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Abstract
We consider the problem of representing a set of k-mers and their abundance counts, or weights,

in compressed space so that assessing membership and retrieving the weight of a k-mer is efficient.
The representation is called a weighted dictionary of k-mers and finds application in numerous tasks
in Bioinformatics that usually count k-mers as a pre-processing step. In fact, k-mer counting tools
produce very large outputs that may result in a severe bottleneck for subsequent processing.

In this work we extend the recently introduced SSHash dictionary (Pibiri, Bioinformatics 2022)
to also store compactly the weights of the k-mers. From a technical perspective, we exploit the order
of the k-mers represented in SSHash to encode runs of weights, hence allowing (several times) better
compression than the empirical entropy of the weights. We also study the problem of reducing the
number of runs in the weights to improve compression even further and illustrate a lower bound for
this problem. We propose an efficient, greedy, algorithm to reduce the number of runs and show
empirically that it performs well, i.e., very similarly to the lower bound. Lastly, we corroborate our
findings with experiments on real-world datasets and comparison with competitive alternatives. Up
to date, SSHash is the only k-mer dictionary that is exact, weighted, associative, fast, and small.
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2 On Weighted K-Mer Dictionaries

1 Introduction

Recent advancements in the so-called Next Generation Sequencing (NGS) technology made
possible the availability of very large collections of DNA. However, before being able to
actually analyze the data at this scale, efficient methods are required to index and search
such collections. One popular strategy to address this challenge is to consider short sub-
strings of fixed length k, known as k-mers. Software tools based on k-mers are predominant
in Bioinformatics and they have found applications in genome assembly [3, 13], variant
calling [15, 37], pan-genome analysis [2, 18], meta-genomics [38], sequence comparison [31,
33, 34], just to name a few but noticeable ones.

For several such applications it is important to quantify how many times a given k-mer is
present in a DNA database. In fact, many efficient k-mer counting tools have been developed
for this task [8, 21, 16, 30]. The output of these tools is a table where each distinct k-mer in
the database is associated to its abundance count, or weight. The weights are either exact or
approximate. (In this work, we focus on exact weights.) These genomic tables are usually
very large and take several GBs – in the range of 40-80 bits/k-mer or more according to
recent experiments [12, 19, 21]. Therefore, the tables should be compressed effectively while
permitting efficient random access queries in order to be useful for on-line processing tasks.
This is precisely the goal of this work. We better formalize the problem as follows.

Let K be the set of the n distinct k-mers extracted from a given DNA string. In particular,
K can be regarded as a set of n pairs 〈g, w(g)〉, where g is a k-mer and w(g) is the weight of
g. Our objective is to build a compressed, weighted, dictionary for K, i.e., a data structure
representing the k-mers and weights of K in compressed space such that it is efficient to
check the exact membership of g to K and, if g actually belongs to K, retrieve w(g).

In our previous investigation on the problem, we proposed a sparse and skew hashing
scheme for k-mers (SSHash, henceforth) [22] – a compressed dictionary that relies on k-mer
minimizers [31] and minimal perfect hashing [23, 24] to support fast membership (in both
random and streaming query modality) in succinct space. However, we did not consider
the weights of the k-mers. In this work, therefore, we enrich the SSHash data structure
with the weight information. The main practical result is that, by exploiting the order of
the k-mers represented in SSHash, the compressed exact weights take only a small extra
space on top of the space of SSHash. This extra space is proportional to the number of runs
(maximal sub-sequences formed by all equal symbols) in the weights and not proportional
to the number of distinct k-mers. As a consequence, the weights are represented in a much
smaller space than the empirical entropy lower bound.

We also study the problem of reducing the number of runs in the weights and model
it as a graph covering problem, for which we give an expected linear-time algorithm. The
optimization algorithm effectively reduces the number of runs, hence improving space even
further, and almost matches the best possible reduction according to a lower bound.

When empirically compared to other weighted dictionaries that can be either somewhat
smaller but much slower or much larger, SSHash embodies a robust trade-off between index
space and query efficiency.

2 Related Work

A solution to the weighted k-mer dictionary problem can be obtained using the popular
FM-index [11]. The FM-index represents the original DNA string taking the Burrows-Wheeler
transform (BWT) [5] of the string. Reporting the weight of a k-mer is solved using the count
operation of the FM-index which involves O(k) rank queries over the BWT.
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Another solution using the BWT is the so-called BOSS data structure [4] that is a succinct
representation of the de Bruijn graph of the input – a graph where the nodes are the k-mers
and the edges model the overlaps between the k-mers. The BOSS data structure has been
recently enriched with the weights of the k-mers [12], by delta-encoding the weights on a
spanning branching of the graph. Since consecutive k-mers often have equal (or very similar)
weights, good space effectiveness is achieved by this technique.

Other solutions, instead, rely on hashing for faster query evaluation compared to BWT-
based indexes. For example, both deBGR [19] and Squeakr [21] uses a counting quotient
filter [20] to store the k-mers and the weights. They can either return approximate weights,
i.e., wrong answers with a prescribed (low) probability, for better space usage of exact
weights at the price of more index space. In any case, the memory consumption of these
solutions is not competitive with that of BWT-based ones as they do not employ sophisticated
compression techniques and were designed for other purposes, e.g., dynamic updates.

A closely related problem is that of realizing maps from k-mers to weights, i.e., data
structures that do not explicitly represent the k-mers and so return arbitrary answers for
out-of-set keys. In the context of this work, we distinguish between such approaches, maps,
and dictionaries that instead represent both the k-mers and the weights. Besides minimal
perfect hashing [23, 24], some efficient maps have been proposed and tailored specifically
for genomic counts, such as based on set-min sketches [36] and compressed static functions
(CSFs) [35]. These proposals leverage on the repetitiveness of the weights (low-entropy
distributions) to obtain very compact space.

Lastly in this section, we report that other works [17, 14] considered the multi-document
version of the problem studied here, that is, how to retrieve a vector of weights for a
query k-mer, where each component of the vector represents the weight of the k-mer in a
distinct document. Also such count vectors are usually very “regular” (or can be made so
by introducing some approximation) [17] and present runs of equal symbols that can be
compressed effectively with run-length encoding (RLE).

3 Representing Runs of Weights

In this section we describe the compression scheme for the weights that we use in SSHash.
Recall that we indicate with K the set of n distinct 〈k-mer, weight〉 = 〈g, w(g)〉 pairs, that
we want to store in a dictionary. We first highlight the main properties of SSHash that we
are going to exploit in the following to obtain good space effectiveness for the weights. (For
all the other details concerning the SSHash index, we point the interested reader to our
previous work [22].)

From a high-level perspective, SSHash implements the function h : Σk → {0, 1, . . . , n},
where n = |K| and Σk is the whole set of k-length strings over the DNA alphabet Σ =
{A,C,G,T}. In particular, h(g) is a unique value 1 ≤ i ≤ n if g ∈ K; or h(g) = 0 otherwise,
i.e., if g /∈ K. In other words, SSHash serves the same purpose of a minimal and perfect hash
function (MPHF) [24] for K but, unlike a traditional MPHF, SSHash rejects alien k-mers.
This is possible because the k-mers of K are actually represented in SSHah whereas the space
of a traditional MPHF does not depend on the input keys.

The value i = h(g) for the k-mer g ∈ K is the handle of g, or its “hash” code. The hash
codes can be used to associate some satellite information to the k-mers such as, for example,
the weights themselves using an array W [1..n] where W [h(g)] = w(g). The crucial property
of SSHash in which we are interested is that the function h preserves the relative order of the
k-mers, that is: if g1[1..k] and g2[1..k] are two k-mers with g1[2..k] = g2[1..k−1] (i.e., g2 comes
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4 On Weighted K-Mer Dictionaries

>5 5 5 5 5 5 5 5 5 5 5 5 5 5
GGTAATGCAGCCAGGGATGCAACGACCGCAACAGAAAAAGCCCG

>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 4 4 4 4
CAGCTCATTACAGAAAAAATACCGCTCACCGCCCTGCACCGTCAGGTCAATTTCCCTGAGCACCACCCGCGGTGACTGCTCTGATTTAACC

>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
CAGCTATGCAGGAGACAAGAATCGCCAGCTTACCCGTTACAGCGATACCCGCTGGCATG

>13 13 13 13 13 13 13
TCAGGTGTACGGTGTGCGTAAAGTCTGGCGTCAGTTG

Figure 1 An example collection S of 4 weighted sequences (for k = 31) drawn from the genome of E.
Coli (Sakai strain). With alternating colors we render the change of weight in the runs. There are 111
k-mers in the example but just 6 runs in the weights: RLW = 〈5, 14〉〈4, 18〉〈2, 8〉〈1, 31〉〈4, 33〉〈13, 7〉.
Note that a run can cross the boundary between two (or more) sequences, as it happens for the run
〈4, 18〉 which covers completely the third but also the part of the second sequence.

immediately after g1 in a string), then h(g2) = h(g1) + 1. Therefore, consecutive k-mers, i.e.,
those sharing an overlap of k − 1 symbols, are also given consecutive hash codes. This is
achieved in SSHash by pre-processing the input set K into a so-called spectrum-preserving
string set (or SPSS) S – a collection of strings S = {S1, . . . , Sm} where each k-mer of K
appears exactly once. We omit the details here on how the collection S can be built; we
only report that there are efficient algorithms for this purpose that also try to minimize the
total number of symbols in S, i.e., the quantity

∑m
i=1 |Si|. One such algorithm is the UST

algorithm [29] that we also use to prepare the input for SSHash.
Therefore, once an order S1, . . . , Sm for the strings of S is fixed, then also an order

i = 1, . . . , n for the k-mers gi is uniquely determined. Let W [1..n] be the sequence of weights
in this order. Then, we have: h(gi) = i and W [i] = w(gi), for i = 1, . . . , n.

This order-preserving behavior of h induces a property on the sequence of weights W [1..n]
that significantly aids compression: W contains runs, i.e., maximal sub-sequences of equal
weights. This is so because consecutive k-mers are very likely to have the same weight due to
the high specificity of the strings. This a known fact, also observed in prior work [12, 17, 35].
Here, we are exploiting the order of the k-mers given by SSHash to preserve the natural
order of the weights in W . Note that this cannot be achieved by approximate schemes that
do not represent the k-mers themselves, like a generic MPHF or a CSF. Even if the k-mers
were available, those schemes are unable to assign consecutive hashes to consecutive k-mers,
actually shuffling the weights at random and, thus, making W very difficult to compress.

It is standard to represent a sequence W featuring r runs of equal symbols using run-
length encoding (RLE), i.e., W is modeled as a sequence of run-length pairs RLW =
〈w1, `1〉〈w2, `2〉 · · · 〈wr, `r〉 where wi and `i are, respectively, the value of the run and the
length of the i-th run in W . Figure 1 shows an example of RLW for a collection S with 4
weighted strings.

Encoding RLW

Let D be the set of all distinct wi in RLW . Clearly, r ≥ |D| as we must have at least one run
per distinct weight. We store D using |D|dlog2 maxe bits where max ≥ 1 is the largest wi.
We use D to uniquely represent each wi in RLW with dlog2 |D|e bits. Since runs are maximal
sub-sequences in W by definition, then wi 6= wi+1 for every i = 1, . . . , r− 1 (adjacent weights
must be different). Then we take the prefix-sums of the sequence 0, `1, . . . , `r−1 into an array
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L[1..r] and encode it with Elias-Fano [9, 10]1. By construction we have that
∑r

i=1 `i = n

since the runs must cover the whole set of k-mers. So the largest element in L is actually
n− `r and we spend at most rdlog2(n/r)e+ 2r + o(r) bits for L. Summing up, we spend at
most

r ·
(
dlog2 |D|e+

⌈
log2

(n
r

)⌉
+ 2 + o(1)

)
+ |D|dlog2 maxe bits

for representing RLW on top of the space of SSHash. In conclusion, the weights are
represented in space proportional to the number of runs in W (i.e., r = |RLW |) and not
proportional to the number of k-mers, which is n. As a consequence, this space is likely
to be considerably less than the empirical entropy H0(W ) as we are going to see with the
experiments in Section 5.

To retrieve the weight w(g) from i = h(g), all that is required is to identify the run
containing i. This operation is done in O(log(n/r)) time with a predecessor query over L
given that we represent L with Elias-Fano. If the identified run is the j-th run in W , then
wj is retrieved in O(1) from D.

4 Reducing the Number of Runs

In Section 3 we presented an encoding scheme for the k-mer weights whose space is propor-
tional to the number of runs in the sequence of weights W . Therefore, in this section we
consider the problem of reducing the number of runs in the weights to optimize the space of
the encoding.

Rules of the Game

We assume that the strings in S are atomic entities: it is not allowed to partition them into
sub-strings (e.g., in correspondance of the runs of weights in the strings). In fact, since the
strings are obtained by the UST algorithm [29] with the purpose of minimizing the number
of nucleotides as we explained in Section 3, breaking them will lead to an increased space
usage for the k-mers, actually dwarfing any space-saving effort spent for the weights. With
this constraint specified, there are only two degrees of freedom that can be exploited to
obtain better compression for W : (1) the order of the strings, and (2) the orientation of the
strings. Altering S using these two degrees of freedom does not affect the correctness nor
the (relative) order-preserving property of the function h : Σk → {0, 1, . . . , n} implemented
by SSHash. In fact, as evident from our description in Section 3, the output of h will still be
{1, . . . , n} as the k-mers themselves do not change (even when taking reverse-complements
into account as they are considered to be identical). What changes is just the absolute order
of the k-mers as a consequence of permuting the order of the strings {S1, . . . , Sm} in S.

Therefore, our goal is to permute the order of the strings in S and possibly change their
orientations to reduce the number of runs in W . We now consider an illustrative example to
motivate why both these two operations – those of changing the order and orientation of a
string – are important to reduce the number of runs. Refer to Figure 2a which shows an
example collection of m = |S| = 4 weighted strings (for k = 3). Applying the permutation

1 Elias-Fano represents a monotone integer sequence S[1..n] with S[n] ≤ U in at most ndlog2(U/n)e+ 2n
bits. With o(n) extra bits it is possible to decode any S[i] in constant time and support predecessor
queries in O(log(U/n)) time. For a complete description of the method, we point the reader to the
survey by Pibiri and Venturini [28, Section 3.4]. We also remark that Elias-Fano has been recently used
in many compressed, practical, data structures (see, e.g., [25, 26, 27]).
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1:
5 … 2

A C C … G T

25 2

G T

2:
1 … 2

C T T … C A

221

T T

3:
3 … 2

C G A … T T

233

T C

4:
3 … 1

G A T … C C

113

G A

1:
5 … 2

A C C … G T

25 2

G T

2:
1 … 2

C T T … C A

221

T T

3:
3 … 2

C G A … T T

233

T C

4:
3 … 1

G A T … C C

113

G A

+1 :
5 … 2

A C C … G T

25 2

G T

1 … 2

C T T … C A

221

T T

2 … 3

G A A … C T

322

C G

3 … 1

G A T … C C

113

G A

-3 :

+4 :

+2 :

(a) (b) (c)

Figure 2 In (a), an example input collection S of m = |S| = 4 weighted strings (for k = 3),
where the end-point weights are highlighted in bold font. In (b), the order of the strings is changed
according to the permutation π = [1, 4, 2, 3] and, as a result, the number of runs is reduced by 1 (the
last run in string 4 is glued with the first run of string 2). Lastly, in (c), it is shown that changing
the orientation of string 3 (taking the reverse complement of the string and reversing the order of
the k-mer weights) makes it possible to glue other two runs. Given that reducing the number of
runs by m− 1 is the best achievable reduction, the number of runs in (c) is therefore the minimum
for the original collection in (a).

1 permute(S, π):
2 let S̃ = {S̃1, . . . , S̃m} be a new collection of empty strings
3 for i = 1; i ≤ m; i = i+ 1 :
4 j = π[i]
5 if j < 0 : S̃−j = reverse(Si)
6 else : S̃j = Si

7 return S̃
Algorithm 1 The algorithm permute takes as input a collection S = {S1, . . . , Sm} of weighted

strings and a signed permutation π and returns the permuted collection S̃ = π(S). The function
reverse takes the reverse-complement of a string and reverse its weights.

π = [1, 4, 2, 3] as shown in Figure 2b reduces the number of runs by 1 because the run
at the junction of string 4 and 2 can be glued. Lastly, applying the signed permutation
π = [+1,+4,−2,+3] as in Figure 2c reduces the number of runs by 3, which is the best
possible. Our objective is to compute such a signed permutation π for an input collection of
strings, in order to permute S as shown in Algorithm 1.

Figure 2 also suggests that the final result π solely depends on the weight of the first and
last k-mer of each sequence – which we call the end-point weights (or just end-points) of a
sequence – and not on the other weights nor the nucleotide sequences. Therefore, it is useful
to model an input collection S using a graph, defined as follows.

I Definition 1 (End-point Weight Graph). Given a collection of weighted sequences S, let G
be a graph where:

There is a node u for each sequence of S and u has two sides – a left and a right side –
respectively labelled with the end-point weights of the sequence.
There is an edge between any two distinct nodes u and v that have a side with the same
weight.
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(b)

5 2

23 3 1

1 2

(a)

5 2

3 2

1 2

3 1

(c)

5 2

23 3 1

1 2
1 2

43

1 2

43

1 2

43

Figure 3 The same example of Figure 2 but modeled using end-point weight graphs. Each node
is represented using an arrow-like shape with two-matching sides. Only opposite sides having the
same weight can be matched. The numbers inside the shapes represent the end-point weights; the
extra darker square contains the node identifier. An arrow oriented from left-to-right models a node
with positive sign; vice versa, an arrow oriented from right-to-left models a node with negative sign.
Gray edges represent edges that cannot be traversed without changing the orientation of one of the
two connected nodes. Black edges represent edges that can be traversed. Lastly, we highlight in
red the edges that belong to paths in a graph cover. The example in (a) corresponds to that of
Figure 2b where no node has changed orientation and, therefore, we have three paths in the cover:
(+4→ +2), (+3), and (+1). Other two different covers are shown in (b) and (c). In (b) the cover
contains the single path (+1→ −3→ +4→ +2) and corresponds to the example of Figure 2c where
the node 3 was changed orientation from + to − (shown in yellow color). In (c) the cover contains
the two paths (+2→ −3→ +4) and the singleton path (+1).

The graph G is called the end-point weight graph for S and indicated with ewG(S).

In the following, we indicate a node u in ewG(S) using the identifier (id) of the corres-
ponding sequence of S. Also, we associate to u a sign ∈ {−1,+1} (or orientation), indicating
whether the sequence should be reverse-complemented. In summary, a node u in ewG(S) is
the 4-tuple (id, left, right, sign).

I Definition 2 (Oriented Path). An oriented path in ewG(S) is either a single node (singleton
path) or a sequence of nodes (u1 → · · · → u`) where each consecutive pair of nodes ui → ui+1
is oriented in such a way that ui.right = ui+1.left, for any 1 ≤ i < `.

Since we will be interested only in oriented paths, we just refer to them as “paths”. For
ease of notation, we will indicate a path in our examples as a sequence of signed numbers
(i1 → · · · → i`) where each number represents a node’s id and its sign represents the node’s
sign. The first and the last node in the path are called, respectively, the front and the back
of the path. The weights front.left and back.right are the two end-points of the path.

Given this graph model, it follows that the problem of finding a signed permutation π for
S is equivalent to that of computing a (disjoint-node) path cover C for ewG(S), i.e., a set of
paths in ewG(S) that visit all the nodes and where each node belongs to exactly one path.
In fact note that, given a cover C for ewG(S), there is a linear-time reduction from C to π
as illustrated in Algorithm 2. Since the cover C is a disjoint-node path cover, the correctness
of the algorithm is immediate as well as its complexity of Θ(m).

Figure 3 illustrates the same example of Figure 2 but with end-point weight graphs. In
Figure 3b we would obtain a cover C = {(+1→ −3→ +4→ +2)} formed by a single path. In
this case the permutation π, following Algorithm 2, would be π[1] = +1, π[3] = −2, π[4] = +3,
and π[2] = +4. This is indeed the same permutation discussed in Figure 2c. Another example:
for the graph in Figure 3c, the cover would be C = {(+2 → −3 → +4), (+1)} and the
permutation π would be π[2] = +1, π[3] = −2, π[4] = +3, and π[1] = +4.
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1 reduce(C):
2 j = 1
3 let π[1..m] be a new array
4 for each path p ∈ C :
5 for each node u ∈ p :
6 π[u.id] = u.sign · j
7 j = j + 1

8 return π

Algorithm 2 The algorithm reduce takes as input a path cover C computed for ewG(S) and
returns the corresponding signed permutation π. The complexity of the algorithm is Θ(m) since the
number of nodes in ewG(S) is m and each node appears exactly once in C.

4.1 A Lower Bound to the Number of Runs
We showed that changing the order and orientation of the strings in S can reduce the number
of runs in the weights. The crucial question is: by how much? We are interested in deriving
a lower bound to the number of runs achievable after applying the signed permutation π to
S. Since we modeled the problem of computing π as the problem of finding a path cover C
for ewG(S), we reason in terms of ewG(S) and C.

Let |C| be the number of paths in the cover C. Let ri be the number of runs in Si

and let R be the total number of runs, i.e., R =
∑m

i=1 ri. Then there are at least R −m
runs in S regardless the order of the sequences. Therefore, a straightforward lower bound
to the number of runs would be max{|D|, R − m + 1}. This lower bound assumes (very
optimistically) that we are able to obtain a cover with a single path, i.e., |C| = 1, hence
reducing the total number of runs R by m− 1 which is the best reduction achievable with m
sequences. Note, however, that the bound cannot be lower than |D| – the number of distinct
weights in the input – because, clearly, there must be at least one run per distinct weight
value. We would like to improve the bound max{|D|, R−m+ 1} knowing that, in general,
we could not be able to form one single path.

We observe that the final number of runs r in the permuted S will be equal to R−m+ |C|.
In fact, every path in C must begin (resp. end) with a node whose left side (resp. right side)
cannot be glued with any other path’s side. Therefore, a new run begins with the first node
of every path. Since we wish to minimize the quantity R −m+ |C|, and considering that
R−m is constant for a given S, it follows that the problem reduces to that of minimizing
|C|, the number of paths in the cover. In other words, the problem of minimizing the number
of runs r is equivalent to that of finding a minimum-cardinality path cover C for ewG(S).

Therefore our strategy is to give a lower bound to the number of paths |C|. To do so, we
compute the number of end-point weights, say ne, that must appear as end-points of the
paths (left side of the front node of a path, or right side of the back node of a path). Since
a path has exactly two end-points, then it follows that |C| ≥ dne/2e and, in turn, that the
final number of runs r in π(S) is at least R−m+ dne/2e ≥ max{|D|, R−m+ 1}.

Since we now focus on the end-point weights of the nodes, in this section we will denote a
node (id, left, right, sign) just by its weights (left, right). We start with a preliminary Lemma
and a Definition. (See Appendix A for all the proofs omitted from the section.)

I Lemma 3. Let us consider d > 0 equal nodes (w, x). If d is even, then the d nodes
originate a path of either end-points (w,w) or (x, x). If d is odd, then the path has end-points
(w, x).
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I Definition 4 (Incidence Set). Given the weight w, a set Iw of nodes where w appears as
end-point is called an incidence set for w. Let n(Iw) be the number of times w appears in
the nodes of Iw. Note that n(Iw) ≥ |Iw| because there could be nodes (w,w) in Iw.

I Example 5. The sets

I1
w = {(w, x), (w, y), (w, z), (w, t), (w, l)}
I2

w = {(w,w), (w, x), (w, y), (w, z)}
I3

w = {(w,w), (w,w), (w,w), (x,w), (w, x)}
I4

w = {(w, x), (w, x), (y, w), (w, y), (w, y), (w, z), (w, z), (w, z), (w, z)}

are four different incidence sets for w with n(I1
w) = n(I2

w) = 5, n(I3
w) = 8, and n(I4

w) = 9.
The set {(w, x), (x, y)}, instead, is not an incidence set for w because the node (x, y) does
not have w as an end-point.

Next, we give the following central Lemma that will help in counting the number of
weights that must appear as end-points of the paths in C.

I Lemma 6. Given an incidence set Iw, if n(Iw) is odd then only one path will contain w
as end-point among all the paths that can be created from the nodes in Iw.

I Example 7. Let us consider an example for Lemma 6. The sets I1
w and I2

w in Example 5
are both canonical since all other weights different from w are distinct, except for one single
node (w,w) in I2

w. It is then easy to see that no matter what paths are created, there will
always be one extra node that will remain alone. The set I4

w in Example 5, with n(I4
w) = 9, is

not canonical instead and we have: Dx = {(w, x), (w, x)}, Dy = {(y, w), (w, y), (w, y)}, and
Dz = {(w, z), (w, z), (w, z), (w, z)}, with dx = |Dx| = 2, dy = |Dy| = 3, and dz = |Dz| = 4.
Since dx = 2, then the nodes in Dx can be collapsed into either (w,w) or (x, x). Since dy = 3,
then the nodes in Dy can be collapsed to (w, y). Lastly, since dz = 4, the nodes in Dz can
be collapsed to either (w,w) or (z, z). Again, regardless the choices done, I4

w can always be
reduced to a canonical set.

Let now eW be the set of the distinct end-point weights of S. For every weight w ∈ eW ,
let Imax

w be the incidence set of maximum-cardinality, i.e., the one obtained by considering all
the nodes in ewG(S). We partition eW into three disjoint sets, eWodd, eWeven, and eWequal.
Based on the properties of Imax

w , w belongs to one of the three sets as follows.

If n(Imax
w ) is odd, then w ∈ eWodd. In this case, we are sure by Lemma 6 that w will

appear as end-point of some path in the cover.
If all the nodes in Imax

w are equal to (w,w), then w ∈ eWequal. In this case n(Imax
w ) will

always be even and, for Lemma 6, w will appear twice as end-points of the same path in
the cover.
If n(Imax

w ) is even but the nodes in Imax
w are not all equal to (w,w), then w ∈ eWeven.

In this case, we cannot be sure that w will not appear as end-point. If n(Imax
w ) is even

and Imax
w contains all distinct nodes, then w will not appear. But if Imax

w contains two
identical nodes, say of the form (w, x), then w may or may not appear. In fact, as already
noted, depending on whether a path is created as (w, x)→ (x,w) or (x,w)→ (w, x), w
will appear (in the first case) or not (in the second case). The set I3

w from Example 5
illustrates this case.

I Lemma 8. |Wodd| is even.
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Figure 4 Two different path covers for an example graph with 16 nodes. Nodes linked by edges
with the same color belong to the same cover; yellow nodes are those whose orientation was changed.
For the graph in the picture, the lower bound in Corollary 9 yields |C| ≥ 3. The covers in (a)
contains 3 paths and is, therefore, optimal. The cover in (b), instead, contains 4 paths.

Therefore, we obtain the following Corollary.

I Corollary 9. The number of paths in C is at least (2|eWequal|+ |eWodd|)/2.

Proof. Immediate by first applying Lemma 6 to the maximal incidence sets, then noting
that each each path has exactly two end-points, and lastly taking into account the cardinality
of eWodd for Lemma 8. J

Let us now compute the lower bound of Corollary 9 on some example graphs.

I Example 10. First, we re-consider the example graph from Figure 2. In that example
we have a set of end-point weights eW = {1, 2, 3, 5}, where Imax

1 = {(1, 2), (3, 1)}, Imax
2 =

{(5, 2), (1, 2), (3, 2)}, Imax
3 = {(3, 2), (3, 1)}, and Imax

5 = {(5, 2)}. Since n(Imax
2 ) = 3 and

n(Imax
5 ) = 1, then eWodd = {2, 5} and eWequal = ∅. Therefore we sure that both weights

2 and 5 will appear as end-point weights of some paths in the cover. For Corollary 9, any
path cover will contain at least (2|eWequal|+ |eWodd|)/2 = (2 · 0 + 2)/2 = 1 path. Indeed the
cover shown in Figure 2b contains one single path and so, it is optimal, whereas the cover in
Figure 2c contains 2 paths and is not optimal.

I Example 11. We now consider the larger example in Figure 4 for a graph with 16
nodes. In this example we have a set of end-point weights eW = {1, 2, 3, 4, 7, 8, 13} and
the incidence sets are as follows: Imax

1 = {(1, 1), (4, 1), (2, 1), (2, 1), (1, 7), (1, 4), (1, 1), (1, 1)};
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Imax
2 = {(2, 3), (2, 1), (2, 1)}; Imax

3 = {(3, 8), (2, 3), (3, 3), (3, 7)}; Imax
4 = {(4, 1), (1, 4)};

Imax
7 = {(1, 7), (3, 7), (7, 7)}; Imax

8 = {(3, 8)}; Imax
13 = {(13, 13), (13, 13), (13, 13)}. Since we

have n(Imax
1 ) = 11, n(Imax

2 ) = 3, n(Imax
3 ) = 5, and n(Imax

8 ) = 1, then eWodd = {1, 2, 3, 8}
and |eWodd| = 4 which is even (Lemma 8). Therefore we are sure that the weights 1, 2, 3,
and 8 will appear as end-points of some paths in the cover. The incidence set Imax

13 is made
of nodes (13, 13), so eWequal = {13} and |eWequal| = 1. Also in this case we are sure the
weight 13 will appear (twice) as end-point of some path. (eWeven = {4, 7}.) For Corollary 9
we derive that a path cover for the example graph will contain at least (2 · 1 + 4)/2 = 3 paths.

Figure 4 shows two different path covers for the same graph, that are Ca = {(+8 →
+3 → +7 → +13 → −12 → +11 → −4 → +6 → +10 → +9 → +1 → −5), (+2), (+14 →
+15 → +16)} and Cb = {(+1 → −3 → −8 → +9 → +10 → −5 → +6 → +7 → +12 →
+2), (+4→ +11), (+13), (+14→ +15→ +16)}. The cover Ca is optimal for the lower bound
as is contains 3 paths; the cover Cb contains 4 paths (1 more than necessary). It is not
difficult to see that we cannot find a path cover with less than 3 paths for the graph in
Figure 4.

Lastly, we summarize the main result of this section with the following Theorem.

I Theorem 12. Let S be a collection of m weighted strings. Let eW be the set of the
distinct end-point weights of the strings in S and R =

∑m
i=1 ri, where ri is the number of

runs in the weights of the i-th string of S. Then S can be permuted to form at least

rlo = R−m+ (2|eWequal|+ |eWodd|)/2 runs in the weights, (1)

where eWequal = {w ∈ eW | Imax
w = {(w,w)}d, for some d > 0} and eWodd = {w ∈ eW |

n(Imax
w ) is odd} are defined using the incidence sets for the nodes of ewG(S).

Proof. There are exactly R−m runs in S that do not depend on the order of the strings in
S. Then S can be permuted as to have R−m+ |C| runs where C is a disjoint-node path
cover for ewG(S). The theorem follows for Corollary 9 on C. J

4.2 Computing a Cover
We showed, via a linear-time reduction (Algorithm 2), that the problem of finding a per-
mutation for S with the goal of reducing the number of runs in the weights is equivalent to
that of computing a path-cover C for the graph ewG(S). In Section 4.1 we also gave a lower
bound to the number of runs that our strategy can achieve. The lower bound depends on
the number of paths in C (Corollary 9). In this section we therefore present an algorithm to
actually compute C in expected linear-time in the number of nodes of ewG(S). Recall that
ewG(S) has m = |S| nodes, so the complexity is Θ(m).

The algorithm is given in Algorithm 3. It manipulates the incidence sets for the end-point
weights and a set of unvisited nodes, respectively indicated with incidence and unvisited in
the pseudo-code, and initialized in the lines 4-7. The main loop in the lines 8-22 takes an
arbitrary unvisited node and starts a new path from that node. The inner loop in the lines
11-20 greedily tries to extend the current path as much as possible: at every step of the loop,
(1) a node is appended to the path, (2) it is erased from the set of unvisited nodes and from
the incidence sets where it belongs to, then (3) the next node to append is selected from one
of the two incidence sets for the path’s end-point weights. When no extension is possible
for both ends, the current path is printed in the lines 21-22. In practice, the output can be
written to a file, from which the signed permutation π can be derived with Algorithm 2.
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12 On Weighted K-Mer Dictionaries

1 cover(ewG(S)):
2 incidence = ∅
3 unvisited = ∅
4 for each node u ∈ ewG(S):
5 unvisited.insert(u)
6 incidence[u.left].insert(u)
7 incidence[u.right].insert(u)
8 while unvisited 6= ∅ :
9 u = unvisited.take() . take an unvisited node u

10 p = ∅ . a new path
11 while true :
12 extend p with u . append u to the front or to the back of p
13 unvisited.erase(u)
14 incidence[u.left].erase(u)
15 incidence[u.right].erase(u)
16 if incidence[p.back.right] 6= ∅ : . first, try to extend to the right
17 u = incidence[p.back.right].take()
18 else if incidence[p.front.left] 6= ∅ : . then, try to extend to the left
19 u = incidence[p.front.left].take()
20 else : break . p cannot be extended anymore
21 for each u ∈ p : . print p
22 print (u.sign, u.id)

Algorithm 3 The cover algorithm takes an input end-point weight graph ewG(S) and prints a
set of paths covering the nodes of ewG(S).

If we use hashing to implement the sets incidence and unvisited, then the operations
insert/erase/take are all supported in O(1) expected time. Also appending a node to one of
the two path’s end-points can be done in constant (amortized) time using a double-ended
queue to represent a path. Figure 5 illustrates how the path is extended with a node (line 12).
Therefore, the algorithm runs in expected Θ(m) time and consumes Θ(m) space because:
(1) at most 2m nodes (and at least m) are inserted in incidence and exactly m in unvisited
during the initialization lines 4-7; (2) during the main loop in the lines 8-22, each node is
visited, appended to a path, and printed exactly once2.

5 Experiments

In this section we evaluate the proposed weight compression scheme for SSHash and compare
it to several competitive baselines. We first describe our experimental setup.

Experiments were run using a server machine equipped with an Intel i9-9940X pro-
cessor (clocked at 3.30 GHz) and 128 GB of RAM. All the tested software was compiled

2 An important implementation remark: In practice, we implemented the incidence sets using a single
open-addressing hash-table with a sorted array of 2m nodes and an extra array of offsets into the
vector to distinguish between the different incidence sets. This makes the algorithm much faster and
lighter than a straightforward implementation using a linear-chaining hash-table (e.g., the C++’s
std::unordered_set), with chains usually implemented as linked lists.
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push_backpush_front

Figure 5 A graphical visualization of line 12 in Algorithm 3 which extends the current path p
with a node u. When p is not empty, four different cases can arise, as illustrated in (a), (b), (c), and
(d). In cases (b) and (d), the sign of u is changed to match one of the two path’s end-points.

Table 1 Some basic statistics for the datasets used in the experiments, for k = 31, such as:
number of distinct k-mers (n), number of distinct weights (|D|), largest weight (max), expected
weight value (E), and empirical entropy of the weights (H0(W )).

Dataset n |D| dlog2 |D|e max dlog2 maxe E H0(W )

E-Coli 5,235,781 22 5 27 5 1.05 0.206
S-Enterica-100 13,074,614 587 10 3,483 12 37.47 4.420
Human-Chr-13 90,911,778 806 10 6,354 13 1.08 0.160
C-Elegans 94,006,897 398 9 3,478 12 1.07 0.223

with gcc 11.2.0 under Ubuntu 19.10 (Linux kernel 5.3.0, 64 bits), using the flags -O3 and
-march=native. Our implementation of SSHash is written in C++17 and available at
https://github.com/jermp/sshash.

All timings were collected using a single core of the processor. The dictionaries are loaded
in internal memory before executing queries. For all the experiments, we fix k to 31.

Datasets

We use the following genomic collections: E-Coli and C-Elegans are, respectively, the full
genomes of E. Coli (Sakai strain) and C. Elegans that were also used in the experimentation
by Shibuya et al. [35]; S-Enterica-100 is a pan-genome of 100 genomes of S. Enterica, collected
by Rossi et al. [32]; Human-Chr-13 is the 13-th human chromosome from the genome assembly
GRCh38. Table 1 reports some basic statistics for the collections. The weights were collected
using the tool BCALM (v2) [7]. In general, note the very low empirical entropy of the weights,
H0(W ). This is expected since most k-mers actually appear once for large-enough values of
k. Instead, the weights on the pan-genome S-Enterica-100 have much higher entropy due to
the fact that many k-mers have weight equal to the number of genomes in the collection (in
this specific case, equal to 100). This is useful to test the effectiveness of our encoding on
both low- and high- entropy inputs.

Weight Compression in SSHash

We now consider the space effectiveness of the encoding scheme described in Section 3.
Table 2 reports the space as average bits per k-mer: we see that, in all cases, the space is
well below the empirical entropy lower bound H0(W ) – usually below by several times. The
optimization strategy described in Section 4 brings further advantage. (The space shown
is comprehensive of the |D|dlog2 maxe bits used to represent the distinct weights in the
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Table 2 Space for the weights in SSHash reported in bits/k-mer, before and after the run-
reduction optimization from Section 4. For reference, we also report how many times the achieved
space is better than the empirical entropy of the weights H0(W ).

Dataset H0(W ) before after

E-Coli 0.206 0.017 (12.11×) 0.014 (15.10×)
S-Enterica-100 4.420 0.592 (7.47×) 0.401 (11.02×)
Human-Chr-13 0.160 0.136 (1.18×) 0.107 (1.50×)
C-Elegans 0.223 0.069 (3.23×) 0.055 (4.05×)

Table 3 The number of input strings (m) for SSHash as computed by UST [29], the lower bound
on the number of runs (rlo) computed using Equation (1) in Theorem 12, and number of actual
runs (r) after the optimization. We report the increase, in percentage, of r compared to rlo. The
last two columns show the run-time of the path cover Algorithm 3, in total milliseconds (ms) and
average nanoseconds per node (ns/node).

Dataset m rlo r Alg. 3 (ms) Alg. 3 (ns/node)

E-Coli 2,102 3,723 3,723 (+0.0000%) 0.6 285
S-Enterica-100 150,604 277,649 277,658 (+0.0032%) 53.0 352
Human-Chr-13 266,113 462,175 462,197 (+0.0048%) 94.6 355
C-Elegans 140,452 247,661 247,669 (+0.0032%) 47.1 335

collection. Note that this space takes a negligible fraction of the total space since |D| is very
small as reported in Table 1.)

Table 3, instead, shows the performance of the path cover Algorithm 3. As already
mentioned in Section 3, the set of strings indexed by SSHash is obtained by building a
spectrum-preserving string set (SPSS) from the raw genome, using the algorithm UST [29] over
the output of BCALM [7]. (At our code repository https://github.com/jermp/sshash we
provide further details on how to take these preliminary steps before indexing with SSHash.)
The number of strings in each collection, m, determines the run-time of Algorithm 3 whose
complexity is Θ(m). The linear-time complexity is evident from the reported timings and
makes the algorithm very fast, taking on average a fraction of a microsecond per node.

The other important point to note is that Algorithm 3 is empirically optimal regarding
the number of runs given that the final number of runs, r, is only slightly higher than the
lower bound rlo computed using Equation (1).

(In Appendix B we report additional experimental results.)

Overall Comparison

In Table 4 we show a comparison between the following weighted dictionaries (see also
Section 2; links to the code repositories are included in the References):

The dBG-FM index [6] based on the popular FM-index [11]. In particular, this rep-
resentation implements a weighted k-mer dictionary via the count query which returns
the number of occurrences of a given k-mer in the input. The count query, in turn, is
implemented using rank queries over the BWT. The dBG-FM implementation has a main
trade-off parameter, s, to control the practical performance of rank queries. We test the
values s = 32, 64, 128.
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Table 4 Dictionary space in average bits/k-mer and count time in average µsec/k-mer. For
reference, we report in gray color the space and time of SSHash without the weight information.

Dictionary E-Coli S-Enterica-100 Human-Chr-13 C-Elegans

space query-time space query-time space query-time space query-time

dBG-FM, s = 128 3.20 14.73 113.78 16.47 3.23 17.40 3.18 18.05
dBG-FM, s = 64 4.02 7.91 142.25 11.13 4.07 11.33 4.01 10.89
dBG-FM, s = 32 5.65 4.62 198.71 8.57 5.73 8.20 5.67 7.90

cw-dBG, s = 128 2.79 109.13 5.59 120.72 2.80 100.88 2.77 127.86
cw-dBG, s = 64 2.86 70.93 5.74 85.73 2.86 73.91 2.84 84.19
cw-dBG, s = 32 2.99 52.29 6.03 66.25 2.99 59.85 2.97 62.54

SSHash+BCSF 5.07 0.82 11.12 0.89 6.15 1.25 6.00 1.28
SSHash+AMB 4.90 1.34 9.27 1.65 6.08 1.95 5.88 1.97

w-SSHash 4.80 0.37 6.57 0.48 6.04 0.84 5.75 0.85
SSHash 4.79 0.34 6.15 0.41 5.93 0.76 5.69 0.77

The recent cw-dBG [12] dictionary based on the data structure called BOSS [4]. Similarly
to an FM-index, also cw-dBG has a trade-off parameter that we vary as s = 32, 64, 128.
(The authors used s = 64 in their own experiments.)
The non-weighted SSHash itself coupled with the fast compressed static function (CSF)
tailored for low-entropy distributions, proposed by Shibuya et al. [35]. As reviewed in
Section 2, a CSF does not represent the k-mers but just realizes a map from k-mers
to their weights. Such map is collision-free only over the set of k-mers that was used
to actually build the function. Therefore, we use SSHash as an efficient dictionary for
the k-mers and the CSF to represent the weights. The authors proposed two different
versions of their approach, BCSF and AMB, with different space/time trade-offs.
The weighted SSHash dictionary proposed in this work, which we refer to as w-SSHash in
the following, after the run-reduction optimization (Table 2 and 3). We use the regular
index variant of SSHash. The main parameter of the index – the minimizer length – is
always set to dlog4 Ne + 1 where N is the number of nucleotides in the SPSSs of the
datasets, following the recommendation given in the previous paper [22]. Therefore, we use
the following minimizer lengths: 13, 14, 15, and 15, for respectively, E-Coli, S-Enterica-100,
Human-Chr-13, and C-Elegans. Also the AMB algorithm by Shibuya et al. [35] is based
on minimizers and we use the same lengths.

We did not compare against deBGR [19] and Squeakr [21] as the authors of cw-dBG
showed in their experimentation [12] that both tools take considerably more space than
cw-dBG, e.g., one order of magnitude more space. Here, we are interested in a good balance
between space effectiveness and query efficiency.

To measure query-time – the time it takes to retrieve the weight w(g) given the k-mer g –
we sampled 106 k-mers uniformly at random from the collections and use them as queries.
We report the mean between 5 measurements. Half of the queries were transformed into their
reverse complements to make sure we benchmark the dictionaries in the most general case.

The space of w-SSHash is generally competitive with that of the fastest variant of dBG-FM
(s = 32), but w-SSHash has (more than) one order of magnitude better query time. Note
that on S-Enterica-100 the dBG-FM index is space-inefficient since it redundantly represents
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many repeated k-mers. Using a higher sampling rate reduces the space of dBG-FM at the
price of slowing down query-time; however, the most space-efficient variant tested (s = 128)
is not even 2× smaller than w-SSHash.

The cw-dBG index is the smallest tested dictionary. Its space effectiveness is comparable
to that of dBG-FM s = 128, and indeed generally twice as better as that of w-SSHash.
The price to pay for this enhanced compression ratio is a significant penalty at query-time.
Indeed, w-SSHash can be two order of magnitude faster than cw-dBG. Consider, for example,
the two dictionaries built for S-Enterica-100: we have 0.5 vs. 66-120 µs per query.

The two CSFs, BCSF and AMB, make SSHash 2-3× slower than w-SSHash and even
consistently larger. This comparison motivates the need for a unified data structure to handle
efficiently both the k-mers and the weights, like w-SSHash. While the increase in space due
to the CSF is not much for the low-entropy datasets because both BCSF and AMB are very
space-efficient in those cases, the gap is more evident on S-Enterica-100.

As a last note, observe that there is no significant slowdown in accessing the weights in
w-SSHash compared to a simpler membership query (the time reported in shaded color in
Table 4), hence proving the RLE-based scheme to be efficient too and not only very effective.

6 Conclusions

In this work we extended the recent SSHash [22] dictionary to also store the weights of the
k-mers in compressed format. In particular, we represented the weights using compressed runs
of equal symbols. While using run-length encoding to compress highly repetitive sequences
is not novel per se and indeed a folklore strategy at the basis of many other data structures,
this allows to use a very small extra space (e.g., much less than the empirical entropy of the
weights) on top of SSHash with only a slight penalty at retrieval time. The crucial point is
that it is possible to use run-length encoding because SSHash preserves the (relative) order
of the k-mers in the indexed sequences. The main practical take-away is, therefore, that
SSHash handles weighted k-mer sets in an exact manner without noticeable extra costs. Our
software is publicly available to encourage its use and reproducibility of results.

We also introduced the concept of end-point weight graph (ewG) and showed its usefulness
in reducing the number of runs in the weights. Precisely, we showed that minimizing the
number of runs in a collection of sequences corresponds to the problem of computing a
minimum-cardinality path cover for the ewG of the sequences. We presented a greedy
algorithm that computes a cover in expected linear-time (in the number of nodes of the
graph) and showed that it is empirically almost optimal according to a lower bound on the
number of runs. As a result of this optimization, the space spent to represent the weights is
unlikely to be improved using run-length encoding.

Although several approaches in the literature [17, 21, 35, 36] also consider approximate
weights, we did not pursue this direction here as the weights are already encoded space-
efficiently in SSHash and in an exact way, so there may be no need for approximation.

The distribution of weights in large collections is usually expected to be very skew, i.e.,
most k-mers actually appear once and few of them repeat many times [35, 36]. A common
strategy to save space is then to avoid the representation of the most frequent weight(s).
Note that, since we represent runs of weights and not the individual weights, we are already
optimizing (potentially very large) sub-sets of weights equal to the most frequent one. That
is, run-length encoding is also a good match for such skew distributions.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.23.493024doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.23.493024
http://creativecommons.org/licenses/by-nc/4.0/


G. E. Pibiri 17

References
1 Fatemeh Almodaresi, Hirak Sarkar, Avi Srivastava, and Rob Patro. A space and time-efficient

index for the compacted colored de Bruijn graph. Bioinformatics, 34(13):i169–i177, 2018.
2 Uwe Baier, Timo Beller, and Enno Ohlebusch. Graphical pan-genome analysis with compressed

suffix trees and the burrows–wheeler transform. Bioinformatics, 32(4):497–504, 2016.
3 Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A Gurevich, Mikhail Dvorkin,

Alexander S Kulikov, Valery M Lesin, Sergey I Nikolenko, Son Pham, Andrey D Prjibelski,
et al. Spades: a new genome assembly algorithm and its applications to single-cell sequencing.
Journal of computational biology, 19(5):455–477, 2012.

4 Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Succinct de Bruijn
graphs. In International Workshop on Algorithms in Bioinformatics (WABI), pages 225–235.
Springer, 2012.

5 Michael Burrows and David Wheeler. A block-sorting lossless data compression algorithm. In
Digital SRC Research Report. Citeseer, 1994.

6 Rayan Chikhi, Antoine Limasset, Shaun Jackman, Jared T Simpson, and Paul Medvedev.
On the representation of de Bruijn graphs. In International conference on Research in
computational molecular biology, pages 35–55. Springer, 2014. URL: https://github.com/
jts/dbgfm.

7 Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting de Bruijn graphs from
sequencing data quickly and in low memory. Bioinformatics, 32(12):i201–i208, 2016. URL:
https://github.com/GATB/bcalm.

8 Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, and Agnieszka Debudaj-Grabysz.
Kmc 2: fast and resource-frugal k-mer counting. Bioinformatics, 31(10):1569–1576, 2015.

9 Peter Elias. Efficient storage and retrieval by content and address of static files. Journal of
the ACM, 21(2):246–260, 1974.

10 Robert Mario Fano. On the number of bits required to implement an associative memory.
Memorandum 61, Computer Structures Group, MIT, 1971.

11 Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
Proceedings 41st Annual Symposium on Foundations of Computer Science, pages 390–398.
IEEE, 2000.

12 Giuseppe Italiano, Nicola Prezza, Blerina Sinaimeri, and Rossano Venturini. Compressed
weighted de Bruijn graphs. In 32nd Annual Symposium on Combinatorial Pattern Matching
(CPM 2021), volume 191, pages 1–16, 2021. URL: https://github.com/nicolaprezza/
cw-dBg.

13 Shaun D Jackman, Benjamin P Vandervalk, Hamid Mohamadi, Justin Chu, Sarah Yeo,
S Austin Hammond, Golnaz Jahesh, Hamza Khan, Lauren Coombe, Rene L Warren, et al.
Abyss 2.0: resource-efficient assembly of large genomes using a bloom filter. Genome research,
27(5):768–777, 2017.

14 Mikhail Karasikov, Harun Mustafa, Gunnar Rätsch, and André Kahles. Lossless indexing
with counting de bruijn graphs. bioRxiv, 2021.

15 Parsoa Khorsand and Fereydoun Hormozdiari. Nebula: ultra-efficient mapping-free structural
variant genotyper. Nucleic acids research, 49(8):e47–e47, 2021.

16 Guillaume Marçais and Carl Kingsford. A fast, lock-free approach for efficient parallel counting
of occurrences of k-mers. Bioinformatics, 27(6):764–770, 2011.

17 Camille Marchet, Zamin Iqbal, Daniel Gautheret, Mikaël Salson, and Rayan Chikhi. Reindeer:
efficient indexing of k-mer presence and abundance in sequencing datasets. Bioinformatics,
36(Supplement_1):i177–i185, 2020.

18 Shoshana Marcus, Hayan Lee, and Michael C Schatz. Splitmem: a graphical algorithm for
pan-genome analysis with suffix skips. Bioinformatics, 30(24):3476–3483, 2014.

19 Prashant Pandey, Michael A Bender, Rob Johnson, and Rob Patro. deBGR: an efficient and
near-exact representation of the weighted de Bruijn graph. Bioinformatics, 33(14):i133–i141,
2017.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.23.493024doi: bioRxiv preprint 

https://github.com/jts/dbgfm
https://github.com/jts/dbgfm
https://github.com/GATB/bcalm
https://github.com/nicolaprezza/cw-dBg
https://github.com/nicolaprezza/cw-dBg
https://doi.org/10.1101/2022.05.23.493024
http://creativecommons.org/licenses/by-nc/4.0/


18 On Weighted K-Mer Dictionaries

20 Prashant Pandey, Michael A Bender, Rob Johnson, and Rob Patro. A general-purpose counting
filter: Making every bit count. In Proceedings of the 2017 ACM international conference on
Management of Data, pages 775–787, 2017.

21 Prashant Pandey, Michael A Bender, Rob Johnson, and Rob Patro. Squeakr: an exact and
approximate k-mer counting system. Bioinformatics, 34(4):568–575, 2018.

22 Giulio Ermanno Pibiri. Sparse and Skew Hashing of K-Mers. Bioinformatics. To Appear.,
xx(Supplement_xxx):xxx–yyy, 2022. URL: https://doi.org/10.1101/2022.01.15.476199.

23 Giulio Ermanno Pibiri and Roberto Trani. Parallel and external-memory construction of
minimal perfect hash functions with PTHash. CoRR, abs/2106.02350, 2021. arXiv:2106.
02350.

24 Giulio Ermanno Pibiri and Roberto Trani. PTHash: Revisiting FCH minimal perfect hashing.
In SIGIR ’21: The 44th International ACM SIGIR Conference on Research and Development
in Information Retrieval, Virtual Event, Canada, July 11-15, 2021, pages 1339–1348, 2021.

25 Giulio Ermanno Pibiri and Rossano Venturini. Clustered Elias-Fano indexes. ACM Trans.
Inf. Syst., 36(1):2:1–2:33, 2017.

26 Giulio Ermanno Pibiri and Rossano Venturini. Efficient data structures for massive n-gram
datasets. In Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 615–624, 2017.

27 Giulio Ermanno Pibiri and Rossano Venturini. Handling massive N -gram datasets efficiently.
ACM Trans. Inf. Syst., 37(2):25:1–25:41, 2019.

28 Giulio Ermanno Pibiri and Rossano Venturini. Techniques for inverted index compression.
ACM Comput. Surv., 53(6):125:1–125:36, 2021.

29 Amatur Rahman and Paul Medvedev. Representation of k-mer sets using spectrum-preserving
string sets. In International Conference on Research in Computational Molecular Biology,
pages 152–168. Springer, 2020. URL: https://github.com/medvedevgroup/UST.

30 Guillaume Rizk, Dominique Lavenier, and Rayan Chikhi. Dsk: k-mer counting with very low
memory usage. Bioinformatics, 29(5):652–653, 2013.

31 Michael Roberts, Wayne Hayes, Brian R Hunt, Stephen M Mount, and James A Yorke.
Reducing storage requirements for biological sequence comparison. Bioinformatics, 20(18):3363–
3369, 2004.

32 Mirko Rossi, Mickael Santos Da Silva, Bruno Filipe Ribeiro-Gonçalves, Diogo Nuno Silva,
Miguel Paulo Machado, Mónica Oleastro, Vítor Borges, Joana Isidro, Luis Viera, Jani Halki-
lahti, Anniina Jaakkonen, Federica Palma, Saara Salmenlinna, Marjaana Hakkinen, Javier
Garaizar, Joseba Bikandi, Friederike Hilbert, and João André Carriço. INNUENDO whole
genome and core genome MLST schemas and datasets for Salmonella enterica. July 2018.
URL: https://doi.org/10.5281/zenodo.1323684.

33 Kristoffer Sahlin. Effective sequence similarity detection with strobemers. Genome research,
31(11):2080–2094, 2021.

34 Kristoffer Sahlin. Strobemers: an alternative to k-mers for sequence comparison. bioRxiv,
2021.

35 Yoshihiro Shibuya, Djamal Belazzougui, and Gregory Kucherov. Space-efficient representation
of genomic k-mer count tables. In International Workshop on Algorithms in Bioinformatics
(WABI), volume 201, pages 8–1, 2021. URL: https://github.com/yhhshb/locom.

36 Yoshihiro Shibuya, Djamal Belazzougui, and Gregory Kucherov. Set-min sketch: a prob-
abilistic map for power-law distributions with application to k-mer annotation. Journal of
Computational Biology, 29(2):140–154, 2022.

37 Daniel S Standage, C Titus Brown, and Fereydoun Hormozdiari. Kevlar: a mapping-free
framework for accurate discovery of de novo variants. Iscience, 18:28–36, 2019.

38 Derrick E Wood and Steven L Salzberg. Kraken: ultrafast metagenomic sequence classification
using exact alignments. Genome biology, 15(3):1–12, 2014.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.23.493024doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.15.476199
http://arxiv.org/abs/2106.02350
http://arxiv.org/abs/2106.02350
https://github.com/medvedevgroup/UST
https://doi.org/10.5281/zenodo.1323684
https://github.com/yhhshb/locom
https://doi.org/10.1101/2022.05.23.493024
http://creativecommons.org/licenses/by-nc/4.0/


G. E. Pibiri 19

A Omitted Proofs from Section 4.1

I Lemma 3. Let us consider d > 0 equal nodes (w, x). If d is even, then the d nodes
originate a path of either end-points (w,w) or (x, x). If d is odd, then the path has end-points
(w, x).

Proof. We proceed by induction on d. Base case: if d = 1 (odd case), then there is only the
singleton path (w, x); if d = 2 (even case), then we can either form the path (w, x)→ (x,w)
of end-points (w,w) or the path (x,w) → (w, x) of end-points (x, x). So the base case is
verified. Now we assume the Lemma holds true for a generic d > 2 and we want to prove it
for d+ 1. If d is even, then d+ 1 is odd and we can either have a path (w,w)→ (w, x) or a
path (w, x) → (x, x). In both cases the end-points are (w, x). Symmetrically: if d is odd,
then d+ 1 is even and we can either have a path (w, x)→ (x,w) with end-points (w,w) or a
path (x,w)→ (w, x) with end-points (x, x). J

I Lemma 6. Given an incidence set Iw, if n(Iw) is odd then only one path will contain w
as end-point among all the paths that can be created from the nodes in Iw.

Proof. Let us first consider the special case where all the other weights in Iw are distinct, so
there are no equal nodes in Iw except for, possibly, nodes of the form (w,w). In this case,
we say that Iw is canonical. If there are some nodes (w,w), they can be trivially collapsed to
a single path of end-points (w,w) by Lemma 3. So, without loss of generality, either we have
one node (w,w) in Iw and n(Iw) = |Iw|+ 1, or we do not and n(Iw) = |Iw|. In this special
case, since n(Iw) is odd, it is always possible to create n(Iw)−1

2 paths, each having 2 nodes.
These paths will not contain w as end-point because all the end-points where w appears are
used to link the nodes. Therefore, there will be exactly one unpaired node where w appears.

Now, observe that we can relax the restriction on the other weights to be all distinct. For
every weight x 6= w that appears for dx > 1 times in Iw, there are dx equal nodes (w, x). Let
Dx ⊆ Iw be the set of such nodes (hence, dx = |Dx|). By applying Lemma 3 to the nodes of
each set Dx:

If dx is even, then the nodes in Dx can be collapsed into a path of end-points (w,w) or
(x, x). If the node (w,w) is created, we obtain a new incidence set I ′w = Iw \Dx∪{(w,w)}.
Instead, if the node (x, x) is created, then I ′w = Iw \ Dx since (x, x) cannot be in an
incidence set for w. In both cases n(I ′w) will still be odd since we subtract an even number
from n(Iw).
If dx is odd, the nodes are collapsed into the path of end-points (w, x) and the new
incidence set is I ′w = Iw \Dx ∪ {(w, x)}. Again, n(I ′w) will still be odd since we subtract
an odd number from n(Iw) but sum one.

After each set Dx is processed in this way, we are left with an incidence set for w that is
canonical.

J

I Lemma 8. |Wodd| is even.

Proof. Observe that
∑

w∈eW n(Imax
w ) is even and equal to 2m because we count the occur-

rences of the weights appearing as end-points of the sequences and each sequence has two
end-points. Since eW = eWodd ∪ eWeven ∪ eWequal, the above sum can be re-written as∑

w∈eW

n(Imax
w ) =

∑
w∈eWodd

n(Imax
w ) +

∑
w∈eWeven

n(Imax
w ) +

∑
w∈eWequal

n(Imax
w ) = 2m.
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It follows that also∑
w∈eWodd

n(Imax
w ) = 2m−

∑
w∈eWeven

n(Imax
w )−

∑
w∈eWequal

n(Imax
w )

must be even since it is obtained by difference of even quantities. Since each term in the
sum

∑
w∈eWodd

n(Imax
w ) is odd by definition, the whole sum is even if and only if |eWodd| is

even, as the sum of an odd number of odd numbers is odd. J

Table 5 The performance of Alg. 3 on the datasets Cod, Kestrel, Human, and Bacterial, for which
we report the number of distinct k-mers (n) and the number of strings (m) after running UST [29]
on the collections. The performance of the algorithm is expressed as: the number of actual runs (r)
after the run-reduction optimization in comparison with the lower bound on the number of runs
(rlo) computed using Equation (1), and running time (in total sec and average ns/node).

Dataset n m rlo r
Alg. 3 Alg. 3
(sec) (ns/node)

Cod 502,465,200 2,406,681 4,183,202 4,183,230 (+0.00067%) 1.2 500
Kestrel 1,150,399,205 682,344 1,140,743 1,140,747 (+0.00035%) 0.3 440
Human 2,505,445,761 13,014,641 22,680,047 22,680,099 (+0.00023%) 7.5 580
Bacterial 5,350,807,438 26,448,286 56,662,230 56,662,304 (+0.00013%) 17.2 650

Table 6 The performance of w-SSHash on the permuted string collections Cod, Kestrel, Human,
and Bacterial. We report the empirical entropy of the weights (H0(W )), the dictionary space in
average bits/k-mer, and query-time in average µsec/k-mer. The space is indicated as x+ y, where x
is the space of SSHash (without the weights) and y is the space for the encoding of the weights.

Dataset H0(W ) space query-time

Cod 0.441 6.98+0.19 (2.35×) 1.3
Kestrel 0.089 6.49+0.02 (3.80×) 1.1
Human 0.453 8.28+0.22 (2.06×) 1.6
Bacterial 1.890 8.22+0.24 (7.81×) 1.9

B Additional Experimental Results

In Table 5 and Table 6 we report the performance of Alg. 3 and of w-SSHash on four
additional, larger, collections that we also used in our previous work [22], namely the full
genomes of G. Morhua (Cod), F. Tinnunculus (Kestrel), and H. Sapiens (Human), and a
collection of more than 8000 bacterial genomes (Bacterial) [1]. Precisely, the results in Table 6
are for regular w-SSHash dictionaries with minimizer lengths equal to 17, 17, 20, and 20, for
respectively, Cod, Kestrel, Human, and Bacterial.
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