
Constructing founder sets under allelic and non-allelic
homologous recombination

Konstantinn Bonnet1, Tobias Marschall1, and Daniel Doerr1

1Institute for Medical Biometry and Bioinformatics, Heinrich Heine University, Düsseldorf, Germany

Abstract

Homologous recombination between the maternal and paternal copies of a chromosome is a
key mechanism for human inheritance and shapes population genetic properties of our species.
However, a similar mechanism can also act between different copies of the same sequence,
then called non-allelic homologous recombination (NAHR). This process can result in genomic
rearrangements—including deletion, duplication, and inversion—and is underlying many ge-
nomic disorders. Despite its importance for genome evolution and disease, there is a lack of
computational models to study genomic loci prone to NAHR.

In this work, we propose such a computational model, providing a unified framework for
both (allelic) homologous recombination and NAHR. Our model represents a set of genomes as
a graph, where human haplotypes correspond to walks through this graph. We formulate two
founder set problems under our recombination model, provide flow-based algorithms for their
solution, and demonstrate scalability to problem instances arising in practice.

1 Introduction
Twenty years ago, at this conference1, Esko Ukkonen introduced the problem of inferring founder
sets from haplotyped SNP sequences under allelic recombination [30]. Ukkonen’s work has since
inspired a wealth of research addressing various aspects and applications of founder set reconstruc-
tion ranging from the reconstruction of ancestral recombinations and pangenomics to applications
in phage evolution [16, 19, 29]. In its original setting, the problem sets out from a given set of m
sequences of equal length n, where characters across sequences residing at the same index position
correspond to a SNP. It then asks for a smallest set of sequences, called founder set, such that each
given sequence can be constructed through a series of crossovers between sequences of the founder
set, where each segment between two successive recombinations must meet a minimum length thresh-
old. The Founder Set Reconstruction problem is NP-hard in general [22], but is solvable in linear
time for the special case of founder sets of size two [30, 35]. Since its introduction, various heuristics
and approximations have been proposed [35, 24, 25]. A variant of this problem restricts crossovers
to coincide at certain positions, thereby decomposing the input sequences into a universally shared
succession of blocks. The resulting problem, known as Minimum Segmentation Problem is polyno-
mial [26]. In his seminal paper, Ukkonen devised a O(n2m) algorithm for its solution which has
been improved by Norri et al. [17] to linear time, i.e. O(nm), capitalizing on recent breakthroughs
in data structures [9].

Just like the Founder Set Problem, the vast majority of population genetic analyses and genome-
wide association studies have been focused on SNPs in the past decades, neglecting the more complex
forms of variation—mostly for technical difficulties in detecting them. In particular, structural
variants (SVs), commonly defined as variants of at least 50bp, have posed substantial challenges and
studies based on short sequencing reads typically detect less than half of all SVs present in a genome
[37]. Recent technological and algorithmic advances help to overcome these limitations [27]. Long
read technologies now enable haplotype-resolved de novo assembly of human genomes [20], which in
turn enables a much more complete ascertainment of SVs [10]. Earlier this year, the first complete
telomere-to-telomere assembly of a human genome was announced [18], heralding a new era of

1A version of this manuscript was accepted for publication at WABI 2022.

1

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.05.27.493721doi: bioRxiv preprint

https://algo2022.eu/wabi/
https://doi.org/10.1101/2022.05.27.493721
http://creativecommons.org/licenses/by/4.0/

1 2 3 4 3 Ss

1 2 3 4

S

s

1 2 3 4 3 Ss

1 2 3 4 3 Ss

A

B
Figure 1: Illustration of an NAHR-mediated inversion. Haplotype A (black line) represents the
original configuration, while haplotype B (red line) can be derived from A by two recombination
events between inverted repeats of genomic marker 3 as indicated by the red stars.

genomics where high-quality, haplotype-resolved assemblies of complex repetitive genomic structures
become broadly available. Presently, the Human Pangenome Reference Consortium (HPRC), is
applying these techniques to generate a large panel of haplotype-resolved genome assemblies from
samples of diverse ancestries [33]. These emerging data sets enable studying genetic loci involving
duplicated sequence, called segmental duplications (SDs), which are amenable to NAHR and are
therefore highly mutable and show complicated evolutionary trajectories [13, 31]. The T2T-CHM13
study alone reports over 40 thousand segmental duplications that amount to 202 Mb (6.6% of the
human genome) [18].

Interestingly, at loci with highly similar segments arranged in opposite orientations, such as
Segment 3 in Figure 1, NAHR can lead to inversion, i.e. the reversal of the interior sequence (Segment
4 in Figure 1). Because of being flanked by a pair of copies of the same sequence (cf. Segment 3)
that often comprises tens of thousands of bases, such events have been largely undetectable by
sequencing technologies with read lengths below the length of the duplicated sequence; in particular
by conventional short read sequencing. Recent studies applying multiple technologies reveal that
inversions affect tens of megabases of sequence in a typical human genome [7]. Unlike most other
classes of genetic variation, inversions are often recurrent with high mutation rates, that is, the
same events have happened multiple times in human history [21]. Depending on the structures of
duplicated sequence at a particular locus, individual human haplotypes can differ in their potential
for NAHR. This can have important implications for the risk for a range of genetic disorders caused
by NAHR-mediated mutations [21].

In the past two decades, various mathematical models and algorithms to study genome rear-
rangements have been proposed. These range from the classic reversal [3, 2] and transposition [4]
model to composed models for two or more balanced rearrangements [32, 8], to generalized models
such as the popular double cut and join (DCJ) model [36, 5]. As the research in this field continues,
advanced models can additionally accommodate one or more types of unbalanced rearrangements,
i.e., deletion, insertion, and duplication [28, 6]. Yet, none of these models adequately considers se-
quence similarity as a prerequisite for NAHR, which is a key molecular mechanism shaping complex
loci in the human genome. In summary, there are now technological opportunities to study the
population history of recalcitrant SD loci that are prone to genome rearrangements and relevant to
disease, but computational models to facilitate this have so far been lacking.

In this work, we study homologous recombination in a genome model that represents DNA
sequences at a level of abstraction where they are already decomposed into genomic markers with
assigned homologies. Here, our notion of homology is a synonym for high DNA sequence similarity,
as we adopt the terminology underlying the concept of homologous recombination. Our model
permits recombination events to occur between homologous markers independent of their position
within or between haplotypes, as long as the markers’ orientations are respected. In other words, a
marker can only recombine with a homologous marker alongside the same direction, as illustrated
by Figure 1, because a recombination event can only occur between homologous markers if they are
aligned to each other. By virtue of recapitulating the underlying molecular mechanism (NAHR), it
implicitly allows for all the rearrangements it can give rise to, including deletion, duplication, and
inversion.

Marker decomposition and homology assignment can be done in practice with genome graph

2

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.05.27.493721doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.27.493721
http://creativecommons.org/licenses/by/4.0/

builders such as MBG [23], minigraph [12], or pggb2. In fact, our algorithms are based on variation
graph or pangenome graph, where nodes correspond to homologous DNA segments and edges between
segments correspond to observed adjacencies in a given set of haplotypes.

2 Methods
2.1 Preliminaries
A (genomic) marker m is an element of the finite universe of markers denoted byM, and is associated
with a fragment of a double-stranded DNA molecule. Each marker can be traversed in forward and
reverse direction. A marker in forward orientation (which is the default orientation) is traversed from
left to right. Overline notation m indicates the reversal of a marker m, which is carried out relative
to its orientation, i.e., m = m. Similarly, M represents the set of all reverse oriented markers.
We designate two forward oriented markers {s, S} ⊆ M as terminal markers. In what follows, we
study terminal sequences, that is, sequences drawn from the alphabet of oriented markers M∪M
that start with s or S, end in S or s and do not contain any further terminal markers in between.
A terminal sequence can be traversed in forward and reverse direction. A haplotype is a terminal
sequence that starts with s (source) and ends with S (sink).

Example 1. Consider in the following two sequences of genomic markers A and X drawn from the
universe of markers M = {s, 1, 2, 3, 4, S}, where A = s12343S and X = s1234321s. Sequence A
starts and ends with terminal markers s and S, respectively, thus constituting a haplotype drawn
from M. Conversely, X starts with s and ends in s and therefore is a terminal sequence, but not a
haplotype.

Given a sequence A, |A| indicates the length of A which corresponds to the number of A’s
constituting elements. A defines the reverse complementation of sequence A, i.e., the simultaneous
reversal of the sequence and its constituting elements. The element at the ith position in sequence
A is denoted by A[i]. A segment of sequence A starting at position i and ending at and including
position j, is denoted by A[i..j]. In particular, A[..i] := A[1..i] and A[i..] := A[i..|A|] denote the
prefix and suffix of A, respectively. The operator “+” indicates the concatenation of two sequences.

Example 1 (cont’d). The length of A is |A| = 7; its reverse complement is A = S34321s; A[4..6] is
a segment of A and corresponds to sequence 343; The segments X[..6] = s12343 and A[7..] = S are
a prefix and a suffix of X and A, respectively; The concatenation of prefix X[..6] and suffix A[7..]
results in haplotype X[..6] +A[7..] = s12343S.

A recombination is an operation that acts on a shared oriented marker m of any two terminal
sequences A and B: let A[i] = B[j] = m; recombination χ(A,B, i, j) produces terminal sequence
C = A[..i] + B[j + 1..]. For a given set of haplotypes H, span(H) denotes the span, i.e., the set
of all haplotypes generated by applying χ on haplotypes H and the resulting terminal sequences.
More precisely, let T be the universe of terminal sequences, defined recursively by H∪H ⊆ T such
that for any A,B ∈ T with some A[i] = B[j] the recombinant C = A[i] + B[j + 1] and its reverse
complement C is also in T . Then span(H) := {A ∈ T | A is a haplotype}. Accordingly, we also say
that “H is a generating set of span(H)”. Conversely, given any (possibly infinite) set of haplotypes
S and some H ⊆ S, H is a generating set of S iff span(H) = S.

Example 1 (cont’d). Recombination χ(A,A, 4, 2) produces terminal sequence X = s1234321s.
Subsequent recombination χ(X,A, 6, 6), produces haplotype B = s12343S. If {A} is a given set of
haplotypes, then span({A}) = {A,B}.

In this paper, we study the following two problems:

Problem 1 (Founder Set). Given a set of haplotypes H, find a generating set F ⊆ span(H) such
that

∑
A∈F |A| is minimized.

We call a solution to Problem 1 a founder set and its members founder sequences.

Problem 2. Given a set of haplotypes H, find a founder set F that minimizes the number of
recombinations applied to haplotypes H and their intermediate terminal sequences in constructing
F .

2https://github.com/pangenome/pggb

3

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.05.27.493721doi: bioRxiv preprint

https://github.com/pangenome/pggb
https://doi.org/10.1101/2022.05.27.493721
http://creativecommons.org/licenses/by/4.0/

2.2 Constructing Founder Sets
Variation graph construction. We solve Problem 1 by studying the variation graph GH = (V,E∪

−→
E)

of the given set of haplotypes H. Graph GH is an undirected edge-colored multigraph where each
edge can have one of two colors corresponding to their membership in edge sets E and

−→
E . In

constructing GH, each marker m of the universe of forward-oriented markers M is represented by
a tuple of its extremities (mt,mh) also called “tail” and “head” of m, respectively, and its reverse-
oriented counterpart m is represented as (mh,mt)3. Node set V of graph GH corresponds to the set
of all marker extremities, and each marker m ∈ M gives rise to one marker edge {mt,mh} ∈

−→
E .

Further, any two (not necessarily distinct) nodes mb
1,m

c
2 ∈ V are connected by one adjacency edge

{mb
1,m

c
2} ∈ E iff there exists a sequence A ∈ H ∪ H with A = ..m1m2.. such that m1 = (ma

1 ,m
b
1),

m2 = (mc
2,m

d
2) and {a, b} = {c, d} = {t,h}.

Example 2. Let H1 = s12343S, H2 = s1112343S, H3 = s123432343S, and H4 = s12S, then the
variation graph GH of H = {H1,H2,H3,H4} is as follows, with marker edges drawn in gray and
adjacency edges in black:

t h2t hs t h1 t h3 t h4 t hS

Proposition 1. Let GH be the variation graph of haplotypes H, and X the set of all walks between
terminal markers st and Sh in GH with edges alternating between E and

−→
E , then span(H) = X .

Proof.

⇒ Observe that no recombination can create a new pair of consecutive markers m1m2 that is not
contained in any sequence A ∈ H∪H. Therefore, each haplotype B ∈ span(H) is a succession
of consecutive markers drawn from sequences in H ∪ H, i.e., B can be delineated in GH by
following adjacency edges corresponding to its succession of consecutive markers.

⇐ If each alternating walk X = (st, sh, . . . , St, Sh) ∈ X in variation graph GH corresponds to
a haplotype B ∈ span(H), then X must be producible through a series of recombinations of
haplotypes H and their recombinants. We show this by construction:

(a) Pick some haplotype A ∈ H and initialize i← 1;
(b) Let B ∈ H ∪ H be a sequence such that for some position j, B[j..j + 1] = m1m2 with

m1 = X[i..i+ 1] and m2 = X[i+ 2..i+ 3]. Then A← χ(A,B, i/2, j).
(c) Increase i by 2 and repeat step b unless i = |X| − 3.

Observe that by construction of the variation graph GH, a suitable sequence B ∈ H∪H must
exist in each iteration of step b.

Defining flows on variation graphs. We determine a minimum set of founder sequences by
solving a network flow problem in variation graph GH where flow is allowed to travel along adjacency
edges in either direction. In doing so, we find a non-negative flow φ : V ×V → N such that the total
flow

∑
u,v∈V φ(u, v) of graph GH is minimized and satisfies the following constraints:

3Our notation is consistent with common practice of illustrating markers as arrows, that, in natural reading
direction, face from left (tail of the arrow) to right (head of the arrow).

4

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.05.27.493721doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.27.493721
http://creativecommons.org/licenses/by/4.0/

∀ u, v ∈ V φ(u, v) ∈ N (constrain flow to integer)
∀ (u, v) ∈ {(u′, v′) | u′, v′ ∈ V : {u′, v′} 6∈ E} φ(u, v) = 0 (constrain travel of flow)

∀ v ∈ V i(v) :=
∑
u∈V

φ(u, v) (incoming flow)

o(v) :=
∑
u∈V

φ(v, u) (outgoing flow)

∀ {u, v} ∈ E φ(u, v) + φ(v, u) ≥ 1 (flow coverage)
o(st) = i(Sh) = 0 (flow direction st → Sh)

∀ m ∈M \ {s, S} i(mt) = o(mh) (flow conservation)
i(mh) = o(mt)

Note that the flow can travel in both directions of an edge {u, v} ∈ E and that φ(u, v) = φ(v, u)
does not hold true in general. The only node pairs of the graph that are unbalanced, i.e., do not
satisfy flow conservation, are (st, sh) and (St, Sh).

Example 2 (cont’d). The drawing below illustrates a flow solution on variation graph GH, with the
direction and amount of flow along adjacency edges indicated by labeled arrowed arcs.

1

1

1

1

1
1

2

21

1

2t h2t hs t h1 t h3 t h4 t hS

Deriving haplotypes from flows. By applying the Flow Decomposition Theorem [1, p. 80f], any
flow, i.e., solution to the above-specified constraints, is decomposable into a set of alternating paths
going from source st to sink Sh and a set of alternating cycles. Ahuja et al. [1] give a simple and
efficient algorithm that does so in polynomial time and which we describe below, adapted to our
circumstances. The idea is to perform a random walk in the graph from source to sink or within
a cycle, thereby consuming flow along adjacency edges until all flow is depleted. The proof of the
algorithm remains unchanged to that given by Ahuja et al., thus is not repeated here.

1. Set u← st.

2. Setting out from current node u, traverse the incident marker edge to some node v, choose
any neighbor w of v for which φ(v, w) > 1. Follow the adjacency edge to v and decrease the
flow φ(v, w) by 1. Set u← w.

3. As long as u 6= St do as follows: if u has been visited in the traversal before, then extract the
corresponding alternating cycle from the recorded sequence and report it. Proceed with the
traversal by repeating step 2.

4. However, if u = St, follow the marker edge to Sh and report the recorded sequence as a path.

5. If sh is incident to edges with positive flow, proceed with step 1. Otherwise, there still might
be strictly positive flow remaining in the graph corresponding to unreported cycles. In that
case, pick any node u ← ma such that for some node w, φ(mb, w) > 0, {a, b} = {t,h} and
m ∈M, and proceed with step 2.

Example 2 (cont’d). The components of the flow solution on variation graph GH comprise two
cycles C1 and C2, and two (st, Sh)-paths P1 and P2, as illustrated below.

C1

P1
P2

C2
t h2t hs t h1 t h3 t h4 t hS

5

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.05.27.493721doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.27.493721
http://creativecommons.org/licenses/by/4.0/

What remains is the integration of cycles into walks that then correspond to the haplotypes of the
founder set. The integration is facilitated by a graph structure, the component graph. The component
graph G′ = (V ′, E′, l) is an edge-labeled, directed multigraph, where, in its initial construction, each
alternating (st, Sh)-path and each cycle reported during flow decomposition is represented by a
distinct node of V ′. In the component graph G′, each cycle c of the flow decomposition sharing one
or more markers with another component c′ is connected by one or more directed edges (c, c′) to
that component, with each edge’s label l(c, c′) corresponding to one distinct shared marker, oriented
according to the their succession in c (which may not be the same as in c′). The component graph
is then successively deconstructed until empty as follows:

1. Remove and report all (st, Sh)-walks with in-degree 0 from node set V ′4.

2. Pick a cycle c ∈ V ′ with in-degree 0, or, if none such exists, any arbitrary cycle c ∈ V ′.

3. Pick an outgoing edge (c, c′) ∈ E′ such that c′ is a (st, Sh)-walk. If no such c′ exists, c is only
adjacent to cycles, out of which one c′ is picked at will. Let (ma,mb)← l(c, c′), {a, b} = {t,h}.
If marker m is embedded in c′ in same orientation, i.e. c′ = ..mamb.., then linearize c in m, i.e.,
c = mbc1..ck−1m

a, and integrate it into c′ such that c′ ← ..mambc1..ck−1m
amb.. . Otherwise,

integrate the reversed linearization of c, i.e, c′ ← ..mbmack−1..c1m
bma.. . Remove cycle c and

its outgoing edges from component graph G′.

4. Proceed with step 1 until no more components remain and all (st, Sh)-walks are reported.

The search for components with in-degree 0 can be efficiently implemented through preorder
traversal of G′. Note that each cycle must have at least one outgoing edge and that ultimately
all cycles must be integrable into a (st, Sh)-walk, otherwise this would imply that GH contains a
disconnected, circular component that is not reachable by an alternating path from source st to sink
Sh, thus contradicting the correctness of GH’s construction. The reported (st, Sh)-walks represent
the wanted haplotypes of the founder set.

Example 2 (cont’d). The plot below depicts the component graph of components C1, C2, P1, and
P2 (left) and the final two (st, Sh)-walks that collectively represent a founder set of H (right).

1

1 2

2 33 4

P2

C1 C2

P1

t h2t hs t h1 t h3 t h4 t hS

t h2t hs t h1 t h3 t h4 t hS
C1

P1

P2

C2

Theorem 1. Any flow that minimizes the total flow
∑

u,v∈V φ(u, v) of variation graph GH =

(V,E ∪
−→
E) of a given set of haplotypes H is equivalent to a solution to Problem 1.

Proof. It is sufficient to show that every flow is decomposable into a set of haplotypes (⇒) and every
founder set represents a valid flow (⇐).

⇒ Any flow of variation graph GH is decomposable into a set of haplotypes H′, as demonstrated
above. Observe that the above-listed flow constraints enforce the derived haplotypes H′ to
cover the entire graph GH and consequently GH′ = GH. This implies that span(H′) =
span(H), i.e., H′ is a generating set of span(H). Therefore, the sum of lengths of haplotypes
derived from a flow solution is an upper bound of Problem 1.

⇐ Any set of haplotypes H′ ⊆ span(H) that covers each consecutive pair of markers m1m2

in haplotypes H at least once (either in forward orientation m1m2 or in reverse orientation
m2m1) represents a valid flow of GH. To construct a flow from H′, set φ(mb

1,m
c
2) to the

number of occurrences of consecutive markers m1m2 in haplotypes of H′ with m1 = (ma
1 ,m

b
1)

and m2 = (mc
2,m

d
2), {a, b} = {c, d} = {t,h}. Observe that by construction, flow is integer,

travels from source st to sink Sh and satisfies coverage and conservation constraints.
4By construction, (st, Sh)-walks have out-degree 0, i.e., those with in-degree 0 are singleton in G′.

6

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.05.27.493721doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.27.493721
http://creativecommons.org/licenses/by/4.0/

2.3 Minimizing Recombinations in Founder Sequences
We now present an algorithm towards solving Problem 2, i.e., the problem of finding a founder
set that minimizes the number of recombinations needed for its construction from a given set of
haplotypes H. Our approach is exact under the assumption that the overall multiplicity of each
pair of consecutive markers in the founder set of a solution to Problem 2 is known, yet the pair’s
particular orientation in a founder sequence may be unresolved. To this end, we presume a given
function φ̂(m1,m2) acting as oracle for the overall multiplicity of any given pair of consecutive
oriented markers m1,m2 ∈ M ∪ M5. More specifically, φ̂(m1,m2) reports the total number of
occurrences of m1m2 and m2m1 in a solution to Problem 2. In addition, we make use of function
µ(m) :=

∑
m′∈M∪M φ̂(m,m′) to retrieve the multiplicity of any marker m ∈M∪M6. Our solution

makes use of the flow graph that is defined in the subsequent paragraph. We calculate a matching
in the flow graph that describes a set of founder sequences, each corresponding to a succession
of segments of haplotypes H. The objective of the matching is to minimize the total number
of these segments across all founder sequences which is equivalent to minimizing the number of
recombinations for their construction from haplotype set H.

Flow graph construction. The flow graph GH,φ̂ = (Vφ̂, Eφ̂ ∪
−→
Eφ̂) is a directed edge-colored

multigraph with adjacency edges Eφ̂ and marker edges
−→
Eφ̂, where each marker extremity ma, m ∈M

and a ∈ {t,h}, gives rise to 2 · µ(m) elements in node set Vφ̂, representing µ(m) many “in” (i) and
µ(m) many “out” (o) nodes. That is, Vφ̂ = {ixma | m ∈ M, a ∈ {t, h}, x ∈ 1..µ(m)} ∪ {oxma |
m ∈ M, a ∈ {t, h}, x ∈ 1..µ(m)}. Each out node u ∈ Vφ̂ \ ({o

x
Sh | 1..µ(S)} ∪ {oxst | 1..µ(s)}) is

incident to one and only one directed adjacency edge (u, v) connecting u to some in node v thereby
realizing one occurrence of its representing pair of consecutive oriented markers in a founder sequence.
Conversely, each forward-oriented marker m ∈ M contributes µ(m)2 many directed marker edges
that connect in/tail nodes with out/head nodes, i.e., {(ixmt , o

y
mh) | x, y ∈ 1..µ(m)}. Analogously,

each reverse-oriented marker m ∈ M contributes µ(m)2 many in/head-to-out/tail-directed marker
edges {(ixmh , o

y
mt) | x, y ∈ 1..µ(m)}.

Example 2 (cont’d). The flow graph GH,φ̂ for the given set of haplotypesH = {s12343S, s1112343S,
s123432343S, s12S} and a given φ̂ is as follows:

t h2t hs t h1 t h3 t h4 t hS

In nodes and out nodes are highlighted in red and blue, respectively. For clarity, the direction of
marker edges (gray edges; directed from in to out node) is omitted in the illustration.

Graph decomposition. A perfect matching of marker edges in flow graph GH,φ̂ produces a set
of alternating walks and alternating cycles through GH,φ̂, yet only half of the graph is eligible to
form a solution to Problem 2. More precisely, for each marker m ∈ M, exactly half of the number
of its associated nodes in Vφ̂ must be saturated in the matching that we seek, the other half as well
as their incident edges must remain unsaturated. Further, we aim to admit only matchings that
consist entirely of alternating (ixst , o

y
Sh)-walks, because only those correspond to valid haplotypes of

span(H).
5Our experiments directly use the results of Problem 1 as input for Problem 2. In other words, the multiplicities

reported by φ̂(m1,m2) are the number of occurrences of (m1,m2) in a solution to Problem 1. This makes our
experimental solutions to Problem 2 heuristic.

6φ̂ and µ are symmetric w.r.t. the relative orientation of markers, φ̂(m1,m2) = φ̂(m2,m1) and µ(m) = µ(m)

7

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.05.27.493721doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.27.493721
http://creativecommons.org/licenses/by/4.0/

At last, we aim to assign to each saturated node v ∈ Vφ̂ a position in some haplotype A of given
haplotype set H. That way, we are able to determine whether the incident adjacency edge serves as
continuation of the associated segment in A, or whether the incident saturated marker edge implies
a recombination between two distinct segments.

The integer linear program (ILP) shown in Algorithm 1 implements the above-stated constraints.
Matching constraints. Each edge and node of flow graph GH,φ̂ is associated with binary variables

of x and y, respectively, that determine their saturation in a solution (cf. domains D.1 and D.2).
Constraint C.01 ensures that each saturated marker edge is incident to saturated nodes. Perfect
matching constraints, i.e., constraints that impose each saturated node being incident to exactly
one marker edge, are implemented by constraint C.02. Similarly, constraint C.03 ensures that an
adjacency edge is saturated iff its incident nodes are saturated. In other words, constraints C.01-
C.03 together ensure that each component of the saturated graph corresponds to an alternating
path or cycle component (the latter being prohibited by further constraints). The following two
constraints C.04 and C.05 control the overall size of the saturated graph. In doing so, they ensure
that, in a solution to Problem 2, the number of saturated nodes and adjacency edges matches the
postulated multiplicity of markers µ(m), m ∈M∪M, and pairs of consecutive markers φ̂(m1,m2),
m1,m2 ∈M∪M, respectively.

Path constraints. Constraints C.05-C.08 force each component of the saturated graph to start
and end in nodes associated with source st and sink Sh, respectively, thereby ruling out any cycles.
To this end, they make use of a set of integer variables f (cf. Domain D.03) that define an increasing
flow within each saturated component that is bounded by constant T corresponding to the total
flow of the graph, i.e., T :=

∑
m∈M µ(m). In each saturated marker edge, the flow is increased by

1 while along each adjacency edge, flow is kept constant. This prevents the formation of saturated
cycles, because their flow would be infinite. Lastly, constraint C.08 preclude paths from starting in
Sh or ending in st, leaving only one option for any saturated component open, that is, the formation
of a (st, Sh)-path.

Haplotype assignment. Each node in a solution to the ILP is associated with exactly one position
in a haplotype in H, recorded by binary variables c. Moreover, any marker edge whose incident
pair of nodes is associated with the same position of the same haplotype corresponds to a conserved
segment, i.e, no recombination within this marker has taken place. Each marker edge corresponding
to a conserved segment contributes a score unit to the objective function. These score units are
encoded by binary variables t (cf. domain D.05). Constraint C.09 ensures that each marker is
associated with exactly one position j in a haplotype A of set H ∪H, while C.10 confines incident
nodes of adjacency edges to represent a consecutive marker pair A[j..j+1]. At last, constraint C.11
allows t variables of marker edges to take on value 1 only if that marker edge is saturated and its
incident nodes are associated with the same haplotype position.

By maximizing the sum over t variables, the objective minimizes the total number of segments
needed to decompose the calculated founder sequences into segments from haplotypes H ∪ H that
are delimited by recombination events.

Example 2 (cont’d). The following plot illustrates a matching that is solution to Algorithm 1 for
GH,φ̂. The founder sequences are spelled out on the bottom, colored by haplotype (red, blue and
green for haplotypes 2, 3 and 4 respectively). Unsaturated nodes and edges are grayed out, haplotype
assignments implied by colored paths. The solution features two recombinations, marked by “?” along
their associated marker edges.

t h2t hs t h1 t h3 t h4 t hS

8

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.05.27.493721doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.27.493721
http://creativecommons.org/licenses/by/4.0/

Algorithm 1 An ILP solution to Problem 2.
Objective:

Maximize ∑
(ixma ,o

x′
mb)∈

−→
Eφ̂,

A[j]=(ma,mb)

t
A[j]

ix
mao

x′
mb

Constraints:

(C.01) yu + yv≥ 2 xuv ∀ (u, v) ∈
−→
Eφ̂

(C.02)
∑

(u,v)∈
−→
Eφ̂

xuv= yu ∀ in nodes u ∈ Vφ̂∑
(u,v)∈

−→
Eφ̂

xuv= yv ∀ out nodes v ∈ Vφ̂

(C.03) xuv= yu ∀ (u, v) ∈ Eφ̂

xuv= yv

(C.04)
µ(m)∑
x=1

yix
ma

+ yox
ma

= µ(m) ∀ m ∈M, a ∈ {t, h}

(C.05)
∑

x,x′ s.t.
(ox

mb
1
,ix

′
mc

2
)∈Eφ̂

xox
mb

1

ix
′

mc
2

= φ̂(m1,m2) ∀ (mb
1,m

c
2) s.t. φ̂(m1,m2) > 0,

m1 = (ma
1 ,m

b
1), m2 = (mc

2,m
d
2),

{a, b} = {c, d} = {t,h}

(C.06) fu= fv ∀ (u, v) ∈ Eφ̂

(C.07) fv − fu + Txuv≤ T + 1 ∀ (u, v) ∈
−→
Eφ̂

(C.08) fv= 0 ∀v ∈ {oxst | x ∈ 1..µ(s)} ∪ {ixSh |
x ∈ 1..µ(S)}

(C.09)
∑

A∈H
A[j]=m

c
A[j]
v = 1 ∀ v ∈ Vφ̂, v associated with

extremities of marker m

(C.10) c
A[j]
ox
mb

1

= c
A[j+1]

ix
′

mc
2

∀ (oxmb , i
x′

ma) ∈ Eφ̂, A ∈ H ∪H,
i ∈ 1..|A| − 1, s.t. A[j..j + 1] =
(ma

1 ,m
b
1)(m

c
2,m

d
2)

(C.11) xix
mao

x′
mb

+ c
A[j]
ix
ma

+ c
A[j]

ox
′

mb

≥ 3 t
A[j]

ix
mao

x′
mb

∀ (ixma , ox
′

mb) ∈
−→
Eφ̂, A ∈ H ∪H,

i ∈ 1..|A|, s.t. A[j] = (ma,mb)

Domains:

(D.01) xuv∈ {0, 1} ∀ (u, v) ∈ Eφ̂ ∪
−→
Eφ̂

(D.02) yv∈ {0, 1} ∀ v ∈ Vφ̂

(D.03) 1≤ fv ≤ T ∀ v ∈ Vφ̂

(D.04) c
A[j]
ix
ma

, c
A[j]
ox
ma

, c
A[j]
ix
mb

, c
A[j]
ix
mb
∈ {0, 1} ∀ A ∈ H ∪H, j ∈ 1..|A|, A[j] =

(ma,mb),
x ∈ 1..µ(m)

(D.05) t
A[j]

ix
mao

x′
mb

∈ {0, 1} ∀ A ∈ H ∪H, j ∈ 1..|A|, A[j] =
(ma,mb),
x ∈ 1..µ(m)

9

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.05.27.493721doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.27.493721
http://creativecommons.org/licenses/by/4.0/

3 Results
We implemented our methods in the programming language Rust [14] and used Gurobi [11] as the
solver. Our software is open source and publicly available on https://github.com/marschall-lab/
hrfs. To run Algorithm 1 on a given set of haplotypes H, we estimated the overall multiplicity
φ̂(m1,m2) of pairs of consecutive markers m1m2 from a network flow solution to Problem 1 on H.
Note that this dispenses Algorithm 1 from being exact in our applications.

All experiments were run on a de.NBI cloud computing machine. For benchmarking purposes,
we ran Gurobi single-threaded and recorded wall clock time (in seconds) and proportional set size
(PSS, in Mb) for memory usage. Optimization time was capped at 30 minutes, beyond which the
solver must capitulate and return its best-effort solution found thus far. The threshold for execution
time is based upon available compute resources.

3.1 Experimental Data

0.0

2.5

5.0

7.5

10.0

50 100 150 200
Number of markers

M
ea

n
nu

m
be

r
of

 r
ec

om
bi

na
tio

ns

Before minimization
After minimization

Figure 2: Mean number of recombinations by the size of the graph. Experiments were ran with
values ranging from 10 to 200 in for the number of markers, in increments of 10. The ratio of
duplications and of inversions was fixed to 10%, and number of haplotypes to 10. Each colored
dot represents the mean number of recombinations over 50 replicates for one parameter set, after
random assignment trials (blue) and after optimization (red).

We benchmarked the performance of our algorithms by conducting experiments on both sim-
ulated data and a real-world data set. The former presumed a simulator, capable of generating
haplotypes with duplicated and inverted markers that can produce intricate homologous recombi-
nations while providing control over the degree of complexity. To this end, we implemented our
own simulation tool, that constructs a single haplotype sequence sampled at random to serve as
seed. This seed sequence is adjustable by the following parameters: (i) number of distinct markers,
i.e., the size of its variation graph, (ii) ratio of duplications, i.e., the number of additional edges
inducing duplications in a walk of the graph, (iii) ratio of inversions, i.e., the proportion of inverted
orientations within the set of duplications, and lastly (iv) the number of haplotypes that are input
to subsequent founder set reconstruction. The latter are generated by performing random walks in
the seed sequence’s variation graph and retaining only those leading from source to sink. In doing
so, our simulator does not report nor have knowledge of a true founder set. Our simulator, discussed
in more detail in Appendix A.1, enables us to explore various parameterizations that match different
situations in biological data.

One important point concerns co-optimality. Problems 1 and 2 do not guarantee a unique
solution. In fact, the pool of co-optimal solutions is often large for both problems. One contributing
factor to co-optimality are cycles that are shared across multiple haplotypes, because they can be
integrated in different orders. Further, the solution does not provide any information that could
enable one to generate all co-optimal solutions nor discern between them, making a measure of
accuracy challenging, since there is no guarantee that the “correct” founder sequence(s) will be seen
in any number of trials.

In addition to simulated data, we applied our methods on a biological data set from the human
1p36.13 locus described by Porubsky et al. [21] to demonstrate their computational capabilities in
realistic instances.

10

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.05.27.493721doi: bioRxiv preprint

https://github.com/marschall-lab/hrfs
https://github.com/marschall-lab/hrfs
https://doi.org/10.1101/2022.05.27.493721
http://creativecommons.org/licenses/by/4.0/

3.2 Simulation Experiments

0

10

20

30

40
Ru

nt
im

e
(s

ec
.)

0

10

20

30

40

0

200

400

600

Pe
ak

 P
SS

 (M
B.

)

0

200

400

600

10 100 1000 10000 1e+05
Number of markers

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ratio of duplications

10 100 1000 10000 1e+05
Number of markers

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ratio of duplications

Rd=0.1, Ri=0.1 Rm=100k, Ri=0.1

Figure 3: Problem 1, flow computational performance benchmarks. Runtime in seconds (upper pan-
els) and peak PSS in Megabytes (lower panels), as a function of the number of markers (left) and of
the ratio of duplications (right). For each experiment, the remaining parameters are fixed as indi-
cated above. The abbreviations read as follows: Nm, number of markers; Rd, ratio of duplications;
and Ri, ratio of inverted duplications.

To assess the impact of parameter configurations on the results, we ran a number of different
experiments wherein all but one parameters are fixed. A reasonable choice of constants seemed to
be 100 distinct markers, 10% of duplications, 10% of inversions and 10 haplotypes, motivated by our
data on the 1p36.13 locus (8 markers, 68 haplotypes, 57% of duplications) and statistics compiled
by Porubsky et al. [21] (6-7% duplications in the whole genome, <1% inversions).

Reduction in number of recombinations.
To evaluate the efficacy of our solution to Problem 2, we compared the number of recombinations

returned by Algorithm 1 to that in a solution obtained by our network flow algorithm for Problem 1.
While the former is the immediate output of Algorithm 1, additional efforts needed to be made in
order to retain the latter. In doing so, we estimate the number of recombinations in the flow solution
by random assignment of corresponding segments in the original haplotype set and taking the one
with the lowest number in 100k trials. Figure 2 summarizes the outcome of this experiment. Over
all, Algorithm 1 found a solution with fewer recombinations in all instances but a few where Gurobi
returned barely best-effort solutions after reaching the time limit of 30 minutes, all of which exhibited
a gap of at least 100%. The parameter settings in those cases were extremal.

Across all experiments and with a fixed ratio of duplications, inversions and number of hap-
lotypes, the mean estimated number of recombinations both in the initial founder set and after
minimization increases linearly with the number of markers, by approximately 4.2 and 2.0 per 100
markers respectively, reaching circa 10 and 3.8 for 200 markers. Results for experiments with other
variable parameters are shown in Suppl. Figure S1.

Flow solution benchmark. Computing solutions with our network flow algorithm proved to be
in almost all of our experiments near-instantaneous. By varying the number of distinct markers, the
algorithm’s performance begins to deteriorate only with very large instances beyond 100k distinct
markers and becomes excruciating for instances above 1M markers. When varying other parameters,
we fixed the number of distinct markers to 100k rather than 100. Under 100k markers, execution
completes after a mean wall clock time of 3.4± 2.0 seconds. In 95% of all experiments, the solver’s
runtime was too short to make sufficient measurements for benchmarking memory usage; the maxi-
mum PSS for the remaining ones measured at 78MB. Over the 100k mark, both the graph size and

11

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.05.27.493721doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.27.493721
http://creativecommons.org/licenses/by/4.0/

0

500

1000

1500

Ru
nt

im
e

(s
ec

.)

0

500

1000

1500

0

200

400

600

Pe
ak

 P
SS

 (M
B.

)

0

200

400

600

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Number of markers
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ratio of duplications

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Number of markers
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ratio of duplications

Nh=10, Rd=0.1, Ri=0.1 Nh=10, Nm=100, Ri=0.1

Figure 4: Problem 2, recombinations minimization performance benchmarks. Plots analogous to
Figure 3. Runtime in seconds (upper panels) and peak PSS in Megabytes (lower panels), as a function
of the number of markers (left) and of the ratio of duplications (right). For each experiment, the
remaining parameters are fixed as indicated above. The abbreviations read as follows: Nh, number of
haplotypes; Nm, number of markers; Rd, ratio of duplications; and Ri, ratio of inverted duplications.

duplication ratio begin to reduce performance, with an average runtime of 19.7 ± 8.7s. The ration
of inversions on the other hand does not affect performance (Suppl. Figure S3). We measured peak
memory consumption at 758MB across all conditions, which also occurred only at the very extremes
of 100k distinct markers and a 100% ratio of duplications (Figure 3).

Recombination minimization benchmark. As shown previously, Algorithm 1 successfully reduces
the number of recombinations in solutions to Problem 1. However, its runtime increases dramatically
with only moderate increments of any but one parameter of our simulator, the ratio of inversions;
it does not play any role in performance (Suppl. Figure S2). For the remaining three, going beyond
instances of 200 distinct markers, 20% of duplications, or 40 haplotypes typically does not allow for
the optimization to finish in a reasonable amount of time (Figure 4, Suppl. Figure S2). A similar
but much less pronounced trend is seen with memory usage, which still remains relatively low. Peak
memory usage was again observed at extreme parameter values with a PSS of 1072MB with 50
haplotypes.

3.3 Application: Locus 1p36.13
We obtained data from 68 human haplotypes (two per 34 individuals) at the 1p36.13 locus from Porub-
sky et al. [21] and the T2T-CHM13 human reference sequence [18]. The sequences comprise only
eight distinct markers, terminal markers included. The sequences are attributed to five super pop-
ulations, out of which 18 are of African origin (AFR), 16 of Eastern Asian (EAS), 12 of Admixed
American (AMR), 12 of European (EUR), and 10 are South Asian (SAS). Their variation graph
is densely connected with 26 edges (Figure 5). The 68 haplotypes display a high degree of genetic
diversity, with haplotype sequences differing in order, orientation, and copy number of the marker
(Suppl. Table T1). Haplotype lengths in terms of the number of markers vary from 15 to 26, with
a median of 19.

Our network flow algorithm determined that the data set can be generated from a single founder
sequence. Our randomized algorithm for calculation of the minimum number of recombinations in
a solution to Problem 1 asserted 15 recombinations after 1M trials, while Algorithm 1 obtained an
optimal solution that revealed only 9 recombinations. Minimization completed in 60.3 seconds with
a peak PSS of 225MB. Note that there exists multiple other co-optimal solutions; Suppl. Figure S4
is an illustration of one.

12

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.05.27.493721doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.27.493721
http://creativecommons.org/licenses/by/4.0/

Source

Sink

Source

Sink

Figure 5: Graphical representation of the variation graph for the 1p36.13 locus data. On the left, a
2D plot rendered by Bandage [34]. Markers are represented as numbered colored rectangles, and the
undirected edges connecting them as black curves. Markers 1 and 8 correspond respectively to the
source and the sink of the graph. The right plot shows the walk through the graph corresponding to
the sequence of haplotype AFR-NA19036-h1, a sample of African origin from our experimental data.
The sample’s sequence in the previously established notation is: 123456543273243278.

4 Conclusion
The advent of sequencing technology and genome assembly methodology to reconstruct full human
genomes enables research into previously inaccessible segmental duplication loci. This exciting op-
portunity entails a demand for explanatory models that can infer evolutionary relationships and
histories of complex repetitive genomic regions. In this work, we propose a model capable of ex-
plaining a broad range of balanced and unbalanced genome rearrangements. Our experiments on
simulated data and on the 1p36.13 locus demonstrate that our algorithmic solutions to the founder
set problem and the problem of minimizing recombinations in founder sets are capable of processing
realistic instances.

Importantly, the model we are proposing is based on a molecular mechanism with a well-
established role in shaping segmental duplication architecture. In our view, many past models
of genome rearrangements have not sufficiently captured biological reality and there is an important
need for further research aiming to incorporate knowledge of molecular mechanisms into such models.
For instance, we envision future models that additionally include mechanisms like non-homologous
end joining (NHEJ) and mobile element insertions. Furthermore, actual rates at which NAHR oc-
curs depend on factors like the length of the duplicated sequence, the sequence similarity, as well as
the presence of specific sequence motifs. “Hidden” in our current approach in the construction of
the variation graph, we aim to address and model these factors explicitly in future work.

5 Acknowledgements
The authors kindly thank Feyza Yilmaz for providing the haplotype data of the 1p36.13 locus.

6 Competing interests
This work was supported in part by the National Institutes of Health grant 1U01HG010973 to
T.M., by the European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 956229, and by the BMBF-funded de.NBI Cloud within
the German Network for Bioinformatics Infrastructure (de.NBI) (031A532B, 031A533A, 031A533B,
031A534A, 031A535A, 031A537A, 031A537B, 031A537C, 031A537D, 031A538A).

13

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.05.27.493721doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.27.493721
http://creativecommons.org/licenses/by/4.0/

References
[1] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. Network Flows: Theory, Algorithms,

and Applications, 1 ed. Prentice Hall, Feb. 1993.

[2] Bader, D. A., Moret, B. M., and Yan, M. A linear-time algorithm for computing inversion
distance between signed permutations with an experimental study. In 1st International Work-
shop on Algorithms in Bioinformatics (WABI 2001) (Berlin, Heidelberg, 2001), Algorithms in
Bioinformatics, Springer Berlin Heidelberg, pp. 365–376.

[3] Bafna, V., and Pevzner, P. A. Genome rearrangements and sorting by reversals. SIAM
Journal on Computing 25, 2 (1996), 272–289.

[4] Bafna, V., and Pevzner, P. A. Sorting by transpositions. SIAM Journal on Discrete
Mathematics 11, 2 (1998), 224–240.

[5] Bergeron, A., Mixtacki, J., and Stoye, J. A unifying view of genome rearrangements. In
6th International Workshop on Algorithms in Bioinformatics (WABI 2006) (Berlin, Heidelberg,
2006), P. Bucher and B. M. E. Moret, Eds., vol. 4175 of Algorithms in Bioinformatics, Springer
Berlin Heidelberg, pp. 163–173.

[6] Bohnenkämper, L., Braga, M. D., Doerr, D., and Stoye, J. Computing the rearrange-
ment distance of natural genomes. Journal of Computational Biology 28, 4 (2021), 410–431.

[7] Chaisson, M. J. P., Sanders, A. D., Zhao, X., Malhotra, A., Porubsky, D., Rausch,
T., Gardner, E. J., Rodriguez, O. L., Guo, L., Collins, R. L., Fan, X., Wen, J.,
Handsaker, R. E., Fairley, S., Kronenberg, Z. N., Kong, X., Hormozdiari, F., Lee,
D., Wenger, A. M., Hastie, A. R., Antaki, D., Anantharaman, T., Audano, P. A.,
Brand, H., Cantsilieris, S., Cao, H., Cerveira, E., Chen, C., Chen, X., Chin, C.-S.,
Chong, Z., Chuang, N. T., Lambert, C. C., Church, D. M., Clarke, L., Farrell,
A., Flores, J., Galeev, T., Gorkin, D. U., Gujral, M., Guryev, V., Heaton, W. H.,
Korlach, J., Kumar, S., Kwon, J. Y., Lam, E. T., Lee, J. E., Lee, J., Lee, W.-P., Lee,
S. P., Li, S., Marks, P., Viaud-Martinez, K., Meiers, S., Munson, K. M., Navarro,
F. C. P., Nelson, B. J., Nodzak, C., Noor, A., Kyriazopoulou-Panagiotopoulou,
S., Pang, A. W. C., Qiu, Y., Rosanio, G., Ryan, M., Stütz, A., Spierings, D. C. J.,
Ward, A., Welch, A. E., Xiao, M., Xu, W., Zhang, C., Zhu, Q., Zheng-Bradley,
X., Lowy, E., Yakneen, S., McCarroll, S., Jun, G., Ding, L., Koh, C. L., Ren,
B., Flicek, P., Chen, K., Gerstein, M. B., Kwok, P.-Y., Lansdorp, P. M., Marth,
G. T., Sebat, J., Shi, X., Bashir, A., Ye, K., Devine, S. E., Talkowski, M. E., Mills,
R. E., Marschall, T., Korbel, J. O., Eichler, E. E., and Lee, C. Multi-platform
discovery of haplotype-resolved structural variation in human genomes. Nat. Commun. 10, 1
(Apr. 2019), 1784.

[8] Dias, Z., and Meidanis, J. Genome rearrangements distance by fusion, fission, and transpo-
sition is easy. In spire (2001), Citeseer, pp. 250–253.

[9] Durbin, R. Efficient haplotype matching and storage using the positional burrows–wheeler
transform (pbwt). Bioinformatics 30, 9 (2014), 1266–1272.

[10] Ebert, P., Audano, P. A., Zhu, Q., Rodriguez-Martin, B., Porubsky, D., Bonder,
M. J., Sulovari, A., Ebler, J., Zhou, W., Mari, R. S., Yilmaz, F., Zhao, X., Hsieh, P.,
Lee, J., Kumar, S., Lin, J., Rausch, T., Chen, Y., Ren, J., Santamarina, M., Höps,
W., Ashraf, H., Chuang, N. T., Yang, X., Munson, K. M., Lewis, A. P., Fairley, S.,
Tallon, L. J., Clarke, W. E., Basile, A. O., Byrska-Bishop, M., Corvelo, A., Evani,
U. S., Lu, T.-Y., Chaisson, M. J. P., Chen, J., Li, C., Brand, H., Wenger, A. M.,
Ghareghani, M., Harvey, W. T., Raeder, B., Hasenfeld, P., Regier, A. A., Abel,
H. J., Hall, I. M., Flicek, P., Stegle, O., Gerstein, M. B., Tubio, J. M. C., Mu,
Z., Li, Y. I., Shi, X., Hastie, A. R., Ye, K., Chong, Z., Sanders, A. D., Zody, M. C.,
Talkowski, M. E., Mills, R. E., Devine, S. E., Lee, C., Korbel, J. O., Marschall,
T., and Eichler, E. E. Haplotype-resolved diverse human genomes and integrated analysis
of structural variation. Science (Feb. 2021).

14

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.05.27.493721doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.27.493721
http://creativecommons.org/licenses/by/4.0/

[11] Gurobi Optimization, L. Gurobi optimizer reference manual, 2019. http://www.gurobi.com.

[12] Li, H., Feng, X., and Chu, C. The design and construction of reference pangenome graphs
with minigraph. Genome biology 21, 1 (2020), 1–19.

[13] Marques-Bonet, T., Girirajan, S., and Eichler, E. E. The origins and impact of primate
segmental duplications. Trends Genet. 25, 10 (Oct. 2009), 443–454.

[14] Matsakis, N. D., and Klock II, F. S. The rust language. In ACM SIGAda Ada Letters
(2014), vol. 34(3), ACM, pp. 103–104.

[15] Mölder, F., Jablonski, K. P., Letcher, B., Hall, M. B., Tomkins-Tinch, C. H.,
Sochat, V., Forster, J., Lee, S., Twardziok, S. O., Kanitz, A., et al. Sustainable
data analysis with snakemake. F1000Research 10 (2021).

[16] Norri, T., Cazaux, B., Dönges, S., Valenzuela, D., and Mäkinen, V. Founder re-
construction enables scalable and seamless pangenomic analysis. Bioinformatics 37, 24 (July
2021), 4611–4619.

[17] Norri, T., Cazaux, B., Kosolobov, D., and Mäkinen, V. Minimum Segmentation for
Pan-genomic Founder Reconstruction in Linear Time. In 18th International Workshop on Algo-
rithms in Bioinformatics (WABI 2018) (Dagstuhl, Germany, 2018), vol. 113 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
pp. 15:1–15:15.

[18] Nurk, S., Koren, S., Rhie, A., Rautiainen, M., Bzikadze, A. V., Mikheenko, A.,
Vollger, M. R., Altemose, N., Uralsky, L., Gershman, A., Aganezov, S., Hoyt,
S. J., Diekhans, M., Logsdon, G. A., Alonge, M., Antonarakis, S. E., Borchers, M.,
Bouffard, G. G., Brooks, S. Y., Caldas, G. V., Chen, N.-C., Cheng, H., Chin, C.-S.,
Chow, W., de Lima, L. G., Dishuck, P. C., Durbin, R., Dvorkina, T., Fiddes, I. T.,
Formenti, G., Fulton, R. S., Fungtammasan, A., Garrison, E., Grady, P. G. S.,
Graves-Lindsay, T. A., Hall, I. M., Hansen, N. F., Hartley, G. A., Haukness, M.,
Howe, K., Hunkapiller, M. W., Jain, C., Jain, M., Jarvis, E. D., Kerpedjiev, P.,
Kirsche, M., Kolmogorov, M., Korlach, J., Kremitzki, M., Li, H., Maduro, V. V.,
Marschall, T., McCartney, A. M., McDaniel, J., Miller, D. E., Mullikin, J. C.,
Myers, E. W., Olson, N. D., Paten, B., Peluso, P., Pevzner, P. A., Porubsky, D.,
Potapova, T., Rogaev, E. I., Rosenfeld, J. A., Salzberg, S. L., Schneider, V. A.,
Sedlazeck, F. J., Shafin, K., Shew, C. J., Shumate, A., Sims, Y., Smit, A. F. A.,
Soto, D. C., Sović, I., Storer, J. M., Streets, A., Sullivan, B. A., Thibaud-Nissen,
F., Torrance, J., Wagner, J., Walenz, B. P., Wenger, A., Wood, J. M. D., Xiao,
C., Yan, S. M., Young, A. C., Zarate, S., Surti, U., McCoy, R. C., Dennis, M. Y.,
Alexandrov, I. A., Gerton, J. L., O’Neill, R. J., Timp, W., Zook, J. M., Schatz,
M. C., Eichler, E. E., Miga, K. H., and Phillippy, A. M. The complete sequence of a
human genome. Science 376, 6588 (Apr. 2022), 44–53.

[19] Parida, L., Melé, M., Calafell, F., Bertranpetit, J., and Consortium, G. Estimat-
ing the ancestral recombinations graph (arg) as compatible networks of snp patterns. Journal
of Computational Biology 15, 9 (2008), 1133–1153.

[20] Porubsky, D., Ebert, P., Audano, P. A., Vollger, M. R., Harvey, W. T., Mar-
ijon, P., Ebler, J., Munson, K. M., Sorensen, M., Sulovari, A., Haukness, M.,
Ghareghani, M., Lansdorp, P. M., Paten, B., Devine, S. E., Sanders, A. D., Lee,
C., Chaisson, M. J. P., Korbel, J. O., Eichler, E. E., Marschall, T., and Human
Genome Structural Variation Consortium. Fully phased human genome assembly with-
out parental data using single-cell strand sequencing and long reads. Nat. Biotechnol. (Dec.
2020).

[21] Porubsky, D., Höps, W., Ashraf, H., Hsieh, P., Rodriguez-Martin, B., Yilmaz,
F., Ebler, J., Hallast, P., Maria Maggiolini, F. A., Harvey, W. T., Henning, B.,
Audano, P. A., Gordon, D. S., Ebert, P., Hasenfeld, P., Benito, E., Zhu, Q.,
(HGSVC), H. G. S. V. C., Lee, C., Antonacci, F., Steinrücken, M., Beck, C. R.,

15

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.05.27.493721doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.27.493721
http://creativecommons.org/licenses/by/4.0/

Sanders, A. D., Marschall, T., Eichler, E. E., and Korbel, J. O. Recurrent inversion
polymorphisms in humans associate with genetic instability and genomic disorders. Cell (2022).

[22] Rastas, P., and Ukkonen, E. Haplotype inference via hierarchical genotype parsing. In
7th International Workshop on Algorithms in Bioinformatics (WABI 2007) (Berlin, Heidelberg,
2007), R. Giancarlo and S. Hannenhalli, Eds., Algorithms in Bioinformatics, Springer Berlin
Heidelberg, pp. 85–97.

[23] Rautiainen, M., and Marschall, T. MBG: Minimizer-based sparse de Bruijn Graph
construction. Bioinformatics 37, 16 (01 2021), 2476–2478.

[24] Roli, A., Benedettini, S., Stützle, T., and Blum, C. Large neighbourhood search
algorithms for the founder sequence reconstruction problem. Computers & Operations Research
39, 2 (2012), 213–224.

[25] Roli, A., and Blum, C. Tabu search for the founder sequence reconstruction problem:
A preliminary study. In Distributed Computing, Artificial Intelligence, Bioinformatics, Soft
Computing, and Ambient Assisted Living (Berlin, Heidelberg, 2009), S. Omatu, M. P. Rocha,
J. Bravo, F. Fernández, E. Corchado, A. Bustillo, and J. M. Corchado, Eds., Springer Berlin
Heidelberg, pp. 1035–1042.

[26] Schwartz, R., Clark, A. G., and Istrail, S. Methods for inferring block-wise ancestral
history from haploid sequences. In 2nd International Workshop on Algorithms in Bioinfor-
matics (WABI 2002) (Berlin, Heidelberg, 2002), Algorithms in Bioinformatics, Springer Berlin
Heidelberg, pp. 44–59.

[27] Sedlazeck, F. J., Lee, H., Darby, C. A., and Schatz, M. C. Piercing the dark matter:
bioinformatics of long-range sequencing and mapping. Nat. Rev. Genet. (Mar. 2018).

[28] Shao, M., Lin, Y., and Moret, B. M. E. An exact algorithm to compute the double-cut-
and-join distance for genomes with duplicate genes. Journal of Computational Biology 22, 5
(2015), 425–435.

[29] Swenson, K. M., Guertin, P., Deschênes, H., and Bergeron, A. Reconstructing the
modular recombination history of staphylococcus aureus phages. BMC bioinformatics 14, 15
(2013), 1–9.

[30] Ukkonen, E. Finding founder sequences from a set of recombinants. In 2nd International
Workshop on Algorithms in Bioinformatics (WABI 2002) (Berlin, Heidelberg, 2002), Algorithms
in Bioinformatics, Springer Berlin Heidelberg, pp. 277–286.

[31] Vollger, M. R., Guitart, X., Dishuck, P. C., Mercuri, L., Harvey, W. T., Gersh-
man, A., Diekhans, M., Sulovari, A., Munson, K. M., Lewis, A. P., Hoekzema, K.,
Porubsky, D., Li, R., Nurk, S., Koren, S., Miga, K. H., Phillippy, A. M., Timp, W.,
Ventura, M., and Eichler, E. E. Segmental duplications and their variation in a complete
human genome. Science 376, 6588 (Apr. 2022), eabj6965.

[32] Walter, M. E. M., Dias, Z., and Meidanis, J. Reversal and transposition distance of linear
chromosomes. In Proceedings. String Processing and Information Retrieval: A South American
Symposium (Cat. No. 98EX207) (1998), IEEE, pp. 96–102.

[33] Wang, T., Antonacci-Fulton, L., Howe, K., Lawson, H. A., Lucas, J. K., Phillippy,
A. M., Popejoy, A. B., Asri, M., Carson, C., Chaisson, M. J. P., Chang, X., Cook-
Deegan, R., Felsenfeld, A. L., Fulton, R. S., Garrison, E. P., Garrison, N. A.,
Graves-Lindsay, T. A., Ji, H., Kenny, E. E., Koenig, B. A., Li, D., Marschall, T.,
McMichael, J. F., Novak, A. M., Purushotham, D., Schneider, V. A., Schultz,
B. I., Smith, M. W., Sofia, H. J., Weissman, T., Flicek, P., Li, H., Miga, K. H.,
Paten, B., Jarvis, E. D., Hall, I. M., Eichler, E. E., Haussler, D., and Human
Pangenome Reference Consortium. The human pangenome project: a global resource to
map genomic diversity. Nature 604, 7906 (Apr. 2022), 437–446.

16

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.05.27.493721doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.27.493721
http://creativecommons.org/licenses/by/4.0/

[34] Wick, R. R., Schultz, M. B., Zobel, J., and Holt, K. E. Bandage: interactive visual-
ization of de novo genome assemblies. Bioinformatics 31, 20 (06 2015), 3350–3352.

[35] Wu, Y., and Gusfield, D. Improved algorithms for inferring the minimum mosaic of a set
of recombinants. In Combinatorial Pattern Matching (Berlin, Heidelberg, 2007), B. Ma and
K. Zhang, Eds., Springer Berlin Heidelberg, pp. 150–161.

[36] Yancopoulos, S., Attie, O., and Friedberg, R. Efficient sorting of genomic permutations
by translocation, inversion and block interchange. Bioinformatics 21, 16 (2005), 3340–3346.

[37] Zhao, X., Collins, R. L., Lee, W.-P., Weber, A. M., Jun, Y., Zhu, Q., Weisburd, B.,
Huang, Y., Audano, P. A., Wang, H., Walker, M., Lowther, C., Fu, J., Gerstein,
M. B., Devine, S. E., Marschall, T., Korbel, J. O., Eichler, E. E., Chaisson, M.
J. P., Lee, C., Mills, R. E., Brand, H., and Talkowski, M. E. Expectations and
blind spots for structural variation detection from long-read assemblies and short-read genome
sequencing technologies. Am. J. Hum. Genet. (Mar. 2021).

17

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.05.27.493721doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.27.493721
http://creativecommons.org/licenses/by/4.0/

A Appendix
A.1 Methods for the Simulation Experiments
The simulation experiments were carried out with the help of a new tool developed specifically for
it. It generates a single seed haplotype, which then serves to construct a variation graph, on which
random walks from source to sink are made to generate new haplotypes. The seed haplotype is
initially a sequence of unique markers. A rate of duplications determines the number of duplications
to add. For each duplication, the marker to duplicate and the position of insertion are sampled
at random. The orientation of the duplicates is sampled according to a ratio of inversions. Next,
the seed’s variation graph is built based on its sequence, represented as a walk through the graph.
Finally, a given number of unique haplotypes is generated by performing random walks from source to
sink in the graph. Essentially, the simulator starts from seed sequence, then generates an observable
set of haplotypes and their graph. Because the walks are random, edges not covered by any of
the new haplotypes must be pruned in order to respect the properties of a variation graph. The
number of markers and haplotypes, and the ratios of duplication and inversion are the simulation
parameters. The ratio of duplications (resp. of inversions) is defined as the ratio of the number of
duplications to the number of nodes (resp. number of inversions to the number of duplications). All
simulation experiments were carried out by running 50 simulations per parameter set, then applying
the solutions of Problems 1 and 2 over the generated graph and haplotype set. The simulation
experiments are implemented as Snakemake [15] workflows which also provide the benchmarking
results then used for evaluation. The data and workflows for the 1p36.13 locus, as well as all
simulation experiments are available in the github repository7 under the examples directory.

A.2 Supplementary Figures and Tables
In the following figures, for each of the simulation experiments, performance is measured with regards
to a range of values of a single parameter. All others are fixed to a constant value indicated above
the given plot. They are labeled as follows: Nm, number of markers; Nh, number of haplotypes; Rd,
ratio of duplications; and Ri, ratio of inverted duplications. Runtime is measured in seconds of wall
clock time, and peak memory usage as the peak proportional set size (PSS) in Megabytes.

0

3

6

9

M
ea

n
nu

m
be

r
of

 r
ec

om
bi

na
tio

ns

1

2

3

4

5

6

0

20

40

60

80

M
ea

n
nu

m
be

r
of

 r
ec

om
bi

na
tio

ns

2

3

4

50 100 150 200
Number of markers

10 20 30 40 50
Number of haplotypes

0.25 0.50 0.75 1.00
Ratio of duplications

0.25 0.50 0.75 1.00
Ratio of inverted duplications

Before minimization
After minimization

Before minimization
After minimization

Nh=10, Rd=0.1, Ri=0.1 Nm=100, Rd=0.1, Ri=0.1

Nm=100, Nh=10, Ri=0.1 Nm=100, Nh=10, Rd=0.1

Figure S1: Reduction in the number of recombinations following minimization. The plots show the
total number of recombinations before (blue dots) and after (red dots) minimization, as a function
of each simulation parameter.

7https://github.com/marschall-lab/hrfs

18

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.05.27.493721doi: bioRxiv preprint

https://github.com/marschall-lab/hrfs
https://doi.org/10.1101/2022.05.27.493721
http://creativecommons.org/licenses/by/4.0/

0

500

1000

1500

Ru
nt

im
e

(s
ec

.)

0

500

1000

1500

0

200

400

600

Pe
ak

 P
SS

 (M
B.

)

0

200

400

600

5 10 15 20 25 30 35 40 45 50
Number of haplotypes

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ratio of inversions

5 10 15 20 25 30 35 40 45 50
Number of haplotypes

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ratio of inversions

Nm=100, Rd=0.1, Ri=0.1 Nh=10, Nm=100, Rd=0.1

Figure S2: Number of recombinations minimization benchmarks. Runtime (upper panels) and
peak PSS (lower panels) as a function of the number of haplotypes (left) and the ratio of inverted
duplications (right).

0

10

20

30

Ru
nt

im
e

(s
ec

.)

0

200

400

600

Pe
ak

 P
SS

 (M
B.

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ratio of inversions

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ratio of inversions

Rm=100k, Rd=0.1

Figure S3: Flow computation performance with a variable ratio of inversions. Runtime (left) and
memory usage (right) as a function of this parameter.

19

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.05.27.493721doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.27.493721
http://creativecommons.org/licenses/by/4.0/

1 2 3 4 5 6 7 8

Figure S4: Visualization of a solution to the minimization problem on the 1p36.13 locus.
The gray bars correspond to the graph’s nodes, labeled 1 to 8. The founder sequence
(>1>2>3<7>5>2>3<4>5>5<6<4<3>7<3<2<4>5>6<5>4<5<4<3<2>7<3>6>7<3<4<3<2>6<4>3>2>7>8) is
traced from top to bottom. A slanted line indicates the underlying node being traversed; if slanted
rightwards, traversal is in forward direction, and if slanted leftwards, traversal is in reverse direc-
tion. Colors correspond to different haplotypes. The haplotype sequence is: EUR-HG00171-h2,
AFR-NA19036-h1, SAS-GM20847-h2, AFR-HG03065-h2, AFR-NA19036-h1, AFR-NA19036-h1,
AMR-HG01573-h2, AFR-HG02011-h2, AFR-HG03371-h2, SAS-HG03683-h2. Recombinations are
marked with a star.

20

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.05.27.493721doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.27.493721
http://creativecommons.org/licenses/by/4.0/

Table T1: Haplotype marker sequences used in the 1p36.13 locus analysis, sorted alphabetically.
The haplotype labeled CHM13 is the provided reference. The sequences are in GFA Path format,
where > corresponds to traversal in forward direction, and < in reverse direction.

Haplotype Oriented marker sequence
CHM13 >1>2>3>4>2>3>4>5>6<5<4<3<2>7>8
AFR-HG02011-h1 >1>2>3>4>2>3>4<6<5<4<3<2<4<3<2>7>8
AFR-HG02011-h2 >1>2>3<7<6>3>4>5<6<5<4<3<2<4<3<2>7>8
AFR-HG02587-h1 >1>2>3>4>2>3>4<6<4<3<2>6<5<4<3<2<4<3<2>7>8
AFR-HG02587-h2 >1>2>3>4>2>3<7<6>2>3>4>5<6<5<4<3<2>7>8
AFR-HG03065-h1 >1>2>3>4>5<6>3>4>5>6<4<3<2<4<3>6<4<3<2>7>8
AFR-HG03065-h2 >1>2>3>4>2>3<7>3>4>6<4<3<2<4<3>6<4<3<2>7>8
AFR-HG03371-h1 >1>2>3>4>2>3>4<6>3>4>5<6<4<3<2>6<4<3<2<4<3<2>7>8
AFR-HG03371-h2 >1>2>3>4>2>3<7>3>4>5>6<5<4<3<4<3<2>7>8
AFR-NA19036-h1 >1>2>3<4>5>6<5<4<3<2>7<3<2<4<3<2>7>8
AFR-NA19036-h2 >1>2>3<7>3>4>5>6<4<3<2<4<3>6<4<3<2>7>8
AFR-NA19238-h1 >1>2>3>4>2>3>4<6<4<3<2>6<5<4<3<2<4<3<2>7>8
AFR-NA19238-h2 >1>2>3>4>5<6>2>3>4>5<6<5<4<3<2<4<3<2>7>8
AFR-NA19239-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>7>8
AFR-NA19239-h2 >1>2>3>4>2>3>4>2>3<7<6>2>3>4>5<6<5<4<3<2<4<3<2>7>8
AFR-NA19240-h1 >1>2>3>4>5<6>2>3>4>5<6<5<4<3<2<4<3<2>7>8
AFR-NA19240-h2 >1>2>3<7>2>3>4>5>6<5<4<3<2>7>8
AFR-NA19983-h1 >1>2>3>4>2>3>4>5>6<5<4<3<2>7<3<2>7>8
AFR-NA19983-h2 >1>2>3>4>2>3>4<6>2>3>4>5<6>2>3>4>6<5<4<3<2<4<3<2>7>8
AMR-GM19650-h1 >1>2>3>4>5<6<5<4<3<2<4<3<2>7<3<2<4<3<2>7>8
AMR-GM19650-h2 >1>2>3>4>2>3>4>5>6<5<4<3<2>7<3<2<4<3<2>7>8
AMR-HG00731-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>7>8
AMR-HG00731-h2 >1>2>3<7>2>3>4>5<6<5<4<3<2>6<4<3<2>7>8
AMR-HG00732-h1 >1>2>3>4>5>6<4<3<2>6<5<4<3<2>7>8
AMR-HG00732-h2 >1>2>3>4>2>3>4>2>3>4>5>6<5<4<3<2<4<3<2>7>8
AMR-HG00733-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>7>8
AMR-HG00733-h2 >1>2>3>4>5>6<4<3<2>6<5<4<3<2>7>8
AMR-HG01114-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
AMR-HG01114-h2 >1>2>3>4>2>3>4>5<6<5<4<3<2>6<5<4<3<2>7>8
AMR-HG01573-h1 >1>2>3>4>5>6<5<4<3<2>6<5<4<3<2<4<3<2>7>8
AMR-HG01573-h2 >1>2>3<7>2>3>4>5<4<3<2<5<4<3<2>7>8
EAS-GM00864-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-GM00864-h2 >1>2>3>4>2>3>4>5>6<5<5<5<4<3<2>7>8
EAS-GM18939-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-GM18939-h2 >1>2>3<7>2>3>4>6<5<4<3<2>6<4<3<2>7>8
EAS-HG00512-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-HG00512-h2 >1>2>3>4>5<6>2>3>4>5>6<5<4<3<2>6<4>3>2>7>8
EAS-HG00513-h1 >1>2>3<7>2>3>4>5<6>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-HG00513-h2 >1>2>3<7>2>3>4>5<6>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-HG00514-h1 >1>2>3>4>5<6>2>3>4>5>6<5<4<3<2>6<4>3>2>7>8
EAS-HG00514-h2 >1>2>3<7>2>3>4>5>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-HG01596-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>7>8
EAS-HG01596-h2 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-HG02018-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-HG02018-h2 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-NA18534-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-NA18534-h2 >1>2>3>4>5>2>3>4>5<6<5<4<3<2>6<5<4<3<2>7>8
EUR-GM12329-h1 >1>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EUR-GM12329-h2 >1>2>3>4>2>3>4>5>6<5<4<3<2>7>8
EUR-GM20509-h1 >1>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EUR-GM20509-h2 >1>2>3<7<6>2>3>4>5>6<5<4<3<2>6>7<3<2<4<3<2>7>8
EUR-HG00096-h1 >1>2>3<7>2>3>4>5<6<5<4<3<2>6<4<3<2>7>8
EUR-HG00096-h2 >1>2>3>4>5>2>3>4<6<5<4<3<2>7>8
EUR-HG00171-h1 >1>2>3>4>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EUR-HG00171-h2 >1>2>3<7>5>2>3>4>5>2>3>4>6<5<4<3<2>7>8
EUR-HG01505-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EUR-HG01505-h2 >1>2>3>4>2>3>4>5>2>3>4>5<6<5<4<3<2>7>8
EUR-NA12878-h1 >1>2>3>4>2>3>4>5>6<5<4<3<2>6<5<4<3<2<4<3<2>7>8
EUR-NA12878-h2 >1>2>3>4>2>3>4>5>6<5<4<3<2>6<5<4<3<2>7>8
SAS-GM20847-h1 >1>2>3>4>5<6<5<4<3<2>6<5<4<3<2>6<5<4<3<2>7>8
SAS-GM20847-h2 >1>2>3>4>2>3>4>5>6<5<5<4<3<2>6<4<3<2>7>8
SAS-HG02492-h1 >1>2>3>4>2>3>4>5>6<5<4<3<2>6<5<4<3<2<4<3<2>7>8
SAS-HG02492-h2 >1>2>3>4>2>3>4>2>3>4>5>6<4<3<2>6<5<4<3<2<4<3<2>7>8
SAS-HG03009-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
SAS-HG03009-h2 >1>2>3>4>5>2>3>4>5<6<5<4<3<2>7>8
SAS-HG03683-h1 >1>2>3>4>2>3>4>5>6<5<4<3<2>7>8
SAS-HG03683-h2 >1>2>3>4>5<6>2>3>4>5>6<5<4<3<2>6<4>3>2>7>8
SAS-HG03732-h1 >1>2>3>4>2>3>4>5>6<5<4<3<2>7>8
SAS-HG03732-h2 >1>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8

21

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.05.27.493721doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.27.493721
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods
	Preliminaries
	Constructing Founder Sets
	Minimizing Recombinations in Founder Sequences

	Results
	Experimental Data
	Simulation Experiments
	Application: Locus 1p36.13

	Conclusion
	Acknowledgements
	Competing interests
	Appendix
	Methods for the Simulation Experiments
	Supplementary Figures and Tables

