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Abstract11

Counting transcripts of mRNA is a key method of observation in modern biology. With advances in counting12

transcripts in single cells (single-cell RNA sequencing or scRNA-seq), these data are routinely used to identify13

cells by their transcriptional profile, and to identify genes with differential cellular expression. Because the14

total number of transcripts counted per cell can vary for technical reasons, the first step of standard scRNA-15

seq workflows is to normalize by sequencing depth, transforming counts into proportional abundances. The16

primary objective of this step is to reshape the data such that cells with similar biological proportions of17

transcripts end up with similar transformed measurements. But there is growing concern that normalization18

and other transformations result in unintended distortions that hinder both analyses and the interpretation19

of results. This has led to an intense focus on optimizing methods for normalization and transformation of20

scRNA-seq data. Here we take an alternative approach, by avoiding normalization altogether. We abandon21

the use of distances to compare cells, and instead use a restricted algebra, motivated by measurement theory22

and abstract algebra, that preserves the count nature of the data. We demonstrate that this restricted23

algebra is sufficient to draw meaningful and practical comparisons of gene expression through the use of the24

dot product and other elementary operations. This approach sidesteps many of the problems with common25

transformations, and has the added benefit of being simpler and more intuitive. We implement our approach26

in the package countland, available in python and R. By explicitly considering counts in terms of their27

measurement process, we avoid and overcome many challenges in modern RNA-seq and open new avenues28

for the analysis of these data.29

1 Introduction30

Counting transcripts in high-throughput assays is now both routine and highly productive for many lines31

of research1,2. Next generation RNA sequencing assays, including single cell RNA sequencing (scRNA-seq),32

measure the abundance of gene transcripts across samples3,4. In most assays, sequencing reads are collected,33

mapped to known genes, and measurements are reported as read counts per gene in a given sample2. When34

RNA samples are drawn from bulk tissue, the number of transcripts is typically large enough that counts for35

all but the rarest transcripts can be considered as measurements of proportional abundances and described36

with rational numbers2,5. As such, counts for each sample are often normalized to sequencing depth, scaled37
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by a multiplier (e.g. 10,000), and log-transformed6. In recent years, single-cell and single-nucleus mRNA38

sequencing (scRNA-seq and snRNA-seq) have become practical and commonly applied assays3,4. Where bulk39

tissue RNA-seq projects typically measure RNA for a handful of samples, scRNA-seq data are generated40

for thousands of cells in a single experiment. However, because the total counts per cell are much smaller41

than the counts per sample in bulk experiments, there are severe problems with interpreting counts as42

measurements of proportional abundances7. This is because for typical scRNA-seq data, the vast majority43

of count values per gene and sample are zero, and the majority of non-zero counts are very small8.44

The first step in most scRNA-seq analyses is to move data out of count-space by rescaling and transforming45

values. In the process, the measurements are transformed from natural numbers into rational numbers46

(numbers with fractional parts). The motivation of these steps is to reshape the data so that cells with47

similar biological proportions of transcripts end up with similar transformed measurements6 and fall closer to48

each other in the multidimensional space of gene expression. However, a growing chorus has raised warnings49

that these transformations lead to unintended distortions7,8. One of the primary issues is that stochasticity50

dominates the sampling process in this low-count regime, so that for many genes observed counts are a51

poor proxy for proportional abundance7. Because logarithmic transformations cannot be applied to zero52

values, additional steps of adding arbitrary pseudocounts (e.g. +1 to all values) are common, but this can53

introduce new biases7,9. Furthermore, rescaling low count values can invoke a false sense of confidence in54

relative gene abundances. From a philosophical point of view, transformations that lead to negative or55

fractional counts, that have no physical interpretation, violate the central tenet of measurement theory that56

data should correspond to the physical reality they represent10.57

Though problems with transforming scRNA-seq data out of count-space have been well described, there is58

little consensus on how to remedy them. Recent suggestions include embracing zero values by converting59

single-cell data to binary zero/non-zero values11, invoking alternative transformations (e.g. square root,60

proportional fitting) for variance-stabilization12, or avoiding the use of log-transformations by modeling61

single-cell data with a Poisson measurement model7,13. Here we argue that there is great value in treating62

the data as what they are – counts of transcripts sampled from the total population of mRNA – rather than63

as estimates of proportions. We present and evaluate a new analytical approach that preserves the original64

measured properties of the data by considering them in a vector space over natural numbers (see Appendix65

1), rather than transform them into rational numbers. We demonstrate that a restricted algebra that is66

closed over the natural numbers, requiring no scaling or transforms that would result in values other than67

natural numbers, is sufficient to perform many of the key tasks in scRNA-seq analysis. These tasks include68

assessing cell similarity, measuring differential gene expression, and identifying clusters of cells with shared69

signatures of expression.70

We present our implementation of count-based scRNA-seq analysis in the python and R package countland,71

available at github.com/shchurch/countland. The software seeks to complement existing tools that are72

currently vital to scRNA analysis (e.g. scanpy in python14, Seurat in R15), by offering an alternative73

approach that sidesteps common data transformations. We then test this software on benchmark data74

and show that this approach can accomplish the standard objectives of scRNA-seq analysis, avoid pitfalls75

associated with transformation-based workflows, and improve the interpretability of results.76

2 Building intuition for count matrices77

By increasing our familiarity with the structure and composition of a count matrix we can build our intuition78

about how common transformations are likely to reshape it. Count matrices of scRNA-seq data encode the79

number of counted transcripts for each gene in each cell (Fig. 1). Here we show cells as rows and genes80

as columns, though conventions vary (typically, cells are rows in python and columns in R). Because values81

within the matrix represent observations of physical transcripts by sequencing instruments, they are always82

either zero or positive integers.83

Visualizing the raw count matrix shows that the dominant feature is the presence of a large number of zeros84

(Fig. 1). These zeros can be considered as having three possible origins: biological, sampling, or technical17.85

Biological zeros are the true absence of a given transcript in the cell, and may be the result of a gene not86
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Figure 1: Single-cell RNA count data are mostly zeros and small integers. Visualizing a portion of
the count matrix from the Silver standard PBMC dataset, described by Freytag et al (2018)16. After count
values of 0 (white), the most common values are 1 (gray) and 2 (blue). Count values of 3 (red) and higher
(yellow) are rare and concentrated in a few genes with relatively high expression.
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being expressed in a given cell or all transcripts of a gene having been degraded by the time of observation.87

Sampling zeros arise because we count only a small fraction of all transcripts in a given cell, so by chance88

many genes that have transcripts in the cell are not detected18. Technical zeros arise from artifacts that89

eliminate counts for some genes in some cells, and can be introduced during cell preparation, mapping, or90

other analysis steps. Several modern techniques such as using unique molecular identifiers (UMIs) have91

helped bring technical zeros to within distributional models of sampling19,20. Increased sequencing depth92

can reduce the number of sampling zeros18. Despite this, the benchmark for scRNA-seq is a data matrix93

with >90% of values zero, compared to 10-40% in bulk RNA-seq experiments18.94

Of the remaining non-zero values, most are of very small magnitude. In the widely used PBMC3k benchmark95

dataset, for example, 69.8% of non-zero values are exactly one and 88.6% are less than five (Fig. 1). This96

means that for a given cell or gene, it is often true that there are no or very few values greater than two97

across all measurements. Cells and genes with count values greater than ten are the exception rather than98

the rule.99

The fact that count matrices are dominated by zeros and low integer values has implications for how we100

attribute meaning to the data. RNA sequencing seeks to profile the proportional abundances of all transcripts101

at a given instant in time, but our instruments do not directly measure proportions. Instead, with scRNA-seq102

we sample a small fraction, usually around 10%, of the total transcripts per cell4. It is generally assumed103

that the probability of sampling a read is determined by the proportional abundance of the transcripts of104

each gene18. Normalizing the data to the total counts for each cell (the first step of a standard workflow)105

invokes an additional assumption that sampling has been sufficient such that observed counts are a robust106

proxy for proportional abundance. But at low magnitudes, sampling one additional transcript results in big107

jumps in the apparent relative abundances. Adding a single read that increments a count from one to two,108

for example, results in a two-fold increase in proportional abundance, and incrementing a count from zero109

to one results in an infinite-fold increase in proportional abundance.110

Consider a cell that contains 10,000 transcripts, comprising 1,000 genes in different proportions. If we111

sampled all 10,000 transcripts, then counts would be a perfect proxy for proportional abundance, and the112

difference between a gene with one transcript and a gene with two would constitute a two-fold increase. But113

if we sampled only ten transcripts, counts would be a very poor proxy for proportional abundance. In this114

case, a likely scenario is that we would observe one count each for ten genes, but that does not indicate that115

each of those genes is present as 10% of total transcripts. Furthermore, the likelihood of a second observation116

of a gene would increase when the relative abundance is larger, but does not give us a precise numerical117

estimate for the fold difference between genes. Though this example is extreme in that only 10 transcripts118

are sampled, the fact that real count data contain mostly zeros, ones, and twos suggests the same principle119

applies to the shallow scRNA sequencing process.120

In summary, the problem with rescaling count data can be stated as follows:121

• The presence of a large number of zeros, ones, and other low integer values indicates a shallow sampling122

process in which stochasticity is a major factor.123

• At low integer values, large jumps in relative abundance are common (e.g., a 100% difference between124

one and two), and are disproportionate to the biological reality of transcript abundance.125

• As such, counts relative to sequencing depth are a poor numerical proxy for proportional abundance126

of transcripts.127

• The practice of normalizing by rescaling count data (natural numbers) to proportions (rational num-128

bers) bakes these stochastic sampling effects into the data by assuming that sampling is sufficient such129

that counts are a robust proxy for transcript proportions. From then on, counting effects cannot be130

deconvoluted from biological signals.131

The problem with other common transformations include:132

• Log-transformations stretch the differences between small integer values. Because differences between133

small integers are frequently influenced by the sampling process, these transformations exaggerate134

stochastic sampling effects over biological signals in the data.135
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• The dominant feature of the data is the large number of zeros. This kind of dataset is not a good136

candidate for log-transformation, where zeros have no numerical interpretation.137

• While adding pseudocounts can make calculation practically possible, it is ad hoc, introduces its own138

biases, and has no correspondence to the physical data or underlying sampling process.139

3 A restricted algebra for counts140

3.1 Count-space141

In mathematical terms, scRNA-seq count measurements occupy a high-dimensional vector space over the142

natural numbers (here defined as inclusive of zero, see Appendix 1). These are computationally encoded143

as unsigned integers. There is no such thing as a negative or non-integer transcript count, as these are144

physically meaningless.145

Group theory is the field of modern algebra that concerns collections of numbers and operations on those146

numbers. In group theory, a group is defined as closed when specified operations on members of the group147

result in objects that are also members. Groups can then be classified by which operations they are closed148

for. One familiar type of group is a field, which is closed under the operations addition, subtraction,149

multiplication, and division. Rational numbers form a field because applying any of these operations to150

rational numbers always results in a rational number. Natural numbers, such as transcript counts, do not151

form a field, because natural numbers are not closed under subtraction or division. These operations can152

result in values that are outside the group (e.g. non-natural numbers like -2 or ½). Groups that are closed153

under addition and multiplication but not under subtraction or division are classified as semirings. See154

Appendix 1 for a formal treatment of the topic.155

Constraining operations to those that are closed over a semiring provides a restricted algebra for analyzing156

scRNA-seq data that maintains its original count nature, guides intuitive thinking, and is still surprisingly157

rich. To understand what operations in the space can tell us, we can visualize observations of transcripts158

in cells as vectors in count-space. In count-space each gene forms an axis, perpendicular to all other gene159

axes. This space, therefore, has as many dimensions as there are genes. Each sequenced cell exists at a point160

in count-space with coordinates given by the counts for all genes. This point is the terminus of a vector161

emanating from the origin, which is the point where all gene counts are zero. We can conceptualize the cell162

sitting at the origin, for which all counts are zero, as the null cell.163

The measurement process can be thought of as estimating this vector by walking through count-space from164

the null cell (Fig. 2). As RNA sampling proceeds, each new transcript moves the cell away from the origin,165

always by one integer value in the positive direction parallel to the axis of the corresponding gene (Fig. 2).166

The final number of steps is determined by the sampling depth for the cell in question, and is the total167

number of counts for a cell.168

In this count-space, there is no concept of Euclidean distance. Calculating Euclidean distance requires the169

operations of subtraction and square roots, under which the natural numbers are not closed. Visualizing170

vectors in a reduced two-dimensional count-space helps clarify why Euclidean distance is not the measure we171

might have in mind. Vectors with the same number of total counts terminate along a diagonal (Fig. 2), not172

along a circle, meaning their Euclidean distances from the origin, could they be calculated, would be non-173

equal. Instead of distance from the origin, we have another straightforward measure of vector magnitude:174

the total number of counts, which is the number of steps from the origin to the vector terminus. This is175

equivalent to the Manhattan distance from the origin to the terminus.176

3.2 Operations in count-space177

The restricted algebra of semirings gives rise to operations that have clear, intuitive, physical interpretations178

for count data. Addition of two cell vectors produces a new vector where each element is the sum of the179
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Figure 2: A simulated RNA counting process in a system with two genes and three cell popu-
lations with five cells each. One step equals one new observation of a transcript and moves the cell one
unit along the axis of the corresponding gene. Colors indicate cell populations. A, Paths after counting ten
transcripts. Note that after an equivalent number of counts, all vectors terminate along a diagonal line with
a slope of -1. B, Paths after counting 100 transcripts. Vectors begin to separate based on the actual propor-
tions of transcripts in different cell populations (different colors). C, Paths after counting 1000 transcripts.
Vectors corresponding to different cell populations terminate in distinct regions of count-space, and vectors
from the same population are more similar to each other than to vectors from different populations.

corresponding elements in the original vectors. This operation is the equivalent to the physical act of pooling180

transcripts from two cells. Adding all cell vectors is equivalent to pooling all cells into a single bulk-tissue181

RNA-seq experiment.182

Multiplying two cell vectors also has a clear physical interpretation. The inner product, also known as the183

dot product, is an assessment of the similarity of two vectors based on the distribution of counts, and can be184

used to compare two cells. The dot product of two vectors is calculated by multiplying each corresponding185

element between the vectors and summing the resulting products. Because the dot product is calculated186

using only the operations of addition and multiplication, the natural numbers are closed under this operation.187

The dot product is a measure of cell-cell transcriptome similarity, scaled by sequencing depth. A dot product188

of zero occurs when two cell vectors have no counts in common for any gene (the cell vectors are orthogonal).189

If two vectors have a large dot product, this indicates that they are both long and have many counts in190

common. Small dot products indicate either long vectors that have few counts in common, or short vectors191

for which similarity cannot be reliably determined.192

Using the dot product as an indicator of cell-cell transcriptome similarity obviates many of the rationales193

for normalizing and transforming count data. A driving motivation behind these transformation steps is194

to compare distances between cells while accounting for sequencing depth. The dot product instead scales195

with sequencing depth, using more counts as a measure of confidence in the similarity of two cells. In other196

words, with more counts, we can better assess whether the RNA composition of a cell is similar or divergent197

from any other. As the total read count for a cell increases, the dot product increases linearly. Because of198

this, the dot product can be interpreted as a relative measure of similarity. Dot products can be used to find199

the most and least similar pairs of cells, but to interpret the absolute value of the dot product in context200

requires the original total number of counts.201
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3.3 Subsampling and subspaces202

It is not always necessary to standardize sequencing depth across cells in order to make useful comparisons203

across cells, as we demonstrate in our results below. However there are certain comparisons where we might204

expect heterogeneity in sequencing depth to obscure biological differences, for example, when calculating205

differential gene expression across cells12. One method of standardizing sequencing depth that is coherent206

with our physical understanding of the measurement process is to subsample counts to an equivalent number207

of counts for all cell vectors. Because the scRNA-seq counting process stops at an arbitrary point, we can208

randomly subsample from our observations per cell to stop the process at a specific number of our choosing.209

By subsampling counts to the same number across cells, we can standardize sequencing depth without210

converting counts to proportions.211

There are also cases where we might expect heterogeneity in the magnitude of expression across genes to212

obscure biological variation. The dot product is calculated by summing the product of each gene, meaning213

genes with substantially larger count values will contribute more to the dot product than genes with smaller214

values. This feature of the dot product can be useful for emphasizing genes with the largest dynamic215

range of counts, given that expression variance scales with magnitude12. But when highly expressed genes216

do not contain informative biological signal, this variance might drown out signal from genes with lower217

expression magnitudes. Accounting for the mean-variance relationship is the driving motivation behind218

several common transformations in scRNA-seq workflows. A count-based approach for tuning down the219

signal of highly expressed genes is to limit their total counts by randomly subsampling observations per220

gene. We can accomplish this by establishing a threshold for total counts and subsampling that number of221

observations from any gene vector that exceeds that threshold.222

An alternative approach is to focus on only subsets of genes or cells when making comparisons. Subsetting223

the count matrix is equivalent to projecting the data onto a subspace of the original count-space. This can224

be conceptualized as multiplying count values for certain cells or genes by zero (or alternatively, subsampling225

them to zero), and is permitted using our restricted algebra. Projections onto one feature axis allow us to226

consider counts in only one gene, and are useful when dealing with questions about gene-level differences, such227

as finding genes with differential or highly variable expression. Projections onto vectors, such as projecting228

one cell vector onto another, are not generally possible because such a projection could result in non-natural229

coordinates (see Appendix 1).230

With both subsampling or subsetting, there is a trade-off between reducing unwanted variation and throwing231

away data. Discarding counts can seem particularly painful given the already sparse nature of scRNA-seq232

data. We note that the standard scRNA-seq workflow already invokes subsetting by using only the top233

fraction of genes, ranked by variance of transformed counts. In our recommended count-based workflow,234

subsampling and subsetting are optional steps that should be applied depending on the research question.235

Furthermore, since subsampling is stochastically accomplished, we can leverage the original data by repeat-236

edly sampling and reanalyzing to test whether results are robust to sampling effects.237

4 countland: a count-based approach to RNA analysis238

This restricted algebra can be used to achieve all the standard analytical objectives of scRNA-seq without239

invoking normalization or transformation (Fig. 3). We have implemented these in our software package240

called countland, written for both python and R.241

4.1 Comparing cells242

A common approach for comparing cells in standard, normalization-based scRNA-seq workflows is to use243

principal component analysis (PCA) to rotate and project expression values onto a smaller dimensional244

space, and then calculate a neighborhood graph using the cell-cell distances in the PCA representation6.245

In a count-based approach, we avoid the use of distances by calculating the dot product of untransformed246
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Figure 3: Standard and count-based workflows. A standard scRNA-seq workflow, as described in the
documentation for scanpy and Seurat is shown in orange. A count-based approach, as implemented in
countland, is shown in blue, with optional subsetting, subsampling, and rank reduction steps adjacent.
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counts between all pairwise combinations of cells. This process generates a similarity matrix, rather than a247

distance matrix. This similarity matrix has several important properties: it is square, with the number of248

rows and columns determined by the number of cells, and it is symmetric, with diagonal values giving the249

dot product of each vector with itself, which is the sum of squares of all its elements. Off-diagonal values250

are the dot products between different cell vectors, and these values range from zero to any positive integer,251

unbounded on the maximum end as alignment increases.252

Cell similarity can be visualized by applying spectral embedding to this matrix. Spectral embedding involves253

calculating the graph Laplacian of the matrix and then estimating the eigenvectors and eigenvalues of254

this graph21. The cell similarity matrix can be visualized in two dimensions by plotting points using two255

eigenvectors (Fig. 4). This matrix can also be used to cluster cells by applying a k-means algorithm to256

the eigenvector matrix (spectral clustering). Here we demonstrate the use of spectral clustering of the dot257

product matrix for identifying cell populations using the Gold standard scRNA-seq benchmark dataset,258

described by Freytag et al (2018)16. This dataset consists of 925 cells from three populations derived from259

human lung tissue. Using countland, we recover these populations with high fidelity (adjusted rand index260

= 0.994, see benchmark results below). While spectral embedding includes operations that are not closed261

for natural numbers (e.g. subtraction and division), here they are operating on comparisons between cells262

(the dot product matrix) that do respect the count nature of the data.263

Figure 4: Clustering cells by similarity using a count-based approach. The Gold standard scRNA-
seq dataset of 925 cells from human lungs are visualized using spectral embedding of the pairwise dot product
matrix between all cells. A, cells are colored according to the ground truth labels as described in Freytag et
al (2018)16. B, cells are colored according to the results of spectral clustering. The two points outlined in
black are the only cells for which cluster labels differed from ground-truth labels.

4.2 Comparing genes264

Gene expression can be compared with a count-based approach as well. There are several count-based265

measures that provide insight into expression dynamics. These include:266

• The total number of counts per gene, summed across cells.267

• The maximum observed count value per gene.268

• The number of cells where a gene was detected, as well as the number where detected at a count value269

larger than one or some other value.270

• The number of unique count values (e.g. 0, 1, 2). Given the discrete nature of low-magnitude count271

values, this measure can provide insight into expression variability across cells.272
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• The largest number n, where there are n cells with ≥ n counts for the gene in question. We refer to273

this measure as the count index, and it can be helpful for finding genes that frequently show higher274

count values, as compared to genes that are mostly detected at values of 1 or 2, with a few high-count275

exceptions.276

The ideal marker gene for a cluster of cells can be defined as the gene with the highest differential expression277

between cells in the cluster and all other cells, or in an alternative approach, as the gene that is most278

specifically expressed in cluster cells12. A count-based approach for identifying marker genes by specificity279

is to count the number of cells with non-zero observations for each gene, and then calculating the difference280

between the fraction of these cells in a cluster versus the fraction that are not. The ideal marker gene would281

return a value of one, indicating it was expressed in all cluster cells and no others.282

Differential expression can be assessed using rank-sums tests, similar to those invoked in standard workflows,283

but here applied to raw counts instead of transformed proportions. In this method, counts for a given gene284

are ranked between cluster and non-cluster cells, the ranks for each group are summed, and a test statistic285

is calculated. This statistic is used to test the hypothesis that observations from cluster cells are larger286

than those from non-cluster cells. Because heterogeneity in count depth can influence the magnitude of287

expression for individual gene, subsampling to a standard sequencing depth prior to calculating differential288

gene expression is recommended.289

4.3 Reducing dimensionality and low-rank approximation290

The high dimensionality of single-cell count matrices is one of the fundamental challenges to analyzing, inter-291

preting, and visualizing these data22. There are several motives for embedding the count matrix in a lower-292

dimensional space, primary among them being data visualization. In the standard workflow, dimensional293

reduction is achieved through linear transformation (e.g. PCA and projection) of the already-transformed294

count matrix, followed by further non-linear reductions to two-dimensions using t-SNE or UMAP (Fig. 3).295

Recent reports suggest that rather than reducing the distances between similar cells, this approach results296

in extensive distortions of cell-cell distances22.297

Here we implement two count-based methods for reducing the number of dimensions that are not based on298

Euclidean distance. One way of reducing the dimensionality of count data is to combine genes with similar299

information content. We measure this as the number of shared counts between two genes; this is calculated300

by comparing two gene vectors (e.g. matrix rows), taking the smaller of the two count values for each cell301

(e.g. each column), and summing. This sum represents the number of times both genes were counted in302

the same cell. Calculating this sum for all pairwise combinations of genes results in a similarity matrix of303

shared counts. To find cohorts of genes that have relatively large numbers of shared counts, we perform304

spectral clustering on this matrix. We use these clusters to reduce the dimensionality of the count matrix305

by pooling counts (summing) across genes in the same clusters. This method reduces a matrix with the306

dimensions m cells by n genes to one with the dimensions m cells and k meta-genes, where k depends on the307

number of clusters found using spectral clustering. Cells can be visualized using this approach by plotting308

their coordinates along a pair of meta-genes (Fig. 5B).309

Integer matrix factorization is an alternative approach to achieve a low-rank approximation of matrices310

that include only natural numbers23. Like other matrix factorizations (e.g. singular-value decomposition),311

this method seeks to find lower-rank matrices that can be multiplied together to approximate a higher-rank312

matrix, here the count matrix. Integer matrix approximation generates three matrices, termed U, V, and Λ,313

similar to the three matrices generated by singular-value decomposition on data consisting of real numbers.314

When using integer matrix approximation on single-cell count data, matrix U has the dimensions m cells315

by k features, with k provided as the target rank, V has the dimensions k features by n genes, and Λ is a316

diagonal matrix of k scaling factors. Because of the discrete nature of count data, this factorization cannot317

be accomplished conventionally, but approximations for this factorization have been proposed for other types318

of count-based data24. Here we implement the algorithm for integer matrix approximation in python and R,319

and apply it to the approximation of single-cell count data. Following integer matrix approximation, cells320

can be embedded in a lower-dimensional space by multiplying the count matrix with matrix V, scaled by321
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Λ. Cells can then be visualized by plotting their coordinates in two resulting embedding components (Fig.322

5C). This is conceptually similar to calculating principal components for visualization using singular-value323

decomposition.324

Given the problems inherent to data transformation, Townes et al (2019)7 recently proposed a generalized325

version of PCA (GLM-PCA) that takes advantage of the exponential family of likelihoods, and which can326

be applied directly to raw counts. This method, like those described above, also does not rely on Euclidean327

distances, but unlike the shared counts and integer matrix approximation approaches, it does not preserve328

the count-like nature of the data (values will not necessarily be natural numbers). Given that it allows329

for visualization without transformation, however, we highlight it as a promising additional avenue for330

interpreting scRNA-seq data.331

Figure 5: Comparing dimensional reduction approaches. Cells from the Gold standard benchmark
dataset, colored in all panels according to ground truth labels. A, spectral embedding of the dot product
matrix. B, reduced dimensionality by pooling genes with large numbers of shared counts. C, reduced
dimensionality using integer matrix approximation. D, generalized PCA (GLM-PCA), as implemented in
the R package glmpca.7 E, uniform manifold approximation (UMAP) following data transformation, as
implemented in Seurat. Note that UMAP on transformed values results in the most apparent cluster
boundaries, but it also results in one ground truth population (cyan) being split into two groups (see
performance evaluation below).

5 Evaluating count-based approaches to clustering332

5.1 Gold standard333

We tested the countland methods described above on published benchmark data to evaluate its perfor-334

mance relative to ground truth and consistency with published standard workflows. As shown in Figure335
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3, countland recovers the ground truth cell identities from the Gold standard dataset with high fidelity.336

Clustering accuracy was evaluated using three measures: the adjusted rand index (ARI), normalized mutual337

information (NMI), and cluster homogeneity. ARI and NMI both evaluate the similarity between two sets338

of clusterings, while homogeneity measures the degree to which an identified cluster contains only members339

of one ground truth group. Against ground truth, countland returns an ARI score of 0.994, an NMI of340

0.987, and homogeneity of 0.987. These results were achieved using countland on the raw count matrix,341

demonstrating that without any form of normalization or data transformation, count-based methods can342

accurately identify cells by expression.343

For the same dataset, Seurat returns a lower ARI (0.409) when using the default parameters, but after344

reducing the resolution used in clustering, Seurat returns an ARI of 0.997. The difference in scores with345

Seurat can be attributed to the software splitting one ground truth cell population into two clusters, as seen346

in the cyan colored cells in Fig. 5E.347

Because the Gold standard dataset is significantly less sparse than many scRNA-seq datasets, we tested348

countland’s performance on a modified Gold standard dataset where each cell contained only 1% of the349

original number of observations. Both countland and Seurat can recover ground truth cell identities with350

high fidelity (ARI 0.997 and 0.997, NMI 0.993 and 0.993, homogeneity 0.993 and 0.994, respectively). We351

note that when analyzing the more sparse dataset, countland achieves slightly better results when the352

number of components (Laplacian eigenvectors) used in spectral clustering are increased from 5 to 10 (ARI353

increased from 0.977 to 0.99).354

We tested performance on datasets derived from the Gold standard, modified to introduce the kinds of data355

heterogeneity that are often invoked to justify data transformations. First, we modified the sparse Gold356

standard dataset so that 100 of the 925 cells had their original measurements from before reducing counts357

to 1% of their original number. These 100 cells were randomly drawn 50 each from two of the three cell358

populations. With this dataset we observed a reduction in cluster accuracy analyzing counts directly (ARI359

0.399, NMI 0.431, homogeneity 0.431). But after applying countland’s subsampling procedure to bring cells360

to a standardized sequencing depth, countland accurately recovers ground truth cell identities (ARI 0.952,361

NMI 0.927, homogeneity 0.927). In contrast, Seurat fails to accurately identify cells, despite normalizing362

data by sequencing depth (ARI 0.478, NMI 0.555, homogeneity 0.555). Visualizing the Seurat results shows363

that clusters separate cells by sequencing depth as well as their original identities. This is likely because364

cells with more total counts have observations for many genes that are not observed in lower-count cells, a365

fact which depth normalization cannot account for.366

We also tested performance on a version of the sparse Gold standard dataset modified to have substantial367

heterogeneity in gene expression. To accomplish this we added ten highly expressed genes with no variation368

attributed to cell population. Count values were simulated for these genes using a Poisson distribution with369

a lambda value 10x larger than the largest observed mean count value across genes. Adding these genes with370

high count values resulted in decreased accuracy for countland when analyzing raw counts (ARI 0.347, NMI371

0.408, homogeneity 0.408), but this effect was eliminated when highly expressed genes were subsampled to372

a predetermined maximum count value (ARI 0.993, NMI 0.987, homogeneity 0.987). The performance of373

Seurat was robust to the addition of highly expressed genes (ARI 0.997, NMI 0.993, homogeneity 0.993).374

5.2 Silver standard375

We evaluated the performance of countland and Seurat on the Silver standard dataset (version 3a) of376

peripheral mononuclear cells (PBMCs). This dataset does not include ground truth labels, instead it includes377

cell labels derived from similarity to a reference dataset25. Previous evaluations of scRNA-seq analysis378

software show that all methods fail to recover all labeled cell groups, with different methods returning an379

ARI between ~0.2 and ~0.6. We reanalyzed this dataset using Seurat and observed an ARI of 0.456, NMI380

of 0.622, and homogeneity of 0.679.381

When subsampling highly expressed genes to a maximum total count value equal to the number of cells,382

countland returned similar results to other clustering software (ARI 0.442, NMI 0.594, homogeneity 0.594).383

Subsampling genes even further returned higher scores (ARI 0.534, NMI 0.633, homogeneity 0.633), as did384
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subsetting the data to remove the top 5% of genes altogether (ARI 0.57, NMI 0.644, homogeneity 0.644).385

This suggests that, for the Silver standard dataset, highly expressed genes are not useful in identifying386

cells according to the published labels, and may mask signal present in other genes. Subsampling cells387

to a standard sequencing depth did not result in an increase in clustering scores (ARI 0.34, NMI 0.576,388

homogeneity 0.576).389

6 Discussion390

The best way forward can sometimes require first taking a few steps back. Measurement theory5 provides a391

roadmap for this in the context of scRNA-seq data analysis: start by considering the measurement process392

by which numbers are assigned to attributes, and then consider how mathematical operations on the mea-393

surements correspond to physical processes. This is fundamental to understanding how our measurements394

address our research question. This approach is especially valuable for navigating the data-rich world of next395

generation sequencing and functional genomics. Current practices using these high-dimensional data almost396

always involve ad hoc transformations that are applied with a general sense that something must be done397

to the data before downstream analyses are possible (e.g. the data must be transformed so that Euclidean398

distances become meaningful). We advocate for a more intentional approach, where data processing steps399

are only taken when they respect the measurement process and will be informative for the research question.400

Current practices in single cell analysis have been highly optimized with one primary objective: to identify401

and visualize clusters of cells. But modern research with scRNA-seq data has far more ambitious and diverse402

objectives, including identifying developmental trajectories, comparing cells and genes across species and403

evolutionary time, and associating expression differences with phenotypes of interest. The result is that a404

substantial research effort is currently dedicated to things other than clustering, and this requires undoing405

many problems created by data preprocessing steps that were developed with clustering in mind. Here we406

have described an approach that seeks to sidestep, rather than patch, many current practices in order to407

avoid these problems altogether.408

Our results show that the restricted algebra of count-space is sufficient to perform many common scRNA-seq409

analysis tasks, while respecting the underlying count nature of the data. For example, assessing cell similarity410

with the dot product of transcript counts is a powerful tool to identify distinct clusters that correspond to real411

cell populations (Fig. 3). The restricted algebra implemented in countland works well, even when datasets412

are sparse, without taking any steps to account for heterogeneity in sequencing depth or gene expression413

magnitude. This indicates that it is not universally necessary to convert counts to fractional abundances or414

log-transform values in order to categorize cells by expression. And in cases where heterogeneity in those415

measures obscures biological differences, we provide a count-based solution via subsampling, and demonstrate416

that this solution can match or outperform standard approaches.417

However, we anticipate that there are scenarios when the standard, transformation based approach can re-418

cover clusters that are not identified using count-based approaches. There are almost certainly circumstances419

in which these transformations have the effect of exaggerating subtle but perhaps real biological differences420

between cell populations. The challenge is that these circumstances would be indistinguishable from situ-421

ations where the same transformations instead result in exaggerating spurious and artifactual population422

structure. Count-based approaches, on the other hand, are easy to interpret; more similar cells are those423

that have more transcripts in common.424

There is great potential for improvements in count-based approaches, especially in the area of spectral em-425

bedding and clustering of the dot product matrix. While standard, distance-based clustering methods have426

undergone many generations of improvements, here we have used an out-of-the-box approach to spectral427

clustering, as implemented in scikit-learn, a standard clustering library in python26 (which we reimple-428

mented in R). Future optimizations to the choice of graph Laplacian or the clustering algorithm that are429

specific to single-cell data may result in improved performance in identifying cell populations using tran-430

script counts. However, we stress that segregating and labeling cells is only one small portion of the analyses431

that are possible with scRNA-seq data. Cells do not always fall into clear populations that will conform to432

clustering algorithms, especially when considering cells over their developmental lifetimes. The dot product433
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is an intuitive and powerful measure of cell-cell similarity, even when not invoking clustering. Comparisons434

of cells across timepoints, treatments, tissues, and species are all facilitated by leveraging a count-based435

approach that avoids ad hoc transformations and improves interpretability.436
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8 Methods441

8.1 countland442

We implemented countland in python and R, available at https://github.com/shchurch/countland. Imple-443

mentation in both languages will allow these methods to be more widely used, and will provide an opportunity444

to cross validate results.445

The implementation of the restricted algebra in our package countland is summarized here using mathemat-446

ical notation. See Appendix 1 for a background on the mathematical principles that justify our restricted447

algebra, and the git repository for more specifics.448

Let C be the count matrix containing the raw measurements, and let N0 be the set of natural numbers,449

inclusive of 0, where Cij ∈ N0. C has the dimensions m cells and n genes. The established convention for C450

in python has cells as matrix rows and genes as columns, whereas in R, genes are rows and cells are columns.451

Our descriptions in the text of this manuscript use the python convention, unless stated otherwise.452

8.1.1 Dot product matrix453

Let D be the m × m dot product matrix, where element Dij is the dot product of cell i with cell j. D is454

calculated using matrix multiplication as D = CCT . Because this requires only multiplication and addition455

operations on the elements, this does not move the data out of count-space and will return only values456

contained in N0. Note that this is conceptually very similar to the calculation of the covariance matrix,457

which is at the heart of methods often used in scRNA-seq analyses, such as PCA. Covariance matrices are458

calculated as XXT , where X is the mean-centered transformation of C. However calculating the mean and459

centering requires division and subtraction and moves the data out of count-space, resulting in negative and460

fractional values not contained in N0.461

8.1.2 Spectral clustering462

Spectral embedding and clustering require a similarity matrix as input. Here, D is used as the cell-cell463

similarity matrix. Prior to spectral embedding, the diagonal elements of D are replaced with zeros to464

remove edges of the similarity graph that connect cells to themselves.465

In the python implementation of countland, we used spectral clustering functions as written in scikit466

learn, modified so that it returns the eigenvalues as well as the eigenvectors of the graph Laplacian. As467

with scikit learn, in countland the user can input the target number of clusters as well as the number468

of components (eigenvectors of the graph Laplacian) that should be considered in the spectral clustering469

algorithm.470
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To ensure that methods and results are directly comparable between the python and R versions of countland,471

instead of using an existing package for spectral clustering (e.g. R:Spectrum27), we re-implemented the472

scikit learn algorithm from scratch in R.473

To facilitate the choice of the number of clusters, we implemented a common heuristic for determining474

the optimal numbers of clusters by considering the difference between eigenvalues λ1, . . . , λn of the graph475

Laplacian. According to this heuristic, a reasonable choice for the optimal number of clusters k is one where476

the eigenvalues λ1, . . . , λk are relatively small, and the gap |λk+1 − λk| is relatively large. This heuristic is477

intended as a guideline, and other methods of selecting k may also be useful (e.g. using a priori biological478

information).479

8.1.3 Subsampling counts480

Sequencing depth in scRNA-seq experiments is not standardized across samples, with the result that the481

sum of counts per cell
∑n

j=1 Cij varies. Sequencing depth can be standardized in countland by subsampling482

observations to a fixed number x of total counts per cell, such that
∑n

j=1 Cij = x. This is accomplished by483

flattening each cell vector to an array of transcripts, with the frequency of each transcript given by its count484

value, and then randomly choosing x transcripts without replacement. The new cell vector is given by the485

sampled transcript frequency.486

A similar approach is taken when subsampling genes to reduce the impact of heterogeneity in expression487

magnitude. In this case, each gene vector is flattened to an array of cell observations. For any gene with488

> x total observations, x observations are randomly chosen without replacement, and the new gene vector489

is given by the sampled cell frequency.490

8.1.4 Expression scores491

The following expression scores for cell i can be calculated in countland:492

• total counts =
∑n

j=1 Cij493

• maximum count value = max1≤j≤n(Cij)494

• The number of observations above zero =
∑n

j=1[Cij > 0] where [F ] = 0 if F is false, and 1 if F is true495

• The number of observations above one =
∑n

j=1[Cij > 1]496

• The number of observations above ten =
∑n

j=1[Cij > 10]497

• The number of unique count values = unique1≤j≤n(Cij)498

• The count index c = max1≤j≤n(Cij) where
∑n

j=1[Cij ≥ c] ≥ c499

As well as the corresponding scores along the n dimension.500

We implemented two methods for comparing differential expression across clusters. Let M ′ be the cells501

within the cluster and M ′′ be the rest. For the first method, we calculate the difference between proportions502

of non-zero observations503
n∑

j=1,i∈M ′

[Cij > 0] −
n∑

j=1,i∈M ′′

[Cij > 0]

For the second method, we use a Wilcoxon Rank-sum test (Mann Whitney U test) between M ′ and M ′′,504

followed by Benjamini-Hochberg false discovery rate correction of p-values (α for significance set at 0.05).505

8.1.5 Dimensional reduction via shared counts506

Let S be the n × n matrix of shared counts between genes, where element Spq is calculated as507 ∑n
j=1 min(Cpj , Cqj). Spq is equal to 1

2 (
∑n

j=1 Cpj + Cqj −
∑n

j=1 |Cpj − Cqj | ) where
∑n

j=1 |Cpj − Cqj | is the508

Manhattan distance.509
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S is a similarity matrix; it describes the amount of shared information between pairs of genes. In countland510

we apply spectral clustering to S to identify clusters of genes with strong signatures of shared information.511

The number of clusters k is determined by the user and the number of components considered is set equal to512

the number of clusters. Let N ′ be the genes in an identified cluster and let C′ be the reduced k × m count513

matrix, the values of the reduced count matrix C ′
ij are calculated as

∑m
i=1,j∈N ′ Cij514

8.1.6 Integer matrix approximation515

Integer matrix factorization is a method for estimating lower rank matrices that can be multiplied to ap-516

proximate a higher rank matrix that contains discrete values, such as integers23. This factorization generates517

three matrices, U, V, and Λ. U has the dimensions m × k features, with k provided by the user. V has the518

dimensions k × n genes, and Λ is a k × k diagonal matrix of scaling factors. This is conceptually similar to519

other matrix factorizations (e.g. singular-value decomposition) that generated matrices U, V, and Σ.520

An approximation for integer matrix factorization has been implemented for MATLAB in the application521

SUSTain24. We re-implemented the required functions for integer matrix approximation on a matrix in522

python and R, and have made them available for public use at https://github.com/shchurch/integer_matrix_523

approximation.524

As in SUSTain, integer matrix approximation is accomplished in three steps. First, parameters are set,525

including: the target rank of the factorized matrices, the upper and lower bounds of the integer values526

(default lower bound is zero), the maximum number of iterations (default is 1000000), and the stopping527

criterion (default is a difference of 0.0001). Second, initial matrices U, V, and Λ are calculated by sampling528

integers from the higher rank matrix, ensuring that values remain within the bounds. Third, U, V, and Λ529

are updated via the algorithm described in the corresponding SUSTain manuscript24.530

8.2 Performance evaluation531

We evaluated countland’s performance using the Gold and Silver standard benchmark scRNA-seq datasets532

provided by Freytag et al (2018)16. The Gold standard dataset includes data from 925 cells drawn from533

three populations of human lung adenocarcinoma lines. This dataset has ground truth cell labels, but is534

far less sparse than most scRNA-seq datasets (29% of values are non-zero). To evaluate performance on a535

more sparse dataset, we created a modified Gold standard dataset where each cell contained only 1% of its536

original number of observations.537

For the Gold standard dataset, we evaluated performance after increasing the amount of heterogeneity in538

sequencing depth and in gene expression. To manipulate heterogeneity in sequencing depth, we restored 100539

cells from the sparse Gold standard dataset to their original sequencing depth, drawing 50 cells each from540

two of the three cell populations present in the data. To manipulate heterogeneity in gene expression, we541

simulated counts for 10 genes, using a Poisson distribution with lambda values 10x larger than the largest542

observed mean count value across genes.543

The Silver standard datasets are composed of fresh peripheral mononuclear cells (PBMCs). Here we have544

evaluated performance on dataset 3a, named by the original authors, which contains 4,310 cells labeled by545

matching cells to a reference dataset by expression. These labels do not constitute a ground truth but have546

been shown to match identities found using marker genes to classify cells25.547

For the Gold and Silver standard datasets, we tested countland first on raw count matrices, meaning548

no subsampling or subsetting was performed prior to calculating the dot product and performing spectral549

embedding and clustering. We then tested the impact of subsampling cells to a standard sequencing depth,550

and of subsampling genes to a maximum total count value. In the case of the Silver standard dataset, we551

tested two thresholds for maximum gene counts: a threshold equal to the number of cells, and one equal552

to 1/2 the number of cells. We also tested the effects of dropping the top 5% of genes according to total553

counts. For the Gold standard dataset, we tested the impact of varying the number of components (Laplacian554

eigenvectors) used to identify clusters.555
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All datasets and code required to perform analyses are provided along with the software at github.com/shchurch/countland.556

8.3 Data availability557

The countland package for python and R, as well as all data and code required to reproduce the results558

shown here is available at https://github.com/shchurch/countland.559

9 Appendix 1. Properties of vector spaces over zero and the nat-560

ural numbers561

This appendix provides additional background and information on mathematical concepts relevant to the562

analysis of transcript count matrices.563

9.1 The natural numbers, N0564

The natural numbers are a group of all positive integers. Depending on the definition, this group may also565

include zero (i.e. all non-negative integers), a convention we follow here so that N0={0,1,2,3,. . . }. We can566

classify groups of numbers by the operations under which they are closed, meaning operations on elements567

in the group result in elements that are also in the group. The most familiar group is a field, which is568

closed under addition, subtraction, multiplication, and addition, and includes rational numbers Q and real569

numbers R. The natural numbers form a semiring, because N0 is closed for multiplication and addition, but570

not subtraction or division.571

N0 contains the additive identity element, 0, that can be added to any element to return the same element572

(e.g. x + 0 = x). N0 also contains the multiplicative identity element, 1, that can be multiplied with any573

element to return the same element (e.g. x1 = x).574

Inverses are elements that return the identity elements under specified operations. For example, the negative575

numbers are inverses under addition, because x + (−x) returns the additive identity element, 0. However,576

because N0 does not contain negative numbers, it doesn’t have additive inverses. Similarly, reciprocal values577

are inverses under multiplication, because x(1/x) returns the multiplicative identity element, 1. N0 likewise578

does not contain reciprocals, so therefore doesn’t have multiplicative inverses.579

Subtraction can be defined as the addition of an additive inverse (a negative number), and division can be580

defined as multiplication with a multiplicative inverse (a reciprocal). Because these two inverses are not581

contained in N0, there is no subtraction or division. This is equivalent to the observation that N0 is not582

closed for subtraction or division.583

9.2 Vector spaces over N0584

We can build the vector space over N0 as the group of all vectors V such that585

V = (a1, a2, a3, ...an) : a1, a2, a3, ...an ∈ N0

The vector space over N0 can be envisioned as being restricted to the integer grid that is located over the586

upper right quadrant of a coordinate system, inclusive of the origin and axes. Certain operations are possible587

in this restricted space, while others are not. For example, we can apply the operation of the inner product588

(dot product) because this operation requires only multiplication and addition of vector elements. However,589

unlike a vector space over a field, in the vector space over N0 there are no angles between vectors. Calculating590

angles from dot product requires division by vector length, and N0 is not closed for division.591
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Furthermore, in count-space, vector length is not a Euclidean measure of distance as there is no equivalent592

measure of distance in a space without subtraction or square roots. Instead of Euclidean distance, we can593

use the number of integer steps in a positive direction as a measure of length, which is equivalent to the594

Manhattan distance between the vector terminus and the origin.595

Vector rotation is not possible in count-space as it would require rotation matrices with new basis vectors596

that include negative elements. Vector reflections are possible, because we are free to permute our count597

matrix, as are shears of vectors. Some vector projections are possible, but not all. For example, if we project598

vector b onto vector a, the result will be a multiple q of a, qa. The value of that multiple will be equal to599

q = (aT b)/(aT a), which requires division to calculate unless aT a = 1. Over N0, that only happens when600

there is a single entry that is 1, i.e. when vector a is one of the original basis vectors. Therefore we can601

project vectors onto basis vectors, but not onto arbitrary vectors (e.g. we cannot project one cell vector onto602

another). Projecting onto basis vectors is the equivalent of multiplying some values by 0 while retaining603

others.604

Without rotation and vector projection, it is clear that certain complex operations like principal component605

analysis that rely on these are not possible in this vector space.606

9.3 High-dimensional, low-magnitude vector spaces over N0607

While the above pertains to vector spaces over N0 in general, there are interesting properties of the very608

high dimensional, low magnitude vector spaces that describe scRNA-seq count data.609

Most gene expression datasets contain measurements for many thousands of genes, meaning this vector610

space has many thousands of dimensions. Furthermore, due to the sparse nature of these count matrices, it611

is difficult if not impossible to find a reasonable lower-dimensional approximation. In other words, because612

many features contain only a few, non-overlapping observations, there is no way to reduce the rank of this613

matrix without discarding features.614

Because most measures of gene expression are low-magnitude integers, most cell vectors terminate only a615

few steps from the origin in any given direction. This does not mean that vectors are close to the origin616

overall. Vector length is non-Euclidean; it is calculated as the sum of steps back to the origin (Manhattan617

distance), not the distance along a diagonal (Euclidean distance).618

Because the vast majority of values in the count matrix are zero, cell vectors are perpendicular to each619

other in many directions. The may result in the outcome that cell-cell similarity has more to do with the620

number and distribution of non-zero observations than expression magnitude. This has been demonstrated621

by the fact that binary transformations of scRNA-seq data to zero/non-zero contain enough information to622

recapitulate major patterns in the data11.623
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