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Abstract 

We introduce the dynseq genome browser track, which displays DNA nucleotide characters 

scaled by user-specified, base-resolution scores provided in the BigWig file format. The 

dynseq track enables visualization of context-specific, informative genomic sequence features. 

We demonstrate its utility in three popular genome browsers for interpreting cis-regulatory 

sequence syntax and regulatory variant interpretation by visualizing nucleotide importance 

scores derived from machine learning models of regulatory DNA trained on protein-DNA 

binding and chromatin accessibility experiments. 
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Main 

 
High-throughput experimental platforms have revolutionized the ability to profile diverse 

biochemical and functional properties of biological sequences such as DNA, RNA, and 

proteins. Nonetheless, the path from data collection to gleaning novel biological insights and 

generating viable hypotheses is not straightforward. Genome browsers are a crucial tool in this 

process. By collating multiple data modalities with customizable tracks rendered using intuitive 

visualizations, genome browsers enable an interactive and interpretable exploration of diverse 

types of genome profiling experiments and derived annotations. For example, tracks encoded 

in the BigWig file format are commonly used to visualize continuous profiles such as coverage 

tracks from high-throughput sequencing experiments like RNA-seq and ATAC-seq, as well as 

computationally-derived continuous annotations such as sequence conservation. Tracks 

encoded in the BED file format are frequently employed to visualize sets of discrete genomic 

intervals of interest such as regions with significant enrichment of experimentally measured 

signals. More recently, genome browsers have added support for long-range interactions and 

2-dimensional views to visualize contact maps from assays such as Hi-C. 

 

However, existing genome browser tracks are not well-suited for intuitive visualization and 

analysis of DNA sequence features such as transcription factor (TF) motifs. A typical analysis of 

cis-regulatory elements involves visualizing motif hits, obtained by thresholding scores from 

position weight matrix (PWM) scanning, as BED-based annotation tracks. While the BED track 

visualization highlights the genomic coordinates overlapping these motif hits, the specific 

sequences of each motif hit cannot be gleaned from this track. Instead, one would require 

cross-referencing a genome sequence track with the motif BED track to identify the sequences 

of motif hits. Even so, information about motif affinity and if and where the underlying 
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sequence differs from the consensus motif sequence are not immediately apparent. This 

makes interpretation slow and challenging. This problem is compounded when analyzing 

multiple cellular states and/or molecular readouts (e.g., ATAC-seq, ChIP-seq) simultaneously, 

since BED coordinates of enriched regions (peaks) and the set of active TF motifs vary across 

cell states. Similarly, sequence conservation tracks in non-coding regions often highlight 

conserved TF binding, but this information is not visible when these tracks are displayed using 

the standard BigWig rendering. An alternate approach of visualizing DNA bases scaled by 

heights proportional to meaningful scores such as per-base binding strength has been 

proposed previously (Schneider, 1997). Such a track can be used to visualize not just the 

signal score at each base but also the corresponding identity of the bases, thereby highlighting 

high scoring sequence features at single base-resolution.  

 

Recently, machine learning models that can map DNA sequence to functional readouts from 

various high-throughput assays have been developed to study the sequence basis of 

molecular activity and decipher putative functional genetic variants influencing protein-DNA 

binding, chromatin state, splicing, gene expression, and long-range chromatin contacts 

(Eraslan et al., 2019; Z. Avsec et al., 2021; de Almeida et al., 2022). These models can be 

interrogated using various feature attribution methods to infer quantitative, predictive 

importance scores of each base in any candidate sequence of interest, thereby allowing 

discovery of predictive nucleotides and sequence features such as TF motifs, splice sites, and 

polyadenylation sites (Jaganathan et al., 2019; Bogard et al., 2019). These importance scores 

are currently visualized in ad-hoc ways that are not suited to seamless exploration and easy 

sharing.  
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Hence, we introduce the dynamic sequence (dynseq) genome browser track that displays DNA 

nucleotide characters at a genomic locus with heights scaled by user-specified, base-

resolution, quantitative scores. The dynseq track makes it straightforward to visually recognize 

sequence features such as TF motifs which are activated in a context-specific manner. The 

dynseq track is a generalization of previously proposed “sequence walkers” (Schneider, 1997) 

and is adapted to modern genome browsers. Here, we describe the dynseq track 

specifications and showcase typical use cases for interpreting cis-regulatory sequence syntax 

and non-coding, regulatory genetic variants. 

 
To visualize context-specific dynamic importance scores, we first implemented and integrated 

the dynseq track in the WashU Epigenome Browser (Li et al., 2019, 2022). The input file format 

is the BigWig format (Kent et al., 2010) with per base-pair importance scores within broader 

regions of interest, such as peaks. At each position, the nucleotide character (A/C/G/T) is 

rendered. Each nucleotide has a distinct color. The height of the character is scaled by the 

importance score at that position. Negative scores are handled by flipping the character along 

the x-axis. Hovering the mouse over the track shows the score at that position. Right-clicking 

on the track opens a customization panel that allows choosing an automatic y-axis scale or 

setting fixed maximum and minimum limits. When the track is zoomed out such that individual 

bases cannot be discerned, the track visualization automatically switches to a regular BigWig 

view. The simple specification makes the dynseq track amenable to be easily incorporated into 

other genome browsers. We have so far added equivalent native functionality for UCSC 

Genome Browser (Kent et al., 2002) and HiGlass (Kerpedjiev et al., 2018) (Supplementary 

Table 1). 
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Figure 1. WashU Epigenome Browser session for deciphering sequence architecture of a cis-

regulatory element. (A) Human β-globin locus with the observed DNase-seq track and zoomed out 

DNase-seq model-derived importance dynseq track (B) An enhancer 10kb upstream of HBE1 (hg38 

chr11:5280613-5280820) with observed base-resolution 5’-end coverage tracks of DNase-seq and 
ChIP-seq targeting transcription factors NFE2, GATA1, GATA2, TAL1 and USF1 in the K562 cell-line, 

corresponding predicted tracks from BPNet sequence models trained on these data, BPNet model-
derived nucleotide importance scores visualized using dynseq tracks, and PhyloP conservation scores 

visualized using standard BigWig and dynseq tracks. For ChIP-seq observed and predicted tracks, blue 
denotes the plus (+) strand and orange denotes the minus (-) strand. 
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To illustrate a typical use case, we trained separate BPNet neural networks (Ž. Avsec et al., 

2021) to map DNA sequence to base-resolution profiles of DNase-seq and 5 TF ChIP-seq 

experiments in the K562 cell line (ENCODE Project Consortium, 2012; Davis et al., 2018). We 

used the DeepLIFT feature attribution algorithm to derive nucleotide importance scores for 

sequences underlying regions with enriched signal (peaks) from each of the models (Shrikumar 

et al., 2017; Lundberg and Lee, 2017). We used the WashU Epigenome browser to visualize 

and interpret an enhancer in the β-globin locus ~10kb upstream of the HBE1 gene (Kellis et al., 

2014). We used BigWig tracks to display the observed and model-predicted profiles for each 

assay, and dynseq tracks to visualize assay-specific importance scores derived from each 

model (Figure 1, Supplementary Figure 1). The dynseq tracks clearly highlight the predicted 

quantitative influence of different sequence motifs on chromatin accessibility and binding 

profiles of the 5 TFs. NFE2, GATA1, GATA2 and USF1 binding profiles are predicted to be 

strongly influenced by their respective direct binding motifs. In contrast, TAL1 binding profile is 

strongly affected by the GATA motif and multiple weaker TAL1 motifs, which suggests that the 

GATA TFs are potentially involved in cooperatively recruiting TAL1 to its binding sites. The 

DNase-seq model’s importance score track highlights the GATA and NFE motifs, suggesting 

that these motifs, but not TAL and USF, likely drive DNase I hypersensitivity at this locus. We 

also visualized PhyloP conservation scores using both the standard BigWig rendering and the 

dynseq track. The PhyloP dynseq track highlights strong conservation of the GATA, NFE, and 

multiple TAL motifs but not the USF motif. Together, the dynseq tracks are able to reveal 

subtle, quantitative, context-specific sequence determinants of TF binding and chromatin 

accessibility thereby providing insights into the architecture of cis-regulatory elements.  
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Figure 2. Resgen/HiGlass browser session for model-guided, non-coding variant interpretation 

Zoomed out (left, hg38 chr22:43720597-43721177) and close-up (right, chr22:43720840-43720958) 

views of predicted base-resolution coverage profiles (as BigWig tracks) and nucleotide importance 
scores (as dynseq tracks) from BPNet models of SPI1 ChIP-seq and ATAC-seq data for a genomic 

sequence containing the reference (C) and alternate (G) allele of the rs5764238 genetic variant, 
previously identified as a SPI1 binding QTL. For ChIP-seq predicted tracks, blue tracks denote the plus 

(+) strand coverage and orange tracks denote the minus (-) strand coverage. The G allele is predicted to 

increase SPI1 ChIP-seq and ATAC-seq signal by creating a strong SPI1 motif, as seen in the dynseq 
tracks. 

 

Another salient application for dynseq tracks is to explore the sequence features impacted by 

functional genetic variants. As a case study, we trained BPNet models on ChIP-seq profiles of 

the SPI1 transcription factor and ATAC-seq profiles in the GM12878 cell line (ENCODE Project 

Consortium, 2012; Davis et al., 2018). We used these models to predict the allelic effect of 

non-coding variants on ATAC-seq and SPI1 ChIP-seq profiles and derive nucleotide-resolution 

DeepLIFT importance scores for the sequences containing the reference and alternate alleles 

of each variant. rs5764238 is a single nucleotide variant that has been previously shown to 

have a significant allelic effect on SPI1 binding in a binding quantitative trait locus (bQTL) study 

(Tehranchi et al., 2016). We used the Resgen HiGlass browser to visualize the predicted SPI1 
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ChIP-seq and ATAC-seq profiles as BigWig tracks and the DeepLIFT importance scores as 

dynseq tracks for the pair of sequences containing the reference and alternate allele of this 

variant (Figure 2). The BigWig tracks show that the alternate (G) allele is predicted to enhance 

SPI1 binding and chromatin accessibility, in agreement with the bQTL study. The dynseq 

tracks show that the G allele creates a strong SPI1 binding motif with high importance scores 

from the SPI1 ChIP-seq and ATAC-seq models, thereby revealing this motif as the primary 

driver of enhanced signal. Hence, the dynseq tracks add an additional level of interpretability to 

the study of genetic variants by focusing attention on visually recognizable sequence features 

in a context-specific manner.  

 

Genome browsers are an indispensable tool for the analysis of genomic and biochemical 

profiling experiments. We expect that the dynseq tracks will enhance exploratory analysis, 

discovery and hypothesis generation using genome browsers by enabling contextual 

interpretation of informative sequence features in genomic elements and those disrupted by 

genetic variation at single nucleotide resolution.  

 

Availability and implementation 

The dynseq track takes input files in the BigWig format. A tutorial on how to use the dynseq 

tracks on various browsers is available at https://kundajelab.github.io/dynseq-pages/. The 

dynseq track is currently available for the following browsers: 

● UCSC Genome Browser (https://genome.ucsc.edu): Usage information is available at 

https://genome.ucsc.edu/goldenPath/help/BigWig.html#dynseq.  

● HiGlass (https://higlass.io) and Resgen (https://resgen.io): Dynseq is implemented as a 

plugin track for these browsers. Source code and usage information is available at 

https://github.com/kundajelab/higlass-dynseq/.  
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● WashU Epigenome Browser (https://epigenomegateway.wustl.edu): Source code for 

the WashU Epigenome Browser with dynseq track support is available on GitHub 

(https://github.com/lidaof/eg-react). Track usage is described in the WashU Epigenome 

Browser documentation (https://eg.readthedocs.io/en/latest/tracks.html#dynseq).  

See Supplementary Table 1 for more information on functionality supported by each browser. 

The data and models used to create the vignettes are available at 

https://doi.org/10.5281/zenodo.6582100. Code is available at 

https://github.com/kundajelab/dynseq-paper.  
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Supplementary Figure 1.  UCSC Genome Browser and Resgen session for cis-regulatory 

element dissection Same tracks as in Figure 1 in (A) UCSC Genome Browser and (B) Resgen 

around hg38 chr11:5280600-5280800. For ChIP-seq observed and predicted tracks, the red track 

denotes the plus (+) strand and the green track denotes the minus (-) strand in UCSC (A) and blue 

and orange respectively in Resgen (B).  
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TATGTCACATTCTGTCTCAGGCATCCAT TTTCTTTATGATGCCGT TTGAGGT GGA GT TTTAGTCAGGTGGTCAGCTTCTCCTTTTTTTTGCCATCTGCC CTGTAAGCATCCTGCTGGGGACCCAGATAGGAGTCATCA CTCTAGGCTGAGAACATCTGGGCACACACCCTAAGCCTCA GCATGACTCATCATGACTCAGCATTGCTGTGCTTGAGCCAG AAGGTTTGCTTAGAAGGTTACACAGAACCAGAAGGCGGGGGTGGGG

DNase importance

hg38 | NFE2 observed 10hg38 | NFE2 observed 10

hg38 | NFE2 predicted 5hg38 | NFE2 predicted 5

TA TGTCACATTCT GTCTCAGG CAT CCATTTTCTTTA T GA TGCCGT TTGAGG TGGAGTTTTAGT CAG GT GGTCAG CTT C TC CTTTT TTT TGCC A TCT GCC C T G TAA GCA TCC TGCTGGGG A CCCAGATAG GAGTCAT CACTC TA GGCTGAGAACATCTGGGCA CACACCCTAAGCCTCAGCATGACTCATCATGACTCAGCATTGCTGTGCTTG AGCCAGAAGGTTTGCTTAGAAGGTTA ACAGAA CCAGAA GGCGGGGGTGGG G

NFE2 importance

hg38 | GATA1 observed 2hg38 | GATA1 observed
2
4

hg38 | GATA1 predicted
0.2

hg38 | GATA1 predicted
0.2

TA TG TCACATTC GTCT CAGGCATC C ATTTTCTTTATGATGCCGTTTGAGGTGGAG TTTTAGTCAGGTGGTCAG TCTCCTTTTTTTTGCCATCTGCCCTGTAAGCAT CCTGCTGGGGACCCAGATAGGAGTCATCACTCT AGGCTGAGAACATCTGGGCACACACCCTAAGCCTCAGCATGACTCATCATGACTCAGCATTGCTGTGCTTGAGCCAGAAGGTTTGC TTAGAAGGTTACACAGAAC CAGAAGGCGGGGGTGGGG

hg38 | GATA1 importance

hg38 | GATA2 observed 5hg38 | GATA2 observed 5

hg38 | GATA2 predicted 1hg38 | GATA2 predicted 1

TAT GTCACAT C TGTCT CAGGCAT CCATTT T CTTT ATGATGCC GTTTGAGGT GGAGTTTTAG T CAGGTGGTCAGCTTCTCCTT TTTTTTGCCATCTG CCCTGTAAGCATCCTGCTGGGGACCCAGATAGGAGTCATCACTCTAGGCTGAGAACATCTGGGCACACACCCT AAGCCTCAGCATGACTCATCATGACTCAGCAT TGCTGTGCTTGAGCCAGAAGGTTTGCTTAGAAGGTTA CACAGA ACCAGAAGGCGG GGGTGGG G

hg38 | GATA2 importance

hg38 | TAL1 observed 10hg38 | TAL1 observed 10

hg38 | TAL1 predicted 2hg38 | TAL1 predicted 2

ATAT GT CA C ATT CT GTC AGG CATCCAT T T T TTTATGATGCCGT TTGAGGTGGAGTTTTAGTCAGG TGGTCA GCTTCT CTTTTTTTTGCCATCTGCC CTGTAAGCATCCTGCTGGGGACCCAGATAGGAGTCATCACTCTAGGCTGAGAACATCTGGGCACACACCC TAAGCCTCAGCATGACTCATCATGACTCAGCATTGCTGTGCTTGA GCCAGAAGGTTTGCT TA GAAGGTT CA CAGAACCAGAAGGCG GGGGTGGGG

hg38 | TAL1 importance

hg38 | USF observed 5hg38 | USF1 observed 5

hg38 | USF1 predicted 0.5hg38 | USF1 predicted 1

TATGTCACATTCTGTCTCAGGCATCCAT T TTCTTTATGATGCCGTTTGAGGTGGAGTTTTAGTCAGGTGGTCAGCTTCTCCTTTTTTTTGCCATCTGCCCTGTAAGCATCCTGCTGG GGACCCAGATAGGAGTCATCACTCTAGGCTGAGA ACATCTGGGCACACACCCTAAGCCTCAGCATGACTCATCATGACTCAGCATTGCTGTGCTTGAGCCAGAAGGTTTGCTTAGAAGGTTACACAGAACCAGAA GGCGGGGGTGGG G

hg38 | USF1 importance

A

B

Scale
chr11:

50 bases hg38
5,280,630 5,280,640 5,280,650 5,280,660 5,280,670 5,280,680 5,280,690 5,280,700 5,280,710 5,280,720 5,280,730 5,280,740 5,280,750 5,280,760 5,280,770 5,280,780 5,280,790

DNase observed

DNase predicted

DNAse importance

NFE2 observed

NFE2 predicted

NFE2 importance

GATA1 observed

GATA1 predicted

GATA1 importance

TAL1 observed

TAL1 predicted

TAL1 importance

USF1 observed

USF1 predicted

USF1 importance
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T G G G T T G C A G T G G C T T T T T T T T T T G C C A T C T G C C T G A A C A T C C T G C T G G G A C C A G A T A G G A G T C A T C A C T C T A G G C T G A G A A C A T C T G G G C C A A C C A G C T C A G C A T G A C T C A T C A T G A C T C A C A T T T G G C C A G A A G
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DNase Signal

DNase predicted

DNAse importance

0.127022 _

-0.0172525 _
NFE2 observed

NFE2 predicted

NFE2 importance

0.217489 _

-0.0484187 _
GATA1 observed

GATA1 predicted

GATA1 importance

0.160668 _

-0.0411719 _
TAL1 observed

TAL1 predicted

TAL1 importance

0.300183 _

-0.0217749 _
USF1 observed

USF1 predicted

USF1 importance

0.130149 _

-0.0291816 _
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Supplementary Table 1. Supported functionalities of current implementations of the dynseq 

track 

 WashU UCSC HiGlass/Resgen 

Input format BigWig BigWig BigWig 

Auto or fixed y-axis ✅ ✅ ✅ 

Reverts to BigWig display when zoomed 
out 

✅ ✅ ✅ 

Support for files on remote servers ✅ ✅ ✅ 

Vector export ✅ ✅ ✅ 

Customizable background color ✅ ❌ ❌ 

Customizable font and nucleotide colors ❌ ❌ ✅ 

Custom fasta file per dynseq track ❌ ❌ ✅ 
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