1	Penicillin Binding Protein Substitutions Co-occur with Fluoroquinolone Resistance in			
2	'Epidemic' Lineages of Multi Drug-Resistant Clostridioides difficile			
3				
4	Kate E. Dingle, ^{a,b} # Jane Freeman, ^{c,d} Xavier Didelot, ^e David W. Eyre, ^{b,f} Jeremy Swan, ^{a,b}			
5	William D. Spittal, ^{c,d} Emma V. Clark, ^{c,d} Keith A. Jolley, ^g A. Sarah Walker, ^{a,b} Mark H.			
6	Wilcox, ^{c,d} Derrick W. Crook ^{a,b}			
7				
8	^a Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford University, UK			
9	^b National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John			
10	Radcliffe Hospital, Oxford, UK			
11	^c Department of Microbiology, Leeds Teaching Hospitals Trust, Leeds, UK.			
12	^d Healthcare Associated Infections Research Group, The Leeds Institute of Medical Research,			
13	University of Leeds, Leeds, UK.			
14	^e School of Life Sciences and Department of Statistics, University of Warwick, UK.			
15	^f Big Data Institute, Nuffield Department of Population Health, Oxford University of Oxford,			
16	Oxford, UK.			
17	^g Department of Zoology, University of Oxford, Oxford, UK.			
18				
19	Running Head: Penicillin Binding Proteins of Epidemic C. difficile			
20				
21	#Address correspondence to Kate E. Dingle, kate.dingle@ndm.ox.ac.uk			

22 ABSTRACT

23 *Clostridioides difficile* remains a key cause of healthcare-associated infection, with multi-24 drug-resistant (MDR) lineages causing high mortality (≥20%) outbreaks. Cephalosporin 25 treatment is a long-established risk factor, and antimicrobial stewardship a key control. A mechanism underlying raised cephalosporin MICs has not been identified in C. difficile, but 26 27 among other species resistance is often acquired *via* amino acid substitutions in cell wall 28 transpeptidases (penicillin binding proteins, PBPs). Here, we investigated five C. difficile 29 transpeptidases (PBP1-5) for recent substitutions. Previously published genome assemblies 30 (n=7096) were obtained, representing sixteen geographically widespread lineages, including 31 healthcare-associated MDR ST1(027), ST3(001) and ST17(018). Recent amino acid 32 substitutions were found within PBP1 (n=50) and PBP3 (n=48), ranging from 1-10 33 substitutions per genome. β -lactam MICs were measured for closely related pairs of wildtype and PBP substituted isolates separated by 20-273 SNPs. Recombination-corrected, dated 34 35 phylogenies were constructed to date substitution acquisition. Key substitutions such as PBP3 36 V497L and PBP1 T674I/N/V emerged independently across multiple lineages. They were 37 associated with extremely high cephalosporin MICs; 1-4 doubling dilutions >wild-type up to 38 \leq 1506µg/ml. Substitution patterns varied by lineage and clade, showed geographic structure, 39 and notably occurred post-1990, coincident with the acquisition of gyrA/B substitutions 40 conferring fluoroquinolone resistance. In conclusion, recent PBP1 and PBP3 substitutions are 41 associated with raised cephalosporin MICs in C. difficile. The co-occurrence of resistance to 42 cephalosporins and fluoroquinolones hinders attempts to understand their relative importance 43 in the dissemination of epidemic lineages. Further controlled studies of cephalosporin and 44 fluoroquinolone stewardship are needed to determine their relative effectiveness in outbreak 45 control.

46

47 **IMPORTANCE**

Fluoroquinolone and cephalosporin prescribing in healthcare settings have triggered 48 outbreaks of high-mortality, multi-drug resistant C. difficile infection. Here, we identify a 49 mechanism of acquired cephalosporin resistance in C. difficile, comprising amino acid 50 51 substitutions in two cell-wall transpeptidase enzymes (penicillin binding proteins). The higher the number of substitutions, the greater the impact on phenotype. Dated phylogenies 52 53 revealed that resistance to both cephalosporins and fluoroquinolones was co-acquired immediately before clinically important, outbreak strains emerged. PBP substitutions were 54 55 geographically structured within genetic lineages, suggesting adaptation to local 56 antimicrobial prescribing. Antimicrobial stewardship of cephalosporins and fluoroquinolones 57 is an effective means of C. difficile outbreak control. Genetic changes conferring resistance 58 likely impart a 'fitness-cost' after antibiotic withdrawal. Our study identifies a mechanism 59 that may explain the contribution of cephalosporin stewardship to resolving outbreak 60 conditions. However, due to the co-occurrence of cephalosporin and fluoroquinolone 61 resistance, further work is needed to determine the relative importance of each.

62 **INTRODUCTION**

63	Clostridioides difficile is among the leading causes of healthcare-associated infection,
64	symptoms ranging from diarrhoea to potentially fatal pseudomembranous colitis (1). Over the
65	last 30 years, unrestricted antimicrobial use has selected multidrug resistant (MDR) C.
66	difficile lineages, which can be identified by multilocus sequence type (ST) and/or PCR-
67	ribotype (2-9). Uncontrolled prescribing of antimicrobials such as fluoroquinolones and
68	cephalosporins, which are associated with a high risk of C. difficile infection (CDI), creates
69	conditions under which MDR lineages can cause persistent, high-mortality (≥20%) outbreaks
70	(9-18). Such healthcare-associated transmission may be geographically widespread as in the
71	'hypervirulent' ST1(ribotype 027) lineage FQ-R1 (19), and/or prolonged, as in ST17(018),
72	predominating in Japanese and Italian healthcare settings since the 1990s (17, 20). Cases
73	associated with the rapid transmission of MDR lineages are typically superimposed over a
74	background of sporadic, unlinked cases caused by C. difficile strains, which lack acquired
75	antimicrobial resistance (21, 22).

76 Antimicrobial stewardship is an extremely effective means of preventing or resolving CDI

outbreaks in healthcare settings (23-29). This approach contributed to the marked decline in

fluoroquinolone resistant lineages in the UK a decade ago, with resistant ST1(027),

79 ST3(001), ST42(106) and ST37(017) falling from 67% to ~3% of cases (30, 31).

80 Fluoroquinolone resistance can be predicted from whole genome sequences by characteristic

single nucleotide polymorphisms (SNPs) in the chromosomal gyrA and/or gyrB genes (30,

- 82 32). Equivalent analysis for cephalosporins is lacking, because the genetic mechanism(s)
- 83 influencing cephalosporin susceptibility in *C. difficile* are unknown. Wild-type MICs are
- already moderate to high for this species (up to, and $>256\mu g/ml$), (33-36), leading to the
- concept of 'intrinsic' rather than acquired cephalosporin resistance (10). For this reason, and

86 the practical difficulties of determining extremely high MICs near the limit of drug solubility,

87 cephalosporin MICs are rarely measured for *C. difficile*.

88	Studies aiming to understand the mechanism of C. difficile cephalosporin resistance have
89	focused on the endogenous C. difficile class D β -lactamase, but findings were inconclusive
90	(37, 38). In many bacterial species, reduced susceptibility to cephalosporins and other β -
91	lactams is conferred by amino acid substitutions in penicillin binding proteins (PBPs). These
92	are enzymes catalysing cell wall peptidoglycan biosynthesis, which are classified according
93	to molecular weight (high or low, H/LMW) and enzymatic activity (transpeptidase or
94	carboxypeptidase) (39). β -lactam antibiotics target PBPs by acting as inhibitory substrate
95	analogues (39), binding covalently to the active site serine (40) in the first of three conserved
96	motifs; SXXK, (S/Y)XN and (K/H)(S/T)G (41). β -lactam exposure selects substitutions
97	which reduce the affinity of the drug for the PBP, increasing the MIC (42, 43). However, the
98	nature and frequency of PBP substitutions among clinically important C. difficile lineages,
99	and their impact on cephalosporin MIC has not been investigated systematically. Here, our
100	aim was to determine whether PBP substitutions have contributed to the emergence and
101	spread of epidemic MDR C. difficile.

102 **RESULTS**

123

103	The study was designed as follows. A globally distributed collection of published <i>C. difficile</i>
104	genomes was assembled (n=7094) representing sixteen genetic lineages; fourteen commonly
105	associated with CDI in healthcare settings, and two carried asymptomatically (non-toxigenic).
106	The occurrence of recent, within-lineage PBP substitutions was investigated. Cephalosporin
107	(and other β -lactam) MICs were measured for representative strains containing PBP
108	substitutions, and closely related 'wild-type' ancestors. Finally, the timing and sequence of
109	PBP substitution and fluoroquinolone resistance acquisition events was investigated
110	phylogenetically.
111	Lineages Studied
112	The 7094 genomes represented lineages ST1(ribotypes 027/198/176/181) (n=1918),
113	ST17(018) (n=279), ST42(106) (n=563), ST3(001) (n=411), ST37(017) (n=424) and its
114	recent descendant ST81(369) (n=39), ST63(053) (n=37), ST54(012) (n=148), ST8(002)
115	(n=593) and its recent descendant ST183 (n=14), ST11(078) (n=628), ST2(014/020) (n=790),
116	ST6(005) (n=404), ST10(015) (n=263), ST7(026) (n=190), ST56(058) (n=16) and two
117	prevalent non-toxigenic genotypes ST26(039) (n=175) and ST15(010) (n=202). Four
118	genetically distinct C. difficile clades; 1, 2, 4 and 5 were represented (44). Genomes,
119	accession numbers, AMR predictions from genotype and references are listed per lineage
120	(Table S1).
121	C. difficile PBPs
122	To date, nine PBPs have been described within the C. difficile genome (Table 1) five of

which are transpeptidases (PBP1-5) (45). HMW PBP1 and PBP3 are essential for growth in

- vitro (46), while LMW PBP2 and PBP4 are not essential for growth, but are required for
- sporulation (46). Only LMW PBP5 is variably present (45). PBP1-4 were present in all
- genomes studied, while PBP5 occurred in lineages ST3(001), ST11(078), and

- 127 ST37(017)/ST81(369). No additional PBPs were identified using known *C. difficile* PBP
- 128 sequences in low stringency BLAST searches.

129 Recent PBP Substitutions

- 130 PBP gene sequences were compared within each lineage to identify recent single nucleotide
- 131 polymorphisms (SNPs). These were absent or rare in LMW PBP2, PBP4 and PBP5. In
- 132 contrast, multiple SNPs occurred in HMW PBP1 and PBP3, almost all of which were non-
- synonymous. The resultant amino acid substitutions affected a total of 48/993 (4.8%)
- positions in PBP3 and 50/856-926 (5.8-5.4%) positions in PBP1 (variable PBP1 size due to
- 135 C-terminal repeats). Substitution data are shown per isolate (Table S1).
- 136 The frequency of each amino acid substitution was recorded per lineage (Table 2). This
- identified the most common substitutions within and among lineages. In PBP3, V497L was
- most frequent, occurring in 2897 genomes and 10 lineages, followed by A778V in 664
- genomes and 10 lineages. In PBP1, T674I/N/V was most frequent, occurring in 1379
- 140 genomes of 10 lineages, followed by A555T in 442 genomes of 7 lineages. These data were
- then plotted to visualise the relative positions and frequencies of substitutions within PBP1
- and PBP3 (Figure 1). Virtually all substitutions occurred within the conserved transpeptidase
- 143 domains, flanking the active site motifs.

144 Co-occurrence of PBP substitutions with fluoroquinolone resistance

- 145 In addition to PBP substitutions, the presence of fluoroquinolone resistance was investigated
- in all sixteen lineages (Figure 2, Table S1). Their co-occurrence was striking in lineages
- 147 ST1(027/198/176/181), ST17(018), ST42(106), ST3(001), ST37(017)/ST81(369),
- 148 ST63(053), ST54(012), ST8(002)/ST183 (Figure 2), suggesting the possibility of almost
- simultaneous acquisition. The presence of further AMR determinants, *ermB* (clindamycin

150 resistance) and, or *rpoB* substitutions (rifampicin resistance), was also recorded for each

151 genome (Table S1).

- 152 Among the fourteen clinically important lineages, PBP substitutions occurred relatively
- rarely in the absence fluoroquinolone resistance (Figure 2). In this respect ST2(014/020)
- 154 (178/790 genomes, 22.5%), ST54(012) (46/148 genomes, 31.1%) and recent ST42(106) USA
- genomes (44/180, 24.4%) were noteworthy. Interestingly, PBP substitutions occurred without
- 156 fluoroquinolone resistance in the majority of genomes belonging to the non-toxigenic
- 157 lineages ST26(039) (167/175, 95.4%) and ST15(010) (182/202 (90.1%), (Figure 2, Table
- 158 S1).

Impact of PBP substitutions on β-lactam MIC

- 160 β -lactam MICs were measured for isolates representing eight of the clinically important
- 161 lineages studied. Four of these lineages contained both 'wild-type' and PBP-substituted
- strains; ST1(027), (both FQ-R1 and FQ-R2 (19)), ST17(018), ST3(001) and ST42(106). The
- 163 remaining four lineages, included for comparison, were 'wild-type' only, lacking PBP

substitutions; ST10(015), ST6(005), ST56(058) and ST7(026).

- 165 The choice of isolates from ST1(027), ST17(018), ST3(001) and ST42(106), was based on
- 166 low numbers of SNP differences between wild type and PBP substituted genomes (Figure
- 167 3A). In total, ten different PBP substitutions were represented, three in PBP3 and seven in

168 PBP1 (Figure 3B), including the four most frequently identified substitutions.

169 Isolates containing PBP substitutions showed increased cephalosporin and carbapenem MICs

- relative to wild-type, but their penicillin MICs were unchanged (Figure 3A). The greatest
- 171 increases in cephalosporin MICs were associated with the highest numbers of substitutions,
- 172 for example cefuroxime MIC increased from 376 to 1506µg/ml in ST3(001) (four
- substitutions) and ST17(018) (five substitutions). Cephradine MIC increased from 36 to
- 174 239µg/ml in the latter. Intriguingly, the wild-type ancestors of these four PBP substituted

175	lineages had cefotaxime MICs which were still higher than the four lineages which have not
176	yielded PBP substituted strains; cefuroxime 128µg/ml vs 376µg/ml and cefotaxime 128µg/ml
177	vs 256µg/ml.

178 **Phylogenetic analyses**

- 179 Recombination-corrected phylogenies were constructed to date and identify the sequence in
- 180 which PBP substitution and fluoroquinolone resistance were acquired by seven genetic
- 181 lineages. These included the four PBP substituted lineages which had been phenotyped
- (ST1(027), ST17(018), ST3(001)and ST42 (106)), and a further three lineages containing
- notable MDR PBP substituted fluoroquinolone resistant strains. These were ST8(002)/ST183
- and ST37(017)/ST81 both important in South East Asia, and ST54(012) notable in Costa
- 185 Rica (47-51) (Figures 4-7).
- 186 Irrespective of lineage, the sequence of PBP substitution acquisitions in epidemic strains
- typically started with PBP3 V497L and/or A778V (ie. the most frequent PBP3 substitutions,
- 188 Table 2). Then further PBP substitutions followed, yielding a variety of patterns. Among
- lineages well known for epidemic spread, the initial PBP3 V497L substitution occurred
- simultaneously with fluoroquinolone resistance (Figures 4-7). One notable exception was the
- 191 ST1(027) FQ-R1 lineage in which PBP3 A726V substitution occurred first, while PBP3
- 192 V497L was absent (Figure 4B).
- 193 PBP substituted, fluoroquinolone resistant clades evolved more than once in ST1(027),
- 194 ST3(001), ST37(017)/ST81(369), ST42(106), and ST54(012) (Figures 4A,B, 5B, 6B, 7A,B).
- 195 Their PBP substitution patterns each showed geographic structure (Figures 4-8). MDR clades
- 196 with the highest numbers of PBP substitutions were identified within ST17(018) in Italy and
- 197 South East Asia (Figure 5A), ST3(001) in UK/Germany (Figure 5B), ST8(002)/ST183 in
- 198 Japan (Figure 6A), and ST37(017)/ST81(369) in South East Asia (Figure 6B).

199 The occurrence of PBP substitutions in the absence of fluoroquinolone resistance was

investigated phylogenetically in ST2(014/020) (Figure 8), and to a lesser extent in ST42(106)

and ST54(012) (Figure 7). For ST2(014/020), a dated phylogeny was constructed using PBP

substituted genomes from six independent locations, together with wild type genomes from

the same locations and dates (Figure 8). The PBP substituted genomes clustered by location,

while the wild type strains did not. Interestingly, both ST42(106) and ST54(012) phylogenies

205 (Figure 7) contained clades where PBP substitution acquisition preceded fluoroquinolone

resistance. ST42(106) recently replaced ST1(027) as the most prevalent lineage in North

America (Carlson et al., 2020), but a single MDR clade was not apparent; PBP3 V497L

208 occurred on multiple independent occasions within the ST42(106) phylogeny.

209 Evolutionary mechanisms of PBP substitution acquisition

210 The almost total absence of non-synonymous SNPs within each lineage suggested that PBP

substitutions accumulate by the step-wise fixation of *de novo* point mutations in response to

 β -lactam selection, rather than the import of novel variants by horizontal genetic exchange.

However, two important recombination events were identified by the co-import of

synonymous and non-synonymous SNPs, which changed PBP variants within toxin A-B+

ST81(369) (Figure S1) and in ST1(181), relative to their ancestral wild type A-B+ ST37(017)

and ST1(027) wild type respectively. The ST81(369) PBP3 gene was acquired as part of a

very long (~150kb) recombination event, the donor being closely related to ST8(002) (Figure

S1). In ST1(181), described in Greece and Romania (52, 53) recombination events affected

both PBP1 and PBP3, but their ~400kb separation around the chromosome suggests the

events were independent; (i) the PBP3 allele (100) was identical to clade 1 ST17(018),

indicating inter clade 1/2 recombination, and (ii) the PBP1 allele (360) contained 14 SNPs

and 6 amino acid differences relative to wild type ST1.

223 DISCUSSION

224	To date, studies aiming to determine β -lactam resistance mechanisms in <i>C. difficile</i> have
225	focused on the endogenous C. difficile class D β -lactamase (37, 38). PBP substitutions have
226	been reported only occasionally, associated with raised carbapenem MICs in a single lineage
227	(45, 54). PBPs with reduced β -lactam affinity are clinically important in other Gram-positive
228	pathogens, for example S. pneumoniae (43), and methicillin resistant Staphylococcus aureus
229	(55). The present study was therefore performed to investigate systematically, and
230	phenotypically, recent PBP substitutions among clinically important lineages of C. difficile.
231	We identified multiple, recent PBP substitutions, which are focused in the conserved
232	functional domains of the two HMW C. difficile transpeptidases, PBP1 and PBP3 (Table 2,
233	Figure 1). Substitutions were associated with raised cephalosporin MICs, relative to closely
234	related wild type strains, and the higher the number of substitutions, the higher the MIC
235	(Figure 3A). The mechanism underlying substitution acquisition was not recombination, but
236	rather the accumulation of <i>de novo</i> chromosomal mutations in response to selective pressure.
237	This was indicated because virtually all SNPs were non-synonymous, flanked the catalytic
238	domains (Figure 1), and arose multiple times (Table 2). Only two major recombination events
239	were found involving ST81(369) (Figure S1), and ST1(181). Although PBP5 transpeptidase
240	is variably present, it was not recently acquired by MDR C. difficile lineages. Its constant
241	chromosomal location suggests that gradual loss, rather than recent acquisition may explain
242	its variable presence.
243	The co-occurrence of PBP substitutions with fluoroquinolone resistance in the clinically
244	important epidemic lineages was striking (Figure 2). This suggests that cephalosporin
245	stewardship may be equal to fluoroquinolone stewardship (30) in its effectiveness for
246	outbreak control. Furthermore, simultaneous stewardship of both drugs may have a greater
247	impact on the control of MDR lineages, than either drug alone. Studies performed over 20

248	years ago, before widespread fluoroquinolone resistance emerged in C. difficile, reported
249	cephalosporin stewardship alone to be successful (24, 56, 57). Approximately 20 years
250	elapsed between the introduction of first generation cephalosporins (mid 1960s) and
251	fluoroquinolones (late 1980s) (58). Selection of the wild-type precursors of the current
252	epidemic lineages (Figure 3A), with cephalosporin MICs that exceed the wild type of other
253	lineages, (WT cefuroxime $128\mu g/ml vs 376\mu g/ml$ and WT cefotaxime $128\mu g/ml vs$
254	256μ g/ml) may have occurred during this time. However the mechanism underlying this
255	difference in wild type MICs remains unknown. At present, the co-occurrence of resistance to
256	both cephalosporins and fluoroquinolones hinders attempts to understand their relative
257	importance in epidemic spread. Further controlled studies of cephalosporin and
258	fluoroquinolone stewardship are needed.
259	Given the large number of PBP substituted, clinically important MDR clades which have
260	emerged in the last 30 years, in different geographic regions (Figures 4-8), it is surprising that
261	their elevated cephalosporin MICs have not been highlighted previously. This likely reflects
262	the 'intrinsic cephalosporin resistance' concept (10), established in the early 1980s, when
263	measured C. difficile cephalosporin MICs rarely exceeded 256µg/ml (33-36). These baseline
264	MICs, which predate the emergence of the MDR clades, are already high relative to other
265	pathogens, and were thought to exceed clinically relevant concentrations. The lack of a
266	known mechanism of acquired β -lactam resistance compounded the situation.
267	Our phylogenies revealed the sequence and timing of MDR acquisition by clinically
268	important lineages. The co-occurrence of PBP substitutions and fluoroquinolone resistance
269	predated epidemic spread, which was reflected in short-branched, geographically structured
270	clades (Figures 4-7). The first PBP substitution was typically PBP3 V497L, followed by
271	others, yielding a variety of final combinations. The presence of <i>ermB</i> , (clindamycin
272	resistance) and <i>rpoB</i> substitutions (rifampin resistance) was variable overall, but greater

273	numbers of PBP substitutions frequently occurred with these in addition to fluoroquinolone
274	resistance (Table S1, ST17(018, ST37(017)/ST81(369), ST8(002)/ST81).
275	We dated the emergence of the two MDR ST1(027) clades (FQ-R1 and FQ-R2) to the
276	mid/late-1990s, as previously described (19) (Figure 4A,B). The emergence date of the MDR
277	ST17(018) clade was compatible with first reports of outbreaks in 1996-1999 (59), the
278	phylogeny root having a 95% credible interval dating of December 1998-July 2002 (Figure
279	5A). European and Asian ST17(018) clades then diverged, acquiring further region-specific
280	PBP substitutions (Figure 5A), arguing against recent their recent intercontinental spread.
281	Greater numbers of PBP substitutions were associated with the highest cephalosporin MICs
282	(Figure 3A). Consistent with this, highly substituted clades of multiple lineages (ST17(018),
283	ST81(369)/ST37(018) and ST183/ST8(002, Figures 5A, 6A,B) predominated in South East
284	Asia, where cephalosporin use is high (60-62). Adaptation to local prescribing conditions
285	through PBP substitution acquisition offers a possible explanation for the temporal and
286	geographic variation in prevalent C. difficile lineages (6, 8, 19, 47, 58, 63). This may extend
287	to competitive exclusion of lesser PBP substituted strains by more highly substituted ones, a
288	scenario requiring greater numbers of PBP substitutions to carry a fitness cost. This appears
289	possible as in C. perfringens in vitro, PBP substitutions are associated with slower growth
290	(64). We hypothesise that local levels of cephalosporin prescribing determine the prevalent C .
291	difficile strain(s) in a given region. For example, the unusually low levels of ST1(027) seen in
292	Asia, (65) may reflect competitive exclusion, under local prescribing conditions, by the more
293	highly PBP substituted clades which predominate here. The relative geographic restriction of
294	ST1(027)FQ-R1 (to USA, South Korea, Germany), compared to more globally distributed
295	FQ-R2 may also reflect the different PBP substitutions of the two clades (Figure 4), and
296	variations in MIC (Figure 3A).

297	MDR strains exhibit high transmissibility in clinical settings when prescribing is uncontrolled
298	(17). The PBP1 and PBP3 transpeptidases function in cell wall biosynthesis, therefore
299	substitutions impacting their catalytic domain could affect transmissibility via sporulation. A
300	high sporulation phenotype has been reported in at least two epidemic lineages; ST3(001)
301	(UK), and ST81(369) (Asia), (66, 67). Sporulation phenotype is reportedly variable in
302	ST1(027), (68, 69), and we have observed variation in its PBP substitutions (Figure 4A,B,
303	Table S1). However, the possibility of a link remains to be investigated. It is relevant to
304	future experimental design that the MDR laboratory reference strains CD630 (ST54(012) and
305	R20291 (ST1(027)) both contain PBP substitutions (Table 1).
306	PBP substitutions occurred without fluoroquinolone resistance in reasonable numbers of
307	genomes of only three toxigenic lineages studied; ST2(020/014), ST54(012), and ST42(106)
308	(USA) (Table S1). The latter was of interest since it recently exceeded the prevalence of
309	ST1(027) in North America (8, 71). Visual inspection of phylogenies was used to assess
310	whether PBP substitutions might enhance transmissibility in the absence of fluoroquinolone
311	resistance. An ST2(020/014) phylogeny showed some possibility of locally enhanced
312	transmission (Figure 8), as did ST54(012), and ST42(106) (USA) (Figure 7A,B). However,
313	these events were small scale and this question remains to be answered. PBP substitutions
314	(without fluoroquinolone resistance) were, however, widespread within the two non-
315	toxigenic lineages ST15(010) and ST26(039), (Table S2) potentially explaining their high
316	prevalence over other non-toxigenic strains.
317	The cephalosporin MICs for PBP substituted strains were extremely high for certain
318	antibiotics (for example $>512\mu$ g/ml for cefotaxime, and up to 1506μ g/ml for cefuroxime,
319	Figure 3A). This raises questions about the <i>in vivo</i> conditions required for PBP substitution
320	selection. Intravenous β -lactams are eliminated in active form by biliary excretion, resulting

in highly variable intestinal concentrations (71). Intestinal concentrations ranging from 1.01

322	to 1,345µg/ml have been reported (72) and so the potential exists for C. difficile to be
323	exposed in vivo to cephalosporin concentrations reaching the MICs measured here. Resistant
324	bacteria can also be selected experimentally at antimicrobial concentrations up to several
325	hundred-fold below lethal levels (73-77). However, the overall contribution made by such
326	'sub-MIC selection' to resistance in clinically important bacteria is unknown (78).
327	To date, only $\sim 1\%$ of known <i>C. difficile</i> lineages (949 STs identified as at 13 May 2022,
328	https://pubmlst.org/organisms/clostridioides-difficile) have evolved MDR clade(s).
329	Furthermore, members of this minority have tended to evolve >1 such clade (Figure 4-7).
330	This suggests a wild-type phenotype which favours the acquisition of chromosomal SNPs
331	which raise cephalosporin and fluoroquinolone MICs. As discussed above, the baseline
332	cephalosporin MICs for MDR-yielding lineages were higher than those lacking MDR strains
333	(Figure 3A). This potentially favours survival of MDR-yielding lineages in low
334	cephalosporin concentrations, allowing selection of PBP substitutions. An alternative,
335	mechanism might be a hypermutator phenotype, as in S. pneumoniae (73).
336	In summary, our findings identify a role for cephalosporin selection in the evolution of
337	epidemic CDI lineages. Specific regional prescribing practises may determine the locally
338	predominant epidemic strains, potentially explaining the marked international variation in C.
339	difficile molecular epidemiology. Since antimicrobial stewardship typically targets multiple
340	drug classes (29, 79) and epidemic strains have raised MICs for fluoroquinolones,
341	cephalosporins, (Figure 2) and more variably clindamycin (ermB) (Table S1), is difficult to
342	determine the relative contributions made by stewardship of each drug to CDI control. The
343	timing of cephalosporin and fluoroquinolone resistance acquisition, immediately before the
344	emergence of multiple epidemic strains from divergent C. difficile genetic backgrounds,
345	suggests AMR may be equally important as, or even exceed, strain-specific virulence
346	determinants in driving epidemic CDI.

347 MATERIALS AND METHODS

348	WGS from 7094	C. difficile isolates	, predominantly cultur	ed from humans with CDI were
-----	---------------	-----------------------	------------------------	------------------------------

349 obtained. Clinical isolates from hospital and community patients from Europe, North and

- 350 South America, South East Asia, and Australia were included. Fourteen CDI lineages were
- represented, and two non-toxigenic lineages. A complete list of genomes, their identifiers in
- 352 public databases, and references is provided (Table S1). Raw sequence reads were assembled
- de novo as required using Velvet (version 1.0.7 1.0.18) (80) and Velvet Optimiser with
- default settings (2.1.7) (81). A minority of genomes were obtained assembled, either from the
- NCBI database (82) or EnteroBase (83, 84). Assemblies were imported to a BIGSdb database
- 356 (85) which was used to identify the seven loci used in multi-locus sequence typing (44).
- 357 Sequence types (STs) were assigned using the *C. difficile* PubMLST database
- 358 (https://pubmlst.org/organisms/clostridioides-difficile/). ST and PCR-ribotype were used to
- indicate genetic lineages, identified by the notation ST1(027) (sequence type-1 (PCR-
- 360 ribotype-027)).
- 361 BLAST searches performed within BIGSdb (85) were used to identify and extract
- chromosomal gene sequences for PBP transpeptidases (PBP1-5, (45)), together with gyrA,
- 363 gyrB, and rpoB, specific mutations in which confer AMR. Established amino acid
- 364 substitutions scored as conferring resistance to fluoroquinolones were GyrA T81I and GyrB
- 365 D426N, and to rifampin RpoB R505K, H502N, S498T. Acquisition of *ermB*, conferring
- clindamycin resistance was also noted (86-89). Each unique allele sequence identified at
- these loci (PBP1-5, gyrA, gyrB, rpoB and ermB) was assigned a number (Table S1) and can
- 368 be downloaded at https://pubmlst.org/organisms/clostridioides-difficile/ (44, 85). Newly
- 369 extracted gene sequences were queried against this database and the allele numbers were
- recorded for each genome, together with the substitutions relevant to AMR (Table S1).

372 Identification of recent PBP substitutions

373 This was achieved using MEGA (https://www.megasoftware.net/) (90), which facilitated

within-lineage comparisons of the nucleotide and amino acid sequences of PBP1-5 alleles.

375 Comparisons were made relative to the wild type PBP sequence for each lineage, wild-type

alleles being taken from non-MDR genomes within the lineage.

377 Phenotyping

378 Isolates were chosen for phenotyping from four lineages, each of which contained both PBP

substituted and wild type strains; ST1(027)FQ-R1 and FQ-R2, ST3(001), ST17(017) and

380 ST42(106). Representatives for each lineage were chosen on the basis of minimal SNP

distances (Figure 3A). Genomes of four lineages lacking MDR strains (wild type only), also

underwent phenotyping; ST10(015), ST6(005), ST56(058) and ST7(026).

- 383 Minimum inhibitory concentrations of cefotaxime, cefuroxime, cephradine, amoxicillin,
- amoxicillin-clavulante, meropenem, imipenem and piperacillin-tazobatam were determined
- by Wilkins Chalgren agar dilution methods (91, 92). Briefly, *C. difficile* isolates and controls
- 386 (C. difficile ATCC700057, E4 (PCR ribotype 010) and B. fragilis 25285) were cultured in
- 387 pre-reduced Schaedlers anaerobic broths at 37°C for 24h, anaerobically. Isolates and controls
- 388 were diluted in pre-reduced saline to McFarland standard 1 equivalence and multipoint
- inoculated onto prepared antibiotic-containing agar plates and controls. Agar plates were
- incubated at 37°C for 24h, anaerobically prior to MIC determination. MIC was defined as the
- lowest concentration of antimicrobial that completely inhibited growth, showed only 1 or 2
- colonies, or left a faint haze of growth on the plate.
- 393 Antimicrobial concentrations were prepared using solvents and diluents recommended in the
- 394 CLSI guidelines (93, 94). For amoxicillin clavulanate and piperacillin-tazobactam, clavulanic
- acid and tazobactam were was added to agar at fixed concentrations of 2mg/L and 4 mg/L
- respectively. In order to test susceptibility within normal doubling dilutions, further antibiotic

397	concentrations were prepared	or the antibiotic plate range	e. All antibiotics were tested at the
-----	------------------------------	-------------------------------	---------------------------------------

- following dilutions: 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 36, 40, 46, 53, 64, 71, 80, 91, 107,
- 399 128, 142, 160, 182, 213, 256, 284, 320, 366, 427, 512 mg/L. Additionally, cefuroxime and
- 400 cephradine were prepared up to their limit of solubility and the following ranges of dilutions
- 401 were prepared. Cefuroxime: 102, 120, 143, 160, 205, 213, 240, 287, 319, 409, 478, 572
- 402 mg/L. Cephradine: 105, 118, 134, 157, 188, 209, 235, 269, 314, 376, 418, 471, 538, 627, 753,
- 403 837, 941, 1076, 1255, 1506 mg/L.

404 Construction of dated phylogenies

405 Dated phylogenies were constructed using genomes chosen to maximise geographic and

- 406 temporal spread of wild type and AMR strains, as well as to represent the diversity of PBP
- 407 substitutions detected in each lineage. Each set of genomes was first aligned to a reference
- 408 using MuMMER version 3.1 (95) to produce a genome-wide alignment. Initial phylogenies

409 were built using PhyML version 3.3 (96) which were then corrected for recombination using

- 410 ClonalFrameML version 1.12 (97). Finally these phylogenies were dated using BactDating
- 411 version 1.1 (98) assuming a mean evolutionary rate of 1.4 mutations per year per genome as
- 412 in previous similar studies (99).

413 ACKNOWLEDGEMENTS

- 414 This study was supported by the National Institute for Health Research (NIHR) Oxford
- 415 Biomedical Research Centre (BRC), and by the National Institute for Health Research
- 416 (NIHR) Health Protection Research Unit in Healthcare Associated Infections and
- 417 Antimicrobial Resistance (NIHR200915), a partnership between the UK Health Security
- 418 Agency (UKHSA) and the University of Oxford.
- 419 XD was funded by the NIHR Health Protection Research Unit (HPRU) in Genomics and
- 420 Enabling Data, and the NIHR HPRU in Gastrointestinal Infections.
- 421 MHW is supported by the National Institute for Health Research Leeds in Vitro Diagnostics
- 422 Co-operative.
- 423 DWC is a NIHR Senior Investigator
- 424 ASW is a NIHR Senior Investigator.
- 425 DWE is a Robertson Foundation Fellow.
- 426
- 427 The funders had no role in study design, data collection and interpretation, or the decision to
- 428 submit the work for publication. The views expressed are those of the authors and not

429 necessarily those of the NHS, NIHR or Department of Health.

430

431 **DECLARATIONS**

- 432 DWE declares lecture fees from Gilead, outside the submitted work. No other author has a
- 433 conflict of interest to declare.

434 FIGURE LEGENDS

435 Figure 1. Positions and relative frequency of amino acid substitutions within PBP3 (993

436 amino acids long) and PBP1 (856-926 amino acids).

- 437 (A) Substitutions within PBP3 (n=48) are represented by purple circles, plotted according to
- 438 locations within the PBP (x-axis). Circles are scaled according to substitution frequency
- 439 within the entire dataset. Light grey shading indicates the position of conserved
- 440 transpeptidase domains identified by BLASTP. Red circles indicate transpeptidase catalytic
- 441 motifs.
- (B) As (A), but PBP1 (n substitutions = 50), and dark grey indicates N-terminal glycosyl
- 443 transferase domain.
- 444 (C) As (A), except relative sizes of blue circle indicates the number of lineages in which each
- 445 substitution was identified.
- (D) As (B), blue circles again indicating the number of lineages in which each substitutionwas identified.
- Raw data, including the identity of each substitution are shown in Table 2.
- Figure 2. Occurrence of PBP substitutions and fluoroquinolone resistance in the 16
 lineages studied.

451 Figure 3. β-lactam MICs of wild type and PBP substituted *C. difficile* isolates.

- 452 (A) MICs measured for the lineages, strains and β -lactams shown. PBP substitutions are
- 453 highlighted by colour. Intensity of grey shading indicates fold increase in MIC from wild
- 454 type. Numbers in superscript indicate the numbers of isolates tested, if >1. WT: wild-type,
- 455 NT: not tested.

- (B) Positions of the PBP substitutions (coloured as in (A)) contained in the isolates that
- underwent phenotyping (A), relative to the conserved transpeptidase domains (grey) and the
- 458 active site motifs (red circles).
- 459 Figure 4. Phylogenetic analysis of lineage ST1(027)
- 460 (A) Dated phylogeny to show the emergence of lineage ST1(027) FQ-R1 (n=27) (19) (red
- 461 branches) from wild type (n=27).
- (B) Dated phylogeny to show the emergence of lineage ST1(027) FQ-R2 (n=67) (19) (red
- 463 branches) from wild type (n=27).
- 464 Genomes were chosen to maximise temporal and geographic spread of wild type and AMR
- strains, and to represent the diversity of PBP substitutions detected. AMR determinants and
- 466 PBP substitutions are as indicated in the key. Co-occurrence of fluoroquinolone resistance
- and PBP substitutions is highlighted by red branches. PBP substitutions are highlighted by
- 468 coloured squares.

469 Figure 5. Phylogenetic analysis of lineages ST17(018) and ST3(001)

- 470 (A) Dated phylogeny to show the emergence of MDR lineage ST17(018) (n=66) (red
- branches) from wild type (n=53). MDR strains from Europe, South East Asia and North
- 472 America were chosen to maximise geographic spread and PBP substitutions. These and other
- 473 AMR determinants and PBP substitutions are as indicated in the key. Co-occurrence of
- 474 fluoroquinolone resistance and PBP substitutions is highlighted by red branches.
- (B) Dated phylogeny showing the evolutionary relationship of wild type (n=40) and PBP
- 476 substituted ST3(001) genomes (n=77).

477 Figure 6. Phylogenetic analysis of lineages ST37(017)/ST81(369) and ST8(002)/ST183

478 (A) Dated phylogeny showing the evolutionary relationship of wild type (n=43) and PBP

substituted ST8(002)/ST183 strains (n=47). Wild type genomes were chosen to maximise

480	genetic diversity (inferred using a previously constructed phylogeny (Dingle et al., 2017)).
481	The MDR ST183 clade was identified here as emergent from MDR ST8(002). Co-occurrence
482	of fluoroquinolone resistance and PBP substitutions is indicated by red branches in ST8(002)
483	and light blue branches in ST183.
484	(B) Dated phylogeny showing the evolutionary relationship of wild type (n=25) and PBP
485	substituted ST37(017) (n=59) and ST81(369) (n=16) genomes. The MDR ST37(017)
486	genomes were chosen to include representatives of strains associated with well documented
487	outbreaks and other potential clusters identified by location and PBP substitution patterns.
488	The MDR ST81(369) clade was identified here as emergent from MDR ST37(017). The
489	majority of available wild type ST37(017) genomes represented healthcare-associated and
490	asymptomatically carried (infant) strains from a single location (Oxfordshire, UK (30; 104)).
491	Co-occurrence of fluoroquinolone resistance and PBP substitutions is indicated by red
492	branches in ST37(017) and light blue branches in ST81.

493 Figure 7. Phylogenetic analysis of lineages ST42(106) and ST54(012)

- (A) Dated phylogeny for the ST42(106) lineage (n=111 genomes) showing the evolutionary
- relationship of wild type and fluoroquinolone and/or PBP substituted strains, chosen to
- 496 represent overall diversity in terms of locations and PBP substitution patterns.
- 497 (B) As above, but for the ST54(012) lineage (n=107 genomes).
- 498 In both (A) and (B) the co-occurrence of fluoroquinolone resistance and PBP substitutions
- 499 indicated by red branches, and PBP substitutions alone by blue branches.

500 Figure 8. Phylogenetic analysis of ST2(014/020) genomes

- 501 Dated phylogeny showing the evolutionary relationship between wild type (n=63) and PBP
- substituted ST2(014/020) strains (n=60) lacking fluoroquinolone resistance. Branch colour
- 503 indicates one of six locations. Clustering of PBP substituted genomes is compared with wild
- 504 type for six independent geographic locations. Wild type genomes from each location were

- 505 collected concurrently with the PBP substituted strains. Occurrence of AMR determinants is
- 506 indicated as shown in the key.

508 **REFERENCES**

- Smits WK, Lyras D, Lacy DB, Wilcox MH, Kuijper EJ. 2016. *Clostridium difficile* infection. Nat Rev Dis Primers 2:16020.
- 511 2. McDonald LC, Killgore GE, Thompson A, Owens RC Jr, Kazakova SV, Sambol SP,
- Johnson S, Gerding DN. 2005. An epidemic, toxin gene-variant strain of *Clostridium*
- 513 *difficile*. N Engl J Med 353:2433-2441.
- Zaiss NH, Witte, W, Nübel U. 2010. Fluoroquinolone resistance and *Clostridium difficile*, Germany. Emerg Infect Dis 16:675-677.
- Barbanti F, Spigaglia P. 2016. Characterization of *Clostridium difficile* PCR-ribotype
 018: A problematic emerging type. Anaerobe 42:123-129.
- 5. Imwattana K, Knight DR, Kullin B, Collins DA, Putsathit P, Kiratisin P, Riley TV.
- 519 2020. Antimicrobial resistance in *Clostridium difficile* ribotype 017. Expert Rev Anti
 520 Infect Ther 18:17-25.
- 521 6. Freeman J, Vernon J, Pilling S, Morris K, Nicolson S, Shearman S, Clark E, Palacios-
- 522 Fabrega JA, Wilcox M; Pan-European Longitudinal Surveillance of Antibiotic
- 523 Resistance among Prevalent *Clostridium difficile* Ribotypes' Study Group. 2020.
- 524 Five-year Pan-European, longitudinal surveillance of *Clostridium difficile* ribotype
- 525 prevalence and antimicrobial resistance: the extended ClosER study. Eur J Clin
- 526 Microbiol Infect Dis 39:169-177.
- 527 7. Lew T, Putsathit P, Sohn KM, Wu Y, Ouchi K, Ishii Y, Tateda K, Riley TV, Collins
 528 DA. 2020. Antimicrobial Susceptibilities of *Clostridium difficile* Isolates from 12
 529 Asia-Pacific Countries in 2014 and 2015. Antimicrob Agents Chemother 64:e00296-
- 530 20.
- 8. Carlson TJ, Blasingame D, Gonzales-Luna AJ, Alnezary F, Garey KW. 2020.
 Clostridioides difficile ribotype 106: A systematic review of the antimicrobial

533		susceptibility, genetics, and clinical outcomes of this common worldwide strain.
534		Anaerobe 62:102142.
535	9.	Owens RC Jr, Donskey CJ, Gaynes RP, Loo VG, Muto CA. 2008. Antimicrobial-
536		associated risk factors for Clostridium difficile infection. Clin Infect Dis 46 Suppl
537		1:S19-31.
538	10.	Gerding DN. 2004. Clindamycin, cephalosporins, fluoroquinolones, and Clostridium
539		difficile-associated diarrhea: this is an antimicrobial resistance problem. Clin Infect
540		Dis 38:646-648.
541	11.	Muto CA, Pokrywka M, Shutt K, Mendelsohn AB, Nouri K, Posey K, Roberts T,
542		Croyle K, Krystofiak S, Patel-Brown S, Pasculle AW, Paterson DL, Saul M, Harrison
543		LH. 2005. A large outbreak of Clostridium difficile-associated disease with an
544		unexpected proportion of deaths and colectomies at a teaching hospital following
545		increased fluoroquinolone use. Infect Control Hosp Epidemiol 26:273-280.
546	12.	Johnson S, Samore MH, Farrow KA. 1999. Epidemics of diarrhea caused by a
547		clindamycin-resistant strain of Clostridium difficile in four hospitals. N Engl J Med
548		341:1645-1651.
549	13.	Loo VG, Poirier L, Miller MA, Oughton M, Libman MD, Michaud S, Bourgault AM,
550		Nguyen T, Frenette C, Kelly M, Vibien A, Brassard P, Fenn S, Dewar K, Hudson TJ,
551		Horn R, René P, Monczak Y, Dascal A. 2005. A predominantly clonal multi-
552		institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity
553		and mortality. N Engl J Med 353:2442-2449.
554	14.	Arvand M, Hauri AM, Zaiss NH, Witte W, Bettge-Weller G. 2009. Clostridium
555		difficile ribotypes 001, 017, and 027 are associated with lethal C. difficile infection in
556		Hesse, Germany. Euro Surveill 14:19403.

557	15. Goorhuis A, DebastSB, Dutilh JC, van Kinschot CM, Harmanus C, Cannegieter SC,
558	Hagen EC, Kuijper EJ. 2011. Type-specific risk factors and outcome in an outbreak
559	with two different Clostridium difficile types simultaneously in one Hospital. Clinical
560	Infectious Diseases 53:860-869.
561	16. Walker AS, Eyre DW, Wyllie DH, Dingle KE, Griffiths D, Shine B, Oakley S,
562	O'Connor L, Finney J, Vaughan A, Crook DW, Wilcox MH, Peto TE; Infections in
563	Oxfordshire Research Database. 2013. Relationship between bacterial strain type, host
564	biomarkers, and mortality in Clostridium difficile infection. Clin Infect Dis 56:1589-
565	1600.
566	17. Baldan R, Trovato A, Bianchini V, Biancardi A, Cichero P, Mazzotti M, Nizzero P,
567	Moro M, Ossi C, Scarpellini P, Cirillo DM. 2015. Clostridium difficile PCR Ribotype
568	018, a Successful Epidemic Genotype J Clin Microbiol 53:2575-2580.
569	18. Serafino S, Consonni D, Migone De Amicis M, Sisto F, Domeniconi G, Formica S,
570	Zarantonello M, Maraschini A, Cappellini MD, Spigaglia P, Barbanti F, Castaldi S,
571	Fabio G. 2018. Clinical outcomes of <i>Clostridium difficile</i> infection according to strain
572	type. A prospective study in medical wards. Eur J Intern Med 54:21-26.
573	19. He M, Miyajima F, Roberts P, Ellison L, Pickard DJ, Martin MJ, Connor TR, Harris
574	SR, Fairley D, Bamford KB, D'Arc S, Brazier J, Brown D, Coia JE, Douce G,
575	Gerding D, Kim HJ, Koh TH, Kato H, Senoh M, Louie T, Michell S, Butt E, Peacock
576	SJ, Brown NM, Riley T, Songer G, Wilcox M, Pirmohamed M, Kuijper E, Hawkey P,
577	Wren BW, Dougan G, Parkhill J, Lawley TD. 2013. Emergence and global spread of
578	epidemic healthcare-associated Clostridium difficile. Nat Genet 45:109-113.
579	20. Senoh M, Haru Kato H. 2022. Molecular epidemiology of endemic Clostridioides
580	difficile infection in Japan. Anaerobe 3:102510.

581	21. Hensgens MP,	Goorhuis A,	van Kinschot CM,	Crobach MJ, Ha	armanus C, Kuijper EJ.
-----	------------------	-------------	------------------	----------------	------------------------

- 2011. *Clostridium difficile* infection in an endemic setting in the Netherlands. Eur J
 Clin Microbiol Infect Dis 30:587-93.
- 584 22. Eyre DW, Davies KA, Davis G, Fawley WN, Dingle KE, De Maio N, Karas A, Crook
 585 DW, Peto TEA, Walker AS, Wilcox MH; EUCLID Study Group. 2018. Two distinct
 586 patterns of *Clostridium difficile* diversity across Europe indicating contrasting routes
 587 of spread. Clin Infect Dis 67:1035-1044.
- 23. Pear SM, Williamson TH, Bettin KM, Gerding DN, Galgiani JN. 1994. Decrease in
 nosocomial *Clostridium difficile*-associated diarrhea by restricting clindamycin use.
 Ann Intern Med 120:272-277.
- 591 24. McNulty C, Logan M, Donald IP, Ennis D, Taylor D, Baldwin RN, Bannerjee M,
- 592 Cartwright KA. 1997. Successful control of *Clostridium difficile* infection in an
- elderly care unit through use of a restrictive antibiotic policy J Antimicrob Chemother40:707-711.
- 595 25. Valiquette L, Cossette B, Garant MP, Diab H, Pépin J. 2007. Impact of a reduction in
 596 the use of high-risk antibiotics on the course of an epidemic of *Clostridium difficile*597 associated disease caused by the hypervirulent NAP1/027 strain. Clin Infect Dis
 598 45:S112-S121.
- 26. Debast SB, Vaessen N, Choudry A, Wiegers-Ligtvoet EAJ, van den Berg RJ, Kuijper
 EJ. 2009. Successful combat of an outbreak due to *Clostridium difficile* PCR ribotype
 027 and recognition of specific risk factors Clin Microbiol Infect 15:427-434.
- 602 27. Feazel LM, Malhotra A, Perencevich EN, Kaboli P, Diekema DJ, Schweizer ML.
- 603 2014. Effect of antibiotic stewardship programmes on *Clostridium difficile* incidence:
- a systematic review and meta-analysis. J Antimicrob Chemother 69:1748-1754.

605	28.	Sarma JB, Marshall B, Cleeve V, Tate D, Oswald T, Woolfrey S. 2015. Effects of
606		fluoroquinolone restriction (from 2007 to 2012) on <i>Clostridium difficile</i> infections:
607		interrupted time-series analysis. J Hosp Infect 91:74-80.
608	29.	Muto CA, Blank MK, Marsh JW. 2007. Control of an outbreak of infection with the
609		hypervirulent Clostridium difficile BI strain in a university hospital using a
610		comprehensive "bundle" approach. Clin Infect Dis 45:1266-1273.
611	30.	Dingle KE, Didelot X, Quan TP, Eyre DW, Stoesser N, Golubchik T, Harding RM,
612		Wilson DJ, Griffiths D, Vaughan A, Finney JM, Wyllie DH, Oakley SJ, Fawley WN,
613		Freeman J, Morris K, Martin J, Howard P, Gorbach S, Goldstein EJC, Citron DM,
614		Hopkins S, Hope R, Johnson AP, Wilcox MH, Peto TEA, Walker AS, Crook DW;
615		Modernising Medical Microbiology Informatics Group. 2017. Effects of control
616		interventions on <i>Clostridium difficile</i> infection in England: an observational study.
617		Lancet Infect Dis 17:411-421.
618	31.	Lawes T, Lopez-Lozano JM, Nebot CA, Macartney G, Subbarao-Sharma R, Wares
619		KD, Sinclair C, Gould IM. 2017. Effect of a national 4C antibiotic stewardship
620		intervention on the clinical and molecular epidemiology of Clostridium difficile
621		infections in a region of Scotland: a non-linear time-series analysis. Lancet Infect Dis
622		17:194-206.
623	32.	Huang H, Weintraub A, Fang H, Nord CE. 2009. Antimicrobial resistance in
624		Clostridium difficile. Int J Antimicrob Agents 34:516-522.
625	33.	Dzink J, Bartlett JG. 1980. In vitro susceptibility of Clostridium difficile isolates from
626		patients with antibiotic-associated diarrhea or colitis. Antimicrob Agents Chemother
627		17:695-698.
628	34.	Shuttleworth R, Taylor M, Jones DM. 1980. Antimicrobial susceptibilities of
629		Clostridium difficile. J Clin Pathol 33:1002-1005.

630	35. Greenfield RA,	Kurzynski TA,	Craig, WA.	1982. In vitro	susceptibility of
-----	--------------------	---------------	------------	----------------	-------------------

- 631 *Clostridium difficile* isolates to cefotaxime, moxalactam, and cefoperazone.
- Antimicrob Agents and Chemother 21:846-847.
- 633 36. Chow AW, Cheng N, Bartlett KH. 1985. *In vitro* susceptibility of *Clostridium difficile*634 to new beta-lactam and quinolone antibiotics. Antimicrob Agents Chemother 28:842-
- 635 844.
- 636 37. Toth M, Stewart NK, Smith C, Vakulenko SB. 2018. Intrinsic Class D β-Lactamases
 637 of *Clostridium difficile*. mBio 9:e01803-18.
- 63838. Sandhu BK, Edwards AN, Anderson SE, Woods EC, McBride SM. 2019. Regulation
- and Anaerobic Function of the *Clostridioides difficile* β-Lactamase. Antimicrob
 Agents Chemother 64:e01496-19.
- 641 39. Fisher JF, Mobashery S. 2016. β-Lactam Resistance Mechanisms: Gram-Positive
 642 Bacteria and *Mycobacterium tuberculosis*. Cold Spring Harb Perspect Med
 643 6:a025221.
- 644 40. Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. 2008. The penicillin-binding
- proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiology
 Reviews 32:234-258.
- 647 41. Zapun A, Contreras-Martel C, Vernet T. 2008. Penicillin-binding proteins and β648 lactam resistance. FEMS Microbiol Rev 32:361-385.
- 42. Kwon DH, Dore MP, Kim JJ, Kato M, Lee M, Wu JY, Graham DY. 2003. High-level
 beta-lactam resistance associated with acquired multidrug resistance in *Helicobacter pylori*. Antimicrob Agents Chemother 47:2169-2178.
- 43. Dewé TCM, D'Aeth JC, Croucher NJ. 2019. Genomic epidemiology of penicillinnon-susceptible *Streptococcus pneumoniae*. Microb Genom 5:e000305.

654	44. Griffiths D, Fawley W, Kachrimanidou M, Bowden R, Crook DW, Fung R,
655	Golubchik T, Harding RM, Jeffery KJ, Jolley KA, Kirton R, Peto TE, Rees G,
656	Stoesser N, Vaughan A, Walker AS, Young BC, Wilcox M, Dingle KE. 2010.
657	Multilocus sequence typing of <i>Clostridium difficile</i> . J Clin Microbiol 483:770-778.
658	45. Isidro J, Santos A, Nunes A, Borges V, Silva C, Vieira L, Mendes AL, Serrano M,
659	Henriques AO, Gomes JP, Oleastro M. 2018. Imipenem Resistance in Clostridium
660	difficile Ribotype 017, Portugal. Emerg Infect Dis 24:741-745.
661	46. Dembek M, Barquist L, Boinett CJ, Cain AK, Mayho M, Lawley TD, Fairweather
662	NF, Fagan RP. 2015. High-throughput analysis of gene essentiality and sporulation in
663	Clostridium difficile. mBio 6:e02383.
664	47. Aoki K, Takeda S, Miki T, Ishii Y, Tateda K. 2019. Antimicrobial susceptibility and
665	molecular characterisation using whole-genome sequencing of Clostridioides difficile
666	collected in 82 hospitals in Japan between 2014 and 2016. Antimicrob Agents
667	Chemother. 63:e01259-19.
668	48. Jia H, Du P, Yang H, Zhang Y, Wang J, Zhang W, Han G, Han N, Yao Z, Wang H,
669	Zhang J, Wang Z, Ding Q, Qiang Y, Barbut F, Gao GF, Cao Y, Cheng Y, Chen C.
670	2016. Nosocomial transmission of <i>Clostridium difficile</i> ribotype 027 in a Chinese
671	hospital, 2012-2014, traced by whole genome sequencing. BMC Genomics 17:405.
672	49. Qin J, Dai Y, Ma X, Wang Y, Gao Q, Lu H, Li T, Meng H, Liu Q, Li M. 2017.
673	Nosocomial transmission of Clostridium difficile Genotype ST81 in a general
674	teaching hospital in China traced by whole genome sequencing. Sci Rep 7:9627.
675	50. Wu Y, Liu C, Li WG, Xu JL, Zhang WZ, Dai YF, Lu JX. 2019. Independent
676	Microevolution Mediated by Mobile Genetic Elements of Individual Clostridium
677	difficile Isolates from Clade 4 Revealed by Whole-Genome Sequencing. mSystems
678	4:e00252-18.

679	51. Ramírez-Vargas G, Quesada-Gómez C, Acuña-Amador L, López-Ureña D, Murillo T,
680	Del Mar Gamboa-Coronado M, Chaves-Olarte E, Thomson N, Rodríguez-Cavallini E,
681	Rodríguez C. 2017. A Clostridium difficile lineage endemic to Costa Rican hospitals
682	is multidrug resistant by acquisition of chromosomal mutations and novel mobile
683	genetic elements. Antimicrob Agents Chemother 61:e02054-16.
684	52. Kachrimanidou M, Baktash A, Metallidis S, Tsachouridou O, Netsika F, Dimoglou D,
685	Kassomenaki A, Mouza E, Haritonidou M, Kuijper E. 2020. An outbreak of
686	Clostridioides difficile infections due to a 027-like PCR ribotype 181 in a
687	rehabilitation centre: Epidemiological and microbiological characteristics. Anaerobe
688	65:102252.
689	53. Boekhoud IM, Sidorov I, Nooij S, Harmanus C, Bos-Sanders IMJG, Viprey V, Spittal
690	W, Clark E, Davies K, Freeman J, Kuijper EJ, Smits WK; COMBACTE-CDI
691	Consortium. 2021. Haem is crucial for medium-dependent metronidazole resistance in
692	clinical isolates of Clostridioides difficile. J Antimicrob Chemother 76:1731-1740.
693	54. Imwattana K, Putsathit P, Knight DR, Kiratisin P, Riley TV. 2021. Molecular
694	Characterization of, and Antimicrobial Resistance in, Clostridioides difficile from
695	Thailand, 2017-2018. Microb Drug Resist 27:1505-1512.
696	55. Hiramatsu K, Cui L, Kuroda M, Ito T. 2001. The emergence and evolution of
697	methicillin-resistant Staphylococcus aureus. Trends Microbiol 9:486-493.
698	56. Ludlam H, Brown N, Sule O, Redpath C, Coni N, Owen G. 1999. An antibiotic policy
699	associated with reduced risk of Clostridium difficile-associated diarrhoea. Age Ageing
700	28:578-580.
701	57. O'Connor KA, Kingston M, O'Donovan M, Cryan B, Twomey C, O'Mahony D. 2004.
702	Antibiotic prescribing policy and <i>Clostridium difficile</i> diarrhoea QJM. 97:423-429.

703	58. Belmares J, Johnson S, Parada JP. 2009. Molecular epidemiology of <i>Clostridium</i>
704	difficile over the course of 10 years in a tertiary care hospital. Clin Infect Dis 49:1141-
705	1147.
706	59. Kato H, Kita H, Karasawa T, Maegawa T, Koino Y, Takakuwa H, Saikai T,
707	Kobayashi K, Yamagishi T, Nakamura S. 2001. Colonisation and transmission of
708	Clostridium difficile in healthy individuals examined by PCR ribotyping and pulsed-
709	field gel electrophoresis. J Med Microbiol 50:720-727.
710	60. Muraki Y, Yagi T, Tsuji Y, Nishimura N, Tanabe M, Niwa T, Watanabe T, Fujimoto
711	S, Takayama K, Murakami N, Okuda M. 2016. Japanese antimicrobial consumption
712	surveillance: First report on oral and parenteral antimicrobial consumption in Japan
713	(2009-2013). J Glob Antimicrob Resist 7:19-23.
714	61. Kim YA, Park YS, Youk T, Lee H, Lee K. 2018. Changes in Antimicrobial Usage
715	Patterns in Korea: 12-Year Analysis Based on Database of the National Health
716	Insurance Service-National Sample Cohort. Sci Rep 81:12210.
717	62. Qu X, Yin C, Sun X, Huang S, Li C, Dong P, Lu X, Zhang Z, Yin A. 2018.
718	Consumption of antibiotics in Chinese public general tertiary hospitals (2011-2014):
719	Trends, pattern changes and regional differences. PLoS One 13:e0196668.
720	63. Collins DA, Hawkey PM, Riley TV. 2013. Epidemiology of Clostridium difficile
721	infection in Asia. Antimicrob Resist Infect Control 2:21.
722	64. Park M, Rafii F. 2017. Exposure to beta-lactams results in the alteration of penicillin-
723	binding proteins in Clostridium perfringens. Anaerobe 45:78-85.
724	65. Cheng JW, Xiao M, Kudinha T, Xu Z, Hou X, Sun L, Zhang L, Fan X, Kong F, Xu
725	Y. 2016. The first two Clostridium difficile Ribotype 027/ST1 Isolates identified in
726	Beijing, China-an emerging problem or a neglected threat? Sci Rep 6:18834.

727	66.	Wilcox MH, Fawley WN. 2000. Hospital disinfectants and spore formation by
728		Clostridium difficile. Lancet 356:1324.
729	67.	Wang B, Peng W, Zhang P, Su J. 2018. The characteristics of Clostridium difficile
730		ST81, a new PCR ribotype of toxin A- B+ strain with high-level fluoroquinolones
731		resistance and higher sporulation ability than ST37/PCR ribotype 017. FEMS
732		Microbiol Lett 365(17).
733	68.	Burns DA, Heap JT, Minton NP. 2010. The diverse sporulation characteristics of
734		Clostridium difficile clinical isolates are not associated with type. Anaerobe 16:618-
735		622.
736	69.	Burns DA, Heeg D, Cartman ST, Minton NP. 2011. Reconsidering the sporulation
737		characteristics of hypervirulent Clostridium difficile BI/NAP1/027. PLoS One
738		6:e24894.
739	70.	Karlowsky JA, Adam HJ, Baxter MR, Dutka CW, Nichol KA, Laing NM, Golding
740		GR, Zhanel GG. 2020. Antimicrobial susceptibility of Clostridioides difficile isolated
741		from diarrhoeal stool specimens of Canadian patients: summary of results from the
742		Canadian <i>Clostridioides difficile</i> (CAN-DIFF) surveillance study from 2013 to 2017.
743		J Antimicrob Chemother 75:1824-1832.
744	71.	Karachalios G, Charalabopoulos K. 2002. Biliary excretion of antimicrobial drugs.
745		Chemotherapy 48:280-297.
746	72.	Kokai-Kun JF, Roberts T, Coughlin O, Sicard E, Rufiange M, Fedorak R, Carter C,
747		Adams MH, Longstreth J, Whalen H, Sliman J. 2017. The oral beta-lactamase SYN-
748		004 (ribaxamase) degrades ceftriaxone excreted into the intestine in phase 2a clinical
749		studies. Antimicrob Agents Chemother 61:e02197-16.

750	73. Negri MC, Morosini MI, Baquero MR, del Campo R, Blázquez J, Baquero F. 2002.
751	Very low cefotaxime concentrations select for hypermutable Streptococcus
752	pneumoniae populations. Antimicrob Agents Chemother 46:528-530.
753	74. Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, Andersson DI. 2011.
754	Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog
755	7:e1002158.
756	75. Gullberg E, Albrecht LM, Karlsson C, Sandegren L, Andersson DI. 2014. Selection of
757	a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals.
758	mBio 5: e01918-01914.
759	76. Andersson DI, Hughes D. 2012. Evolution of antibiotic resistance at non-lethal drug
760	concentrations. Drug Resist Updat 15:162-172.
761	77. Murray AK, Zhang L, Yin X, Zhang T, Buckling A, Snape J, Gaze WH. 2018. Novel
762	insights into selection for antibiotic resistance in complex microbial communities.
763	mBio 9:e00969-18.
764	78. Sandegren L. 2014. Selection of antibiotic resistance at very low antibiotic
765	concentrations. Ups J Med Sci 119:103-107.
766	79. http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1232006607827
767	80. Zerbino DR, Birney E. 2008. Velvet: algorithms for de-novo short read assembly
768	using de Bruijn graphs. Genome Res 18:821-829.
769	81. Gladman S, Seemann T. 2008. VelvetOptimiser, 2.1.7. Monash University, Victoria,
770	Australia.
771	82. NCBI database. https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/535/
772	83. Enterobase https://enterobase.warwick.ac.uk/species/index/clostridium
773	84. Frentrup M, Zhou Z, Steglich M, Meier-Kolthoff JP, Göker M, Riedel T, Bunk B,
774	Spröer C, Overmann J, Blaschitz M, Indra A, von Müller L, Kohl TA, Niemann S,

775	Seyboldt C, Klawonn F, Kumar N, Lawley TD, García-Fernández S, Cantón R, Del
776	Campo R, Zimmermann O, Groß U, Achtman M, Nübel U. 2020. A publicly
777	accessible database for Clostridioides difficile genome sequences supports tracing of
778	transmission chains and epidemics. Microb Genom 6:mgen000410.
779	85. Jolley KA, Bray JE, Maiden MCJ. 2018. Open-access bacterial population genomics:
780	BIGSdb software, the PubMLST.org website and their applications. Wellcome Open
781	Res 3:124.
782	86. Spigaglia P, Barbanti F, Mastrantonio P. 2008. Fluoroquinolone resistance in
783	Clostridium difficile isolates from a prospective study of C. difficile infections in
784	Europe. J Med Microbiol 57:784-789.
785	87. Drudy D, Quinn T, O'Mahony R, Kyne L, O'Gaora P, Fanning S. 2006. High-level
786	resistance to moxifloxacin and gatifloxacin associated with a novel mutation in gyrB
787	in toxin-A-negative, toxin-B-positive Clostridium difficile. J Antimicrob Chemother
788	58:1264-1267.
789	88. Curry SR, Marsh JW, Shutt KA, Muto CA, O'Leary MM, Saul MI, Pasculle AW,
790	Harrison LH. 2009. High frequency of rifampin resistance identified in an epidemic
791	Clostridium difficile clone from a large teaching hospital. Clin Infect Dis 48:425-429.
792	89. Spigaglia P, Barbanti F, Mastrantonio P; European Study Group on Clostridium
793	difficile (ESGCD). 2011. Multidrug resistance in European Clostridium difficile
794	clinical isolates. J Antimicrob Chemother 66:2227-2234.
795	90. Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics
796	Analysis Version 11. Molecular Biology and Evolution 38:3022-3027.
797	91. Baines SD, O'Connor R, Freeman J, Fawley WN, Harmanus C, Mastrantonio,
798	Kuijper EJ, Wilcox MJ. 2008. Emergence of reduced susceptibility to metronidazole
799	in Clostridium difficile. J Antimicrob Chemother 62:1046-1052.

800	92.	Freeman, J , Vernon, J, Morris K, Nicholson S, Todhunter S, Longshaw C, Wilcox
801		MH. 2015. Pan-European longitudinal surveillance of antibiotic resistance among
802		prevalent Clostridium difficile ribotypes. Clin Microbiol Infect 21:e9-16.
803	93.	Clinical Laboratory Standards Institute. M11-A8. Methods for Antimicrobial
804		Susceptibility Testing of Anaerobic Bacteria; Approved Standard - 8th Edition. 2012.
805	94.	Clinical Laboratory Standards Institute, M100S. Performance Standards for
806		Antimicrobial Susceptibility Testing. 2012.
807	95.	Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg
808		SL. 2004. Versatile and open software for comparing large genomes. Genome Biol.
809		5:R12.
810	96.	Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New
811		algorithms and methods to estimate maximum-likelihood phylogenies: assessing the
812		performance of PhyML 3.0. Syst Biol 59:307-321.
813	97.	Didelot X, Wilson DJ. 2015. ClonalFrameML: Efficient Inference of Recombination
814		in Whole Bacterial Genomes. PLoS Comput Biol 11:e1004041.
815	98.	Didelot X, Croucher NJ, Bentley SD, Harris SR, Wilson DJ. 2018. Bayesian inference
816		of ancestral dates on bacterial phylogenetic trees. Nucleic Acids Res. 46:e134.
817	99.	Didelot X, Eyre DW, Cule M, Ip CLC, Ansari MA, Griffiths D, Vaughan A,
818		O'Connor L, Golubchik T, Batty EM, Piazza P, Wilson DJ, Bowden R, Donnelly PJ,
819		Dingle KE, Wilcox M, Walker AS, Crook DW, Peto TE, Harding RM. 2012.
820		Microevolutionary analysis of Clostridium difficile genomes to investigate
821		transmission. Genome Biology 13:R118.
822	10). Lawley TD, Croucher NJ, Yu L, Clare S, Sebaihia M, Goulding D, Pickard
823		DJ, Parkhill J, Choudhary J, Dougan G. 2009. Proteomic and genomic

824	characterization of highly infectious Clostridium difficile 630 spores. J Bacteriol
825	191:5377-5386.

826	101.	Pettit LJ, Browne HP, Yu L, Smits WK, Fagan RP, Barquist L, Martin MJ,
827	Goul	ding D, Duncan SH, Flint HJ, Dougan G, Choudhary JS, Lawley TD. 2014.
828	Func	tional genomics reveals that Clostridium difficile Spo0A coordinates sporulation,
829	virule	ence and metabolism. BMC Genomics 15:160.
830	102.	He M, Sebaihia M, Lawley TD, Stabler RA, Dawson LF, Martin MJ, Holt KE,
831	Seth-	Smith HM, Quail MA, Rance R, Brooks K, Churcher C, Harris D, Bentley SD,
832	Burro	ows C, Clark L, Corton C, Murray V, Rose G, Thurston S, van Tonder A, Walker
833	D, W	ren BW, Dougan G, Parkhill J. 2010. Evolutionary dynamics of Clostridium
834	diffic	ile over short and long time scales. Proc Natl Acad Sci USA 107:7527-7532.
835	103.	Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, Stabler R,
836	Thon	nson NR, Roberts AP, Cerdeño-Tárraga AM, Wang H, Holden MT, Wright A,
837	Chur	cher C, Quail MA, Baker S, Bason N, Brooks K, Chillingworth T, Cronin A,
838	Davis	s P, Dowd L, Fraser A, Feltwell T, Hance Z, Holroyd S, Jagels K, Moule S,
839	Mung	gall K, Price C, Rabbinowitsch E, Sharp S, Simmonds M, Stevens K, Unwin L,
840	Whit	head S, Dupuy B, Dougan G, Barrell B, Parkhill J. 2006. The multidrug-resistant
841	huma	n pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet
842	38:77	79-786.
843	104.	Stoesser N, Eyre DW, Quan TP, Godwin H, Pill G, Mbuvi E, Vaughan A,
844	Griff	iths D, Martin J, Fawley W, Dingle KE, Oakley S, Wanelik K, Finney JM,
845	Kach	rimanidou M, Moore CE, Gorbach S, Riley TV, Crook DW, Peto TEA, Wilcox
846	MH,	Walker AS; Modernising Medical Microbiology Informatics Group (MMMIG).
847	2017	. Epidemiology of Clostridium difficile in infants in Oxfordshire, UK: Risk

37

- factors for colonization and carriage, and genetic overlap with regional *C. difficile*
- 849 infection strains. PLoS One. 12(8):e0182307.

850

R20291 loci	CD630 loci (former)	Alternate	PBP	Size	Blastp	Blastp
NC_013316.1	NC_009089.1	designation	Classification	(aa)	predicted function/family	e value ^g
0712 ^a	RS04495 (07810) ^d	PBP1 ^f	HMW class A	HMW class A 897 Bifunctional transglycosylase/transpeptida		2.14e-166
					pbp_1A_fam	
0985 ^a	RS06420 (11480) ^d	PBP3 ^f	HMW class B	992	Transpeptidase Pbp2_mrdA for cell elongation	1.53e-127
1067 ^b	RS06830 (12290)	PBP2 ^f	LMW class B	554	FtsI/Pbp2	2.85e-101
					Transpeptidase Pbp2_mrdA for cell elongation	1.81e-93
2544 ^b	RS14215 (26560) ^d	PBP4 ^f	LMW class B	659	spoVD_pbp transpeptidase	0e+00
		spoVD			FtsI/Pbp2	3.23e-165
-	-	PBP5 ^{e,f}	LMW class B	696	FtsI/Pbp2	1.00e-110
		strain M68			Pbp2_mrdA transpeptidase	2.67e-104
1131 ^b	RS07160 (12910) ^d	dacF	LMW class C	387	D-alanyl-D-alanine carboxypeptidase	1.68e-116
2048 ^b	RS11615 (21410)		LMW class C 397		D-alanyl-D-alanine carboxypeptidase	2.31e-88
0441 ^c	RS03150 (05150)		LMW class C	ass C 414 D-alanyl-D-alanine carboxypeptidase		8.55e-94
2390 [°]	RS13415 (24980)	dacF1	LMW class C	429	D-alanyl-D-alanine carboxypeptidase	7.59e-97
3056 ^b	RS17015 (31960)		PBP or	340	Blastp: CubicO group peptidase, β -lactamase class	3.06e-40
			β-lactamase?		C (R20291 'put. PBP'; CD630 'serine hydrolase')	
1318 ^c	RS08060 (14690)	cwp20	PBP or	1013	Blastp: β -lactamase, cell wall binding protein	2.40e-55
			β-lactamase?		repeats (R20291 'put. PBP', 'cell surface protein')	
2283	RS12870 (23930)			338	Transglycosylase domain containing protein	1.37e-74
0399	RS02840 (04580)	blaCDD, CDD1/2	β-lactamase	312	YbaI Class D Beta-lactamase (37)	5.94e-51

851 TABLE 1. PBPs and β-Lactamases of *C. difficile* Reference Genomes

852

853 Grey shading: proteins containing transpeptidase domains

^aEssential for growth *in vitro* only PBP1 and PBP3 (46).

^bNot essential for growth *in vitro*, but required for sporulation (46).

856 ^cNot essential for growth in vitro (46).

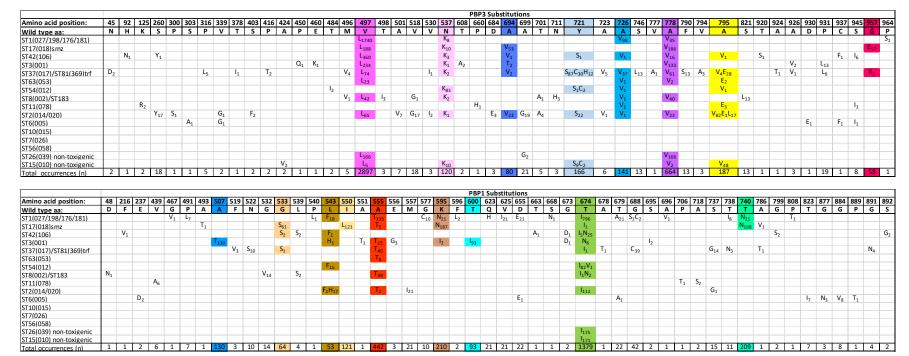
^dExistence shown experimentally by mass spec (100, 101).

^ePBP5 absent in R20291 and CD630; present in M68 (NC_017175.1) chromosomal locus RS02615, co-ordinates 501965-504052.

859 ^fPBP1 - 5 (45).

- ^gBlastp e-values for R20291 sequences; closer to zero, the more significant the match.
- 861
- 862 MDR Reference strains contain the following PBP Substitutions relative to wild type of the identical genotype:
- 863 R20291, ST1(027) UK 2006 (102) contains PBP3 V497L
- 864 CD630, ST54(012), Switzerland 1982 (103) contains PBP1 T674I and PBP3 N537K.
- 865 M68, ST37(017), Ireland 2006 (102) contains PBP3 Y721C.

866 Table 2 PBP3 and PBP1 substitutions identified within each of the sixteen lineages studied.

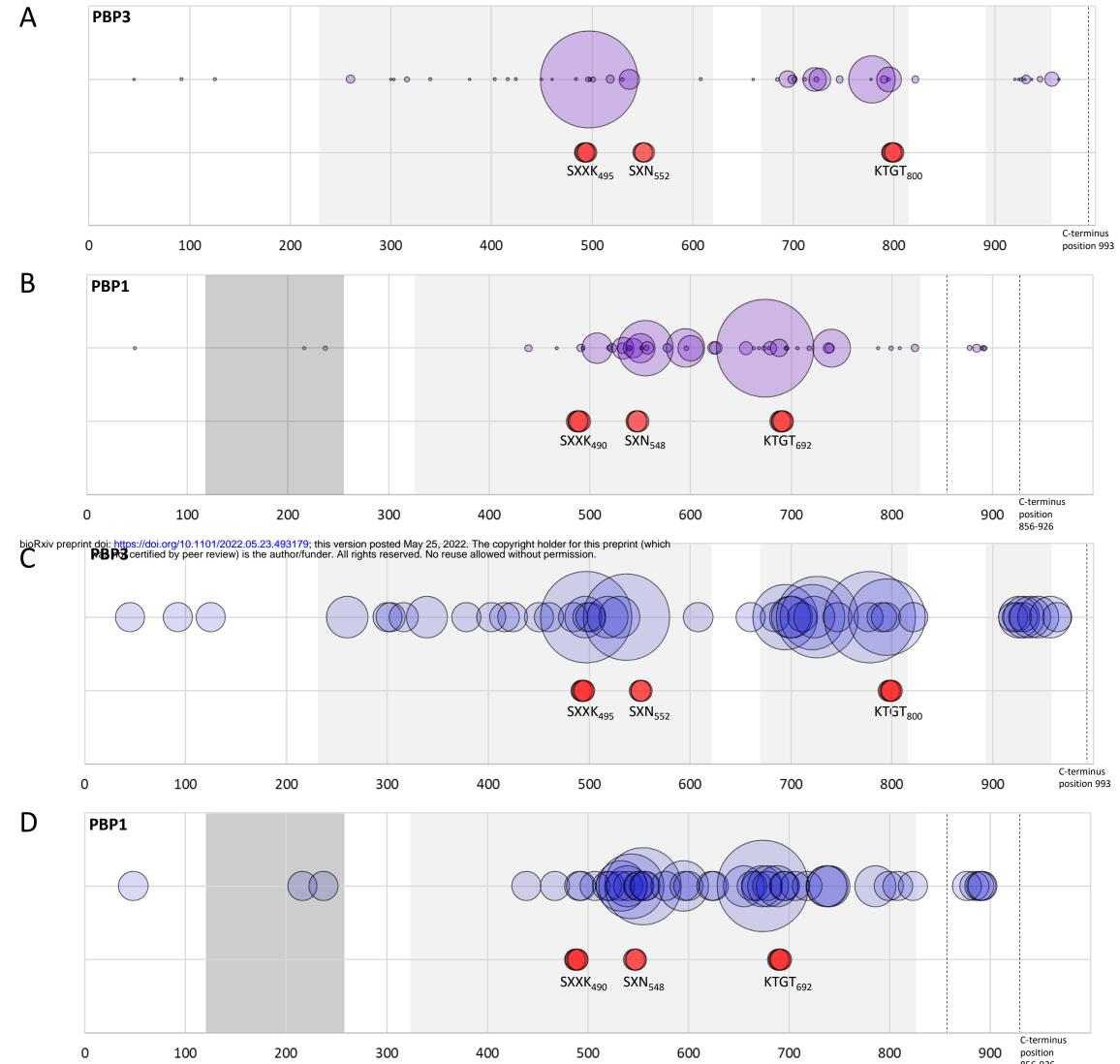

⁸⁶⁷ Upper panel PBP3, lower panel PBP1, with lineages in the left hand column. 'Amino acid position' across the top of each panel indicates

position within PBP3 or PBP1, together with the wild type amino acid. Amino acid substitutions are indicated within each panel; their frequency

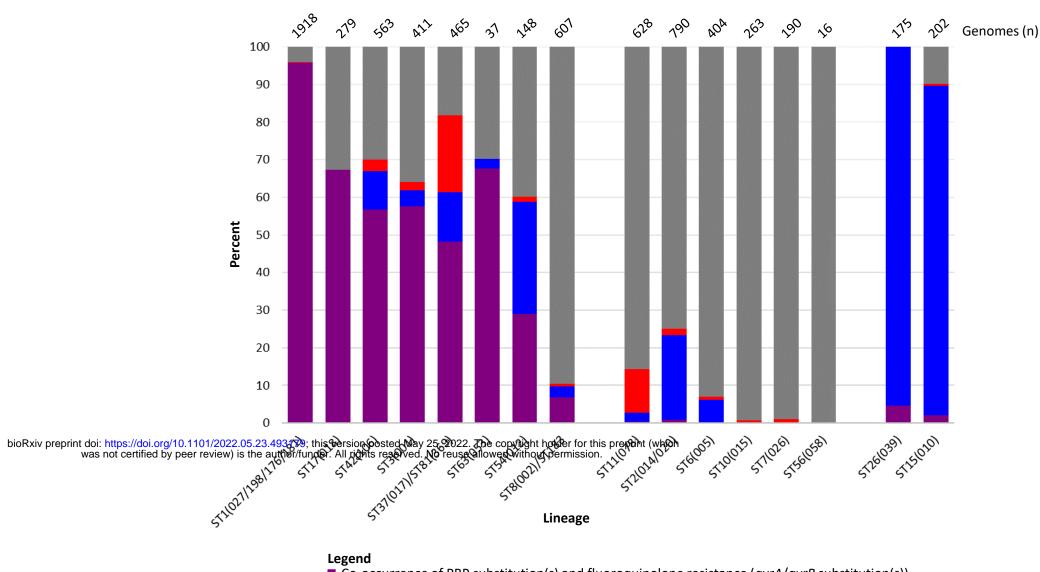
869 within-lineage shown in subscript. The overall frequency of each substitution within the entire data set is indicated in the bottom row. Coloured

870 boxes indicate the substitutions occurring over 50 times within the dataset.

871


872

873


874

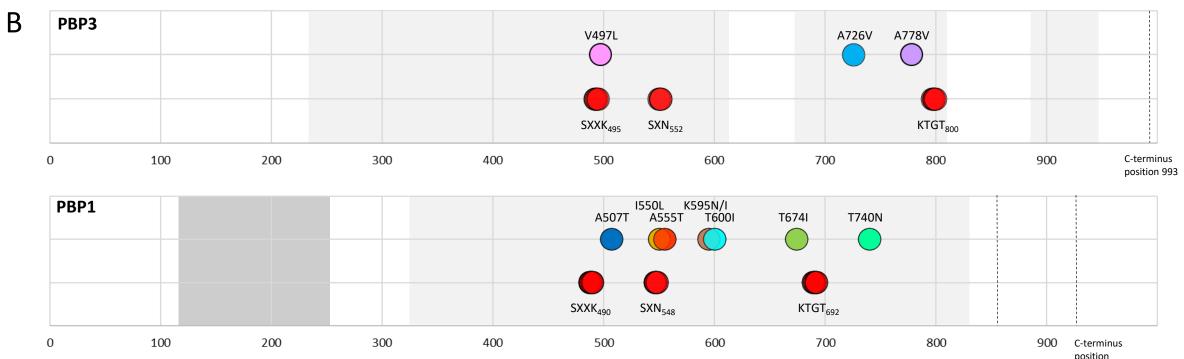
875 SUPPLEMENTAL MATERIAL

- Figure S1. ST81(369) PBP3 was acquired via a long recombination event.
- Distance plots showing pairwise comparisons of the donor ST8(002), recipient ST37(017)
- and recombinant ST81(369), with the aim of identifying the size and location of the
- recombination event. The genomes used were ST8(002) isolate W0003a NZ_CP025047.1
- (Yin et al., 2018), ST37(017) isolate M68 NC_017175.1 (He et al., 2010), and ST81(369)
- isolate 28 WGS:QNWI01, (Bioproject PRJNA479396, Assembly GCA_003326885.1) (Wu
- et al., 2019).
- The plots extend from 0.9 to 1.4 Mbp relative to M68 (x axis) so the locations of both PBP1
- and PBP3 are covered; PBP1 at 907,056-904,363 (gene CDM68_RS04280) and PBP3 at
- 1,219,021-1,221,999, (gene CDM68_RS05670), indicated by vertical red dashed lines.
- 886 Missing lines indicate alignment gaps.
- The large recombination event involves \sim 150kbp (\sim 3.5% of the 4,308,325bp genome). A
- 888 much smaller region occurred near the middle of the large event (position ~1.22Mbp) where
- ST81(369) no longer resembles ST8(002), but resembles ST37(017) instead. It appears likely
- that this short region, adjacent to PBP3, has recombined back with ST37(017).

Amino acid position within PBP

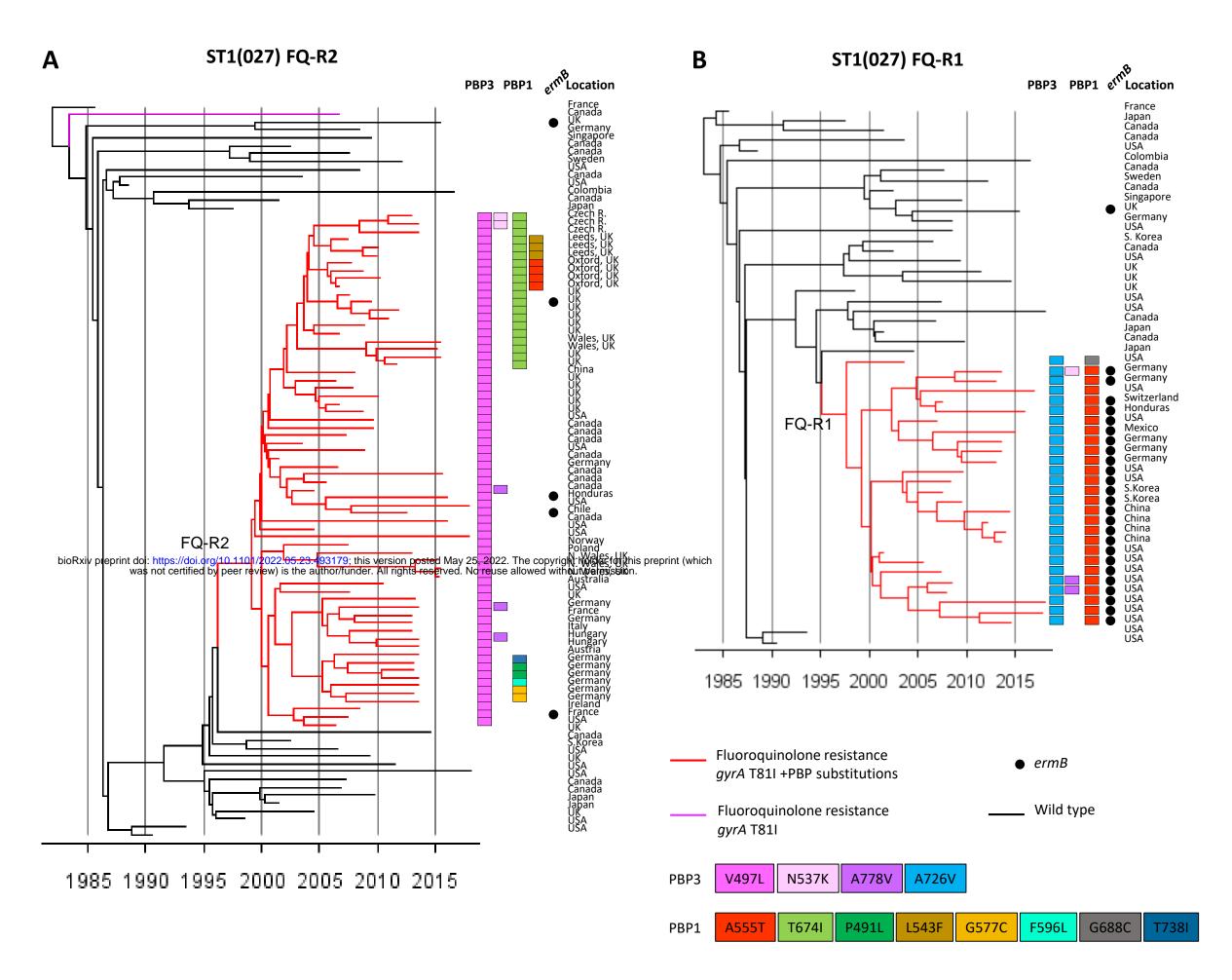
Co-occurrence of PBP substitution(s) and fluoroquinolone resistance (gyrA/gyrB substitution(s))

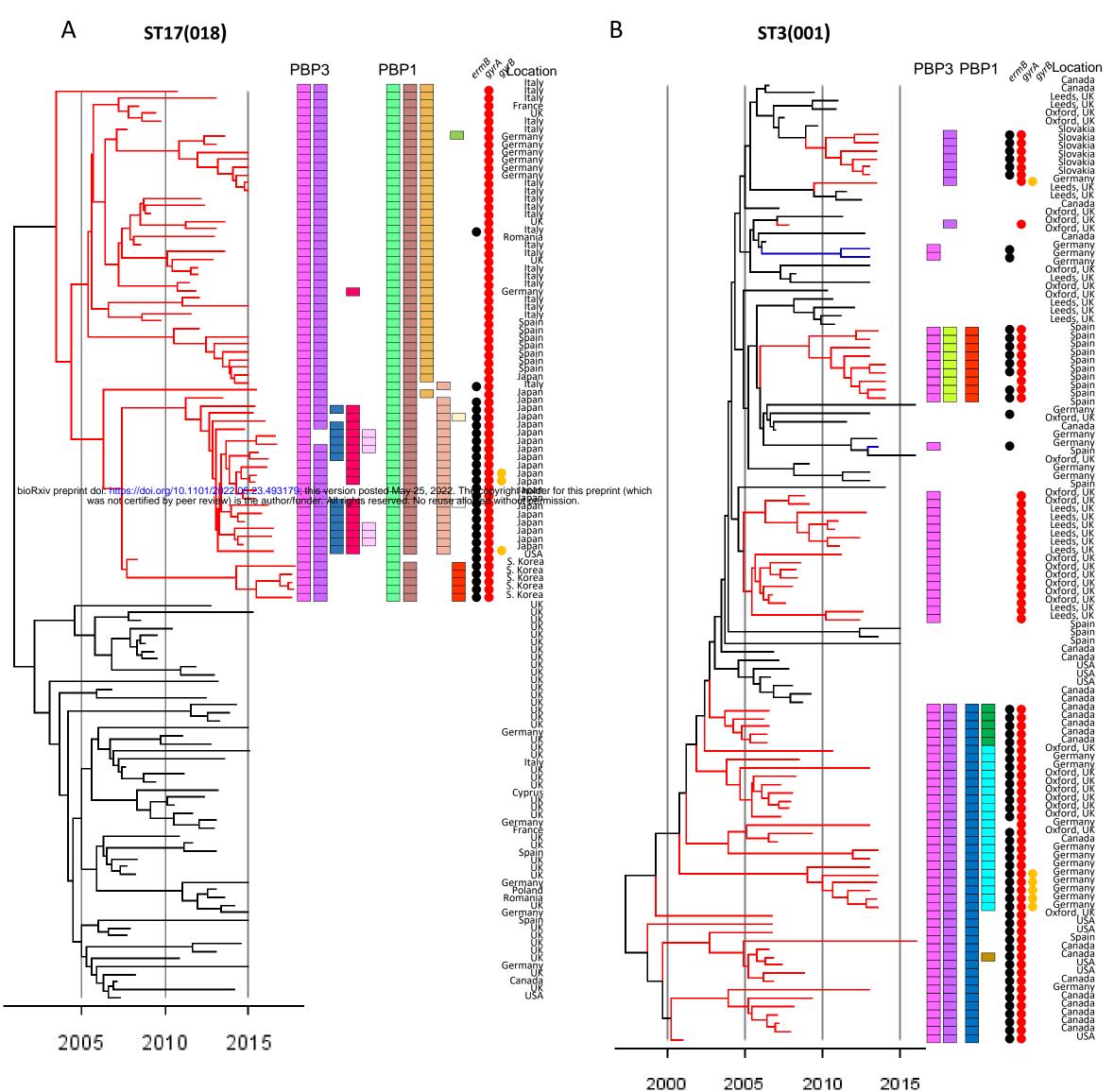
PBP substitution(s)


Fluoroquinolone resistance

Wild type

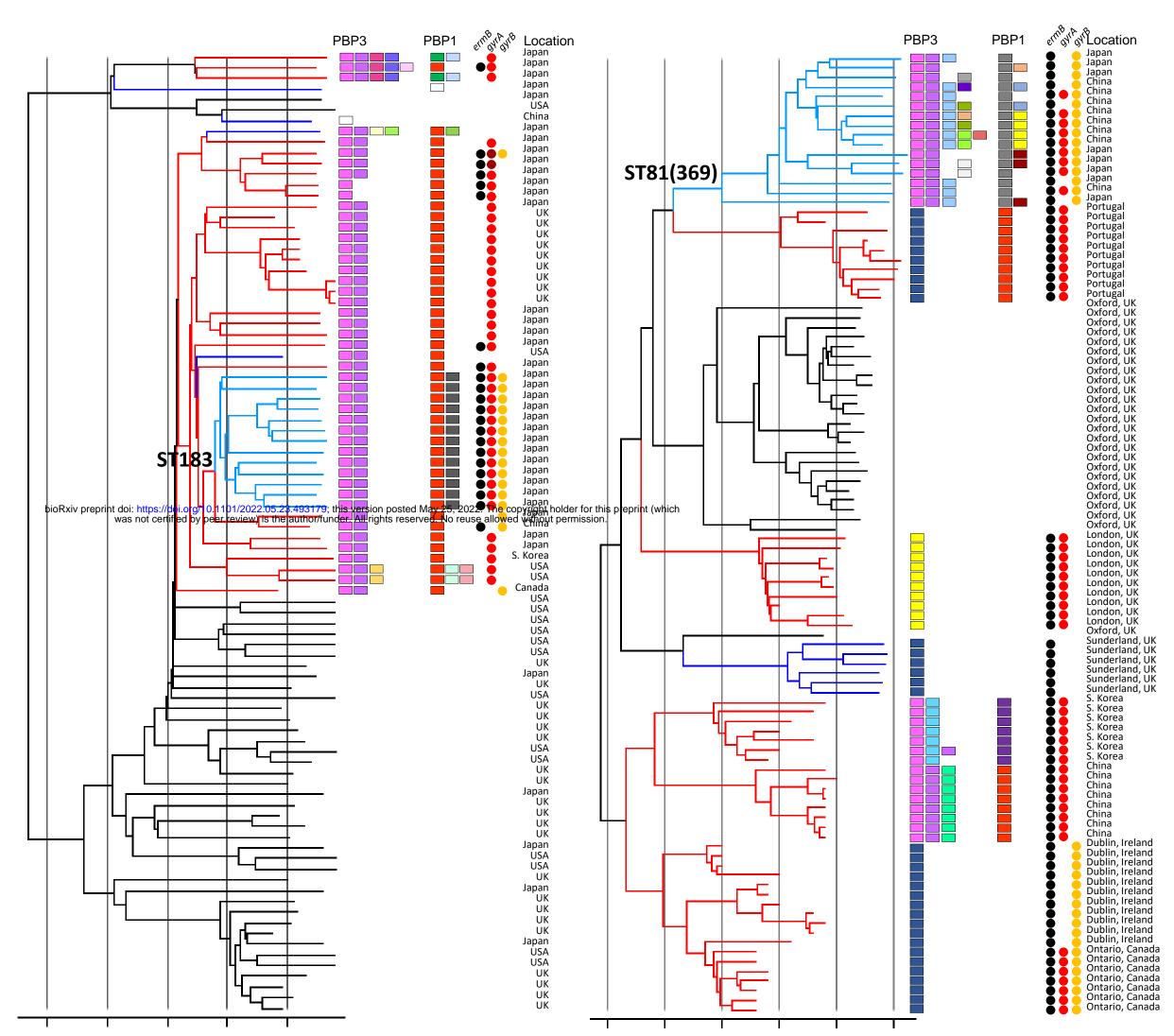
Α


									Cephradir (First)	e ceturoxin	le cetotatime	illin	co-amoxi	lau Meropene	m en	n pipe
Lineage	Isolate	Location	SNPs	PR	PBP S	Substiti	utions PBP1		(epi,st)	Ceturon (second	d) cetota (third*)	Ampicilin	Corame	Merop	m Inipener	9 ¹⁹² *3
ST1(027)	TN145	Oxfordshire, UK		WT		WT			72	376	256	2	2	4	8	16
ST1(027)-FQ-R2	1421	Oxfordshire, UK	30	V497L		WT			239	627	284	2	2	8	8	16
ST1(027)-FQ-R2	1582	Oxfordshire, UK	28	V497L		T674I			239	537	284	2	2	16	8	32
ST1(027)-FQ-R2	1503a	Oxfordshire, UK	29	V497L		T674I	A555T		239	627	284	2	2	16	8	32
ST1(027)	OPT_1687	Calgary, Canada		WТ		WТ			72	376	256	2	2	4	8	16
ST1(027) FQ-R1	OPT_1905	Columbus, USA	20	A726V		WT			143	752	365	2	2	8	8	32
ST1(027) FQ-R1	OPT_2787	Detroit, USA	27	A726V		A555T			143	752	512	2	2	8	8	16
ST17(018)	Oxf79	Oxfordshire, UK		WT		wт			36	376	256	1	1	4	8	8
ST17(018)	OPT_2644	Italy	118	V497L	A778V	1550L	K595N	T740N	573	1506	>512	2	2	8	16	32
ST3(001)	2915	Oxfordshire, UK		WT		wт			36	376	256	1	1	4	8	8
ST3(001)	Oxf746b	Oxfordshire, UK	162	A778V		WT			72	470	284	1	1	4	4	8
ST3(001)	1172-p1	Oxfordshire, UK	273	V497L		WT			143	752	284	1	1	4	8	8
ST3(001)	OPT_2456	Germany	134	V497L	A778V	T600I	A507T		239	1506	512	1	1	4	16	8
ST42(106)	Oxf1499	Oxfordshire, UK		wт		wт			72	376	256	2	1	4	8	16
ST42(106)	L,15.7921787	Leeds, UK	20	V497L		T674I			143	376	256	2	2	8	8	16
	Isolates (n)				P3		PBP1									
print-epi-https://doi.org/1 was not certified by p	0 1101/2022.05.23. peer review) is the a	493179; this version pos uthor/funder. All rights re	sted May served.	25, 2022. No leuse	The cop allowed	vright-ho without p	der for the	nis prepri n.	N ^{₩hich}	128	128	0.5 ¹ , 1 ¹⁰	1	8	4	8
ST6(005)	10	UK	N/A	WT		WT			NT	128	128	1	1	8	4	8
ST56(058)	4	UK	N/A	WT		WT			NT	128	128	1	1	8	4	8
ST7(026)	5	UK	N/A	WT		WT			NT	128	64 ³ , 128 ²	0.5 ¹ , 1 ¹⁰	1	8	$2^2, 4^3$	8


*An additional third generation cephalosporin was tested, ceftazidime, all isolates MIC 128µg/ml.

Amino acid position within PBP

856-926



- Fluoroquinolone resistance gyrA T81I/V and/or gyrB D426N +PBP substitutions
- Fluoroquinolone susceptible +PBP substitutions

Wild type

● ermB e gyrA T81I 🧧 gyrB D426N

ST8(002) and ST183

Α

B

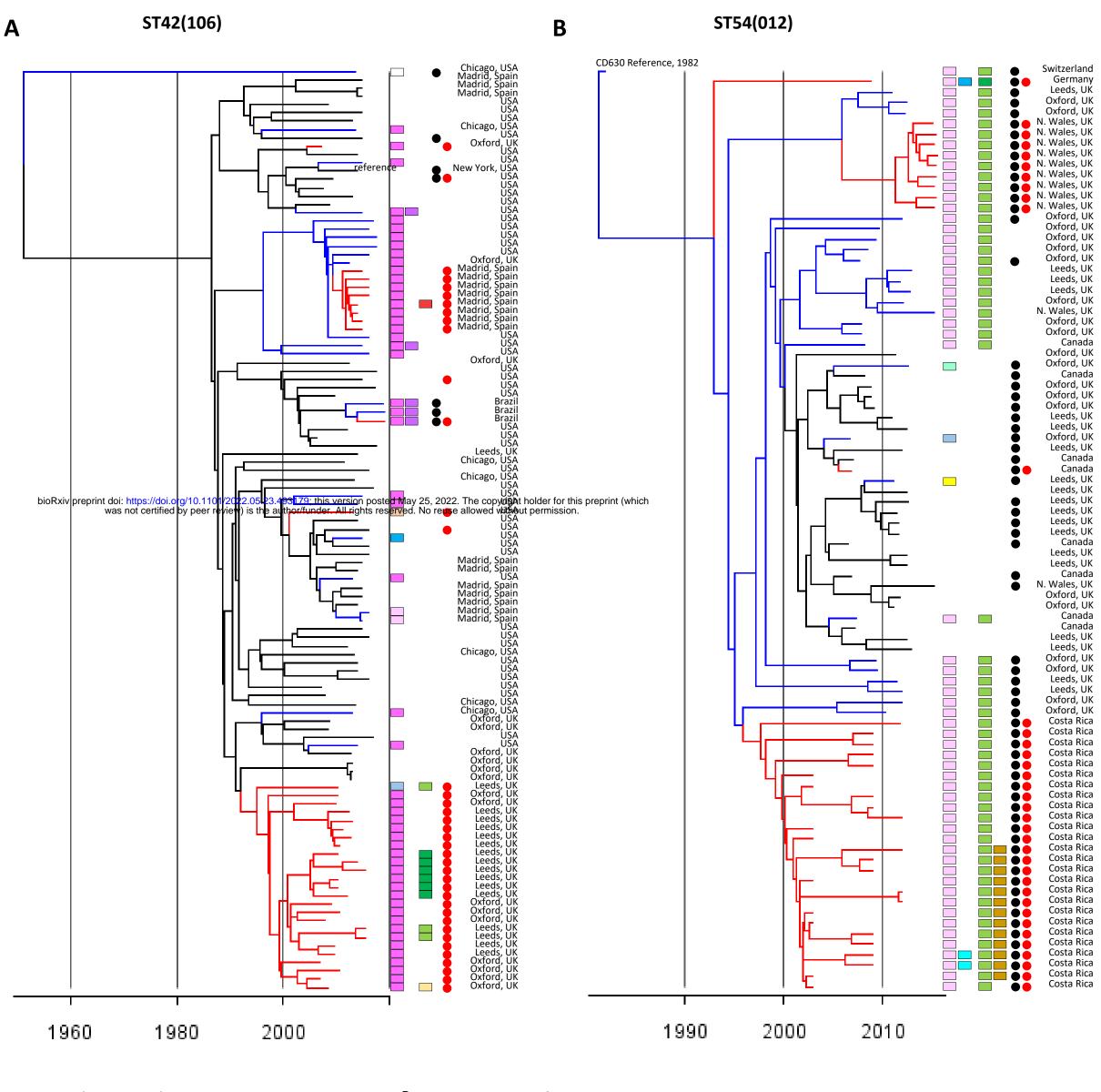
ST37(017) and ST81(369)

1970 1980 1990 2000 2010

1990 1995 2000 2005 2010 2015

— Wild type

- Fluoroquinolone
 susceptible
 +PBP substitutions
- ST8(002) or ST37(017)
 Fluoroquinolone resistant
 gyrA T81I/V and/or gyrB D426N plus
 PBP substitutions
- ST183 or ST81; fluoroquinolone resistance plus PBP substitutions


PBP3

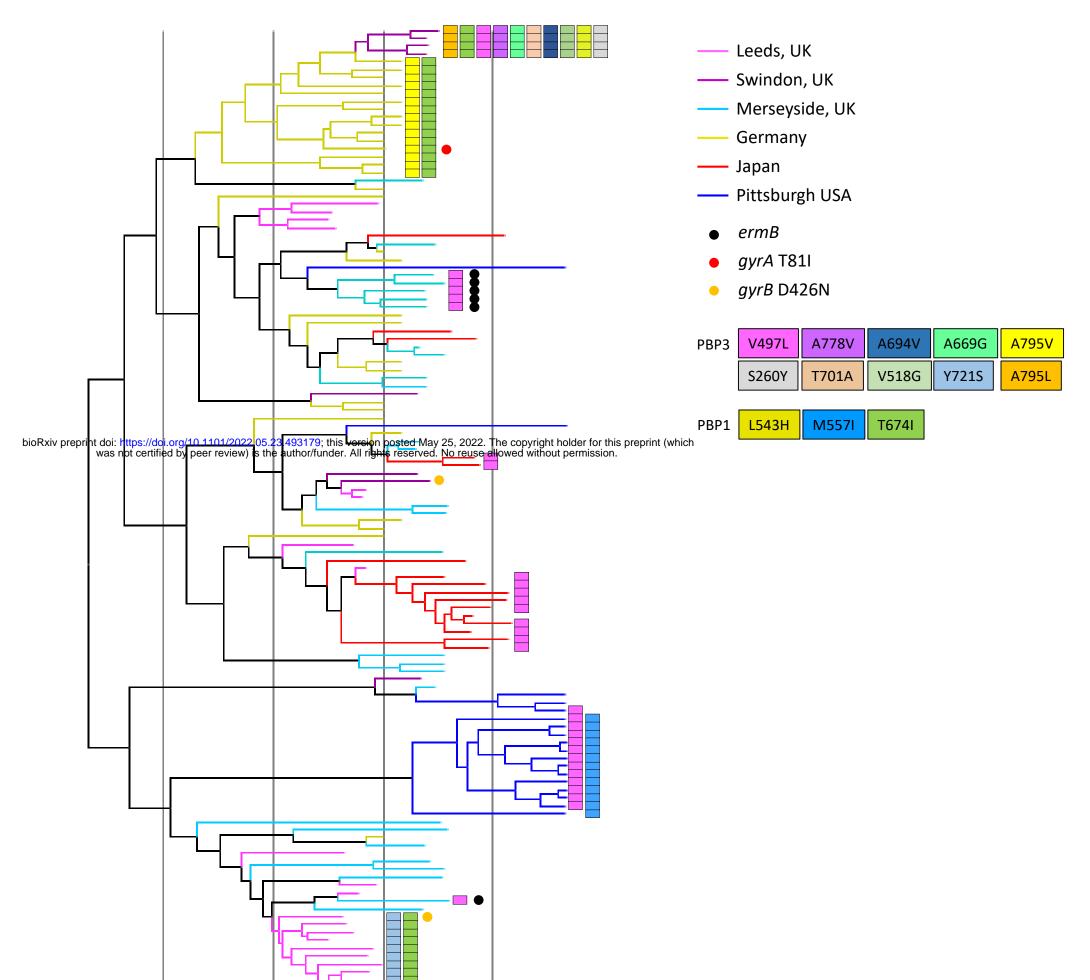
S260Y	N45D	P316L	P416T	A424V	\	/497L	T4	981	V53	301	N53	7K
A576T	T608A	A694V	T701A	T701A N711H		Y721C/S S7		S74	IGL A7		78V	
F790S	V794A	A795E	V818G	A924T		A926V	Р	931L				

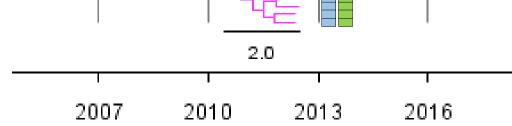
PBP1

D48N	L532V	G533S	L539S	G553S	K595N	T674I	T674N
N522S	A555T	G688C	T738N	S737G	G891N	J	

- gyrA T811
 gyrA T81V
- gyrB D426NermB

Fluoroquinolone resistance gyrA T81I/V +PBP substitutions ermB
gyrA T81I


PBP3 N537K A778V A726V T795V V497L T484I Y721S T920S S945I Y721C PBP1 L543F L539S G673D T674I


T674N/V

Fluoroquinolone susceptible
 +PBP substitutions

— Wild type

ST2(014/020)

