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Abstract 
DNA is stabilized by inter-strand base pairing and intra-strand base stacking. Untangling these energy 
contributions is challenging, but has implications for understanding biological processing of DNA, and for 
many aspects of biotechnology including drug discovery, molecular modeling and DNA nanotechnology. 
Here, we developed novel DNA constructs and performed single molecule experiments using a custom 
Centrifuge Force Microscope (CFM) to probe energetics of base stacking interactions between single bases. 
Collecting rupture statistics from over 30,000 single-molecule tethers, we quantified 10 unique base stacking 
combinations and 4 modified nucleotides. For canonical bases, we found stacking energies strongest for 
purines (G|A at -2.3 ± 0.2 kcal/mol) and weakest for pyrimidines (C|T at 0.4 ± 0.1 kcal/mol). Among hybrid 
stacking with modified nucleotides, only a bulky fluorophore modification reduced stacking energy while 
phosphorylated, methylated, and RNA bases had little effect. We demonstrate the implications of the work 
with two biotechnology applications: using interfacial base stacks to tune the stability of a DNA tetrahedron, 
and to alter the kinetics of enzymatic ligation. These results provide new insights into fundamental DNA 
interactions that are critical in biology and biotechnology. 
 
 
Introduction 
DNA is the genetic material for all known living organisms. As a biopolymer, it is remarkable in its ability to 
efficiently carry genetic information, and for material properties that provide high overall stability and yet still 
allow biological manipulation. These properties are illustrated by the fact that ancient genomes have been 
recovered from DNA over 100,000 years old [1], and yet normal biological processes routinely manipulate 
DNA to unwind, split, and recombine. These features of DNA are governed primarily by two forces, base 
pairing between two complementary strands and coaxial base stacking between adjacent bases. Relatively 
small binding energies of individual bases enable biological manipulation at the single base level, while 
cumulative effects of hundreds to millions of bases ensure high overall stability. 
 
Base pairing interactions are generally considered to play the dominant role in DNA and RNA material 
properties, causing base stacking interactions to be sometimes overlooked. However, base stacking interactions 
are essential for normal biological processes, for nucleic acid binding drugs including chemotherapeutics, and 
for many biotechnology applications. One interesting example is a minimal RNA kissing complex, which has 
only 2 canonical base pairs but exhibits unusually high mechanical stability similar to a ~10 bp duplex [2]. 
Molecular dynamics simulations and single-molecule work attributed the stability to base stacking interactions 
[3,4]. Indeed, base stacking is critical to biological processes including DNA replication [5,6], RNA 
polymerization [7], and formation and management of G-quadruplexes in telomeres [8,9]. Base stacking is 
also thought to be critical for supramolecular assembly of nucleobases in pre-biotic RNA as part of the RNA 
world hypothesis [10,11]. Stacking also effects drug development; many DNA and RNA binding drugs are 
small molecule intercalators which rely on stacking interactions to disrupt a multitude of diverse diseases 
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including cancers, viral infections, Myotonic dystrophy, and Parkinson’s disease [12-14]. Synthetic base 
analogs such as LNA [15] and universal bases [16] partly rely on modified base stacking interactions, as does 
a DNA helix engineered with expanded size and stability [17]. The formation of synthetic DNA structures can 
rely heavily on base stacking, including DNA polyhedra [18], DNA crystals [19], and DNA liquid crystals 
[20], with some designs that assemble into 2D lattices using only blunt end stacking interactions [21,22]. 
 
Measuring base stacking is challenging due to the small energies, the difficulty in disentangling base pairing 
and base stacking contributions, and experimental limitations. Early studies used thermal melting 
spectrophotometry with different terminal overhanging ends to resolve these effects [23,24].  More recent 
direct experimental studies of stacking interactions used polyacrylamide gel electrophoresis (PAGE) gel assays 
of nicked dsDNA to quantify pairs of stacking interactions [25,26], or  optical tweezers to monitor binding and 
unbinding of DNA nanobeams with terminal stacking interactions [27]. These studies have made immense 
contributions to our knowledge, but their design and experimental constraints have still precluded the 
measurement of base stacking between two individual bases rather than pairs of bases. This has prevented 
knowing stacking energies between an A and G, for example, because previous measurements also included 
stacking energies between the paired bases (T and C in this example).   
 
Here we set out to directly measure individual base stacking interactions at the single molecule level. Single-
molecule pulling techniques can apply biologically relevant picoNewton-level forces to individual molecules, 
and have been indispensable for the study of biomolecules including folding dynamics and mechanisms of 
biomolecular interaction [28]. Common single-molecule methods that apply force include optical and magnetic 
tweezers and atomic force microscopy (AFM). We expanded the single-molecule toolkit with the development 
of the Centrifuge Force Microscope (CFM), a high-throughput technique that combines centrifugation and 
microscopy to enable many single-molecule force-clamp experiments in parallel [29]. We have made several 
iterations to improve the technique, notably enabling single-molecule manipulation with a benchtop centrifuge 
[30-32], and other groups have advanced the technique as well [33,34]. The high throughput nature of the CFM 
makes it well suited to collect data from thousands of pulling experiments for a comprehensive assessment of 
individual base stacking interactions. 
 
Combining the high-throughput CFM with novel DNA construct design enabled quantitative probing of 
individual base stacking interactions. We quantified base-stacking energies of 10 unique base combinations 
ranging from -2.3 ± 0.2 kcal/mol (G|A stack) to -0.4 ± 0.1 kcal/mol (C|T stack) with purines generally 
contributing more than pyrimidines. Stacking energy was not affected by phosphorylation, methylation, or 
substitution by an RNA nucleotide, but was reduced by a bulky fluorophore modification. Our detailed 
assessment of base stacking led us to explore the impacts of base stacking in DNA nanotechnology and 
molecular biology. We manipulated base stacking interactions in a DNA tetrahedron and in an enzymatic 
ligation reaction and altered the structural stability and reaction kinetics, respectively. Our work represents the 
first comprehensive picture of individual base stacking interactions, and provides concrete examples of how 
such knowledge can be applied.  
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Figure 1: Conceptual overview. (a) Model of a DNA duplex [35] with enlarged frame showing stacked adjacent bases. (b) Design 
of two duplexes differing by a single base stacking interaction. (c) Free-energy diagram of a DNA duplex with and without a terminal 
base stack. The base stack primarily increases the activation energy, with the difference representing the free energy of the single 
terminal base stack. (d) External force lowers the activation barriers and prevents rebinding, causing exponential dissociation that 
can be experimentally measured and used to calculate stacking free energy. 
 
Results 
Premise of experimental design 
Base stacking interactions (Fig. 1a) are relatively weak on the order of ~1 kcal/mol, making the measurement 
of individual stacking interactions challenging. To address this, we considered the design of two duplexes that 
are weakly held together by identical base pairing but differ by presence or absence of a terminal base stack 
(Fig. 1b). This terminal base stack strengthens the interaction and lowers the energy of the bound state (Fig. 
1c). The application of external force shifts the process out of equilibrium, allowing only the bound to unbound 
transition. Measurement of dissociation kinetics can then be used to determine the effect of a single terminal 
base stack (Fig. 1d). This design allows for flexibility in the overall experimental time scale by control of both 
the design of the base pairs in the central duplex and by the magnitude of the externally applied force. Building 
from previous work where we resolved the energy difference of a single nucleotide polymorphism [32], we 
hypothesized that properly designed single-molecule pulling experiments could resolve individual base 
stacking interactions. 
 
To enable high throughput single-molecule pulling experiments, we used a custom designed CFM. The CFM 
is essentially a microscope that can be centrifuged, providing a controlled force application to single-molecule 
tethers, coupled with video microscopy imaging that can track individual tethers during the experiment (Fig. 
2a). Using advances in 3D printing, cameras, and wireless communication electronics we recently integrated 
the microscope into a bucket of a standard benchtop centrifuge (Fig. 2b). We achieved live streaming of 
microscopy images during centrifugation by WiFi communication with an external computer that controls both 
the centrifuge and the camera through custom Labview software (Fig. 2c). During a typical experiment, we 
observe tens to hundreds of tethered microspheres in a full field of view at 40x magnification (Fig. 2d). As the 
centrifuge spins, force is applied to a DNA construct tethered between a glass slide and microspheres, forcing 
dissociation of a duplex over time and causing the microspheres to disappear from view (Fig. 2e). Each 
microsphere is monitored to track individual dissociation events (Fig. 2f), which are used to create a 
dissociation curve that can be used to extract the off rate (Fig. 2g). 
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Figure 2: Concept of the Centrifuge Force Microscope (CFM) and force clamp assay. (a) The CFM is comprised of a simple video 
microscope that is centrifuged. Centrifugal force is applied to tethered microspheres and aligns with the imaging pathway to give a 
head on view of microspheres. (b) Images of the custom CFM module used in this study show the compact central optics, a clamshell 
style 3D printed housing, and supporting electronics, which together fit inside a centrifuge bucket. (c) The CFM module is used in 
a benchtop centrifuge, which is controlled by an external computer that receives a live video stream by WiFi. (d) A typical 
microscopy image of ~100 tethered beads at a ~40x magnification. (e) Concept and partial-frame images of tether dissociation 
observed in the force clamp assay. As the weak central duplex dissociates, tethered beadsfall away from the focus and disappear 
from view. (f) Custom MATLAB software identifies and tracks tethered beads over time and records dissociation times. Four 
examples shown correspond to a subset of beads in panel (e). (g) Decay plot obtained from the dissociation time analysis of the 
tethers in sub-frame (e). The red line is a single-exponential fit to extract off rate. 
 
 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2022. ; https://doi.org/10.1101/2022.05.25.493108doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.25.493108
http://creativecommons.org/licenses/by-nc/4.0/


Experimental measurement of single base stacking energies 
As a first test, we sought to confirm that we could measure kinetic differences between a set of DNA constructs 
varying by a single base stacking interaction. We designed and created three DNA constructs with short central 
duplexes of identical base pairs (8 bp) but varying terminal base stacking interactions (Fig. 3a and Fig. S1). In 
the control construct, a 3 nt poly-T spacer was used to eliminate terminal base stacking completely. Unlike 
most previous designs that look at pairs of base stacks or groups of pairs, this design isolates the contribution 
of a single base stacking interaction between two individual bases. We adopt a notation of X|Y to indicate a 
stacking interaction between bases X and Y read in the 5’ to 3’ direction. It is worth clarifying that the X 
resides on the 3’ end of one strand and Y on the 5’ of another. To realize this design in practice, we created 
constructs by self-assembly of the 7249 nt M13 genomic ssDNA with complementary tiling oligonucleotides, 
similar to our previous work with DNA nanoswitches [36,37]. The oligonucleotides tile along the length to 
make double stranded DNA, to provide a terminal double biotin for coupling to surfaces, and to provide 
“programmable” overhanging ends comprising half of the central duplex (sequences in Table S1). For the 
experiment, the two pairing DNA constructs were attached separately by biotin-streptavidin interactions to the 
microspheres and the cover glass. Within the reaction chamber, the microspheres were briefly allowed to come 
into contact with the cover glass to allow tethers to form, before applying force by centrifugation and 
measuring dissociation. 
 
We started by probing the duplexes at forces from 5-20 pN to establish force dependent dissociation rates at 
room temperature (21 ± 1 °C). We hypothesized that the characteristic force scale of different constructs should 
be nearly identical, which would allow us to extract equilibrium energy differences from off-rates obtained at 
any constant force. We collected data from over 10,000 single-molecule tethers from multiple experiments 
that ranged from a few minutes to an hour to ensure all or nearly all beads were dissociated (Fig. 3b). The data 
was well described by single exponential decays to determine off-rates at different forces (Fig. S2-S4). Using 
the Bell-Evans model [38,39], we fit a linear trend to the logarithm of the force dependent off-rates for single 
A|C or A|T stacks and the no-stack control (Fig. 3c). We observed that force-dependent off rates were easily 
distinguishable between the constructs but followed identical slopes. This result confirmed both that individual 
base stacking interactions could be measured with this approach, and that the choice of force should not 
appreciably affect the calculated values of equilibrium free-energy of stacking. Using the 15 pN force as an 
example, it is clear that the three measurements are distinctly different (Fig. 3d,e), enabling the calculation of 
∆Gstack by the ratio of off rates (Fig. 3f). We additionally verified consistency in calculated ∆Gstack across force 
values and found all results overlapping within error estimates (Fig. S5). We decided to proceed with a force 
of 15 pN, enabling centrifuge runs with hundreds of individual single-molecule experiments to complete in 
the 10-100 minutes time scale.  
 
Having successfully proven the concept, we aimed to measure base stacking interactions between all four 
canonical bases (A,G,C,T) in DNA. The four bases give rise to 16 combinations, of which we considered ten 
unique base stacks which are T|T, C|T, A|T, G|T, C|C, A|C, G|C, A|A, G|A, and G|G. Following our validated 
approach, we designed DNA constructs to isolate the effect of a single base stack for all 10 combinations (Fig. 
S6). To accomplish this with minimal disturbance to the central duplex, we designed the central duplex to have 
A,C,T, and G as the 4 terminal bases. This design allowed manipulation of the strands to accomplish all of 10 
combinations with only two control constructs. The list of oligonucleotides and combinations used in each 
construct are provided in Tables S1-S3. 
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Figure 3: Experimental measurement of single base-stacking energies. (a) A weak central 8 bp duplex is designed to be flanked 
by a terminal base stack or no base stacks. The central interaction is formed between two DNA handles attached to a glass slide and 
a microsphere through biotin-streptavidin interaction.  (b) Raw data and single exponential fits obtained for the A|C, A|T and control 
constructs at forces from 5-20 pN. Error bars represent standard deviation from at least three replicates. (c) Force-dependent off-
rates fit with Bell-Evans model (solid lines) to determine thermal off-rate. Error bars represent standard deviation in off-rates from 
individual replicates (Figure S2-S4). (d) Analysis of the three constructs at 15 pN shows clear differences in dissociation, fit with 
exponential decay curves to yield off-rates (e), from which ΔGstack is calculated (f).  
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For each construct and control, we ran experiments at 15 pN at room temperature until the large majority of 
the beads dissociated. Each condition was run with at least three experimental replicates, where each run also 
contained tens to hundreds of individual tethers. We collected and analyzed over 10,000 single molecule 
tethers, ranging from 171 for C|T to 2454 for G|T. From the images of each run, we measured the dissociation 
time for each molecule, constructed the decay plot, and found the off-rate by fitting with a single-exponential 
decay (Fig. 4a-b, Fig. S7-S9). We determined base stacking energies for all ten base stacks, ranging from -2.3 
± 0.2 kcal/mol for G|A (the strongest) to -0.4 ± 0.1 kcal/mol for C|T (the weakest) (Fig. 4c, Table 1). We 
observed a general trend that stacking energetics follows the order purine-purine > purine-pyrimidine > 
pyrimidine-pyrimidine. It is interesting to note that the two control constructs had nearly identical off-rates 
even with a 5’ to 3’ reversal of the central duplex. 

 
Figure 4: Comprehensive study of DNA base stacking. (a) Decay curves and single exponential fits obtained for unique base 
stacking combinations and their controls at a constant force of 15 pN. Error bars represent standard deviations from three data sets 
each consisting of one or more force clamp experiments. (b) Off-rates of DNA tethers containing various base stacks and their 
corresponding controls. Error bars represent standard deviation in off-rates from individual data sets (Fig. S7-S9). (c) Base stacking 
energies calculated from panel (b). Error bars represent calculated error propagation of results in (b). 
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Table 1: Individual base stacking energies determined using CFM. 
 
Influence of nucleotide modification on base stacking energy 
Various chemical modifications on nucleotides can influence base stacking and base pairing energy thereby 
affecting the stability of nucleic acid structures [40]. We extended our approach to probe the effect of these 
types of modifications in comparison with canonical bases. In particular, we chose phosphorylation, 
methylation, fluorescein (6-FAM) and substitution of deoxyribose to ribose to study their impact on stacking 
on the A|C base stack (Fig. 5a). We designed modified oligonucleotides and constructed four duplexes with 
modified A|C stacks and individual no-stacking controls for each modification (Fig. S10). Analogous to the 
regular base stacking experiments, we performed 15 pN force clamps and fit decay plots to obtain the off-rates 
(Fig. 5b-c, Fig S11-S12) used to calculate the stacking energy of the modified A|C base stack. The control 
constructs were all found to be consistent within error. We observed that phosphorylation, methylation and 
hybrid DNA-RNA stacks are not appreciably different from the regular A|C base stack, while the bulky FAM 
group reduced the base-stacking energy by 0.7 ± 0.1 kcal/mol (Fig. 5d). These results show that stacking effects 
of chemical modifications can be measured with our technique, and suggest generally that small modifications 
are less likely to interfere with stacking. 

 G|A A|A G|G G|C A|C G|T A|T T|T C|C C|T 
𝜟𝑮𝒔𝒕𝒂𝒄𝒌 

(kcal/mol) -2.3 ± 0.2 -2.3 ± 0.2 -1.8 ± 0.2 -2.0 ± 0.1 -1.8 ± 0.1 -1.6 ± 0.1 -1.4 ± 0.2 -0.7 ± 0.2 -0.5 ± 0.1 -0.4 ± 0.1 
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Figure 5: Effect of nucleotide modification on base stacking energy of nucleotides. (a) Modifications used in the study including 
5¢ Phosphorylated C, 5-methyl C, 5¢ FAM modified C, 3¢ ribose A. (b) Experimental data showing dissociation over time for 
constructs relative to their controls. Error bars represent standard deviation of triplicate data sets (c) Off-rates observed for the tethers 
with modified bases and their controls Error bars represent standard deviation in off-rates from individual data sets (Fig. S11-S12). 
(d) Free-energy of stacking calculated from off-rates in (c). Error bars represent calculated error propagation of results in (c). 
 
Designer base-stacking to tune stability and kinetics in biotechnology applications 
The elucidation of these base stacking energies can benefit many aspects of biotechnology, which often rely 
on forming or dynamically controlling short DNA duplexes.  These include general tools in molecular biology 
including genetic recombination, polymerase chain reaction, and sequencing, as well as emerging technologies 
like gene editing, synthetic biology, and DNA nanotechnology. Of these, here we demonstrate how our results 
can be used in DNA nanotechnology and DNA ligation. 
 
In DNA nanotechnology, DNA is used as a building block for nanomaterials [41] for many applications 
including drug delivery [42] and sensing [43]. The field relies on forming controlled contacts between short 
DNA segments. As a model system to test the influence of base stacking interactions, we chose the DNA 
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tetrahedron, a widely used structure with biosensing and drug delivery applications [18,44]. The DNA 
tetrahedron is hierarchically self-assembled from 3-point-star motifs, thus allowing us to modify the contacts 
between these motifs with different base stacks. The 3-point-star is a three-fold symmetric DNA motif 
consisting of three component DNA strands, a long (L), a medium (M) and a short (S) strand in a 1:3:3 ratio 
(Fig. 6a). Each arm of the 3-point-star motif contains two adjacent double helical domains and a strand 
crossover point. The double helical domains are tailed with 4-nt sticky ends that allow four such motifs to 
connect to each other via double cohesion to form the DNA tetrahedron. We confirmed proper assembly of 
the DNA tetrahedron using non-denaturing (PAGE) (Fig. 6b). We modified the double cohesion interface of 
the motifs to test combinations of two base stacks (G|A and A|T) in DNA tetrahedron assembly (Fig. S13). 
The control structure included a pair of G|A and a pair of A|T base stacks across two 4-nt sticky end 
connections. We modified the sequence of the component DNA strands to assemble three other versions of the 
DNA tetrahedron with one pair of G|A base stacks, one pair of A|T base stacks, or no base-stacks (Fig. 6c). 
We observed that structures containing both the G|A and A|T bases stacks were best formed, followed by the 
G|A structure, while the other two were apparently too weak to form stable structures (Fig. 6d, full gels in Fig. 
S14). To confirm that the G|A design was less stable and not just produced in a lower quantity, we tested 
thermal stability by incubating assembled DNA tetrahedra at 20 ºC, 30 ºC and 40 ºC for one hour. We observed 
a decrease in the relative stability of the structures with increased temperature, and a clear indication that the 
G|A structure was unstable at 40º C while the G|A + A|T structure was still intact (Fig. 6e, Fig. S14). These 
results are consistent with our findings that G|A base stack is stronger than A|T base stack. These experiments 
demonstrate the crucial role of base-stacking in the stability of DNA nanostructures, and show for the first 
time how changing base stacking interactions can alter stability of a DNA tetrahedron. Designing DNA 
nanostructures typically only involves consideration of the base pairing, and this work may point to a new 
dimension of control and design flexibility. 
 
DNA ligation is a process of enzymatically joining two pieces of DNA, often facilitated by short “sticky ends” 
of 1-4 nt that hybridize together. Ligation is a fundamental biological process that is required for DNA repair 
and replication, and is integral to a wide range of biotechnology applications including sequencing, cloning, 
and diagnostics [45,46]. We hypothesized that modification of interfacial base stacks could alter the kinetics 
by changing the lifetime of the bound duplex and potentially the final efficiency of enzymatic ligation. To test 
this hypothesis, we designed and created short duplexes to enable ligation of products with varying sticky ends 
(Fig. 6f). First, we validated construction of the individual duplexes and the successful ligation of the two 
duplexes (Fig 6g). Next we investigated the ligation kinetics of four variants, 4 nt and 3 nt sticky ends with 
either T|A or G|A terminal base stacks (Fig. 6h,i and Fig. S15-S16). In the 4 nt case, we observed a slight 
increase in kinetics with the G|A stacks, which was most evident in the first 20 minutes of the reaction (Fig. 
6j). For the 3 nt case, the difference was more striking, with a substantial difference in both the kinetics of 
ligation as well as the endpoint. The differences can be most clearly seen when looking at the ligated products 
after an 8 minute reaction, where the trend follows 4 nt G|A > 4 nt T|A > 3 nt G|A > 3 nt T|A (Fig. 6k). 
Interestingly, the magnitude of the change between T|A and G|A in the 3 nt case is similar to the change 
between 3 nt and 4 nt in G|A, suggesting that strong base stacking interactions could potentially compensate 
for weak base pairing in such short duplexes. 
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Figure 6: Designer base-stacking to tune stability and kinetics in biotechnology applications. (a) Scheme of DNA tetrahedron 
assembly from 3-point-star DNA motifs consisting of three component strands L, M and S. (b) Non-denaturing PAGE analysis of 
DNA tetrahedron assembly. (c) Modifications of base stacking interactions in DNA tetrahedra while conserving sticky end 
sequences. (d) Stability of DNA tetrahedra with different base stacks. (e) Thermal stability of DNA tetrahedra with various base-
stacks. (f) Schematic of the ligation of two DNA duplexes with 3 or 4 base pair sticky ends. (g) Non-denaturing PAGE confirming 
the ligation of the two DNA duplexes. (h) Modifying base stacking interactions of sticky ends for duplexes being ligated. (i) Gel 
images showing the increase in band intensity of ligated fragments (full gels in Fig. S15-16). (j) Quantified ligation product over 
time indicates faster kinetics for duplexes with G|A base-stack compared to weaker T|A base-stack in both 4 nt and 3 nt sticky end 
designs. (k) Ligated product for different base stacks at 8 minutes. All error bars represent standard deviation from triplicate 
experiments. 
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Discussion 
This work provides some of the most direct and comprehensive data on base stacking in nucleic acids, while 
also demonstrating the utility of such detailed knowledge. By employing high-throughput single-molecule 
experimentation using the CFM combined with novel design of DNA tethers, we measured tens of thousands 
of individual interations and quantified base stacking with an uncertainty of ~0.1 kcal/mol. With such small 
energies, measuring kinetic rates provides an inherent advantage due to the logarithmic dependence of the 
energies on kinetics. Single molecule techniques are a good fit for this, except they typically often can only 
make one measurement at a time. The CFM was developed to address limitations of throughput and 
accessibility in single-molecule research, and this work marks a milestone as the first large study using the 
CFM. To illustrate the throughput, it is worth considering the data from ~30,000 tethers we collected and 
typical time constants on the order of ~10 minutes would require a minimal experimental time for serial data 
collection on the order of ~5000 hours, as opposed to the ~200 hours of experimental time for this study. To 
illustrate the accessibility, we point out that these experiments were conducted largely by an undergraduate 
researcher, using only a low-cost CFM module in a standard benchtop centrifuge. 
 
Our work provides important new data on base stacking energetics, which generally suggest that previous work 
has mostly underestimated base stacking energies. One striking example is our measurement of -2.3 kcal/mol 
for a single G|A stack, which is substantially more energetic than measured dinucleotide stacks containing 
both G|A and T|C, which were reported in the -1.0 to -1.6 kcal/mol range [25,27]. It is likely that a mix of 
different experimental conditions and biases in experimental designs are responsible for these differences. Our 
experimental approach provides a fairly direct measurement compared to some other approaches, which 
included extrapolating stacked/unstacked equilibrium from migration of nicked DNA in Urea gels [25], and 
measuring single-molecule kinetics of on and off rates in end-stacking of DNA origami tubes [27]. One recent 
paper published during this work used a similar construct design and found a single A|G base stack energy of 
-2 kcal/mol [47], consistent within error to our measurement. When we compared pairs of our measured base 
stacking values with previously measured dinucleotide stacks, our energies were larger in all cases by multiples 
ranging from 1.2 to 2.2.  
 
The data presented here will help provide new insights into biological processes, inform DNA design in 
biotechnology, and improve accuracy for molecular modeling. Especially for short sticky ends that are 
ubiquitous in biotechnology, base stacking can play a surprisingly large role in stability. Our experimental 
examples of constructing DNA tetrahedra and monitoring DNA ligation provide glimpses of how our data can 
be used to tune DNA interactions. While our data was mostly limited to DNA base stacking, our approach can 
be useful for studying RNA and RNA modifications as well. Our data suggests that RNA base stacking should 
not be appreciably different from DNA, but further work can help clarify the role of different chemical 
modifications on base stacking. Our general approach can be adapted to study many variations of nucleotide 
interactions including those of intercalators under a variety of biologically relevant conditions.  
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Materials and Methods 
Instrumentation  
The constant force single-molecule experiments in this study were performed using a custom-built CFM, the 
details of which were largely reported in a previous study [32]. Briefly, the CFM consist of optics comprising 
a miniaturized video microscope, and of electronics allowing operation and data transmission, in an assembly 
that fits within a 400 mL bucket of a Sorvall X1R centrifuge. The optical components consist of a 40X plan 
achromatic infinity-corrected objective (Olympus) for microsphere magnification, turning mirrors (Thorlabs) 
for achieving required path-length and an LED with diffuser as a light source. The electronic components 
consists of a gigabit Ethernet machine vision camera (FLIR Blackfly Model # BFLY-PGE-50H5M-C) for 
imaging, a Wi-Fi router (TP-link TL-WR902AC) for wireless data transfer and communication, and a 
rechargeable lithium-ion battery (Adafruit) with 5V and 12V voltage step-up regulators (Pololu). These 
components were assembled within a 3D printed housing (Ultimaker 3). The CFM module and the centrifuge 
were controlled using a custom written LabVIEW program.  
 
Sample preparation 
DNA constructs were prepared by hybridizing 124 oligonucleotides (Integrated DNA Technologies) to 7249 
nt single-stranded M13mp18 DNA (New England Biolabs). The construction method largely follows our 
approach for DNA nanoswitch construction [48]. Briefly, the M13 DNA is enzymatically linearized and then 
incubated with a 10 fold molar excess of backbone oligos 1-122, 150 fold overhang oligo and 500 fold stacking 
end oligo (Table S2) with an annealing temperature ramp from 90 ˚C to 20 ˚C. In this design, the oligo 
hybridized to the 3' end of the M13 DNA contains a double biotin on its 5' end for immobilization to 
streptavidin coated glass surface or the bead. The oligo hybridized to the 5' end of the M13 DNA extends 
beyond the M13, and provide a platform to anneal an oligo resulting in a 5' single-stranded overhang (Fig. S1). 
This overhang is used to form ‘sticky-ends’ for different constructs with various base stacking combinations. 
The list of all oligos used is given in Table S1 and combination of oligos to make constructs with different 
terminal bases are given in Table S2. 
 
To immobilize DNA constructs to streptavidin coated microspheres (Thermo Fisher Dynabeads M-270 2.8 μm 
diameter, catalogue # 65306), we used 20 μl of streptavidin microspheres and washed thrice with 50 μl of 
phosphate-buffered saline containing 0.1% Tween 20 (PBST). Following the washes, the beads solution was 
brought to a 10 μl volume, and 10 μl of the DNA construct (~500 pM) was added to it and shaken in a vortexer 
at 1,400 rpm for 30 minutes. The unbound DNA and excess oligos from the construct synthesis was removed 
by washing the beads thrice with 50 μl PBST and resuspending in 40 μl volume.  
 
The reaction chamber was prepared according to previous work [32]. Briefly, the reaction chamber consists of 
an 18 mm and a 12 mm circular microscope glass slide (Electron Microscopy Sciences, catalogue # 72230-01 
& 72222-01) sandwiching two parallel strips of Kapton tape (www.kaptontape.com) creating a channel of ~ 2 
mm between the glass-slides. The glass chamber is assembled on top of a SM1A6 threaded adaptor (Thorlabs). 
Streptavidin (Amresco) was passively adsorbed to the surface by passing 5 μl of streptavidin (0.1 mg/ml) in 
1´ PBS. After one minute of incubation, the chamber was washed thrice with 50 μl of PBST to remove 
unbound streptavidin. Next, 5 μl of DNA construct was passed through the channel and incubated for 10 
minutes for the biotin-labeled DNA constructs to bind the streptavidin on the glass surface. The chamber was 
then washed with PBST to remove unbound constructs and excess oligos from the construct synthesis. DNA 
coated microspheres were passed into the chamber and incubated for 10 minutes to allow hybridization. The 
chamber was sealed with vacuum grease and then screwed into the CFM optical assembly until the beads are 
in focus.  
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Constant force experiment protocol 
The prepared CFM with sample chamber was then loaded into the centrifuge bucket, opposite of a 
counterbalance with matched mass and center of mass. A custom LabView program was used to control the 
instrument, including the centrifuge speed, image acquisition rate, and camera parameters such as exposure 
time. The force generated on the tether is the centrifugal force experienced by the beads F = mω2r, where m is 
the effective mass of the bead (actual mass minus the mass of buffer displaced), ω is the angular velocity and 
r is the distance from the center of the rotor to the chamber (measured at 0.133 m here). The effective mass of 
beads was determined to be 6.9*10-12g for the Dynabeads™ M-270 (www.thermofisher.com) by previous 
report [29]. The RPM used were 1410, 1221, 997,  and 705 for 20pn, 15pN, 10pN, and 5 pN respectively. 
Experiments were run at a constant force (RPM) for times up to 2 hours and data was saved as individual 
lossless images. 
 
Data analysis  
Force induced dissociation of the DNA tethers were measured using a previously reported MATLAB program 
[32]. The matlab program identifies beads using the “imfindcircles” algorithm with a user override for non-
spherical, clustered beads and dirt wrongly identified as beads. Once beads are identified from an image at the 
start of the experiment, the software calculates the variance of the image intensity at the bead location for all 
the frames. When beads dissociate, it is indicated by the sharp drop in variance (i.e. high contrast to low 
contrast). Multiple drops in variance observed are due to break in multiple-tethered beads, which are excluded 
from the analysis. The decay rates were plotted in OriginLab and data was fit using single exponential decay 
function, y = y0 + A×e-kt, where y is the fraction of tethers remaining at a given time t, y0 is the y-axis offset 
or the baseline, A is the fraction of tethers at the beginning of the experiment (typically 1) and k is the off-rate 
for that particular force. Off-rate for any given condition was determined by at least triplicate experiments 
where individual k values were determined separately for each set of experiment, and data is reported as the 
mean and standard deviation of the replicates. The base stacking energies were extracted by comparing the 
off-rates, given by the equation: 

𝑘!"" ∝ 𝑒#$& %&⁄   …………………………………………....……(1) 
Where, Ea is the activation energy, R is the gas constant and T is the absolute temperature. The off-rates of 
construct with a particular base-stack can be compared to its control construct without base stack to obtain the 
difference in activation energy: 

('(()
('((*
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The difference in activation energy between the two constructs is the energy contribution from the base 
stack, which can be isolated using the equation: 

∆𝐸+ = 𝛥𝐺,+-.#-/+0( = 𝑅𝑇 𝑙𝑛 .('(()
('((*

/…………………………..(3) 

where koff1 and koff2 are the off-rates of construct with and without the base stack, Ea1 and Ea2 are the activation 
energy barriers for those constructs respectively, and	𝛥𝐺,+-.#-/+0( is the stacking energy of the interfacial 
bases in the non control construct.    
 
Assembly and measurement of DNA tetrahedra 
DNA tetrahedra were prepared using previously reported methods [42]. Briefly, DNA strands L, M and S 
(sequence are shown in Table S1) were mixed in 1:3:3 ratio at 30 nM in Tris-Acetic-EDTA-Mg2+ (TAE/Mg2+) 
buffer, which contained 40 mM Tris base (pH 8.0), 20 mM acetic acid, 2 mM EDTA, and 12.5 mM magnesium 
acetate. The DNA solution was slowly cooled down from 95°C to room temperature over 48 hours in a water 
bath placed in a Styrofoam box. To assemble DNA tetrahedra with different base stacks, the following strand 
combinations were used: 

1) Tetrahedron with both AG and AT base stacks (control): Strands L, M1, S1 
2) Tetrahedron with AG base stack only: Strands L, M2, S1 
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3) Tetrahedron with AT base stack only: Strands L, M1, S2 
4) Tetrahedron with no base stacks: Strands L, M2, S2 

 
DNA tetrahedron assembly was validated using non-denaturing polyacrylamide gel electrophoresis. For gel 
analysis, 10 µl of the annealed DNA tetrahedron solution was mixed with 1 µl loading dye (containing 50% 
glycerol and bromophenol blue). 10 µl of this sample was loaded in each gel lane. Gels containing 4% 
polyacrylamide (29:1 acrylamide/bisacrylamide) were run at 4°C (100 V, constant voltage) in 1X TAE/Mg2+ 
running buffer. After electrophoresis, the gels were stained with GelRed (Sigma) and imaged using Bio-Rad 
Gel Doc XR+. Gel bands were quantified using ImageJ. To analyze the thermal stability of DNA tetrahedra 
with different base stacking combinations, we incubated the DNA tetrahedra at 30 °C and 40 °C for 1 hour. 
Incubated samples were prepared for gel analysis as describe above and tested using 4% PAGE. We quantified 
the band corresponding to the DNA tetrahedron to obtain the normalized stability levels. 
 
DNA ligation experiments 
Short duplexes with 20 and 30 bp with 3 or 4 nucleotide overhang were prepared by mixing 50µM oligos and 
annealing them using temperature ramp from 90 ˚C to 20 ˚C with a temperature gradiant of 1°C/min in 1X 
PBS buffer (see table S1). To measure the kinetics, 20 and 30 bp duplexes were mixed in equimolar ratio 
(0.5µM) in buffer with final concentration of 1X T4 DNA ligase buffer (NEB), 1X BSA, 1 mM ATP. 1 µl T4 
DNA ligase (40 units/ µl) was added to the mixture. The reaction was terminated at the required time point by 
heat inactivation at 70°C for 20 mins. Then the reaction mixtures were mixed with the gel loading buffer (final 
concentration 1X) and were run in a 10% non-denaturing PAGE (29:1 acrylamide/bisacrylamide) at room 
temperature (150 V, 1hr). After electrophoresis, the gels were stained  with GelRed (Sigma) and imaged using 
Bio-Rad Gel Doc XR+.Gel bands were quantified using ImageLabs software. 
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