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Abstract 
 
Speech imagery (the ability to generate internally quasi-perceptual experiences of speech events) is a 
fundamental ability tightly linked to important cognitive functions such as inner speech, phonological 
working memory, and predictive processing. Speech imagery is also considered an ideal tool to test 
theories of overt speech. Despite its pervasive nature, the study and use of speech imagery for clinical 
or basic research has been tremendously challenging, primarily because of the lack of behavioral outputs 
and the difficulty in temporally aligning imagery events across trials and individuals. Here we used 
magnetoencephalography (MEG) paired with time-resolved decoding and a novel behavioral protocol 
to map out the processing stages underlying speech imagery. We monitored participants’ upper lip and 
jaw micromovements during imagery using electromyography. Decoding of participants’ imagined 
syllables revealed a rapid sequence of representations from visual encoding to the imagined speech 
event. Importantly, participants’ micromovements did not discriminate between the syllables. The 
neural correlates of the decoded sequence maps neatly onto the predictions of current computational 
models of speech motor control and provide some evidence for hypothesized internal and external 
feedback loops for speech planning and production, respectively. Additionally, a windowed 
multinomial classification (WMC) analysis revealed the presence of two nested and concurrent levels 
of representation (syllable and consonant-vowel transition) and the compressed nature of 
representations during planning. It is assumed that the same sequence underlies the motor-based 
generation of sensory predictions that modulate speech perception and the articulatory loop of 
phonological working memory. The results highlight the potential of speech imagery for different 
research domains, based on these new experimental approaches and analytical methods, and further 
pave the way for successful non-invasive brain-computer interfaces. 
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Introduction 
 
Mental imagery of speech refers to the internally generated quasi-perceptual experience of our own or 
others’ speech. Research on speech imagery has a long and well-established history in the sciences and 
in philosophy before that1–5, and there are many reasons for this longstanding interest. For one, speech 
imagery lies at the core of critical cognitive functions, such as inner speech and phonological working 
memory, which have important implications for learning, problem-solving, and, more generally, 
development6,7. Speech imagery is also considered an adequate model for overt speech7–10. As such, it 
has been employed in research to gain insights into aspects of speech planning, production, and motor 
control otherwise difficult to test with overt speech8,11–16. Imagery (speech or other) is moreover a 
paradigmatic example of the generation of sensory predictions8,17,18. In speech, the hypothesis is that 
‘that little voice in our head’ results from an internal prediction of the sensory consequences of planned 
motor commands19, that is, from some sort of internal emulation20. Critically, these predictions can be 
used to anticipate sensory inputs, such as other’s speech, which facilitates comprehension8. This makes 
speech imagery a potentially invaluable tool to test predictive processing theories of the mind21, such 
as predictive coding22,23, Bayesian inference24, and associative learning25–29. Finally, speech imagery is 
also clinically relevant. Imbalances between sensory predictions and feedback are thought to underly 
disorders such as schizophrenia, autism, and stuttering6,7,30. Moreover, advances in the decoding of 
speech imagery are potentially life-changing for individuals that have lost the ability to speak due to 
stroke or illness31–35, besides their many other conceivable applications in industry.  
 
Despite its potential as a research and clinical tool and the success of imagery research in other domains 
(e.g., limb motor control36), speech imagery remains poorly characterized. This is mostly due to 
methodological challenges6,37 (e.g., the lack of comparative research, the lack of behavioral outputs, the 
potential misalignments across experimental trials and participants) and the lack of appropriate 
paradigms and analytical approaches to overcome them. Notwithstanding, researchers have used speech 
imagery in ingenious ways, for example, to test or localize specific aspects of speech motor control 
(e.g., feedback prediction errors13), but evidence remains indirect and fractional. For instance, the 
experimental modulation of speaking-induced suppression and its effects on perception can only imply 
the existence of so-called forward models and of precise sensory predictions emanating from planned 
speech13,38,39. The same methodological challenges permeate the many attempts to decode speech 
imagery with time-resolved methods37, which have only recently began to produce some hopeful results 
albeit restricted to state-of-the-art invasive (intracranial) recordings and highly sophisticated analysis 
pipelines (e.g., 40). 
 
Here we capitalized on the excellent balance between temporal and spatial resolution of a non-invasive 
method, magnetoencephalography (MEG), paired with a deceptively simple speech imagery task (Fig 
1) and a powerful decoding approach41,42 to map out the sequence of neural processes underlying speech 
imagery. In short, we decoded participants´ imagined speech as it unfolds.  
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Fig 1. Experimental protocol. A. Task. 
Each trial began with a fixation cross of 
variable duration (1-1.5 sec) in the center 
of the screen. One of three syllables (pa, 
ta, or ka) was then presented and 
remained on the screen for exactly 1 
second. Syllable presentation was 
followed by another fixation cross lasting 
2.5 seconds, after which the next trial 
began. The experiment comprised two 
conditions, Imagery and Reading, each 
with 4 blocks of 120 trials (40 
presentations of each syllable per block), 
counterbalanced between participants. 
The total number of trials over the course 
of the experiment was therefore 960 (320 
per syllable). Syllable presentation was 
fully randomized within each block. In 
the Imagery blocks, participants were 
instructed to imagine producing the 
given syllable as soon as possible after its 
appearance on the screen (event 1) and a 
second time on the fixation cross (event 
2). In the Reading blocks, participants 
were instructed to passively look at the 
center of the screen. Prior to the MEG 
session (1-7 days), participants received 
a training session in which the 
experimenter explained the task and the 
desired type of imagery (i.e., imagining 
producing vs simply hearing). They were 
also asked to complete a full block using 
overt productions of the syllables (aloud 

rather than imagined). At this time only participants were given feedback regarding the timings of each production. This was 
critical in ensuring a minimum temporal alignment within participant as well as consensus across the cohort. Additionally, 
participants were also given a link to an online version of the task (available here) to practice with in their own time. B. 
Expected time of imagery. On the day of the MEG acquisition, each participant completed a minimum of 1 practice block 
using overt productions, which were recorded for subsequent analysis. The figure shows all participants’ syllable onset 
distributions for events 1 and 2. The medians of these distributions were important as for reference to the times when imagery 
was to be expected. C. Average MEG data for a participant’s Imagery trials. Participants’ neural activity was recorded 
during both Imagery and Reading trials using MEG. We used these data to decode participants’ imagined syllables and map 
out the sequence of neural processes underlying imagery (see below). D. Average electromyographic data for a 
participant’s Imagery trials. To monitor participants’ movements during Imagery, we also recorded muscle activity from the 
upper lip (red dot) and jaw (green dot) using a MEG-compatible electromyography system. The figure shows expected 
micromovements during imagery which, critically, do not differ between the imagined syllables (see Fig S2 – S4 for the full 
analysis). 
 
Specifically, we recorded MEG signals from 21 participants while imagining (internally producing) 
isolated syllables (pa, ta, and ka) prompted on the screen on each trial. We used syllables as the targets 
of speech imagery given recent evidence for syllable-like ‘chunks’ as fundamental units for speech 
perception and production (43 for a review). First, we evaluated the extent to which these signals 
contained information over and above a Reading condition identical but for the instruction to internally 
produce the prompted syllable. Having established robust differences between the two conditions, we 
then asked whether Imagery trials contained decodable content regarding the actual syllables imagined, 
that is, whether the syllables that participants imagine can be decoded from their MEG data. Based on 
our decoding results, we were next able to map out the entire genesis and development of the imagined 
speech events, a sequence which had so far remained elusive to research. We then examined the 
dynamics of this sequence in order to further our understanding of how inner speech and sensory 
predictions are generated and to potentially adjudicate between current models of speech production, 
such as state feedback control8,16,24,44,45 and DIVA46. Two main features distinguish SFC from other 
influential models, including DIVA. One is the existence of both an internal and an external feedback 
loop for speech planning and error monitoring, respectively (Fig 2). Another is the hierarchical 
organization of motor control units, with (roughly) syllabic and phonemic levels of control. Although 
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compelling evidence exists for some of these features in other domains of motor control47, there is no 
direct evidence for them in speech. Interestingly, speech imagery was recently proposed as an ideal 
medium to investigate SFC8,11. To examine the question of internal and external feedback loops for 
internal speech planning and production, we assessed the time courses of auditory and motor areas 
during imagery. Finally, we enquired into the levels of motor control by probing the length of the 
representations involved in speech imagery via a novel decoding approach (windowed multinomial 
classification; WMC). 
 

 
 
Fig 2. Main experimental hypotheses. A. Temporal Generalization method. To assess the presence of imagery and syllable 
decodeability, we used a multivariate pattern analysis in which classifiers are trained on a single time sample (rows; y-axis) 
but tested on all time samples of the trial (columns; x-axis). This results in a temporal generalization (TG) matrix that depicts 
the extent to which a given neural pattern is present across time. The TG method is a powerful approach to reveal not only the 
number and approximate times of neural processes but also the nature of the underlying representations (e.g., evolving, 
reactivated, ramping; see 41,42 for a full explanation of the method). We expected high decoding accuracy (red ellipses) in the 
extent to which neural processes underlying speech imagery juggle decodable representations. High accuracy was expected 
for both imagery events (event 1 and event 2). We also expected event 1 representations to generalize to event 2 and vice versa. 
B. Expected sequence of neural processes for speech imagery. Insofar as speech imagery mirrors overt speech, we 
hypothesized that the underlying sequence of neural processes to conform to current models of speech production. Inspired in 
a recent model8,16,44 derived from other areas of motor control, we predicted 1. A speech planning stage encompassing visual 
encoding (visual and inferotemporal cortex), phonological encoding (left posterior middle and superior temporal cortex), the 
parallel activation of auditory and motor targets (auditory and motor cortex, respectively), and an ‘internal’ feedback loop for 
error correction characterized by sensory-motor activity; and 2. A production stage involving motor execution (motor cortex), 
activation of the imagery percept (auditory and somatosensory areas), prediction error elicited by the lack of overt auditory 
feedback (posterior auditory cortex), and a second feedback stage (‘external’ feedback) again with sensory-motor interactions. 
Note, that since we are assessing imagery rather than overt speech, the common nomenclature of internal and external loops, 
which refers to the nature of the feedback, is not strictly applicable. However, we decided to keep this nomenclature to link 
our predictions and potential results to theoretical formulations of the model.    
 
Results 
 
We recorded MEG signals from 21 participants (15 women; mean age = 28.19; std = 6.57) while they 
imagined producing one of three syllables (pa, ta, or ka). On every trial, participants were required to 
internally produce a given syllable as soon as it appeared on the screen (event 1) and a second time on 
a fixation cross appearing exactly 1 second later (event 2) (Fig 1). Participants electromyographic 
(EMG) data from the upper lip and jaw (Fig 1) was also acquired to measure any micromovements 
participants make during the MEG recordings. Although we expected micromovements during 
Imagery48, in line with previous research7, we did not expect these to discriminate between the different 
syllables. This is critical for the validity of our syllable decoding results from the MEG data. 
 
Participants’ performance on the overt version of the task is summarized in Table S1 (see also Fig S1). 
On average, the sound onset of syllable 1 (imagined event 1) occurred 439ms after the presentation of 
the syllable on the screen (Methods). The onset for syllable 2 occurred on average 175ms after the 
fixation cross. These times were taken to indicate the expected time for imagery, under the assumption 
of similar timings during the Imagery condition. Importantly, the interquartile range for the two events 
(syllable 1: 99ms; syllable 2: 146ms) indicated that participants were much more precise in time in the 
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production of the first imagined event than in the second. We expected these differences in variability 
to have an impact of decoding, with a greater alignment (event 1) translating into better decoding.  
 
Since, by definition, there are no overt behavioral outputs of imagery, a first step was to measure and 
quantify the difference between the Imagery condition and a condition matched in all respects but for 
the instruction to imagine the syllables. In this Reading condition, participants simply looked at the 
syllables and fixation crosses appearing at the center of the screen. To evaluate the extent to which 
Imagery contained information over and above Reading, we used a decoding approach (temporal 
generalization; Fig 2). In addition to quantifying existing differences between two given conditions, 
this approach can potentially track the dynamics of neural processes underlying a particular 
experimental condition41,42. To track the development of neural processes common to speech imagery 
(i.e., processes shared by the three imagined syllables) as distinct from Reading, we trained a linear 
classifier on the Imagery vs Reading contrast at each time point and tested its performance across all 
timepoints within the trial. This analysis was performed for each subject separately using stratified 4-
fold cross-validation with regularization and Receiver Operative Curve Area Under the Curve (ROC 
AUC) as a scoring metric (Methods). The analysis resulted in a temporal generalization (TG) matrix 
per subject, which we then averaged across subjects. We expected areas of higher decoding accuracy 
not only at the expected time of imagery (as determined from participants’ overt productions during 
training; Fig S1; Fig 3A upper panel; Table S1) but also before imagined event 1, indicating motor 
planning for the syllable to be produced in that trial (Fig 2).  
 
Fig 3A shows the average TG matrix across the entire sample (N = 21). Clusters of statistically 
significant decoding (p < 0.05; black contour lines) were determined at the second level of analysis via 
a cluster-based permutation test (1000 permutations; two-tailed) across subjects. Large areas of high 
decoding accuracy (with ROC AUC values up to 0.82) suggest robust and consistent differences over 
time between Imagery and Reading conditions. The extended nature of the clusters suggests that the 
differences are driven both by domain-general processes, such as attention, as well as processes more 
specific to speech imagery (i.e., bearing content). As expected, a significant degree of generalization 
can also be observed between the two imagery events within the trial, indicating similar neural 
underpinnings.  
 

 
 
Fig 3. Temporal generalization matrices track the development of neural representations during speech Imagery and 
Reading. A. Average TG matrix (N = 21) for the contrast Imagery vs Reading and syllable onset time distributions (top inset) 
for all syllables overtly produced during training by all participants (blue = event 1; orange = event 2) plotted for reference as 
to the expected time for imagery. IQR = interquartile range. ROC AUC = Receiver Operative Curve Area Under the Curve 
(chance = 0.5). B. and C. TG matrices for the pairwise contrasts between syllables (pa vs. ka, pa vs. ta, and ta vs. ka) for each 
condition (Imagery and Reading, respectively) first averaged within subject and then across subjects (N = 21). Black arrows 
indicate the median syllable onset time of participants’ overt productions during training (event 1 median: ~436ms; event 2 
median: ~1175ms). Clusters of statistically significant decoding (p < 0.05; black contour lines) were in all cases determined 
at the second level of analysis via a cluster-based permutation test across subjects (1000 permutations; two-tailed). Statistical 
significance indicates consistence across subjects, while high ROC AUC values reflect robust classifier performance on 
discriminating the contrasts.  
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Decoding participants’ imagined speech from the MEG data 
 
Having established that the MEG signals for the Imagery condition contain information distinct from 
Reading, we next asked whether Imagery trials carried discriminable content regarding the three 
imagined syllables (pa, ta, and ka). Here, the TG approach can not only provide direct evidence for 
speech imagery if areas of significant decoding are found but also valuable insights into the nature of 
the neural processes involved (e.g., number of distinct processes, times of occurrence, generalizability). 
We first generated, for each participant and condition, a TG matrix for each of the pairwise syllable 
contrasts (pa vs. ka, pa vs. ta, and ta vs. ka) following the same decoding approach as before. These 
three matrices per participant and condition were then averaged within subject and finally entered into 
a cluster-based permutation test across subjects (N = 21; 1000 permutations; two-tailed) to determine 
clusters of significant syllable decodeability (p < 0.05) in each of the conditions (Methods). Given that 
the processing of visual information (i.e., reading the syllables) is shared between Imagery and Reading, 
we expected this analysis to yield some similarities in the early stages of each imagined event. However, 
direct evidence for speech imagery would also require for syllable decodeability to extend further in the 
Imagery condition only, reflecting the occurrence of the actual speech imagery event.  
 
Islands of relatively high decoding accuracy (ROC AUC scores up to 0.62, significant at p < 0.05) 
during event 1 reveal a distinct cascade of neural processes during Imagery (Fig 3B). The limited span 
of these successive islands both on and off diagonal indicates that the representations involved were 
rapidly evolving (50ms-60ms) and highly specific (limited generalization). Significant decoding starts 
immediately after syllable presentation (~120ms) and extends well beyond the expected imagery time 
(Fig 3B black arrow at ~436ms). Syllable decodeability during event 2 was weaker albeit significant in 
clusters immediately before and after the expected imagery time (Fig 3B black arrow at ~1175ms). The 
weaker decoding for this event and the null generalization between events likely reflect the 
aforementioned misalignments within and between participants’ inner productions as suggested by their 
overt productions (Fig 1; Fig 3A). As expected, syllable decodeability in the Reading condition was 
significant if weak in self-contained clusters between ~120ms and ~450ms (Fig 3C). This suggests a 
similar succession of neural processes to the Imagery condition up to the imagined event or extended 
visual processing during Reading. In favor of the latter interpretation, no clusters of significant decoding 
were found during event 2 in the Reading condition when no visual information of the syllable was 
present. 
 
The analysis of the EMG data by participant indicated, as expected, the presence of micromovements 
(Fig S2 - Fig S4). Micromovements are a common phenomenon during imagery and inner speech and 
are commonly assumed to be a byproduct of motor signals that cannot be fully inhibited7. Interestingly, 
micromovements were present both in the Imagery and Reading conditions. We performed an in-depth 
analysis of the EMG data to ensure our decoding results could not be explained by participants’ 
micromovements. Although small differences were found between Imagery and Reading conditions 
(Fig S2 and Fig S4), the micromovements did in no case discriminate between the imagined syllables 
(Fig S2 and Fig S4).  
 
Neural dynamics underlying speech imagery  
 
So far, we were able to decode participants’ speech imagery and uncover a series of well-defined stages 
leading to the imagined event. We next sought to establish the neural correlates of these stages. On the 
one hand, this analysis can adjudicate between theories of speech imagery that posit a close parallel 
between imagery and overt production and theories that conceptualize imagery as a byproduct of motor 
planning (i.e., without primary motor involvement)49. On the other hand, if imagery mirrors overt 
speech, the sequence of neural events underlying imagery can adjudicate between current models of 
speech planning and production (Fig 2B).  
 
To map out the neural dynamics underlying speech imagery, we first acquired structural MRI data from 
a random subsample of participants (Methods). Each participant’s Imagery condition’s average time 
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series was projected to their native source space and morphed to a common coordinate space (Montreal 
Neurological Institute) before averaging across participants (Methods). The goal of this group analysis 
was therefore to assess the sequence of neural activity that gives rise to speech imagery.  
 
Fig 4 shows the progression of neural activity during Imagery between 120ms and 610ms after syllable 
presentation corresponding to the islands of significant syllable decoding previously identified. The 
analysis was thus guided by the decoding results (Fig 3B). Activity in source space is plotted alongside 
the corresponding sensor space topographies of the entire cohort. The close similarity between the larger 
cohort’s topographies and both the sensor space topographies of the MRI sample and the classifier 
patterns (coefficients) for syllable decoding (cosine similarity tests Fig S5) indicates that the source 
reconstruction for the subsample is directly relevant to imagery.  
 

Fig 4. Clusters of syllable decodeability 
reveal a processing cascade during speech 
Imagery. Evoked response topographies 
(Imagery) averaged over participants (left 
panel) and evoked activity for a subgroup of 
participants estimated with sLORETA (right 
panel) corresponding to the clusters of 
significant syllable decoding in the Imagery 
condition, event 1 (center panel; from Fig 3). 
Evoked response topographies were 
thresholded at +-20fT. Source space activity 
was thresholded at minima ranging between 
1.88 and 3.34 and maxima between 2.37 and 
4.51 units for display purposes. 
 
Both source and sensor renderings 
show a clear sequence of distinct 
neural events starting with visual areas 
(~120ms). This activity extends rapidly 
to well-established ventral and dorsal 
visual pathways and subsequently to 
the lateral temporal cortex (~180ms), 
particularly in the left hemisphere, 
coinciding both in location and time 
with a hypothesized phonological 
encoding stage50,51. This stage is 
followed by activity in the auditory 
cortex, area Sylvian parieto-temporal, 
frontal anterior insula, and bilateral 
pre-motor regions between 260ms and 

300ms, potentially reflecting auditory-motor integration processes and speech motor planning16,46,51,52. 
Extensive activity over (predominantly left) auditory regions can be seen after 440ms, that is, at the 
expected time of imagery (estimated at 436ms for the entire sample and at 444ms for the MRI group; 
Table S1). We conjecture this activity to be the neural correlate of the quasi-perceptual experience that 
defines speech imagery, in line with previous research11,15,19. The decoding clusters indicate that this 
imagery event is flanked by two additional distinct stages. First, a stage prior to (inner) production 
(~300ms to ~400ms) featuring activity in both pre/motor and temporo-parietal regions. This is 
consistent with the inner loop of SFC theories, characterized by feedforward-feedback processes for 
speech planning8,16,44. And second, a stage following production (>500ms) featuring activity in posterior 
auditory as well as bilateral motor regions, consistent with a hypothesized feedback stage following 
motor execution8,16,44. As might be expected, the same analysis performed subtracting the Reading 
condition from the Imagery condition in source space removes much of the visual activity, but the exact 
same sequence can be observed (Fig S6). This again suggests that syllable decoding in the Reading 
condition was essentially driven by visual information, in contrast to the Imagery condition. Event 2 
did not yield as clear a sequence (Fig S7 and Fig S8), as expected from the misalignments within and 
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across subjects and the weaker decoding results. It is nevertheless worth highlighting the implication of 
auditory, premotor, and motor areas as well as of area Sylvian parieto-temporal in this latter event, 
which suggests similar neural dynamics to event 1.  
 
Zooming in on the inner loop for SFC 
 
Our analyses revealed a sequence of neural representations leading to a speech imagery event consistent 
with SFC (Fig 2). As mentioned previously, a critical feature that distinguishes SFC from other 
influential models of speech production is the existence of an internal feedback loop characterized by 
the interplay between sensory and motor regions8,16. Although our previous analysis clearly shows 
activity in these regions prior to the expected time of inner production aligned with this, it represents 
but a snapshot of their dynamics. To examine these dynamics more closely, we extracted the time 
courses over event 1 of three key regions of interest (ROIs) in the left hemisphere, namely motor cortex, 
primary auditory cortex (core auditory), and posterior superior auditory cortex (posterior auditory) 
(Methods). Besides their hypothesized implication in the internal feedback loop, this reduced selection 
was motivated by the ‘grounded’ functions of these regions53. In other words, it is safe to attribute motor 
representations to motor cortical areas and auditory representations to auditory areas. Note that, in 
addition to a core auditory region, we selected a posterior auditory region for its known involvement in 
the computation of auditory feedback54. The anatomical location of the 3 ROIs was based on a well-
known cortical atlas by Glasser et al.55 (see Methods for the detailed procedure for the selection of the 
ROIs). In short, we selected, for each participant the MNI coordinates that displayed maximal activity 
within each of the corresponding atlas labels. Around each coordinate point, we then built a 4mm sphere 
and extracted the average time course of the sources within. We determined the times at which these 
ROIs’ time courses were consistently activated across participants (significantly above their mean 
baseline activity; Methods) using a cluster-based permutation test (1000 permutations; one-tail). We 
expected the sequential activation of core auditory (coding for the acoustic representation), posterior 
auditory (coding for the prediction error), and motor areas (receiving feedback) to occur at least once 
before the expected time of imagery (i.e., during speech planning) and once after internal production. 
 
Fig 5 shows the time courses of the selected ROIs (see Fig S9 for the activity of control regions and Fig 
S10 for additional auditory areas). 
 

 
 

Fig 5. Time courses of auditory and motor regions during speech imagery. SFC theories hypothesize an internal feedback 
loop for motor planning and an external loop for post-production feedback, both characterized by feedforward and feedback 
processes between motor and auditory regions. The time courses of core auditory and motor regions in addition to a posterior 
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auditory region known for its role in sensory feedback show activity pre and post internal speech production in a sequence 
consistent with the hypothesized double feedback loop. Blank segments in the lines indicate non-significant times. Time 
courses were z-scored and low-pass filtered at 20 Hz (double pass Butterworth of order 5) for display purposes only. 
 
The time courses show an initial peak of activity in auditory areas (~180ms) in line with the 
phonological encoding stage, followed by concurrent activity in both motor and core AC regions. This 
activity is consistent with the parallel activation of motor and auditory targets hypothesized by SFC 
models. This is followed by activity in posterior auditory regions and motor activation immediately 
before the expected time of imagery (vertical dashed line), consistent with an inner feedback stage prior 
to execution. Following motor activity, core auditory activity rises to peak at the expected time of 
imagery. We conjecture that this auditory activity (plus activity in secondary auditory regions; Fig S10) 
reflects the inner ‘hearing’ of the imagined syllable. The plot also shows that core auditory activity at 
the expected time of imagery is again closely followed by activity in the posterior auditory region and 
motor activity soon after that, consistent with the second feedback loop hypothesized by SFC and other 
models. In sum, the dynamics of auditory and motor regions are consistent with an ‘internal’ feedback 
loop prior to motor execution as well as an ‘external’ feedback loop following motor execution, both 
predicted by SFC theories8,16,44. The time courses of control ROIs (e.g., left visual cortex and frontal 
pole; Fig S9) show that these auditory and motor group-level dynamics are not a product of the 
analytical procedure. 
 
A hierarchal organization of representations 
 
Another distinguishing feature of recent SFC models for speech is the hierarchical organization of motor 
control units8,16. Two distinct tiers are hypothesized in accord with longstanding psycholinguistic 
models of speech production56,57. The higher tier codes for syllable-level speech information and 
features auditory targets. The lower tier features somatosensory targets and codes for information at the 
level of articulatory feature clusters roughly corresponding to phonemes. So far, our analyses showed a 
plausible sequence of neural representations leading to a speech imagery event in terms of number of 
processes, approximate occurrence times, and nature (e.g., whether they recur or evolve). Despite the 
many insights, however, the TG method remains relatively blind to the actual length of each 
representation because classifiers are trained on successive time points independently. Testing for the 
two distinct levels of representation hypothesized by SFC requires a method with greater sensitivity to 
the length of the representations involved during speech imagery.  
 
To achieve this, we employed a similar multivariate pattern analysis approach (multinomial 
classification), but this time using sliding windows of different sizes (i.e., WMC). Specifically, we 
trained and tested a series of classifiers across the experimental trial using averages made from different 
number of data points. The rationale was that, if different representations respond to different lengths, 
better decoding at the times of these representations should be observed when the number of data points 
used for decoding (the window size) matches the length of the representation. Fig 6 shows the results 
of this approach using window sizes between 20ms and 300ms, averaged across participants (N = 21). 
Our choice of analysis windows was motivated, at the lower end, by knowledge of cortical transmission, 
estimated at a minimum of 20ms58, and, at the upper end, by the length of the syllables produced by our 
participants, which rarely exceeded 300ms (0.5%).  
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Fig 6. Representational similarity analysis reveals the optimal time and window length for decoding at each stage of 
the processing cascade. The matrix (left panel) shows the classifiers’ ability to discriminate between a given syllable and the 
rest (e.g., pa from ta and ka) across event 1 (x-axis) when using averaged data of various lengths (y-axis). Analysis windows 
(y-axis) ranged between 20ms and 300ms with a step size of 10ms. Analysis times (x-axis) spanned between -0.2 and 1 sec, 
with a step size of 10ms. The analysis was performed within participant for each of the syllables using the same decoding 
scheme as before (cross-validation, regularization, classifier type, and scoring metric) except that each syllable was pit against 
the remaining two (e.g., pa vs ta and ka) rather than evaluating their pair-wise contrasts (Methods). The figure shows the grand 
average across participants. Results are plotted using spline interpolation between neighboring points for display purposes. 
The distribution of overt speech onsets is displayed on top of the matrix for reference as to the expected time of speech imagery 
(vertical dashed line at 436ms). The analysis highlights a sequence of distinct processing stages similar to Fig. 4 but with 
greater fidelity to time and additional insights into the length of each subroutine. While neural representations proceed rapidly 
in an encapsulated fashion leading up to the imagined event, as shown by processes A-E with optimal window sizes < 80ms, 
peak decoding is achieved around the expected speech imagery onset time (436ms; vertical dashed line) with a window length 
of 200ms, which closely matches the median syllable duration across the cohort (horizontal dashed line at 194ms; interquartile 
range: 59ms; Table S1). A second peak decoding cluster near the expected imagery time at window size of 110ms indicates a 
predominance of the syllables’ consonant–vowel transitions in the imagery representation (horizontal dashed line at 114ms 
indicates participants’ median transition duration; see main text for further details). The progression of source-projected 
evoked responses (right panel, A-H) faithfully reproduces the previously identified (Fig 4) with the addition of a right-
lateralized inferior frontal and motor activity (G-H) following the auditory speech imagery event (F-G), in line with Tourville 
et al.59 and current models of speech production46. 
 
As before, the analysis highlights the rapid succession of representations leading to the speech imagery 
event. In particular, the earlier set of processes (marked A – E, Fig 6), corresponding to the 
phonological, speech planning, internal loop iterations, and motor execution stages, appear to be 
relatively brief and self-contained, with successive onsets every 40ms-60ms and short-lived 
representations (optimal decoding windows under ~80ms). The fact that decoding accuracy does not 
increase when analysis windows span neighboring processes again suggests that the representations 
involved are highly specific (are not additive). More interestingly, peak decoding accuracy in this 
analysis was achieved close to expected time for imagery (~390ms) with an optimal decoding window 
of 200ms, a value which closely matches the median syllable length across participants in their overt 
productions (194ms; interquartile range: 59ms). This suggests that, while processes leading up to the 
speech imagery event involve fleeting and evolving representations, the speech imagery event itself 
unfolds at the natural rate of the speaker. Somewhat conversely, this implies that speech planning entails 
a compressed form of the utterance to be produced, even at the level of a single syllable. The fact that 
optimal decoding was achieved at syllable length even though the syllables used were matched in their 
vowels (i.e., in their last phonemes: pa, ta, and ka) also indicates that what was presumably the same 
vowel (vowel a in all cases) may be realized differently in ‘the mind’s ear’ after each of the consonants 
(p, t, and k) as it happens during overt production. On the other hand, the runner-up decoding cluster, 
also located near the expected time of imagery (~450ms), was related to a window-size of 110ms, which 
closely matches the median consonant-vowel transition length (114ms), as estimated from participants’ 
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overt productions (Table S1). This indicates that, although the vowel may also be represented at the 
expected time of imagery, the transitions still dominate that representational space, as could be predicted 
from the set of syllables employed. 
 
If our last conjectures are correct, we should expect syllables varying in their vowels while keeping 
their consonants constant (e.g., ta, tu, ti) to behave rather differently. Specifically, we should see that, 
although similar in their planning stage (compressed representations), the optimal window for decoding 
of these new syllables at the expected imagery time is larger, reflecting the more dilated nature of 
vowels in acoustic space compared to consonants. Additionally, the cluster at the consonant-vowel 
transition level should be reduced and the optimal time for decoding should be delayed in respect to the 
expected imagery time, both reflecting a greater weight on the vowel (i.e., latter part of the syllable) 
rather than on the transition.  
 
To test these predictions, we collected data from a new cohort of participants (N = 9; 7 women; mean 
age = 23; std = 7.94) imagining syllables varying in their vowels rather than in their consonants 
(specifically, ta, tu, and ti). Importantly, we first replicated the TG results on this new data set (Fig S12; 
cf. Fig 3). We then run the same WMC analysis (Fig 7).  
 

 
Fig 7. Average syllable discriminability over time for syllables ta, tu, and ti. The matrix shows the classifiers’ ability to 
discriminate between a given syllable and the rest (e.g., ta from tu and ti) across event 1 (x-axis) when using averaged data of 
various lengths (y-axis). Analysis windows (y-axis) ranged between 20ms and 300ms with a step size of 10ms. Analysis times 
(x-axis) spanned between -0.2 and 1 sec, with a step size of 10ms. The figure shows the grand average across participants. 
Results are plotted using spline interpolation between neighboring points for display purposes. The distribution of overt 
syllable onsets is displayed on top of the matrix for reference as to the expected time of inner speech production. In contrast 
to the analogous analysis for syllables pa, ta, and ka, higher decoding accuracies around phonological encoding (~200ms) and 
after the expected time of imagery (vertical dashed line at 349ms) over large analysis windows (> 240ms) suggest a greater 
weight on acoustic rather than motor representations. 
 
In a context of overall higher syllable decoding accuracy (Fig S13), the strongest cluster was found in 
the early stages of speech planning, that is in times aligned with phonological encoding51, reflecting the 
greater representation of the syllables in acoustic space. In line with this, the cluster at the transition 
level, despite occurring at the expected time (~400ms), was also greatly minimized. Moreover, as 
predicted, the strongest decoding was delayed in respect to the expected imagery time (349ms; vertical 
dashed line, Fig 7) highlighting the greater weight of the vowel in this syllable set. Interestingly, higher 
decoding accuracy around the expected imagery time was achieved when using relatively long window 
sizes (>240ms) compared to the median syllable duration (195ms; iqr = 43ms). This may reflect the 
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arbitrary lengths of the vowels imagined by participants, which is also reflected in the protracted 
temporal generalization scores during the actual imagined event (Fig S12). Finally, if acoustic space 
carries greater weight in the imagery representations for this latter set of syllables (ta, tu, ti), we should 
observe that the most discriminable syllable from the set is that which is most distinct in that 
representational space (i.e., ti; Fig S14). The WMC analysis separated by syllable (Fig S15) indicates 
that this is the case. Highest and most sustained discriminability (indicated by the vertical distance 
between the lines) was observed for the syllable ti, followed by ta and lastly tu. The fact that the syllable 
ka, whose consonant k is most similar in place of articulation to the vowel i of ti (velar constriction vs 
raised posterior tongue) as its discriminating factor from the remaining two syllables (pa and ta), was 
the least discriminable of the pa-ta-ka set (Fig S16) again supports the idea that acoustic rather than 
articulatory space governed the decoding of the ta-tu-ti set. This contrasts with the pa-ta-ka set, where 
data suggests a greater balance between acoustic and motor representational spaces. In all, our results 
strongly support the hypothesis of two tiers of representation during speech imagery in line with recent 
SFC models. 
 
Discussion 
 
Speech imagery refers to the capacity to internally ‘hear’ self-generated speech. Despite its pervasive 
nature in many aspects of cognition (e.g., predictive processing), the study and use of speech imagery 
for clinical or academic research has been tremendously challenging. In this work, we sketch out the 
dynamics of speech imagery by pairing MEG with a novel experimental protocol designed to overcome 
known methodological difficulties. By decoding participants’ imagined utterances, we show that 
producing imagined speech involves a rapid succession of relatively encapsulated neural 
representations that neatly maps onto the predictions of current theoretical models of overt production.  
 
As a snapshot, the neural correlates we report for these fleeting representations are consistent with 
previous fMRI research on speech imagery, inner, and covert speech7,10,60. An advantage of our time-
resolved approach is that it can additionally provide a dynamic picture of speech imagery. In broad 
strokes, our data is consistent with two well-defined stages during imagery, namely planning and 
(internal) production (Fig 4). The production stage is characterized by widespread left-lateralized 
auditory activity at the expected time of imagery (~400ms, based on participants’ overt productions of 
the same syllables) immediately preceded by speech motor activity. We conjecture this auditory activity 
to correspond to the percept associated with speech imagery11,19. Following the imagined event, our 
syllable decoding approach identified two additional time periods with distinct neural representations, 
associated with pSTG activity (~500ms) and subsequent bilateral pre/motor activity (~570ms). This 
pattern of activity is consistent with a hypothesized external feedback loop during overt production, in 
which corrective error from comparing the predicted sensory consequences of planned articulatory 
gestures with their actual consequences (i.e., auditory feedback) is forwarded to motor regions8,44,46. 
Indeed, the location of the posterior auditory cluster is consistent with fMRI research using altered 
feedback to identify error-related activity59,61 as well as recent ECoG research that distinguishes sensory 
processing (in more anterior regions) from feedback error signals62. Activity in bilateral pre/motor 
regions has also been reported following auditory error59,63, in line with our observations. Interestingly, 
while error-related activity can be modulated experimentally by altering feedback in both overt59,63 and 
imagined speech13, it is unclear what the expectation should be in the case of imagery when no matching 
or mismatching information is given. In accord with a recent hypothesis on predictive processing21, our 
intuition was that, since there is no overt auditory feedback to meet predictions (i.e., there is less input 
than predicted), an error response in auditory regions should still be produced. Our results support this 
hypothesis, highlighting the potential of our approach for research on predictive processing. 
 
In terms of (internal) speech planning, we identified at least three distinct time periods of significant 
syllable decoding prior to the production stage (Fig 4). The first, ~180ms after syllable presentation, 
was associated with activity in left posterior temporal cortex and thus consistent, both in time and 
location, with a much-theorized phonological encoding stage16,50,51. Phonological encoding may thus be 
present whether production is internally generated (e.g., from abstract thought) or externally triggered 
(e.g., from reading). The second was characterized by concurrent activity in left auditory and bilateral 
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motor regions at ~260ms. Such activity is predicted by SFC models recently applied to speech motor 
control in which auditory and motor targets are accessed in parallel immediately following phonological 
encoding16. SFC also predicts an internal feedback loop prior to motor execution, in which sensory 
predictions (auditory and somatosensory) are compared to the intended sensory targets16,44,64. Although 
theoretically well-grounded, there is yet no direct empirical support for an internal loop in speech 
production. Indirect evidence comes from the timings with which individuals correct themselves during 
speech errors, which are too fast for responses to external auditory feedback65. Activity at ~300ms (Fig 
4) is consistent with the hypothesized internal feedback loop, featuring the posterior auditory cluster, 
the supramarginal gyrus, and pre/motor regions. This result is further supported when examining the 
time courses of auditory and motor areas during imagery (Fig 5). Specifically, the sequence of 
activations observed for the putative external loop is also present immediately before the expected time 
of imagery, consistent with the monitoring and planning role of the internal loop.  
 
In all, the generation of speech imagery appears to closely mirror that of overt speech, with full-blown 
planning and (internal) execution stages. Our data are thus inconsistent with views of imagery as a by-
product of motor planning (e.g., 49). Moreover, given the presence of unspecific micromovements at the 
expected time of imagery (Fig S2-S4), our hypothesis is that, during imagery, speech plans are executed 
but aborted (inhibited) at the periphery. In this sense, speech imagery may be seen as analogous to 
concrete (as opposed to abstract) forms of inner speech (cf., 7).  
 
Because of the neuroimaging method (i.e., MEG), it may be necessary to question the accuracy of the 
reported cortical areas. Although possible, inaccuracies seem unlikely given the close correspondence 
between the main sources of activity in our imagery task and previously reported clusters in motor and 
sensory areas60. This is particularly so in the case of auditory regions, which also show a unified pattern 
of activity and consistency with the expected time of imagery (Fig S10). A possible exception could be 
the posterior auditory cluster because of its proximity to area Spt (cf., 66). Indeed, the behavior of this 
cluster could be seen as consistent with Spt’s hypothesized role in auditory-motor transformations (8,67). 
We also found activity in premotor and motor regions to be in very close spatial proximity (Fig 4). It is 
therefore possible that the activity we attribute to the motor cluster pertains to premotor cortex instead. 
This would be consistent with a hypothesized origin of sensory predictions in the premotor cortex in 
response to inputs (efference copies) from motor areas as well as with known inputs of premotor areas 
to motor cortical regions for production46.  
 
Using a novel WMC approach, two different but concurrent optimal decoding windows were found at 
the expected time of imagery, corresponding to the length of overtly produced syllables and consonant-
vowel transitions (~200ms and ~100ms, respectively, estimated from our data) (Fig 6 and Fig 7). These 
results are thus consistent with nested levels of motor control so far only hypothesized by hierarchical 
SFC models of speech production8,16 but more generally found in the motor literature (e.g., hand 
gestures47,68,69). In line with speech models, our analysis of the ta-tu-ti set also suggests that syllable-
level information is acoustically represented. This implies a level of speech motor control driven by 
auditory representations at the syllable level that aligns well with the observed auditory and motor 
activity. A tentative possibility is that activity in ventral somatosensory and supramarginal regions (Fig 
S11), which closely mimics that of core and posterior auditory areas (respectively), reflects the lower 
(i.e., somatosensory) level of motor control16. By this account, previously reported inferior parietal 
activity prior to speech imagery events (e.g., 11,15) could relate to this level of control.  
 
Another interesting finding revealed by the WMC analysis is the compressed nature of speech 
representations during planning, which contrasts with the natural rate at which the internal production 
unfolds (cf., 70). There is evidence that inner speech and speech imagery encode tempo, pitch, timber, 
and loudness information13,14,38,71 but little is known about the relationship between production and 
planning stages in imagined, inner, or overt speech. Both sets of syllables (ta-tu-ti and pa-ta-ka) 
exhibited a similar pattern of optimal decoding windows under 100ms during planning and ³200ms 
during execution suggesting compressed representations during planning at least for short (syllable-
length) utterances. This is important for potential brain-computer interfaces, which could account for 
this feature to increase decoding performance.  
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Finally, some methodological considerations. When it comes to decoding imagined speech, we would 
like to emphasize the importance of aligning responses to reduce the amount of noise in the data with 
which classifiers are trained. We took several measures by design to improve the alignment of imagined 
events both within and between participants (Methods) and sustain that many of the difficulties in 
decoding imagery from broadband signals are due to temporal misalignments. Indeed, many speech 
decoding studies using time-resolved methods (e.g., EEG, MEG) have ultimately resorted to frequency 
analyses (e.g., power modulations, cross-frequency couplings)72, loosing temporal resolution. While 
our objective was not decoding per se, we were able to decode participants’ imagined utterances with 
relatively high accuracies from non-invasive data using simple linear classifiers. Although we feel 
excited by recent invasive approaches and sophisticated analysis pipelines (e.g., 40), we would like to 
sound a note of hope for non-invasive methods and ‘lighter’ analytical procedures. Another important 
challenge in decoding imagined (or planned) speech is determining the optimal temporal window for 
analysis. Here, we took a primary focus on the syllable as the basic unit for decoding, although our data 
turned out to be consistent with at least two representational levels. Motor-based representations in the 
order of consonant-vowel transitions feature in recent ECoG research73. However, a focus on syllable-
like chunks may have several advantages worth considering. In contrast to smaller or larger units, 
syllables offer a remarkable rhythmicity (around 4-5 Hz) across languages74–76, a feature that could be 
leveraged for the decoding of continuous imagined speech particularly with the incorporation of 
language models to constrain decoders’ options (e.g., 33,40). Although potentially more numerous than 
smaller units, most common utterances can be produced by the combination of a reduced number of 
syllables77. Syllables are also relatively stable and less variable than smaller units78,79. Finally, while the 
existence of a motor ‘syllabary’ is still an empirical question, our data suggests that syllables are 
represented in multiple spaces concurrently (at least motor and auditory). This characteristic makes 
them not only more robust to degradation than kinematic representations (e.g., in amyotrophic lateral 
sclerosis) but also more likely to be decoded by imaging methods that provide wide brain coverage 
(e.g., EEG, MEG).  
 
In all, our results show an evolving sequence of representations for speech imagery subserved by neural 
dynamics akin to SFC. It is assumed that the same sequence underlies the generation of sensory 
predictions through the speech motor system that modulates speech perception and subserves the 
articulatory loop of phonological working memory. Our results thus highlight the potential of speech 
imagery for research, granted the appropriate experimental approaches and analytical methods, and 
paves the way for successful clinical and industrial applications.  
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