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Abstract

Language is central to human life; however, how our brains derive meaning
from language is still not well understood. A commonly studied electrophysio-
logical measure of on-line meaning related processing is the N400 component,
the computational basis of which is still actively debated. Here, we test one
of the recently proposed, computationally explicit hypotheses on the N400
– namely, that it reflects surprise with respect to a probabilistic representa-
tion of the semantic features of the current stimulus in a given context. We
devise a Bayesian sequential learner model to derive trial-by-trial semantic
surprise in a semantic oddball like roving paradigm experiment, where sin-
gle nouns from different semantic categories are presented in sequences. Using
experimental data from 40 subjects, we show that model-derived semantic sur-
prise significantly predicts the N400 amplitude, substantially outperforming a
non-probabilistic baseline model. Investigating the temporal signature of the
effect, we find that the effect of semantic surprise on the EEG is restricted
to the time window of the N400. Moreover, comparing the topography of
the semantic surprise effect to a conventional ERP analysis of predicted vs.
unpredicted words, we find that the semantic surprise closely replicates the
N400 topography. Our results make a strong case for the role of probabilistic
semantic representations in eliciting the N400, and in language comprehension
in general.
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Significance Statement
When we read or listen to a sentence, our brain continuously analyses its meaning
and updates its understanding of it. The N400 brain potential, measured with
electrophysiology, is modulated by on-line, meaning related processing. However, its
computational underpinnings are still under debate. Inspired by studies of mismatch
potentials in perception, here we test the hypothesis that the N400 indexes the
surprise of a Bayesian observer of semantic features. We show that semantic surprise
predicts the N400 amplitude to single nouns in an oddball like roving paradigm with
nouns from different semantic categories. Moreover, the semantic surprise predicts
the N400 to a much larger extent than a non-probabilistic baseline model. Our
results thus yield further support to the Bayesian brain hypothesis.

Introduction
Language conveys meaning, but how our brains achieve this mapping from words
and sentences to meaning is not yet well understood. The N400 brain potential
has been studied extensively as a measure of on-line meaning-related processing,
using a multitude of meaning-related materials such as sentences, word pairs, single
words, pictures, sounds, and even mathematical symbols (Kutas and Federmeier,
2011). However, despite very large amounts of data, the computational processes
underlying N400 amplitudes are still actively debated. There are various verbally
descriptive hypotheses on the underlying mechanism of the N400 such as that N400
amplitudes may reflect the difficulty of lexical access to a word in memory (Lau
et al., 2008), the difficulty to integrate an incoming word into the sentence context
(Baggio et al., 2008), or semantic inhibition (Debruille, 2007). In recent years there
has been a growing interest in linking N400 amplitudes to computational models in
order to resolve this debate.

It has been suggested that information processing can be analyzed and modeled
at three levels: computational, algorithmic, and implementational (Marr, 2010). So
far, models of the N400 have been mostly implemented as neural network models
(Rabovsky and McRae, 2014; Frank et al., 2015; Brouwer et al., 2017; Rabovsky
et al., 2018; Fitz and Chang, 2019), which operate (roughly) at the "algorithmic"
level of analysis (sometimes considered "implementational"). Some of these neural
network modeling studies have argued that the models’ N400 correlates (i.e., the
measures obtained from the neural network models, which have been used to sim-
ulate N400 amplitudes) approximate constructs such as semantic prediction error
and/or Bayesian surprise (Rabovsky and McRae, 2014; Rabovsky et al., 2018; Fitz
and Chang, 2019), concepts that we jointly refer to as semantic surprise here. This
idea has been taken up by verbal theories of the N400 (Bornkessel-Schlesewsky and
Schlesewsky, 2019; Kuperberg, 2016) and seems well in line with recent studies us-
ing large scale deep learning language models, which highlight the crucial role of
prediction for language in general (Schrimpf et al., 2021) and the N400 in particular
(Heilbron et al., 2020; Lindborg and Rabovsky, 2021). However, the theory that
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N400 amplitudes reflect semantic surprise has not yet been tested with a model
operating at Marr’s "computational" level, that explicitly implements probabilistic
Bayesian computations.

On a conceptual level, linking the N400 to semantic surprise connects with ad-
vances in the study of the mismatch negativity (MMN), a negative EEG potential
arising in response to oddball stimuli (Näätänen et al., 1978). Recent studies have
suggested that the underlying mechanisms of the MMN could be explained by pre-
dictive coding (Garrido et al., 2009), with Bayesian surprise (Itti and Baldi, 2009) as
a possible predictor of MMN amplitude (Ostwald et al., 2012). Similarly, amplitudes
of the oddball sensitive P3 component have been linked to Bayesian surprise (Mars
et al., 2008; Kolossa et al., 2015; Visalli et al., 2021; Modirshanechi et al., 2019)
and predictive coding accounts suggest that ERP amplitudes generally reflect sur-
prise at different levels of representation (Friston, 2005). Importantly, while ERPs
in perceptual oddball paradigms have been explicitly modeled as Bayesian surprise;
concerning the N400, the hypothesis that it reflects semantic surprise has not yet
been tested with explicit probabilistic modelling. This is the goal of the current
study.

Specifically, we devise a simple probabilistic model of semantic knowledge – a
Bayesian sequential learner – which continuously tracks the probabilities of different
semantic categories during the course of a word reading experiment and updates
its knowledge when presented with new information. We test whether the model-
derived semantic surprise, technically defined here as Bayesian surprise with regard
to the model’s internal semantic representation, can predict trial-by-trial N400 am-
plitude in human subjects taking part in an oddball like roving paradigm experiment
with words from different semantic categories. We further investigate whether the
temporal and spatial EEG signature of the semantic surprise are consistent with the
N400 obtained from standard ERP analyses.

Methods and Materials

Participants

Forty subjects (36 female) with a mean age of 24 (SD = 3.71) participated in the
experiment. All participants were native German speakers with normal or corrected-
to-normal vision and were right-handed according to 12 items of the Edinburgh
Handedness Questionnaire (Oldfield, 1971). The study was approved by the Ethics
Committee of Freie Universität Berlin’s Department of Psychology and all partici-
pants provided written informed consent before participation.

Stimuli

The stimuli consisted of 100 German nouns falling into 10 semantic categories,
with 10 nouns from each category. The semantic categories were trees, vegetables,
birds, land animals, landscapes, furniture, transportation, tools, kitchen utensils
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and clothes. For the purpose of the experiment we constructed the 10 discrete cate-
gories by selecting nouns which maximised the semantic similarity of words within a
given category using the semantic features from the GermaNet lexical-semantic net
(Hamp & Feldweg, 1997; Henrich & Hinrichs, 2010). The stimuli were restricted to
have no more than one commonly used meaning and to be reasonably well-known.
It was verified in separate one-way factorial ANOVAs that the categories did not
significantly differ on any of the following control variables: absolute type frequency
(F (9) = 1.37, p = 0.12) and number of orthographic neighbours according to Colt-
heart’s (F (9) = 1.34, p = 0.23) and Levenshtein’s (F (9) = 0.90, p = 0.53) defini-
tions – all extracted from dlexDB German language corpus (Heister et al., 2011) –
as well as the number of letters (F (9) = 1.30, p = 0.25).

In order to make sure that participants were paying attention to the stimuli, they
were required to perform a control task consisting of detecting non-words. These
non-words had no orthographic neighbours in German. A full list of the word and
non-word stimuli can be found in the Supplementary material.

Experimental design

The stimuli were presented in a roving paradigm, in which a sequence of nouns
belonging to one semantic category (e.g., different trees) were followed by a sequence
of nouns from a different category (e.g., tools), and so on. With this paradigm, we
can regard the contrast of “standard” and “deviant” trials akin to that of an oddball
paradigm, where the first stimulus in a sequence is a “deviant” (unpredicted) stimulus
and the last stimulus in a sequence is a “standard” (predicted). In total, 500 category
sequences of varying length (min = 4, max = 8, mean = 6 nouns) were constructed
such that the mean sequence length was balanced across categories, and the number
of repetitions (30) and probability of occurring at a given position in a sequence was
balanced across word items. The sequences were presented in a randomised order,
yielding a total of 3000 stimulus presentations during the experimental session.

Additionally, 200 catch trials consisting of non-words were presented during an
experimental session. Subjects were tasked with pressing a designated key whenever
a non-word appeared on the screen, in order to make sure they were paying attention
to the stimuli. The non-words were randomly interspersed between the nouns but
restricted to occur after 8-24 words and never directly before or after a standard
(last in sequence) stimulus. Subjects were asked to press a given key whenever a
non-word occurred in the stimulus presentation. The laterality of the key press was
balanced across participants and subjects’ performance in the non-word task was
continuously monitored during the experiment.

Each word or non-word was presented at the centre of the screen for one second,
followed by a fixation cross during a random, uniformly distributed time interval
between 650 and 950 ms, resulting in an average ISI of 800 ms.
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Procedure

Participants were seated in front of a computer screen on which the stimuli were
presented at a visual angle of at least 2.3 degrees, delivered using the Matlab Psy-
chophysics 3 Toolbox (Brainard, 1997). Before the start of the experiment, par-
ticipants completed 20 practice trials to make sure they understood the task. The
experiment was divided into 12 blocks, each comprising 250 words. After each block
the participants’ performance in the non-word task was displayed on the screen to
increase their motivation. Participants could take breaks between the blocks if they
wished.

EEG recording and pre-processing

EEG data were recorded at a sampling rate of 2046 Hz using a 64-channel active
BioSemi system with a channel layout corresponding to the extended 10/20 sys-
tem, with an additional two mastoid and four ocular channels. Pre-processing was
performed in Brain Vision Analyzer 2 (Brain Products GmbH, Gilching, Germany).
First, noisy channels were identified in six participants (1-2 channels per participant)
and were interpolated from the surrounding channels using spline interpolation. Sec-
ond, the continuous data were re-referenced to the mastoid average, intervals of no
activity were automatically detected and marked for removal, and the data of each
channel was band-pass filtered using a second order zero-phase Butterworth IIR filter
with a low cut-off frequency of 0.023 Hz and a high cut-off frequency of 30Hz. The
channel-wise data were then segmented into epochs starting 100 ms before stimulus
onset and ending 900 ms after stimulus onset, and subsequently downsampled to
512 Hz. Automatic ocular artefact correction was performed on the segmented data
using the Gratton & Coles method. Furthermore, trials containing values higher
than 200 µV or lower than −200 µV, gradient steps higher than 50 µV/ms and/or
a value difference of more than 200 µV in a 200 ms interval were marked as artefac-
tual and excluded from further analyses. In total, 0.95% of trials were marked for
rejection during preprocessing. Trials were then baseline-corrected to the 100 ms
interval preceding the stimulus onset. Upon artefact detection at conventional levels
of data resolution, the data epochs were shortened to include the -100 ms to 800
ms interval relative to stimulus onset and downsampled to 128 Hz. This additional
data compression was performed in order to facilitate the time-resolved trial-by-trial
analysis.

For the N400 amplitude analysis, we averaged the signal over a fronto-central
region of interest (ROI) comprising 15 electrodes (see Figure 2), corresponding to
the sensors showing the largest difference between standard and deviant trials in
the N400 time interval defined as 300-500 ms after stimulus onset. As the ROI
we found was slightly more anterior compared to standard N400 experiments (eg.
Hodapp and Rabovsky 2021; Rabovsky et al. 2012), we additionally conducted the
same analyses on a more centro-parietal ROI, which yielded the same basic pattern
of results of a much better prediction of N400 amplitudes by semantic surprise as
compared to a non-Bayesian baseline model (please see Supplementary material).
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Two main types of EEG analyses were conducted: a classical ERP analysis
contrasting the standard and deviant conditions, and a trial-by-trial analysis using
our model of semantic surprise to predict the single-trial EEG.

ERP analyses

In the ERP analyses, we first averaged the signal spatially over the ROI. Subse-
quently, the standard (last item in sequence) and deviant (first item in sequence)
trials were averaged separately by subject (500 trials per subject and condition be-
fore artifact rejection). Finally, for the statistical testing we estimated the average
N400 amplitude by subject and condition by averaging the signal over the time win-
dow 300-500 ms after stimulus onset. We hypothesised that deviant trials would
have a more negative N400 than standards, which was tested by subjecting stan-
dard and deviant trials to a two-tailed paired sample t-test, at a significance level
of α = 0.05.

Trial-by-trial analyses

Semantic surprise model

We derived our measure of trial-by-trial semantic surprise from a Bayesian sequential
learner model based on a categorical representation of the stimuli, in which each
word falls into one of 10 discrete categories. The model simulates the behaviour
of an experiment participant who, at each trial, compares the observed word to
their current beliefs about the semantic context and subsequently adjusts its beliefs
according to the new observation.

Following earlier work on the N400 (Rabovsky et al., 2018), we implemented
our semantic surprise measure as the Bayesian surprise, which indexes the extent
to which a stimulus causes the learner to update its beliefs (Modirshanechi et al.,
2021). If, for example, a learner has previously been presented with only land
animals, seeing another land animal will not cause a large adjustment to the learner’s
beliefs, resulting in a small BS. Seeing a tool will, however, prompt the learner
to reconsider the probabilities of the respective semantic categories, and will thus
cause a larger Bayesian surprise. The BS is defined as the Kullback-Leibler (KL)
divergence between the model’s beliefs prior to, and after, the presentation of a
stimulus (Modirshanechi et al., 2021). An example of how BS varies over a sequence
of stimuli in the roving paradigm is displayed in the upper panel of Figure 1.

Formally, we implemented our sequential learner as a Dirichlet-Categorical model
(Gijsen et al., 2021), in which the likelihood of observing a stimulus of category i
given the current beliefs follows a categorical distribution:

P (yt = i|s) = si (1)

Here, the current beliefs s = (s1, ..., s10)
T , si ≥ 0,

∑10
i=1 si = 1 are the probabilistic

representation of category probabilities for the ten semantic categories used in the
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experiment. We assume that the learner encodes its uncertainty about the category
membership of a given stimulus using a Dirichlet distribution

p (s1, . . . , s10|α1, . . . , α10) =
Γ
(∑10

i=1 αi

)∏10
i=1 Γαi

10∏
i=1

sαi−1
i (2)

with the parameters αi, . . . , α10. After observing stimulus yt, we apply Bayes’ rule
to find the posterior estimate of the beliefs:

p (s| yt) ∝ p (yt|s) p (s|α1, . . . α10) ∝
10∏
i=1

s
αi−1+1{yt=i}
i (3)

Since the Dirichlet and categorical distributions are conjugate, the posterior distri-
bution is also a Dirichlet distribution, with the αi parameters updated to incorporate
the new observation. Thus, given an initial value α0

i (fixed to α0
i = 1 ∀i in our ex-

periment) we can compute the current beliefs of the model at any time point t as

p (s| y1, . . . , yt) ∝
10∏
i=1

s
a0i−1+

∑t
j=1 1{yt=i}

i = Dir
(
αt
0, . . . , α

t
10

)
, (4)

where

αt
i = α0

i +
t∑

j=1

1{yj = i}. (5)

However, as this calculation of αt
i assumes infinite memory of previous trials, and

thus doesn’t reflect the biological constraints of memory, we apply an exponential
memory decay function to simulate the forgetting process. Applying exponential
memory decay to the trials, we get

αt
i = α0

i +
t∑

j=1

e−
(t−j)

τ · 1{yt = i}. (6)

The memory decay function is visualized for different values of τ in Panel B of
Figure 1. The Bayesian Surprise at trial t can now be directly calculated as the
KL divergence between the distribution of the model’s beliefs prior and posterior to
observation of stimulus yt:

BS(t) := DKL(p(s|y1, . . . , yt−1)∥p(s|y1, . . . yt)) =

ln Γ

(
10∑
i=1

αt−1
i

)
−

10∑
i=1

ln Γ
(
αt−1
i

)
− ln Γ

(
10∑
i=1

αt
i

)
+

10∑
i=1

ln Γ
(
αt
i

)
+

10∑
i=1

1{yt = i}

(
ψ
(
at−1
i

)
− ψ

(
10∑
j=i

at−1
j

)) (7)

with ψ referring to the digamma function and Γ the gamma function.
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As a non-probabilistic baseline model, we use a category switch measure, which
assumes maximal semantic surprise when the current word comes from a different
category compared to the previous one, and no semantic surprise otherwise. The
category switch measure is plotted with green dots for the example sequence in the
upper panel of Figure 1.

Semantic surprise was calculated separately on each subject’s stimulus sequence,
and min-max scaling was applied so that the surprise always fell on the [0, 1] interval.
The value of τ was estimated from the EEG data of all subjects simultaneously.

N400 amplitude analysis

In the single trial analysis, the N400 amplitude from each trial was entered into
the statistical analyses, excluding trials with an absolute N400 amplitude exceeding
75µV (0.19% of trials) which were considered outliers, leaving 117432 trials for
analysis. We tested whether the N400 amplitude significantly depends on semantic
surprise, using a mixed linear model with the N400 as dependent variable, the
semantic surprise as predictor and random intercepts for subject and lexical item.
Formally, the statistical model was thus

N400i,j = β0 + β1X + Si +Wj + εij, (8)

where the N400 of subject i and word j depends on the intercept β0 and the regres-
sion coefficient β1 times the semantic surprise X, plus the random intercepts Si and
Wj for subject i and word j, respectively. The random intercepts are assumed to
be drawn from centered normal distributions: Si ∼ N(0, σ2

S), Wj ∼ N(0, σ2
W ) and

εij ∼ N(0, σ2).
Note that the model-derived semantic surprise depends on the forgetting pa-

rameter τ , as shown in Equation (6) and illustrated in the lower panel of Figure 1.
We determined the value of τ by maximising the fit of the linear mixed model in
Equation (8). This was done by computing the semantic surprise at each integer
value between τ = 1 and τ = 15, fitting a linear mixed model of the N400 to the
semantic surprise at each value of τ and selecting the value that provided the best
prediction of the N400 amplitude as indicated by the F-statistic of the semantic
surprise predictor. Thus, τ was optimised over the whole dataset simultaneously,
yielding a single value of τ for all subjects. This value was subsequently used for
the temporally and spatially resolved analyses.

Time-resolved trial-by-trial analysis

In the time-resolved single trial analysis, we wanted to test to what extent semantic
surprise could predict single-trial EEG in a time resolved manner, an approach
which is commonly called encoding models (Di Liberto et al., 2015; Smith and
Kutas, 2015; Holdgraf et al., 2017). This approach entails fitting a regression model
where each time sample of the EEG is predicted by the semantic surprise. However,
fitting a mixed effects model such as that defined in Equation (8) to each time point
independently would result in a prohibitively large number of free parameters to
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Figure 1. Experiment structure and semantic surprise. Upper panel: nouns from a given category
are presented in sequences of varying length, and the Bayesian learner model adjusts its beliefs
after each word. The first word in each sequence is relatively unexpected and gives a large semantic
surprise – these trials are labelled deviants for the ERP analyses. The semantic surprise decreases
gradually throughout the sequence. The last trial in each sequence is labelled as standards for the
ERP analyses. Lower panel: the memory weighting function for different values of tau. A weight
of 1 means the trial is fully remembered, whereas a weight of 0 means it is fully forgotten. With a
lower value of τ , only relatively recent trials are remembered, whereas a larger τ allows for more
trials to be remembered.
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estimate. Given 40 subjects, 100 words and 114 time points, the number of random
intercept parameters would amount to (40 + 100) · 114 = 15690, in addition to a
fixed intercept and slope parameter for each time point (114 · 2 = 228), yielding
a total of 15918 parameters. Since such a high-dimensional model would be prone
to significant over-fitting to the data, we instead adopted a regularised regression
approach using ridge regression, which constrains the model in order to decrease its
variance (Bishop, 2006). In ridge regression, the parameters β̂ are estimated as

β̂ = arg min(||Y −Xβ||22 + λ||β||22), (9)

where the first term minimising the difference between Y (the observations at
each time point) and X (the design matrix) times β (containing an intercept and
slope term for each time point) is the ordinary least squares minimisation problem
and the second term penalises solutions with a large ℓ2 norm. The shrinkage param-
eter λ determines the amount of constraint applied to the regression. We computed
a separate ridge regression model on each subject’s data, thus letting Yi ∈ Rni×114

contain the ni ≤ 3000 trials of 114 time points from subject i, X ∈ Rni×2 be the
design matrix containing a column of ones for the intercept and a column containing
the model semantic surprise at each trial, and lastly letting βi ∈ R2×114 be the matrix
of regression intercepts and slopes for each time point. This reduced the problem to
the estimation of a total of 40 · 114 · 2 = 9120 free parameters. See Heilbron et al.
2020; Di Liberto et al. 2015; Smith and Kutas 2015 for similar regression-based
approaches to single-trial EEG modelling.

In order to constrain each subject’s regression parameters equally, we determined
λ by fitting a single regression model on the data from all participants for each value
of λ on the log-spaced interval [10−10, 10−9, . . . , 1010] and picking the value yielding
the lowest generalisation error, as estimated by leave-one-out cross-validation over
trials using the implementation from Scikit-learn (Pedregosa et al., 2011). Subse-
quently, subject-specific encoding models were computed with the pre-determined
shrinkage parameter.

Encoding coefficients, i.e. the slope parameters estimated for each subject,
were tested statistically for each time point by a two-tailed one-sample t-test (or
a Wilcoxon signed-rank test, if the sample did not pass D’Agostino and Pearson’s
normality test) with a significance level of α = 0.05, corrected for multiple compar-
isons using the Bonferroni-Holm method (see eg. Heilbron et al. 2020 for a similar
approach). We visualised the topography of the effect by similarly computing a
linear encoding model predicting the mean voltage per channel in the 300-500 ms
time window. All trials from all subjects were used for this ridge regression, with
the shrinkage parameter again determined by leave-one-out cross-validation.

Code and Data Accessibility

All code and (summarised) data necessary for producing the presented results will
be made publicly available upon publication. The raw EEG data are available upon
request.
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Results

ERP analysis

The results of the condition-based analysis are shown in the upper panels of Figure 2.
In our region of interest, we find that the ERP to deviant trials significantly differs
from that of standards in the pre-selected time window 300-500 ms after stimulus
onset. In line with our hypothesis, the N400 was significantly larger for deviant
trials compared to standard trials (t(39) = −3.08, p = 0.004). The topography of
the effect is plotted in Panel B, displaying the difference between the deviant and
standard conditions in the 300-500 ms time window. The sensors included in the
ROI are marked in red.

Trial-by-trial analysis

The mixed linear model analyses of the single trial N400 revealed that both the
Bayesian surprise and the category switch measure predicted the N400 amplitude. A
separate model was estimated for each regressor (one for category switch and one for
Bayesian surprise at each value of τ) and an F-test of each model confirmed that the
fixed effects were significant (F (1) > 41, p < 10−9 computed with Satterthwaite’s
method). The results are plotted in Panel E of Figure 2. Applying model selection
based on the Akaike Information Criterion (AIC) values (see eg. Anderson 2008 for
details) of the best-fitting Bayesian surprise model (τ = 3) and category switch, we
found that Bayesian surprise captured 97.25% of the combined explained variance of
both models, whereas category switch only captured 2.75%. Thus, semantic surprise
derived from the sequential Bayesian learner model predicts the N400 better than
the non-Bayesian category switch model.

In the time-resolved single trial analysis, we used semantic surprise with the
best fitting memory decay value (τ = 3) to predict the time continuous EEG of each
participant, using ridge regression. The shrinkage parameter was set to λ = 1000
after optimisation on the complete data set and statistics were performed on subject-
specific encoding models. The results are displayed in Panel C of Figure 2. After
correction for multiple comparisons, the coefficients significantly differed from zero
at 22 time points, all of which fell within the 300-500 ms time window and had
negative coefficients. The topography of the effect, computed in a channel-wise
encoding model of the N400 time window estimated on the full data set, is shown
in Panel D of Figure 2.

Discussion
In the current study, we have investigated the computational underpinnings of the
N400 brain potential in language comprehension. We have tested whether a proba-
bilistic model tracking the probabilities of semantic categories can simulate the N400
in a meaningful way. We have found that the Bayesian surprise, i.e. the amount
of adjustment to the model’s internal semantic representation caused by observing
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Figure 2. Top row: ERP analysis. Panel A shows grand-average ERP for standard and deviant
trials over the ROI, with the 300-500 ms time window used in the statistical test marked with a
black line. Panel B shows the grand average difference between deviant and standard trials 300-500
ms after stimulus onset. The sensors belonging to the ROI are marked in red. Middle and bottom
rows: single-trial analysis. In Panel C, the mean of the subject-specific encoding coefficients from
the trial-by-trial analysis are shown for the ROI. Error bands represent the standard error of the
mean. Time points where the coefficients significantly differ from zero are marked with dots. Panel
D: topographic plot of encoding coefficients estimated on all subjects and trials in the N400 time
window. Panel E: Trial-by-trial average N400 analysis. F-statistic as function of surprise measure
and forgetting parameter.
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a stimulus, significantly predicts the N400 amplitude in single trials. Moreover, in-
vestigating the temporal and spatial signature of the effect of semantic surprise, we
have shown that it is specific to the time window and topography of the typical
N400 effect, that is the difference between standard and deviant trials in the ERP
analyses.

Our results are in line with models and theories suggesting that N400 am-
plitudes reflect semantic surprise (Rabovsky and McRae, 2014; Rabovsky et al.,
2018; Lopopolo and Rabovsky, 2021; Kuperberg, 2016; Bornkessel-Schlesewsky and
Schlesewsky, 2019). However, as noted in the introduction, so far these propos-
als were either based on verbally descriptive theories (Kuperberg, 2016; Bornkessel-
Schlesewsky and Schlesewsky, 2019) or on neural network models operating at Marr’s
algorithmic (partly considered implementational) level of analysis (Rabovsky and
McRae, 2014; Rabovsky et al., 2018; Lopopolo and Rabovsky, 2021). Here, we com-
plement the neural network based approach with an explicitly probabilistic Bayesian
modeling approach operating at Marr’s computational level (see also Delaney-Busch
et al. 2019, but Nieuwland 2021).

One advantage of this explicitly Bayesian approach is that it allows to address the
issue to what extent predictions in language processing are probabilistic in the sense
that they are reliant on estimates of uncertainty. This claim, which is closely related
to the "Bayesian brain" hypothesis (Knill and Pouget, 2004), cannot be easily tested
with current neural network-based language models, as even large, state-of-the-art
neural network language models with near-human performance in language tasks
(Vaswani et al., 2017; Radford et al., 2019) and interesting correpondences to the
human language system (Frank et al., 2015; Schrimpf et al., 2021; Heilbron et al.,
2020; Caucheteux and King, 2020; Michaelov and Bergen, 2020) lack an explicit
representation of uncertainty. Though theoretical analogies exist between neural
network models and Bayesian inference (McClelland, 2013), in practice, uncertainty
quantification in neural network models is a non-trivial problem (Abdar et al., 2021).
Our observer model, although simplistic in its feature space, demonstrates that the
semantic surprise derived from a probabilistic observer model predicts the N400 far
better than that of a non-probabilistic observer (only tracking the switches between
categories).

The results of the current study set the N400 in relation to ERP components
observed in perceptual oddball paradigms such as the MMN and P3, which have
featured prominently in Bayesian accounts of brain function (Garrido et al., 2009;
Ostwald et al., 2012). This relation suggests that similar probabilistic processing
principles may apply across levels of representation, in line with the idea that ERPs
might generally reflect surprise at different processing levels (Friston, 2005).

Although we would like to suggest that semantic surprise, indexing the on-line
adjustments a person makes to their probabilistic representation of an utterance or
text, is of general significance to understanding natural language, we have tested
this proposition with a rather limited form of stimuli (nouns). The use of 10 dis-
crete categories for our word stimuli and observer model is a clear limitation of the
study. Clearly, this crude categorical representation of nouns does not correspond
to the current theories of semantic categories, which frames categories as clusters
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in a high-dimensional space of semantic features rather than well-defined groups of
objects (e.g., McRae et al. 1997). Our stimulus material was specifically selected
to have high within-group and low between-group similarity, and was thus opti-
mised for a categorical model. This experimental limitation enabled the use of a
simple and computationally explicit Bayesian sequential learner model. However, a
more general model could instead employ semantic feature vectors such as feature
norms (McRae et al., 2005) or data-driven word embeddings. Such a design would
also have the advantage of more closely approximating the continuous and graded
(rather than discrete) grouping of concepts in natural language.

We have here used the term semantic surprise to denote the model’s Bayesian
surprise; however, this is not the sole possible surprise measure. An alternative
(though related) measure of semantic surprise briefly mentioned in the Introduction
is the prediction error, which indexes the improbability of an event under the cur-
rent beliefs. Thus, whereas the Bayesian surprise quantifies the discrepancy of an
agent’s beliefs prior to and after stimulus presentation, the prediction error directly
compares the stimulus to the prediction generated by the beliefs. The prediction
error is defined as the negative log-likelihood of the stimulus under the current be-
liefs (Modirshanechi et al., 2021). We provide a detailed definition of prediction
error as well as results of the single-trial analysis based on prediction error in the
Supplementary Material.

Bayesian surprise and prediction error could not be disentangled by our model
(post-hoc testing showed that the linear correlation between the measures is 0.96).
We argue that this is not a general feature of the respective surprise measures,
but rather that it is a consequence of our choice of experimental paradigm and
computational model. Since the Bayesian surprise indexes the update of the model’s
beliefs, it is highly dependent on the precision (inverse variance) of the probabilistic
representation of the beliefs – the more certain the beliefs are, the smaller the update
caused by an unexpected stimulus. The prediction error however is not affected by
the precision of the beliefs in this way, since it only relies on the expectation value of
the predictive distribution. Thus, future work might disentangle Bayesian surprise
and prediction error, for example by varying the perceptual clarity or semantic
ambiguity of the stimuli. Since a Bayesian learner updates its beliefs by Bayes’ rule,
the extent to which evidence alters its beliefs depends on the relative precision of
the evidence compared to the beliefs (cf. Gelman 2014). Therefore, an unpredicted
stimulus (i.e. with large prediction error) which is not well perceived (such as a
word presented in noise) or is semantically ambiguous (such as "penguin") would
cause a smaller update to the model’s beliefs compared to an equally unpredicted
stimulus which is perceptually and semantically clearer (such as "robin" presented
without noise).

In summary, we have shown that semantic surprise, estimated by a Bayesian
sequential learner model, predicts the amplitude as well as topography of the trial-
by-trial N400 brain potential. Moreover, we have demonstrated an approach to
explicitly model the probabilistic processing which the N400 has long been claimed
to indicate. We believe that extensions of this approach could further disentangle
the complex computational processes supporting the human ability to seemingly
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effortless derive meaning from a conversation or a text.
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