. We demonstrate that this restricted
2 algebra is sufficient to draw meaningful and practical comparisons of gene expression through the use of the
» dot product and other elementary operations. This approach sidesteps many of the problems with common
»% transformations, and has the added benefit of being simpler and more intuitive. We implement our approach
27 in the package countland, available in python and R. By explicitly considering counts in terms of their
;s measurement process, we avoid and overcome many challenges in modern RNA-seq and open new avenues
2 for the analysis of these data.

» 1 Introduction

a1 Counting transcripts in high-throughput assays is now both routine and highly productive for many lines
» of research!'?. Next generation RNA sequencing assays, including single cell RNA sequencing (scRNA-seq),
;3 measure the abundance of gene transcripts across samples®?. In most assays, sequencing reads are collected,
s mapped to known genes, and measurements are reported as read counts per gene in a given sample?. When
s RNA samples are drawn from bulk tissue, the number of transcripts is typically large enough that counts for
35 all but the rarest transcripts can be considered as measurements of proportional abundances and described
» with rational numbers®®. As such, counts for each sample are often normalized to sequencing depth, scaled
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s by a multiplier (e.g. 10,000), and log-transformed®. In recent years, single-cell and single-nucleus mRNA
% sequencing (scRNA-seq and snRNA-seq) have become practical and commonly applied assays®*. Where bulk
w tissue RNA-seq projects typically measure RNA for a handful of samples, scRNA-seq data are generated
a for thousands of cells in a single experiment. However, because the total counts per cell are much smaller
2 than the counts per sample in bulk experiments, there are severe problems with interpreting counts as
5 measurements of proportional abundances”. This is because for typical scRNA-seq data, the vast majority
w of count values per gene and sample are zero, and the majority of non-zero counts are very small®.

s The first step in most scRNA-seq analyses is to move data out of count-space by rescaling and transforming
% values. In the process, the measurements are transformed from natural numbers into rational numbers
« (numbers with fractional parts). The motivation of these steps is to reshape the data so that cells with
s similar biological proportions of transcripts end up with similar transformed measurements® and fall closer to
2 each other in the multidimensional space of gene expression. However, a growing chorus has raised warnings
s that these transformations lead to unintended distortions”®. One of the primary issues is that stochasticity
51 dominates the sampling process in this low-count regime, so that for many genes observed counts are a
52 poor proxy for proportional abundance’. Because logarithmic transformations cannot be applied to zero
53 values, additional steps of adding arbitrary pseudocounts (e.g. +1 to all values) are common, but this can
s« introduce new biases™”. Furthermore, rescaling low count values can invoke a false sense of confidence in
s relative gene abundances. From a philosophical point of view, transformations that lead to negative or
s fractional counts, that have no physical interpretation, violate the central tenet of measurement theory that
s> data should correspond to the physical reality they represent!®.

ss  Though problems with transforming scRNA-seq data out of count-space have been well described, there is
s little consensus on how to remedy them. Recent suggestions include embracing zero values by converting
o single-cell data to binary zero/nmon-zero values'!, invoking alternative transformations (e.g. square root,
s proportional fitting) for variance-stabilization'?, or avoiding the use of log-transformations by modeling
2 single-cell data with a Poisson measurement model”-'3. Here we argue that there is great value in treating
63 the data as what they are — counts of transcripts sampled from the total population of mRNA — rather than
e as estimates of proportions. We present and evaluate a new analytical approach that preserves the original
e measured properties of the data by considering them in a vector space over natural numbers (see Appendix
s 1), rather than transform them into rational numbers. We demonstrate that a restricted algebra that is
o7 closed over the natural numbers, requiring no scaling or transforms that would result in values other than
6 natural numbers, is sufficient to perform many of the key tasks in scRNA-seq analysis. These tasks include
e assessing cell similarity, measuring differential gene expression, and identifying clusters of cells with shared
7 signatures of expression.

n  We present our implementation of count-based scRNA-seq analysis in the python and R package countland,
22 available at github.com/shchurch/countland. The software seeks to complement existing tools that are
7 currently vital to scRNA analysis (e.g. scanpy in python'#, Seurat in R!°), by offering an alternative
7 approach that sidesteps common data transformations. We then test this software on benchmark data
» and show that this approach can accomplish the standard objectives of scRNA-seq analysis, avoid pitfalls
% associated with transformation-based workflows, and improve the interpretability of results.

» 2 Building intuition for count matrices

7 By increasing our familiarity with the structure and composition of a count matrix we can build our intuition
7 about how common transformations are likely to reshape it. Count matrices of scRNA-seq data encode the
s number of counted transcripts for each gene in each cell (Fig. 1). Here we show cells as rows and genes
s as columns, though conventions vary (typically, cells are rows in python and columns in R). Because values
& within the matrix represent observations of physical transcripts by sequencing instruments, they are always
53 either zero or positive integers.

s Visualizing the raw count matrix shows that the dominant feature is the presence of a large number of zeros
s (Fig. 1). These zeros can be considered as having three possible origins: biological, sampling, or technicall”.
s DBiological zeros are the true absence of a given transcript in the cell, and may be the result of a gene not
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Figure 1: Single-cell RNA count data are mostly zeros and small integers. Visualizing a portion of
the count matrix from the Silver standard PBMC dataset, described by Freytag et al (2018)!6. After count
values of 0 (white), the most common values are 1 (gray) and 2 (blue). Count values of 3 (red) and higher
(yellow) are rare and concentrated in a few genes with relatively high expression.


https://doi.org/10.1101/2022.06.01.494334
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.01.494334; this version posted June 2, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

sz being expressed in a given cell or all transcripts of a gene having been degraded by the time of observation.
e Sampling zeros arise because we count only a small fraction of all transcripts in a given cell, so by chance
s many genes that have transcripts in the cell are not detected'®. Technical zeros arise from artifacts that
o eliminate counts for some genes in some cells, and can be introduced during cell preparation, mapping, or
o other analysis steps. Several modern techniques such as using unique molecular identifiers (UMIs) have
«2 helped bring technical zeros to within distributional models of sampling'®2°. Increased sequencing depth
s can reduce the number of sampling zeros'®. Despite this, the benchmark for scRNA-seq is a data matrix
s with >90% of values zero, compared to 10-40% in bulk RNA-seq experiments'®.

o5 Of the remaining non-zero values, most are of very small magnitude. In the widely used PBMC3k benchmark
o dataset, for example, 69.8% of non-zero values are exactly one and 88.6% are less than five (Fig. 1). This
o7 means that for a given cell or gene, it is often true that there are no or very few values greater than two
s across all measurements. Cells and genes with count values greater than ten are the exception rather than
o the rule.

w0 The fact that count matrices are dominated by zeros and low integer values has implications for how we
1w attribute meaning to the data. RNA sequencing seeks to profile the proportional abundances of all transcripts
102 at a given instant in time, but our instruments do not directly measure proportions. Instead, with scRNA-seq
s we sample a small fraction, usually around 10%, of the total transcripts per cell*. It is generally assumed
w4 that the probability of sampling a read is determined by the proportional abundance of the transcripts of
s each gene'®. Normalizing the data to the total counts for each cell (the first step of a standard workflow)
s invokes an additional assumption that sampling has been sufficient such that observed counts are a robust
wr  proxy for proportional abundance. But at low magnitudes, sampling one additional transcript results in big
108 jumps in the apparent relative abundances. Adding a single read that increments a count from one to two,
w9 for example, results in a two-fold increase in proportional abundance, and incrementing a count from zero
1o to one results in an infinite-fold increase in proportional abundance.

m  Consider a cell that contains 10,000 transcripts, comprising 1,000 genes in different proportions. If we
12 sampled all 10,000 transcripts, then counts would be a perfect proxy for proportional abundance, and the
us  difference between a gene with one transcript and a gene with two would constitute a two-fold increase. But
s if we sampled only ten transcripts, counts would be a very poor proxy for proportional abundance. In this
us  case, a likely scenario is that we would observe one count each for ten genes, but that does not indicate that
16 each of those genes is present as 10% of total transcripts. Furthermore, the likelihood of a second observation
ur  of a gene would increase when the relative abundance is larger, but does not give us a precise numerical
us  estimate for the fold difference between genes. Though this example is extreme in that only 10 transcripts
ne are sampled, the fact that real count data contain mostly zeros, ones, and twos suggests the same principle
120 applies to the shallow scRNA sequencing process.

121 In summary, the problem with rescaling count data can be stated as follows:

122 o The presence of a large number of zeros, ones, and other low integer values indicates a shallow sampling
123 process in which stochasticity is a major factor.

124 o At low integer values, large jumps in relative abundance are common (e.g., a 100% difference between
125 one and two), and are disproportionate to the biological reality of transcript abundance.

126 e As such, counts relative to sequencing depth are a poor numerical proxy for proportional abundance
127 of transcripts.

128 o The practice of normalizing by rescaling count data (natural numbers) to proportions (rational num-
129 bers) bakes these stochastic sampling effects into the data by assuming that sampling is sufficient such
130 that counts are a robust proxy for transcript proportions. From then on, counting effects cannot be
131 deconvoluted from biological signals.

122 The problem with other common transformations include:

133 o Log-transformations stretch the differences between small integer values. Because differences between
134 small integers are frequently influenced by the sampling process, these transformations exaggerate
135 stochastic sampling effects over biological signals in the data.
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136 e The dominant feature of the data is the large number of zeros. This kind of dataset is not a good
137 candidate for log-transformation, where zeros have no numerical interpretation.

138 e While adding pseudocounts can make calculation practically possible, it is ad hoc, introduces its own
139 biases, and has no correspondence to the physical data or underlying sampling process.

w 3 A restricted algebra for counts

w 3.1 Count-space

12 In mathematical terms, scRNA-seq count measurements occupy a high-dimensional vector space over the
13 natural numbers (here defined as inclusive of zero, see Appendix 1). These are computationally encoded
s as unsigned integers. There is no such thing as a negative or non-integer transcript count, as these are
us  physically meaningless.

us  Group theory is the field of modern algebra that concerns collections of numbers and operations on those
1wz numbers. In group theory, a group is defined as closed when specified operations on members of the group
us result in objects that are also members. Groups can then be classified by which operations they are closed
1w for. One familiar type of group is a field, which is closed under the operations addition, subtraction,
150 multiplication, and division. Rational numbers form a field because applying any of these operations to
151 rational numbers always results in a rational number. Natural numbers, such as transcript counts, do not
12 form a field, because natural numbers are not closed under subtraction or division. These operations can
153 result in values that are outside the group (e.g. non-natural numbers like -2 or 4). Groups that are closed
15« under addition and multiplication but not under subtraction or division are classified as semirings. See
155 Appendix 1 for a formal treatment of the topic.

156 Constraining operations to those that are closed over a semiring provides a restricted algebra for analyzing
157 sScCRNA-seq data that maintains its original count nature, guides intuitive thinking, and is still surprisingly
18 rich. To understand what operations in the space can tell us, we can visualize observations of transcripts
19 in cells as vectors in count-space. In count-space each gene forms an axis, perpendicular to all other gene
1o axes. This space, therefore, has as many dimensions as there are genes. Each sequenced cell exists at a point
11 in count-space with coordinates given by the counts for all genes. This point is the terminus of a vector
12 emanating from the origin, which is the point where all gene counts are zero. We can conceptualize the cell
163 sitting at the origin, for which all counts are zero, as the null cell.

1« The measurement process can be thought of as estimating this vector by walking through count-space from
s the null cell (Fig. 2). As RNA sampling proceeds, each new transcript moves the cell away from the origin,
166 always by one integer value in the positive direction parallel to the axis of the corresponding gene (Fig. 2).
1z The final number of steps is determined by the sampling depth for the cell in question, and is the total
s number of counts for a cell.

1o In this count-space, there is no concept of Euclidean distance. Calculating Euclidean distance requires the
o operations of subtraction and square roots, under which the natural numbers are not closed. Visualizing
w1 vectors in a reduced two-dimensional count-space helps clarify why Euclidean distance is not the measure we
> might have in mind. Vectors with the same number of total counts terminate along a diagonal (Fig. 2), not
i3 along a circle, meaning their Euclidean distances from the origin, could they be calculated, would be non-
s equal. Instead of distance from the origin, we have another straightforward measure of vector magnitude:
175 the total number of counts, which is the number of steps from the origin to the vector terminus. This is
e equivalent to the Manhattan distance from the origin to the terminus.

i» 3.2 Operations in count-space

s The restricted algebra of semirings gives rise to operations that have clear, intuitive, physical interpretations
179 for count data. Addition of two cell vectors produces a new vector where each element is the sum of the
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Figure 2: A simulated RINA counting process in a system with two genes and three cell popu-
lations with five cells each. One step equals one new observation of a transcript and moves the cell one
unit along the axis of the corresponding gene. Colors indicate cell populations. A, Paths after counting ten
transcripts. Note that after an equivalent number of counts, all vectors terminate along a diagonal line with
a slope of -1. B, Paths after counting 100 transcripts. Vectors begin to separate based on the actual propor-
tions of transcripts in different cell populations (different colors). C, Paths after counting 1000 transcripts.
Vectors corresponding to different cell populations terminate in distinct regions of count-space, and vectors
from the same population are more similar to each other than to vectors from different populations.

corresponding elements in the original vectors. This operation is the equivalent to the physical act of pooling
transcripts from two cells. Adding all cell vectors is equivalent to pooling all cells into a single bulk-tissue
RNA-seq experiment.

Multiplying two cell vectors also has a clear physical interpretation. The inner product, also known as the
dot product, is an assessment of the similarity of two vectors based on the distribution of counts, and can be
used to compare two cells. The dot product of two vectors is calculated by multiplying each corresponding
element between the vectors and summing the resulting products. Because the dot product is calculated
using only the operations of addition and multiplication, the natural numbers are closed under this operation.

The dot product is a measure of cell-cell transcriptome similarity, scaled by sequencing depth. A dot product
of zero occurs when two cell vectors have no counts in common for any gene (the cell vectors are orthogonal).
If two vectors have a large dot product, this indicates that they are both long and have many counts in
common. Small dot products indicate either long vectors that have few counts in common, or short vectors
for which similarity cannot be reliably determined.

Using the dot product as an indicator of cell-cell transcriptome similarity obviates many of the rationales
for normalizing and transforming count data. A driving motivation behind these transformation steps is
to compare distances between cells while accounting for sequencing depth. The dot product instead scales
with sequencing depth, using more counts as a measure of confidence in the similarity of two cells. In other
words, with more counts, we can better assess whether the RNA composition of a cell is similar or divergent
from any other. As the total read count for a cell increases, the dot product increases linearly. Because of
this, the dot product can be interpreted as a relative measure of similarity. Dot products can be used to find
the most and least similar pairs of cells, but to interpret the absolute value of the dot product in context
requires the original total number of counts.
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x 3.3 Subsampling and subspaces

203 It is not always necessary to standardize sequencing depth across cells in order to make useful comparisons
204 across cells, as we demonstrate in our results below. However there are certain comparisons where we might
s expect heterogeneity in sequencing depth to obscure biological differences, for example, when calculating
2 differential gene expression across cells'?. One method of standardizing sequencing depth that is coherent
207 with our physical understanding of the measurement process is to subsample counts to an equivalent number
28 of counts for all cell vectors. Because the scRNA-seq counting process stops at an arbitrary point, we can
200 randomly subsample from our observations per cell to stop the process at a specific number of our choosing.
a0 By subsampling counts to the same number across cells, we can standardize sequencing depth without
21 converting counts to proportions.

a2 There are also cases where we might expect heterogeneity in the magnitude of expression across genes to
a3 obscure biological variation. The dot product is calculated by summing the product of each gene, meaning
as - genes with substantially larger count values will contribute more to the dot product than genes with smaller
a5 values. This feature of the dot product can be useful for emphasizing genes with the largest dynamic
26 range of counts, given that expression variance scales with magnitude'?. But when highly expressed genes
a7 do not contain informative biological signal, this variance might drown out signal from genes with lower
218 expression magnitudes. Accounting for the mean-variance relationship is the driving motivation behind
219 several common transformations in scRNA-seq workflows. A count-based approach for tuning down the
»o0 signal of highly expressed genes is to limit their total counts by randomly subsampling observations per
a1 gene. We can accomplish this by establishing a threshold for total counts and subsampling that number of
2 observations from any gene vector that exceeds that threshold.

23 An alternative approach is to focus on only subsets of genes or cells when making comparisons. Subsetting
24 the count matrix is equivalent to projecting the data onto a subspace of the original count-space. This can
25 be conceptualized as multiplying count values for certain cells or genes by zero (or alternatively, subsampling
26 them to zero), and is permitted using our restricted algebra. Projections onto one feature axis allow us to
227 consider counts in only one gene, and are useful when dealing with questions about gene-level differences, such
»s as finding genes with differential or highly variable expression. Projections onto vectors, such as projecting
29 one cell vector onto another, are not generally possible because such a projection could result in non-natural
20 coordinates (see Appendix 1).

2 With both subsampling or subsetting, there is a trade-off between reducing unwanted variation and throwing
2 away data. Discarding counts can seem particularly painful given the already sparse nature of scRNA-seq
23 data. We note that the standard scRNA-seq workflow already invokes subsetting by using only the top
2 fraction of genes, ranked by variance of transformed counts. In our recommended count-based workflow,
25 subsampling and subsetting are optional steps that should be applied depending on the research question.
26 Furthermore, since subsampling is stochastically accomplished, we can leverage the original data by repeat-
27 edly sampling and reanalyzing to test whether results are robust to sampling effects.

» 4 countland: a count-based approach to RNNA analysis

230 This restricted algebra can be used to achieve all the standard analytical objectives of scRNA-seq without
20 invoking normalization or transformation (Fig. 3). We have implemented these in our software package
an called countland, written for both python and R.

» 4.1 Comparing cells

23 A common approach for comparing cells in standard, normalization-based scRNA-seq workflows is to use
24 principal component analysis (PCA) to rotate and project expression values onto a smaller dimensional
s space, and then calculate a neighborhood graph using the cell-cell distances in the PCA representation®.
2 In a count-based approach, we avoid the use of distances by calculating the dot product of untransformed
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Figure 3: Standard and count-based workflows. A standard scRNA-seq workflow, as described in the
documentation for scanpy and Seurat is shown in orange. A count-based approach, as implemented in
countland, is shown in blue, with optional subsetting, subsampling, and rank reduction steps adjacent.
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counts between all pairwise combinations of cells. This process generates a similarity matrix, rather than a
distance matrix. This similarity matrix has several important properties: it is square, with the number of
rows and columns determined by the number of cells, and it is symmetric, with diagonal values giving the
dot product of each vector with itself, which is the sum of squares of all its elements. Off-diagonal values
are the dot products between different cell vectors, and these values range from zero to any positive integer,
unbounded on the maximum end as alignment increases.

Cell similarity can be visualized by applying spectral embedding to this matrix. Spectral embedding involves
calculating the graph Laplacian of the matrix and then estimating the eigenvectors and eigenvalues of
this graph?'. The cell similarity matrix can be visualized in two dimensions by plotting points using two
eigenvectors (Fig. 4). This matrix can also be used to cluster cells by applying a k-means algorithm to
the eigenvector matrix (spectral clustering). Here we demonstrate the use of spectral clustering of the dot
product matrix for identifying cell populations using the Gold standard scRNA-seq benchmark dataset,
described by Freytag et al (2018)!. This dataset consists of 925 cells from three populations derived from
human lung tissue. Using countland, we recover these populations with high fidelity (adjusted rand index
= 0.994, see benchmark results below). While spectral embedding includes operations that are not closed
for natural numbers (e.g. subtraction and division), here they are operating on comparisons between cells
(the dot product matrix) that do respect the count nature of the data.

A ground truth cell labels B countland: spectral clustering
(aV} Al
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Figure 4: Clustering cells by similarity using a count-based approach. The Gold standard scRNA-
seq dataset of 925 cells from human lungs are visualized using spectral embedding of the pairwise dot product
matrix between all cells. A, cells are colored according to the ground truth labels as described in Freytag et
al (2018)*¢. B, cells are colored according to the results of spectral clustering. The two points outlined in
black are the only cells for which cluster labels differed from ground-truth labels.

4.2 Comparing genes

Gene expression can be compared with a count-based approach as well. There are several count-based
measures that provide insight into expression dynamics. These include:

e The total number of counts per gene, summed across cells.

e The maximum observed count value per gene.

e The number of cells where a gene was detected, as well as the number where detected at a count value
larger than one or some other value.

o The number of unique count values (e.g. 0, 1, 2). Given the discrete nature of low-magnitude count
values, this measure can provide insight into expression variability across cells.
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273 e The largest number n, where there are n cells with > n counts for the gene in question. We refer to
274 this measure as the count index, and it can be helpful for finding genes that frequently show higher
275 count values, as compared to genes that are mostly detected at values of 1 or 2, with a few high-count
276 exceptions.

o The ideal marker gene for a cluster of cells can be defined as the gene with the highest differential expression
s between cells in the cluster and all other cells, or in an alternative approach, as the gene that is most
2 specifically expressed in cluster cells'?. A count-based approach for identifying marker genes by specificity
20 is to count the number of cells with non-zero observations for each gene, and then calculating the difference
s between the fraction of these cells in a cluster versus the fraction that are not. The ideal marker gene would
22 return a value of one, indicating it was expressed in all cluster cells and no others.

23 Differential expression can be assessed using rank-sums tests, similar to those invoked in standard workflows,
s but here applied to raw counts instead of transformed proportions. In this method, counts for a given gene
s are ranked between cluster and non-cluster cells, the ranks for each group are summed, and a test statistic
2 1s calculated. This statistic is used to test the hypothesis that observations from cluster cells are larger
257 than those from non-cluster cells. Because heterogeneity in count depth can influence the magnitude of
2 expression for individual gene, subsampling to a standard sequencing depth prior to calculating differential
20 gene expression is recommended.

» 4.3 Reducing dimensionality and low-rank approximation

21 The high dimensionality of single-cell count matrices is one of the fundamental challenges to analyzing, inter-
22 preting, and visualizing these data??. There are several motives for embedding the count matrix in a lower-
23 dimensional space, primary among them being data visualization. In the standard workflow, dimensional
2¢  reduction is achieved through linear transformation (e.g. PCA and projection) of the already-transformed
25 count matrix, followed by further non-linear reductions to two-dimensions using t-SNE or UMAP (Fig. 3).
26 Recent reports suggest that rather than reducing the distances between similar cells, this approach results

27 in extensive distortions of cell-cell distances®?.

28 Here we implement two count-based methods for reducing the number of dimensions that are not based on
20 Fuclidean distance. One way of reducing the dimensionality of count data is to combine genes with similar
a0 information content. We measure this as the number of shared counts between two genes; this is calculated
sn by comparing two gene vectors (e.g. matrix rows), taking the smaller of the two count values for each cell
s (e.g. each column), and summing. This sum represents the number of times both genes were counted in
a3 the same cell. Calculating this sum for all pairwise combinations of genes results in a similarity matrix of
s shared counts. To find cohorts of genes that have relatively large numbers of shared counts, we perform
s spectral clustering on this matrix. We use these clusters to reduce the dimensionality of the count matrix
w6 by pooling counts (summing) across genes in the same clusters. This method reduces a matrix with the
sr  dimensions m cells by n genes to one with the dimensions m cells and k meta-genes, where k depends on the
e number of clusters found using spectral clustering. Cells can be visualized using this approach by plotting
a0 their coordinates along a pair of meta-genes (Fig. 5B).

a0 Integer matrix factorization is an alternative approach to achieve a low-rank approximation of matrices
sn  that include only natural numbers?®. Like other matrix factorizations (e.g. singular-value decomposition),
312 this method seeks to find lower-rank matrices that can be multiplied together to approximate a higher-rank
a3 matrix, here the count matrix. Integer matrix approximation generates three matrices, termed U, V, and A,
s similar to the three matrices generated by singular-value decomposition on data consisting of real numbers.
as When using integer matrix approximation on single-cell count data, matrix U has the dimensions m cells
as by k features, with k provided as the target rank, V has the dimensions k features by n genes, and A is a
a7 diagonal matrix of k scaling factors. Because of the discrete nature of count data, this factorization cannot
ss be accomplished conventionally, but approximations for this factorization have been proposed for other types
20 of count-based data?*. Here we implement the algorithm for integer matrix approximation in python and R,
20 and apply it to the approximation of single-cell count data. Following integer matrix approximation, cells
sz can be embedded in a lower-dimensional space by multiplying the count matrix with matrix V, scaled by
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A. Cells can then be visualized by plotting their coordinates in two resulting embedding components (Fig.

5C). This is conceptually similar to calculating principal components for visualization using singular-value
decomposition.

Given the problems inherent to data transformation, Townes et al (2019)7 recently proposed a generalized
version of PCA (GLM-PCA) that takes advantage of the exponential family of likelihoods, and which can
be applied directly to raw counts. This method, like those described above, also does not rely on Euclidean
distances, but unlike the shared counts and integer matrix approximation approaches, it does not preserve
the count-like nature of the data (values will not necessarily be natural numbers). Given that it allows
for visualization without transformation, however, we highlight it as a promising additional avenue for
interpreting scRNA-seq data.

A spectral embedding B shared counts reduction C integer matrix approximation
o~ (o] o~
c c . c
o K] %o A (<]
5 5| 24 5
E £ # ' £
U AR T i ©
v (‘; §
e

dimension 1 dimension 1 dimension 1

D GLM-PCA E Seurat: UMAP

dimension 2
dimension 2

[
A

dimension 1 dimension 1

Figure 5: Comparing dimensional reduction approaches. Cells from the Gold standard benchmark
dataset, colored in all panels according to ground truth labels. A, spectral embedding of the dot product
matrix. B, reduced dimensionality by pooling genes with large numbers of shared counts. C, reduced
dimensionality using integer matrix approximation. D, generalized PCA (GLM-PCA), as implemented in
the R package glmpca.” E, uniform manifold approximation (UMAP) following data transformation, as
implemented in Seurat. Note that UMAP on transformed values results in the most apparent cluster
boundaries, but it also results in one ground truth population (cyan) being split into two groups (see
performance evaluation below).

5 Evaluating count-based approaches to clustering

5.1 Gold standard

We tested the countland methods described above on published benchmark data to evaluate its perfor-
mance relative to ground truth and consistency with published standard workflows. As shown in Figure
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s 3, countland recovers the ground truth cell identities from the Gold standard dataset with high fidelity.
s Clustering accuracy was evaluated using three measures: the adjusted rand index (ARI), normalized mutual
18 information (NMI), and cluster homogeneity. ARI and NMI both evaluate the similarity between two sets
a0 of clusterings, while homogeneity measures the degree to which an identified cluster contains only members
auo  of one ground truth group. Against ground truth, countland returns an ARI score of 0.994, an NMI of
s 0.987, and homogeneity of 0.987. These results were achieved using countland on the raw count matrix,
s demonstrating that without any form of normalization or data transformation, count-based methods can
w3 accurately identify cells by expression.

us  For the same dataset, Seurat returns a lower ARI (0.409) when using the default parameters, but after
us  reducing the resolution used in clustering, Seurat returns an ARI of 0.997. The difference in scores with
us Seurat can be attributed to the software splitting one ground truth cell population into two clusters, as seen
w7 in the cyan colored cells in Fig. 5E.

us  Because the Gold standard dataset is significantly less sparse than many scRNA-seq datasets, we tested
s countland’s performance on a modified Gold standard dataset where each cell contained only 1% of the
0 original number of observations. Both countland and Seurat can recover ground truth cell identities with
s high fidelity (ARI 0.997 and 0.997, NMI 0.993 and 0.993, homogeneity 0.993 and 0.994, respectively). We
2 note that when analyzing the more sparse dataset, countland achieves slightly better results when the
3 number of components (Laplacian eigenvectors) used in spectral clustering are increased from 5 to 10 (ARI
3¢ increased from 0.977 to 0.99).

35 We tested performance on datasets derived from the Gold standard, modified to introduce the kinds of data
36 heterogeneity that are often invoked to justify data transformations. First, we modified the sparse Gold
7 standard dataset so that 100 of the 925 cells had their original measurements from before reducing counts
s t0 1% of their original number. These 100 cells were randomly drawn 50 each from two of the three cell
30 populations. With this dataset we observed a reduction in cluster accuracy analyzing counts directly (ARI
w0 0.399, NMI 0.431, homogeneity 0.431). But after applying countland’s subsampling procedure to bring cells
s to a standardized sequencing depth, countland accurately recovers ground truth cell identities (ARI 0.952,
2 NMI 0.927, homogeneity 0.927). In contrast, Seurat fails to accurately identify cells, despite normalizing
w3 data by sequencing depth (ARI 0.478, NMI 0.555, homogeneity 0.555). Visualizing the Seurat results shows
s that clusters separate cells by sequencing depth as well as their original identities. This is likely because
s cells with more total counts have observations for many genes that are not observed in lower-count cells, a
w6 fact which depth normalization cannot account for.

7 We also tested performance on a version of the sparse Gold standard dataset modified to have substantial
s heterogeneity in gene expression. To accomplish this we added ten highly expressed genes with no variation
w0 attributed to cell population. Count values were simulated for these genes using a Poisson distribution with
s a lambda value 10x larger than the largest observed mean count value across genes. Adding these genes with
sn high count values resulted in decreased accuracy for countland when analyzing raw counts (ARI 0.347, NMI
s 0.408, homogeneity 0.408), but this effect was eliminated when highly expressed genes were subsampled to
si3 a predetermined maximum count value (ARI 0.993, NMI 0.987, homogeneity 0.987). The performance of
s Seurat was robust to the addition of highly expressed genes (ARI 0.997, NMI 0.993, homogeneity 0.993).

ws 5.2  Silver standard

s We evaluated the performance of countland and Seurat on the Silver standard dataset (version 3a) of
s peripheral mononuclear cells (PBMCs). This dataset does not include ground truth labels, instead it includes
s cell labels derived from similarity to a reference dataset?®. Previous evaluations of scRNA-seq analysis
sr9 - software show that all methods fail to recover all labeled cell groups, with different methods returning an
s ARI between ~0.2 and ~0.6. We reanalyzed this dataset using Seurat and observed an ARI of 0.456, NMI
s of 0.622, and homogeneity of 0.679.

2 When subsampling highly expressed genes to a maximum total count value equal to the number of cells,
3 countland returned similar results to other clustering software (ARI 0.442, NMI 0.594, homogeneity 0.594).
s« Subsampling genes even further returned higher scores (ARI 0.534, NMI 0.633, homogeneity 0.633), as did
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s subsetting the data to remove the top 5% of genes altogether (ARI 0.57, NMI 0.644, homogeneity 0.644).
s This suggests that, for the Silver standard dataset, highly expressed genes are not useful in identifying
a7 cells according to the published labels, and may mask signal present in other genes. Subsampling cells
s to a standard sequencing depth did not result in an increase in clustering scores (ARI 0.34, NMI 0.576,
30 homogeneity 0.576).

w 6 Discussion

s The best way forward can sometimes require first taking a few steps back. Measurement theory® provides a
s roadmap for this in the context of scRNA-seq data analysis: start by considering the measurement process
33 by which numbers are assigned to attributes, and then consider how mathematical operations on the mea-
3¢ surements correspond to physical processes. This is fundamental to understanding how our measurements
35 address our research question. This approach is especially valuable for navigating the data-rich world of next
s generation sequencing and functional genomics. Current practices using these high-dimensional data almost
w7 always involve ad hoc transformations that are applied with a general sense that something must be done
s to the data before downstream analyses are possible (e.g. the data must be transformed so that Euclidean
30 distances become meaningful). We advocate for a more intentional approach, where data processing steps
w0 are only taken when they respect the measurement process and will be informative for the research question.

w1 Current practices in single cell analysis have been highly optimized with one primary objective: to identify
w2 and visualize clusters of cells. But modern research with scRNA-seq data has far more ambitious and diverse
w3 objectives, including identifying developmental trajectories, comparing cells and genes across species and
ws  evolutionary time, and associating expression differences with phenotypes of interest. The result is that a
ws substantial research effort is currently dedicated to things other than clustering, and this requires undoing
ws many problems created by data preprocessing steps that were developed with clustering in mind. Here we
w7 have described an approach that seeks to sidestep, rather than patch, many current practices in order to
w8 avoid these problems altogether.

wo  Our results show that the restricted algebra of count-space is sufficient to perform many common scRNA-seq
a0 analysis tasks, while respecting the underlying count nature of the data. For example, assessing cell similarity
a1 with the dot product of transcript counts is a powerful tool to identify distinct clusters that correspond to real
a2 cell populations (Fig. 3). The restricted algebra implemented in countland works well, even when datasets
a3 are sparse, without taking any steps to account for heterogeneity in sequencing depth or gene expression
e magnitude. This indicates that it is not universally necessary to convert counts to fractional abundances or
a5 log-transform values in order to categorize cells by expression. And in cases where heterogeneity in those
as  measures obscures biological differences, we provide a count-based solution via subsampling, and demonstrate
a7 that this solution can match or outperform standard approaches.

as  However, we anticipate that there are scenarios when the standard, transformation based approach can re-
a9 cover clusters that are not identified using count-based approaches. There are almost certainly circumstances
a0 in which these transformations have the effect of exaggerating subtle but perhaps real biological differences
a1 between cell populations. The challenge is that these circumstances would be indistinguishable from situ-
«22  ations where the same transformations instead result in exaggerating spurious and artifactual population
w3 structure. Count-based approaches, on the other hand, are easy to interpret; more similar cells are those
24 that have more transcripts in common.

s There is great potential for improvements in count-based approaches, especially in the area of spectral em-
w6 bedding and clustering of the dot product matrix. While standard, distance-based clustering methods have
«7 undergone many generations of improvements, here we have used an out-of-the-box approach to spectral
ns  clustering, as implemented in scikit-learn, a standard clustering library in python?® (which we reimple-
#20 mented in R). Future optimizations to the choice of graph Laplacian or the clustering algorithm that are
a0 specific to single-cell data may result in improved performance in identifying cell populations using tran-
a1 script counts. However, we stress that segregating and labeling cells is only one small portion of the analyses
s that are possible with scRNA-seq data. Cells do not always fall into clear populations that will conform to
a3 clustering algorithms, especially when considering cells over their developmental lifetimes. The dot product
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s is an intuitive and powerful measure of cell-cell similarity, even when not invoking clustering. Comparisons
as of cells across timepoints, treatments, tissues, and species are all facilitated by leveraging a count-based
s approach that avoids ad hoc transformations and improves interpretability.
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« 8 Methods

w 8.1 countland

a3 We implemented countland in python and R, available at https://github.com/shchurch/countland. Imple-
e mentation in both languages will allow these methods to be more widely used, and will provide an opportunity
ws  to cross validate results.

ws  The implementation of the restricted algebra in our package countland is summarized here using mathemat-
w7 ical notation. See Appendix 1 for a background on the mathematical principles that justify our restricted
us  algebra, and the git repository for more specifics.

uo Let C be the count matrix containing the raw measurements, and let Ny be the set of natural numbers,
w0 inclusive of 0, where C;; € Ny. C has the dimensions m cells and n genes. The established convention for C
1 in python has cells as matrix rows and genes as columns, whereas in R, genes are rows and cells are columns.
2 Our descriptions in the text of this manuscript use the python convention, unless stated otherwise.

53 8.1.1 Dot product matrix

s Let D be the m x m dot product matrix, where element D;; is the dot product of cell ¢ with cell j. D is
ss calculated using matrix multiplication as D = CCT. Because this requires only multiplication and addition
w6 operations on the elements, this does not move the data out of count-space and will return only values
w7 contained in Np. Note that this is conceptually very similar to the calculation of the covariance matrix,
s which is at the heart of methods often used in scRNA-seq analyses, such as PCA. Covariance matrices are
s calculated as XX*', where X is the mean-centered transformation of C. However calculating the mean and
wo centering requires division and subtraction and moves the data out of count-space, resulting in negative and
w1 fractional values not contained in Ng.

w2 8.1.2 Spectral clustering

w3 Spectral embedding and clustering require a similarity matrix as input. Here, D is used as the cell-cell
ws  similarity matrix. Prior to spectral embedding, the diagonal elements of D are replaced with zeros to
w5 remove edges of the similarity graph that connect cells to themselves.

w6 In the python implementation of countland, we used spectral clustering functions as written in scikit
w7 learn, modified so that it returns the eigenvalues as well as the eigenvectors of the graph Laplacian. As
ws with scikit learn, in countland the user can input the target number of clusters as well as the number
w0 of components (eigenvectors of the graph Laplacian) that should be considered in the spectral clustering
a0 algorithm.
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an To ensure that methods and results are directly comparable between the python and R versions of countland,
m  instead of using an existing package for spectral clustering (e.g. R:Spectrum?7), we re-implemented the
a3 scikit learn algorithm from scratch in R.

aa  To facilitate the choice of the number of clusters, we implemented a common heuristic for determining

a5 the optimal numbers of clusters by considering the difference between eigenvalues Aq,..., A, of the graph
a  Laplacian. According to this heuristic, a reasonable choice for the optimal number of clusters k is one where
ar the eigenvalues A1,..., A, are relatively small, and the gap |A\r+1 — A is relatively large. This heuristic is

«s intended as a guideline, and other methods of selecting k may also be useful (e.g. using a priori biological
a9 information).

w0 8.1.3 Subsampling counts

s Sequencing depth in scRNA-seq experiments is not standardized across samples, with the result that the
w2 sum of counts per cell 2?21 C; varies. Sequencing depth can be standardized in countland by subsampling
w3 Observations to a fixed number x of total counts per cell, such that Z;-lzl Ci; = . This is accomplished by
sss  flattening each cell vector to an array of transcripts, with the frequency of each transcript given by its count
w5 value, and then randomly choosing z transcripts without replacement. The new cell vector is given by the
a6 sampled transcript frequency.

w7 A similar approach is taken when subsampling genes to reduce the impact of heterogeneity in expression
s magnitude. In this case, each gene vector is flattened to an array of cell observations. For any gene with
o > x total observations, x observations are randomly chosen without replacement, and the new gene vector
a0 18 given by the sampled cell frequency.

w1 8.1.4 Expression scores

w2 The following expression scores for cell ¢ can be calculated in countland:

203 e total counts = >°"_, Cy;

a04 o maximum count value = maxi<;j<n(Ci;)

495 + The number of observations above zero = 37, [Cy; > 0] where [F] = 0 if F' is false, and 1 if F'is true
496 o The number of observations above one = Z;.L:l[Cij > 1]

497 e The number of observations above ten = E;‘:l[cij > 10]

498 o The number of unique count values = uniquer <<, (Cij)

499 ¢ The count index ¢ = max;<;<,(Cij) where Y27 ,[Ci; > ] > ¢

so  As well as the corresponding scores along the n dimension.

soa We implemented two methods for comparing differential expression across clusters. Let M’ be the cells
se within the cluster and M" be the rest. For the first method, we calculate the difference between proportions
s3  of non-zero observations

doC>0— > [Cy >0
j=1,ic M’ j=1,i€M"

so  For the second method, we use a Wilcoxon Rank-sum test (Mann Whitney U test) between M’ and M”,
s followed by Benjamini-Hochberg false discovery rate correction of p-values (« for significance set at 0.05).

s 8.1.5 Dimensional reduction via shared counts
sov  Let S be the n x n matrix of shared counts between genes, where element S,, is calculated as

508 Z?Zl min(Cpj, Cyj). Spq 1s equal to %(Z;;l Cpj +Cqj — Z;;l |Cpj — Cyj] ) where Z?:1 |Cpj — Cyj] is the
s0  Manhattan distance.
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si0 S is a similarity matrix; it describes the amount of shared information between pairs of genes. In countland
su we apply spectral clustering to S to identify clusters of genes with strong signatures of shared information.
si2 The number of clusters k is determined by the user and the number of components considered is set equal to
513 the number of clusters. Let N’ be the genes in an identified cluster and let C’ be the reduced k x m count
st matrix, the values of the reduced count matrix Cj; are calculated as lel jen' Cij

si5 8.1.6 Integer matrix approximation

sis  Integer matrix factorization is a method for estimating lower rank matrices that can be multiplied to ap-
sz proximate a higher rank matrix that contains discrete values, such as integers®3. This factorization generates
sis  three matrices, U, V, and A. U has the dimensions m x k features, with k provided by the user. V has the
si0 dimensions k£ X n genes, and A is a k X k diagonal matrix of scaling factors. This is conceptually similar to
s0 other matrix factorizations (e.g. singular-value decomposition) that generated matrices U, V, and X.

s An approximation for integer matrix factorization has been implemented for MATLAB in the application
s2 SUSTain?4. We re-implemented the required functions for integer matrix approximation on a matrix in
s python and R, and have made them available for public use at https://github.com/shchurch/integer matrix
54 approximation.

s As in SUSTain, integer matrix approximation is accomplished in three steps. First, parameters are set,
s including: the target rank of the factorized matrices, the upper and lower bounds of the integer values
s7 (default lower bound is zero), the maximum number of iterations (default is 1000000), and the stopping
s2s  criterion (default is a difference of 0.0001). Second, initial matrices U, V, and A are calculated by sampling
s integers from the higher rank matrix, ensuring that values remain within the bounds. Third, U, V, and A
s are updated via the algorithm described in the corresponding SUSTain manuscript?.

2 8.2 Performance evaluation

s We evaluated countland’s performance using the Gold and Silver standard benchmark scRNA-seq datasets
553 provided by Freytag et al (2018)'6. The Gold standard dataset includes data from 925 cells drawn from
su  three populations of human lung adenocarcinoma lines. This dataset has ground truth cell labels, but is
s far less sparse than most scRNA-seq datasets (29% of values are non-zero). To evaluate performance on a
s more sparse dataset, we created a modified Gold standard dataset where each cell contained only 1% of its
sy original number of observations.

s33 For the Gold standard dataset, we evaluated performance after increasing the amount of heterogeneity in
s sequencing depth and in gene expression. To manipulate heterogeneity in sequencing depth, we restored 100
se0  cells from the sparse Gold standard dataset to their original sequencing depth, drawing 50 cells each from
sa two of the three cell populations present in the data. To manipulate heterogeneity in gene expression, we
sz simulated counts for 10 genes, using a Poisson distribution with lambda values 10x larger than the largest
si3  observed mean count value across genes.

s The Silver standard datasets are composed of fresh peripheral mononuclear cells (PBMCs). Here we have
ss  evaluated performance on dataset 3a, named by the original authors, which contains 4,310 cells labeled by
s matching cells to a reference dataset by expression. These labels do not constitute a ground truth but have
s been shown to match identities found using marker genes to classify cells?®.

ss For the Gold and Silver standard datasets, we tested countland first on raw count matrices, meaning
s N0 subsampling or subsetting was performed prior to calculating the dot product and performing spectral
ss0  embedding and clustering. We then tested the impact of subsampling cells to a standard sequencing depth,
st and of subsampling genes to a maximum total count value. In the case of the Silver standard dataset, we
sz tested two thresholds for maximum gene counts: a threshold equal to the number of cells, and one equal
555 to 1/2 the number of cells. We also tested the effects of dropping the top 5% of genes according to total
s« counts. For the Gold standard dataset, we tested the impact of varying the number of components (Laplacian
5 eigenvectors) used to identify clusters.
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s6 All datasets and code required to perform analyses are provided along with the software at github.com /shchurch/countland.

s 8.3 Data availability

sss The countland package for python and R, as well as all data and code required to reproduce the results
50 shown here is available at https://github.com/shchurch/countland.

«» 9 Appendix 1. Properties of vector spaces over zero and the nat-
551 ural numbers

s2 ' This appendix provides additional background and information on mathematical concepts relevant to the
53 analysis of transcript count matrices.

s« 9.1 The natural numbers, N

ss Lhe natural numbers are a group of all positive integers. Depending on the definition, this group may also
s include zero (i.e. all non-negative integers), a convention we follow here so that Ng={0,1,2,3,...}. We can
sev  classify groups of numbers by the operations under which they are closed, meaning operations on elements
ss  in the group result in elements that are also in the group. The most familiar group is a field, which is
se0  closed under addition, subtraction, multiplication, and addition, and includes rational numbers Q and real
s numbers R. The natural numbers form a semiring, because Ny is closed for multiplication and addition, but
sn - not subtraction or division.

sz Np contains the additive identity element, 0, that can be added to any element to return the same element
s (e.g. ¢+ 0 = z). Ny also contains the multiplicative identity element, 1, that can be multiplied with any
sw  element to return the same element (e.g. 21 = x).

s5 Inverses are elements that return the identity elements under specified operations. For example, the negative
s, numbers are inverses under addition, because x + (—z) returns the additive identity element, 0. However,
s7 because Ny does not contain negative numbers, it doesn’t have additive inverses. Similarly, reciprocal values
ss - are inverses under multiplication, because x(1/z) returns the multiplicative identity element, 1. Ny likewise
so - does not contain reciprocals, so therefore doesn’t have multiplicative inverses.

s0  Subtraction can be defined as the addition of an additive inverse (a negative number), and division can be
s defined as multiplication with a multiplicative inverse (a reciprocal). Because these two inverses are not
ss2  contained in Ny, there is no subtraction or division. This is equivalent to the observation that Nj is not
se3 closed for subtraction or division.

= 9.2 Vector spaces over N

sss  We can build the vector space over Ny as the group of all vectors V such that

V = (a1,a9,a3,...a,) : a1,as,as3,...a, € Ny

sss L'he vector space over Ny can be envisioned as being restricted to the integer grid that is located over the
ss7 upper right quadrant of a coordinate system, inclusive of the origin and axes. Certain operations are possible
ses  in this restricted space, while others are not. For example, we can apply the operation of the inner product
90 (dot product) because this operation requires only multiplication and addition of vector elements. However,
s unlike a vector space over a field, in the vector space over Ny there are no angles between vectors. Calculating
sa angles from dot product requires division by vector length, and Ny is not closed for division.
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se  Furthermore, in count-space, vector length is not a Euclidean measure of distance as there is no equivalent
53  measure of distance in a space without subtraction or square roots. Instead of Euclidean distance, we can
sa  use the number of integer steps in a positive direction as a measure of length, which is equivalent to the
s Manhattan distance between the vector terminus and the origin.

sss  Vector rotation is not possible in count-space as it would require rotation matrices with new basis vectors
so7  that include negative elements. Vector reflections are possible, because we are free to permute our count
se  matrix, as are shears of vectors. Some vector projections are possible, but not all. For example, if we project
s0  vector b onto vector a, the result will be a multiple ¢ of a, ga. The value of that multiple will be equal to
s g = (a’b)/(a’a), which requires division to calculate unless a’a = 1. Over Ny, that only happens when
e1 there is a single entry that is 1, i.e. when vector a is one of the original basis vectors. Therefore we can
o2 project vectors onto basis vectors, but not onto arbitrary vectors (e.g. we cannot project one cell vector onto
o3 another). Projecting onto basis vectors is the equivalent of multiplying some values by 0 while retaining
60« Others.

ss  Without rotation and vector projection, it is clear that certain complex operations like principal component
6s analysis that rely on these are not possible in this vector space.

« 9.3 High-dimensional, low-magnitude vector spaces over N

es  While the above pertains to vector spaces over Ny in general, there are interesting properties of the very
60 high dimensional, low magnitude vector spaces that describe scRNA-seq count data.

s0  Most gene expression datasets contain measurements for many thousands of genes, meaning this vector
o1 space has many thousands of dimensions. Furthermore, due to the sparse nature of these count matrices, it
ez is difficult if not impossible to find a reasonable lower-dimensional approximation. In other words, because
ez many features contain only a few, non-overlapping observations, there is no way to reduce the rank of this
s1a  matrix without discarding features.

615 Because most measures of gene expression are low-magnitude integers, most cell vectors terminate only a
es  few steps from the origin in any given direction. This does not mean that vectors are close to the origin
s overall. Vector length is non-Euclidean; it is calculated as the sum of steps back to the origin (Manhattan
as  distance), not the distance along a diagonal (Euclidean distance).

69 Because the vast majority of values in the count matrix are zero, cell vectors are perpendicular to each
60 other in many directions. The may result in the outcome that cell-cell similarity has more to do with the
ez number and distribution of non-zero observations than expression magnitude. This has been demonstrated
s2 by the fact that binary transformations of scRNA-seq data to zero/non-zero contain enough information to
e recapitulate major patterns in the data'l.
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