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Abstract

Given two or more concentrations, an interesting and important related issue concerns the quantification of how

strongly they are spatially interrelated. The concept of colocalization has been frequently considered as an indication

of the tendency of the values of two concentrations to spatially vary together. While this frequently adopted approach

presents several interesting characteristics, being a suitable choice for several situations, in the present work we study

how multiset similarity indices can be applied for similar purposes, possibly allowing a complementation, in the sense of

taking into account shared portions of the concentrations, of the colocalization characterization provided by the Pearson

correlation methodology. The problem of colocalization is first addressed in terms of possible underlying mathematical

models, and then the Pearson correlation coefficient-based approach, as well as the standardization procedure which is

its intrinsic part, are presented and discussed. The particularly important issue of how to define the baseline of the

concentrations is also approached and illustrated. The minmax alternative normalization scheme is presented next,

followed by the description of the three considered multiset simiarlity indices — namely the interiority, Jaccard, and

coincidence similarity approaches. The characteristics of each of these methods is then illustrated respectively to 1D,

and then to 2D concentrations under presence of several interesting and relevant effects including spatial displacement,

as well as sharpening, presence of unrelated effects. The similarity indices, and in particular the coincidence approach,

are found to present some interesting features when applied to the quantification of the colocalization between two

or more concentrations, suggesting that it can provided complementary information when performing colocalization

analysis.

1 Introduction

With the advancements in molecular biology experimen-

tal resources, in particular fluorescence imaging, it has

become possible to mark in accurate and systematic man-

ner gene expression and other biochemical concentrations

in tissues and organs. As these advances continue, in-

creasingly more comprehensive and accurate results are

obtained, typically in the form of images of densities or

concentrations, that demand more and more accurate and

effective means for their respective analysis in terms of ob-

jective quantifications of the relationship between two or

more densities.

The characterization and analysis of relationships be-

tween co-existing biochemical densities and concentra-

tions has been approached predominantly through colocal-

ization analysis, often being related to the application of

the Pearson correlation coefficient between the respective

values (e.g. [1, 2, 3, 4, 5]). While these methods are inter-

esting on themselves and are therefore posed to continue

to be employed, it becomes interesting to consider alter-

native approaches that can complement the characteriza-

tion of coexisting concentrations and densities. This con-

stitutes the main motivation of the present work, which

adopts the concept of multiset (e.g. [6, 7, 8, 9, 10, 11])

similarities — more specifically the interiority (or over-

lap [12]), Jaccard (e.g. [13, 14, 15, 16, 17]) and coincidence

indices (e.g. [18, 19, 20]) — as means for quantifying the

colocalization of two or more densities.

In the present work, we will consider concentrations

as not being necessarily normalized to unit area/volume,

white the terms density or distribution is applied to con-

centrations which have been otherwise normalized.

We start from the principle that the colocalization of

two densities means that the respective biological effects

tend to take place at the same parts of the considered

tissue or organ. This important problem is illustrated in

Figure 2, involving two hypothetical densities imaged as

(a) and (b). In this case, their combined visualization in

(c) readily indicates that, though the two densities are

moderately colocalized, they are indeed characterized by

a marked spatial shift that was emphasized by the joint
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visualization.

In the present work, we employ the interiority, Jac-

card, and coincidence similarity indices in their multiset

version (e.g. [18, 19, 20]) as means for quantifying the

colocalization between two or more densities. These mul-

tiset similarities, in particular the coincidence index, have

been found to present special properties that contribute

significantly to their selectivity, sensitivity when compar-

ing similar patterns, as well as robustness to localized

features perturbations. These properties have paved the

way to effective use as basis for several concepts and ap-

plications (e.g. [19, 21, 22]).

This work starts by addressing the important issue

of expressing colocalization more objectively in terms of

mathematical models, with emphasis on proportionality

relationships. Then, the traditional colocalization ap-

proach employing the Pearson correlation coefficient is

presented, illustrated and discussed including the stan-

dardization of the concentrations that is always imple-

mented as part of the Pearson-based approach. This is fol-

lowed by the description of the minmax normalization as

well as the three multiset similarity indices considered in

this work. Several examples are presented illustrating the

respective characteristics of the several approaches here

considered for colocalization quantification, first respec-

tively to 1D concentrations, and then taking into account

several 2D cases.

2 Colocalization Models

Before proceeding to quantifying colocalization, it is im-

portant to have an objective comprehension of what it

is. Probably the best approach to this problem consists

in identifying some mathematical models that can be used

to define, or at least to characterize, what it will be meant

by colocalization. This interesting issued is developed in

the present section.

Literally, the term colocalization plainly means that

something is occupying, or tending to occupy, the same

positions than another thing. For instance, in biology, the

term is often employed to mean that two protein types are

being expressed at the same places. Thus, we should ex-

pect that one of the concentrations will tend to follow the

other, in the sense that when one is large/small the other

will also be or, in other words, that one of the concentra-

tions will be proportional but not necessarily identical to

the other, which can be mathematically expressed as:{
f(x, y) = a g(x, y)

g(x, y) = 1
a f(x, y)

(1)

where a ∈ R+ is a non-negative generic multiplying

factor.

It is also possible, for generality’s sake, to incorporate

a constant term b as:{
f(x, y) = a g(x, y) + b

g(x, y) = 1
a f(x, y)− b (2)

Figure 2 illustrates the concept of colocalization in

terms of proportional relationship between two one-

dimensional concentrations f(x) and g(x).

This relationship between the two concentrations,

which we will understand as reflecting this concept in

the most literal manner as possible, therefore yields a

linear relationship between the two concentrations, as il-

lustrated in Figure 3 respectively to two one-dimensional

concentrations f(x) and g(x).

It is interesting to observe that the concept of colocal-

ization as formalized above is not necessarily the same

as the idea of identity between two concentrations, given

that two colocalized profiles are not necessarily identical.

In case the concept of similarity does not allow for con-

centration scalings, it will also become distinct from the

idea of colocalization.

In practice, several effects can eventually influence the

basic proportionality assumption in the colocalization.

For instance, we can have:{
f(x, y) = a g(x, y) + h(x, y)

g(x, y) = 1
a f(x, y)

(3)

For instance, h(x, y) can be a uniformly random noise

field, or it may be caused by another independent effect

not related to g(x, y). The latter possibility is illustrated

in Figure 4. Here, we have the same proportional con-

centrations already seen in Figure 3, but with the differ-

ence that an additional peak appears in the concentration

f(x). This peak is not related to g(x) in any direct man-

ner, being a consequence of an additional, independent

influencing factor.

Another interesting situation to be taken into account

when analyzing colocalization appears when one of the

concentrations corresponds to a shifting of the other, i.e.:{
f(x, y) = g(x+ δx, y + δy)

g(x, y) = f(x− δx, y − δy)
(4)

It is also possible that one of the concentrations un-

dergoes modulation by another independent field h(x, y),

such as corresponding to a gradient along the concentra-

tion domains, e.g.:{
f(x, y) = g(x, y) h(x, y)

g(x, y)
(5)
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Figure 1: An illustration of the colocalization task. Two distinct biochemical densities are acquired as two respective images (a) and (b).

Figure (c) illustrates the image obtained by superimposing the two expressions so that the colocalized portions tend to appear as yellow. In

this particular case, it can be readily observed from (c) that the two densities in (a) and (b), though moderately colocalized, also involve a

significant relative spatial displacement.

Figure 2: The proportionality relationship that, in the present work,

is understood to underly the concept of colocalization (a). Two lin-

ear concentrations f(x) and g(x) are not equal, but any of them

can be obtained by multiplying the other by a specific factor a. The

different heights indicate that the two concentrations were gener-

ated at distinct intensity. Biologically, the two concentrations could

correspond to proteins that are being expressed at the same places,

but with distinct rates. It may happen that the colocalization is

not proportionally observed throughout all the imaged domain, as

illustrated in (b), in which there is a region of the domain (larger

values of x) at which the concentration f(x) is not being followed

by the other concentration g(x).

The concentrations can also be related through function

composition, i.e.:{
f(x, y) = h (g(x, y))

g(x, y) = h−1 (f(x, y))
(6)

As an example of the above effect, we have the situ-

ation in which each of the concentrations correspond to

the reciprocal of the other:{
f(x) = 1

g(x,y)

g(x) = 1
f(x,y)

(7)

Figure 3: The basic understanding of colocalization adopted in the

current work consists in assuming that one of the concentrations,

f(x) is proportionally related to another concentration g(x) by a

proportionality factor a, as illustrated in this figure for the case

a > 1.

Needless to say, the several mathematical representa-

tion schemes above can appeared combined in their sev-

eral forms. The planning, quantification, and interpre-

tation of colocalization applications can benefit substan-

tially in case the respectively underlying mathematical

model is known or hypothesized (and then subjected to

validation).
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Figure 4: Two concentrations characterized by being generally pro-

portional except for the peak p appearing on the right portion of

concentration f(x).

3 Standardization and the Pear-

son Correlation Coefficient

The average value of a 1D continuous concentration X(x)

is defined as:

Xav =
1

LS

ˆ
S

X(x)dx (8)

where S is the support of the concentration, i.e. the

interval of x, In = [xm, xM ], for which the concentration

is of interest for our analysis. The quantity LS refers to

the extension of the interval In.

For 2D concentrations, the following average definition

applies

In case the concentration is sampled in terms of N

points, sampled at equally spaced intervals, we have that

its average value concentration Xi, i = 1, 2, . . . , N , can

be estimated as:

Xav =
1

N

N∑
k=1

Xi (9)

In the case of a concentration expressed as:

Y (x) = aX(x) + b (10)

its average can be found to be equal to:

AY = a AX + b (11)

Given N samples Xi, i = 1, 2, . . . , N , of a random vari-

able X, they can be standardized (e.g. [23, 24, 25]) by

making:

X̃i =
Xi − µX

σX
(12)

where µX and σX are respectively the mean and stan-

dard deviation of X. The standardized variables X̃ have

some special properties, including null means and unit

standard deviation. In addition, most of them result com-

prised in the interval [−2, 2]. Though these properties are

often useful and adopted, it should be borne in mind that

information about the original variable is lost in the pro-

cess, especially concerning its original average value. We

will come back to this respectively to the Pearson corre-

lation coefficient.

Given two sets of observations X and Y of two respec-

tive random variables, their Pearson correlation coeffi-

cient (e.g. [26, 27, 28, 23, 25])) can be estimated by per-

forming the two following steps: (1) standardize each set

separately; and (2) calculate the following average:

P (X,Y ) = P (Y,X) =
1

N

N∑
i=1

X̃i Ỹi (13)

It can be verified that −1 ≤ P (X,Y ) ≤ 1.

The Pearson correlation coefficient quantifies the ten-

dency of the two variables X and Y to vary together. For

instance, when one increases, the other also tends to in-

crease. Similarly, when one decreases, the other tends to

accompany the trend. The higher the value of the Pear-

son correlation coefficient, the strongest this tendency is.

Negative values of Pearson correlation coefficient indicate

that when one of the variables increases, the other de-

creases, and vice-versa.

Given the above characterized operation of the Pear-

son correlation coefficient, it is intrinsically suitable for

expressing the colocalization between two concentrations

X and Y , being therefore amply adopted. An important

aspect of the Pearson correlation coefficient to be consid-

ered at all times concerns the fact that its calculation in-

volves the standardization of the two variables, therefore

implying the loss of some original information including

the averages µX and µY of the two variables. For instance,

consider the particularly interesting situation depicted in

Figure 5.

Figure 5: Two one-dimensional concentrations X(x) and Y (y) have

average values approximately equal to 2.0, but both these concen-

trations incorporate some small scale waving. Despite the overall

similarity between these two concentrations, their respective Pear-

son correlation coefficient can be verified to be zero.

4

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.23.492977doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.23.492977


The Pearson correlation coefficient for these two con-

centrations is zero because the original averages are not

taken into account and also because the respective small

scale oscillations correspond to a sine and a cosine. If,

instead, we had to sines or cosines of any positive ampli-

tude, the Pearson correlation coefficient would be equal

to 1. Thus, we have that small changes in small scale

detail of the concentrations can make the Pearson corre-

lation to change from 0 to 1 (or even -1). In case we are

interested not only on the joint variation between the con-

centrations, the original averages can be estimated before

standardization in order to be considered later.

Let us now present another example of quantifying the

colocalization of the two signals in Figure 6. These two

concentrations were defined from a reference concentra-

tion Z as: {
X = Z + 2

Y = 2Z + 0.5

Figure 6: Two concentrations that have markedly distinct averages

and magnitudes, but which have shapes proportional one to the

other. As a consequence of the standardization implemented in the

Pearson correlation coefficient, its value results 1 for this specific

example.

The standardization of the concentrations will remove

the respective averages and rescale the results so that they

have the same dispersion. These combined processing ef-

fectively yields X̃ = Ỹ , therefore implying the respective

Pearson correlation coefficient to result equal to its max-

imum value of 1. This is completely reasonable because

the two concentrations were built so as to vary together

proportionally.

There is another type of concentration representation

that deserves special attention in colocalization studies,

namely the situation in which the concentrations have

area (in the case of 1D) or volume (2D) equal to one, in

which case they can be understood as probability densities.

Given any non-null concentration, it can be transformed

into a respective probability density function simply by

dividing each of its values by the total area A or vol-

ume V (assuming unit sampling intervals). The effect of

this transformation on the proportional relationship here

adopted as a reference for understanding colocalization

then becomes:

pf (x, y) =
[a g(x, y) + b]

V
=

=
a

V
g(x, y) +

b

V
= a′ g(x, y) + b′ (14)

Therefore, the translation of a generic concentration

into its respective probability density form does not af-

fect, other than proportional changes on the involved co-

efficients, the proportionality relationship.

Given the importance of the effect of the average level

of the concentrations on the localization, we now discuss

another related example illustrated in Figure 7(a). We

have both concentrations characterized by a smaller wav-

ing pattern on a larger oscillation. More specifically, the

concentrations have been defined as:{
X(x) = cos(x) + 0.2 sin(8x) + 3

Y (x) = cos(x) + 0.2 cos(8x) + 2.5
(15)

The scatterplot and respectively obtained Pearson cor-

relation coefficient are shown in Figure 7(b).

Figure 7: Two concentrations presenting two scales of oscillations

(a) and the respective scatterplot and Pearson correlation coefficient

(b), which can be understood to characterize the colocalization at

the largest spatial scale of the two cosines cos(x). The null colocal-

ization existing between the two smaller oscillations cannot be char-

acterized directly by the Pearson correlation coefficient, demanding

the prior subtraction of the larger cosine baseline.

The relatively high value obtained for the Pearson cor-

relation coefficient can be understood to quantify the colo-

calization of the larger oscillation parts of the two con-

centrations. However, in case these larger oscillations are

understood as a baseline, with the smaller (in terms of

height) oscillations patterns, namely sin(8x) and cos(8x),

therefore constituting the pattern of interest, a null Pear-

son correlation value should have been obtained. In the
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case of the Pearson correlation, this could be achieved

by subtracting the larger oscillation terms from both

concentrations prior to respective calculation. Though

in most practical cases the functional description of the

concentrations are not available, there are mathematic-

computational methods that can be used for estimating

the baselines of the two concentrations as corresponding

to the larger oscillation.

In this work, the baseline is understood to mark the

region of interest in the concentrations. More specifi-

cally, the portions of the concentrations that are above

or around the baseline are to receive special attention in

the analysis. For instance, if interest is focused on the

smaller variations taking place on larger oscillations or

even a constant plateaux, the baseline can be set so as to

keep those portions apart from the analysis.

Figure 8 presents the same concentration X(x) as above

as well as five possible choices, amongst the infinite pos-

sibilities, of baselines. The black baseline coincides with

the x-axis, therefore providing a natural reference in case

the null concentration is to be taken as reference. The

concentration in brown, corresponds to the average of the

concentration. The green baseline is defined by the min-

imum of the concentration. The magenta baseline is an

arbitrary choice possibly motivated by specific interests of

the research. While all these three baselines correspond

to constant values, the baseline in red is a cosine function

that has been defined from the larger oscillation in the

concentration.

Figure 8: A given concentration X(x) (in blue) and five possible

choices of baselines. Only the brown baseline is effectively consid-

ered by the Pearson correlation approach. The red baseline can

also be considered for the Pearson analysis provided it is subtracted

beforehand from the concentration.

Importantly, the Pearson correlation approach can only

take into account the brown baseline, as it corresponds to

the average of this signal and the standardization shifts

the concentration always to this position. The oscillat-

ing baseline can also be considered in the Pearson analy-

sis provided it is subtracted from the concentration first.

The other constant baselines cannot influence the Pearson

correlation coefficient in any way as the standardization

always place the concentrations at the respective average.

An important conclusion therefore is that the result of

Pearson correlation analysis frequently depends substan-

tially on the definition of the baseline. Two more evident

possible baselines in the case of the previous example cor-

respond to: (i) the overall average of the concentrations;

and (ii) the larger oscillation itself. However, there is an

infinite additional number of choices for baselines, each

to be chosen among the infinite possible functions defined

in the same interval of x of interest. Importantly, the

Pearson correlation cannot cope with constant baselines

along that interval, because this term would be otherwise

removed by the standardization that is intrinsic to any

Pearson correlation coefficient calculation.

We can conclude from the above reasonings that the

standardization-Pearson analysis will be particularly suit-

able for the analysis of concentrations that can be ex-

pressed in the following general form:{
X = aXY + bX
Y = aYX + bY

(16)

except for any choice of constant baseline.

Some other types of relationships can be eventually

transformed into the above representation through math-

ematical manipulations involving taking logarithms, etc.

In addition, the above relationship can be readily gener-

alized to more than two concentrations, e.g.:
X = aXY + bX
Y = aY Z + bY
Z = aZX + bZ

Henceforth, the constant terms in these expressions

(e.g. bX , and bY in Eq. 16), which do not necessarily cor-

respond to the average value of the respective concentra-

tions (as this can also be influenced by the other terms),

will be henceforth referred to as constant terms.

Let us now consider a colocalization case, depicted in

Figure 9, in which one of the concentrations has a well-

defined peak that is not related in any means to the other

concentration. More specifically, in this case both concen-

trations also have the same area, so that we would have

half of the area of the concentration X colocalizing with

the other concentration. However, the obtained Pear-

son correlation coefficient resulted in P (X,Y ) = 0.8007,

which suggests a colocalization much higher than the half

of shared areas.
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Figure 9: The Pearson correlation coefficient applied to the quantifi-

cation of the colocalization between these two concentrations, one of

which incorporating a peak unrelated to the other, yields a substan-

tially high value. Indeed, one half of the area of the concentration

X undergoes joint variation with Y .

The reason for this surprisingly high Pearson correla-

tion coefficient can be better understood by referring to

Figure 10, which shows the standardized versions of the

two concentrations as well as the respectively defined scat-

terplot. It can be verified from the latter that the peak

of X that is unrelated to Y yields a much shorter spoke

in the scatterplot that, in addition to the displacement of

the scatterplot pattern respectively to its coordinate ori-

gin, results not being enough to reduce more substantially

the otherwise estimated Pearson correlation coefficient.

All in all, though the standardization of the original

concentrations provides a pre-processing that tends to be

suitable and compatible with subsequent colocalization

analysis by employing the Pearson correlation coefficient,

there are situations such as that illustrated above that

can be understood as an overestimation of the colocal-

ization. In the following section we consider potential of

three multiset similarity indices for possible addressing

the overestimation issue.

4 Minmax Normalization and

Multiset Similarity Indices

Another interesting approach to normalizing the two con-

centrations to be analyzed is by using a method that in

this work will be referred as minmax normalization. This

can be readily implemented as:

X̂i =
Xi −min(X)

max(X)−min(X)
(17)

As a consequence of this normalization, the values of X

become all comprised between 0 and 1. When preparing

(a)

(b)

Figure 10: The standardized versions of the two concentrations in

Figure 9(a), as well as the respectively obtained scatterplot, which

reveals the predominance of the joint variation of just one of the

peaks of the concentration X with the colocalized peak along Y .

The additional, unrelated peak in X defines a much shorter spoke

in the scatterplot that is not sufficient to reduce the Pearson corre-

lation to a smaller value.

the concentrations for subsequent colocalization analysis,

the minmax is applied independently on each of the in-

volved concentrations.

From the biological point of view, this normalization

can be understood as removing the constant expression

term and then normalizing the maximum expression to 1.

Also known as overlap (e.g. [12]), the interiority index

between two concentrations quantifies how much one of

the concentrations is contained into the other. It can be

expressed as:

I(f(x), g(x)) =

´
S

min {|f(x)|, |g(x)|}
min

{´
S
|f(x)|dx,

´
S
|f(y)|dy

} (18)

with 0 ≤ I(f(x), g(x)) ≤ 1 and I(f(x), g(x)) =

I(g(x), f(x)).

The real-valued Jaccard similarity index between two
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concentrations can be written (e.g. [18, 19]) as:

J(f(x), g(x)) =

´
S
sf(x)sg(x) min {|f(x)|, |g(x)|}´

S
max {|f(x)|, |g(x)|}

(19)

where sf(x) = sign(f(x)) and sg(x) = sign(g(x)). We

also have that −1 ≤ J(f(x), g(x)) ≤ 1.

The Jaccard index quantifies how similar the two con-

centrations are while considering their shared area and

outline [20].

Given that the Jaccard index cannot account for the

relative interiority between the two concentrations, the

coincidence similarity index has been proposed [18, 19]

as the product of the Jaccard and interiority index, i.e.:

C = J(f(x), g(x)) i(f(x), g(x)) (20)

with −1 ≤ J(f(x), g(x)) ≤ 1 and C = J(f(x), g(x)) =

J(g(x), f(x)).

These indices, and in particular the real-valued Jac-

card and coincidence cases, present some intrinsic inter-

esting features [18, 19, 20] that make them particularly

selective, sensitive and robust to localized features per-

turbations. These characteristics have allowed successful

applications of these indices to several areas and types of

problems, including template matching [19, 22] and trans-

lating datasets into networks [21].

In the present work, we study how these three similar-

ity indices can be applied as an alternative methodology

for characterizing the colocalization between two given

concentrations. Interestingly, the three similarity indices

above can be applied with or without preliminary stan-

dardization of the concentrations, depending on the ap-

plication requirements and type of data to be analyzed.

The ability of these indices to cope with constant base-

lines other than the concentration average constitute on

aspect of particular interest for colocalization analysis.

In the case standardization, the obtained similarity in-

dices can be understood, in analogous manner to the Pear-

son correlation characterization, as quantifying the ten-

dency of joint variation presented by the two concentra-

tions. Another interesting possibility consists of applying

the minmax normalization, resulting in two non-negative

normalized concentrations with non-null average values,

in which case the similarity values will relatively indicate

the shared area (for 1D concentrations) or volume (for 2D

concentrations) between the two concentrations. A third

possibility consists of implementing no normalization, so

that generic constant baselines can be specified.

Some of the possible pre-processing that can be applied

to the concentrations before similarity colocalization are

summarized in the following. Only alternatives B and

C apply to the Pearson correlation colocalization, as it

always implements standardization.

A – No standardization: The concentrations are used

as given;

B – Baseline subtraction: Subtract a baseline of

particular interest from the concentrations. This will only

have an effect on Pearson correlation-based colocalization

in case the baseline does not have a constant value;

C – Standardization: The concentrations are stan-

dardized prior to colocalization quantification so as to

have average equal to zero and standard deviation equal

to one. Most of their values will result within the interval

[−2, 2];

D – Area/Volume normalization: Divide each of

the concentrations by their respective area/volume so that

they will result with unit area (1D) or volume (2D);

E – Minmax normalization: The concentrations are

minmax-normalized. Both concentrations will be normal-

ized between zero and one, therefore having the baseline

not corresponding to their respective averages, but to the

constant zero. Observe that this normalization does not

generally yield the same results as the same area/volume

normalization.

Recall that, in addition to these possibilities, any base-

line of interest can be subtracted from the concentrations

as a preliminary step.

Figure 11 illustrates the application of the coincidence

similarity for the characterization of the two concentra-

tions in Figure 7(a), both of which incorporating respec-

tive non-null constant terms. The results in Figure 11(b)

refer to the presentation of the two concentrations by or-

dering the involved pairwise minimum values and averag-

ing the respective maximum around a window centered

at each instance. The Jaccard can then be readily ap-

proximated visually as corresponding to the quotient be-

tween the area below the minimum curve and the area

of the average maximum curve (exact Jaccard estimation

is obtained by considering the original maximum values,

though they tend to be much more jagged). The type of

concentration re-ordering shown in (c) is henceforth re-

ferred to as sorted representation. The obtained results

cannot be directly compared to the respectively obtained

Pearson correlation coefficient of P = 0.96, since here

the concentrations have not been previously standardized,

therefore presenting pronounced constant terms that are

duly taken into account by all the considered similarity

indices.

Figure 12 illustrates the results obtained by the similar-

ity indices respectively to the same concentrations as in

Figure 7. However, now both concentrations were prelim-
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Figure 11: Quantification of colocalization between two concentra-

tions X and Y involving respective non-null constant terms (a). The

respective Pearson is P = 0.96. The results respective to the two

other indices, namely interiority and Jaccard, are also shown in (b).

inary standardized before the estimation of the similari-

ties. All the three similarity indices yielded colocalization

indications smaller than the respective Pearson correla-

tion coefficient P = 0.96, which can be understood as

reasonable given that the smaller scale oscillations (a sine

and a cosine) tend to reduce the colocalization.

Figure 12: Similarity-based colocalization analysis of the concentra-

tions in Figure 7. Both concentrations were preliminary standard-

ized. All these three indices led to colocalization values smaller than

the previously obtained P = 0.96, which seem to have overestimated

the colocalization.

Figure 13 presents the same situation as before, but

now the two concentrations underwent minmax normal-

ization. As expected, the implied higher baseline implied

the similarity indices to take into account the shared ar-

eas as well as the joint variation tendencies, resulting in

moderately larger colocalization values.

Figure 14 presents a situation similar to that in Fig-

ure 7, but now the two larger oscillation components to

both concentrations consist of a sine and a cosine, which

do not vary together, leading to low colocalizatiion values

Figure 13: Similarity analysis of colocalization of the the concen-

trations in Figure 7 adopting minmax normalization.

provided the concentrations have been previously stan-

dardized, as it is the case here.

Figure 14: Similarity analysis of colocalization of the two concentra-

tions presenting little net joint variations, obtained while adopting

standardization. As could be expected, very small colocalization

values has been obtained.

It is important to recall that none of the presented ap-

proaches to the analysis of the concentrations in Figure 7

are absolutely right or more suitable. Indeed, the choice

of colocalization normalization and index needs to take

into account specific specific research and data demands

and constraints.

5 Colocalization of Noisy in 1D

Concentrations

As an illustration of the effect of uniformly distributed

noise in the concentrations, we consider the situation in

Figure 15, which was obtained from the concentrations in

Figure 14 by adding relatively strong uniform noise.

In this example, the concentrations were preliminary

minmax normalized. As it could have been expected, the

noisy concentrations yielded smaller colocalization values
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as gauged not only by the Pearson correlation coefficient,

but also by the three similarity indices. By being uncorre-

lated, uniform noise incorporates similar amounts of joint

and opposite variations which tend to cancel one another.

Figure 15: The colocalization analysis of the concentrations in Fig-

ure 14 with relatively intense added noise. The colocalization val-

ues obtained from all the considered aproaches were substantially

reduced.

6 Colocalization of Hetetogeneous

1D Concentrations

As a example of colocalization quantification in presence

of independent expression, we now return to the situation

addressed in Figure 10. We had seen that the application

of the Pearson correlation coefficient to these concentra-

tions led to a substantial overestimation of the colocal-

ization as a consequence of the additional to one of the

concentrations of a peak that had no relationship with

the other concentration.

Figure 16 depicts the results obtained by using the

multiset similarity index with both concentrations being

first minmax normalized. Interestingly, the colocalization

value estimated by the coincidence similarity yielded ex-

actly the ratio of the areas of the concentration profile

with two peaks with the other concentration. That is a

consequence of the fact that the coincidence similarity is

based on the shared area between the concentrations, and

not only their tendency to vary together.

Figure 16: The sorted representation respective to the concentra-

tions in Fig. 10 as employed in the similarity coincidences, which

led to more reasonable indications of colocalization in this specific

case.

7 Colocalization of 2D Concentra-

tions

Having presented and illustrated the possibility to apply

the three multiset similarity indices to gauge the colocal-

ization of 1D concentrations, in the following sections we

extend these possibilities to several situations involving

2D concentrations. All subsequent results refer to the two

concentrations neither having being preliminary normal-

ized before application of the multiset similarity indices.

In order to allow complete control on the properties

of the concentrations, and also to provide a reference,

all 2D concentrations used in this section were synthe-

sized through mathematic-computational methods. More

specifically, they correspond to uniformly random spatial

distributions of points with given densities that are subse-

quently smoothed via a gaussian kernel with specific dis-

persion. All concentrations are then normalized to volume

1, and thus can be understood as probability densities.

Figure 17 presents two distinct 2D concentrations that,

though being randomly synthesized, still present some

considerable overlap, so that some moderate colocaliza-

tion could be expected. However, the Pearson correlation

coefficient yielded the markedly small value of P = 0.101.

Larger values were obtained from the Jaccard and coin-

cidence similarity values, but with the latter, as could

be expected, resulting in the smallest colocalization value

between them.

An interesting situation involving relative spatial dis-

placement, or shift, between the two concentrations is de-
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Figure 17: Colocalization of two 2D concentrations randomly synthesized. Though moderate overlap can be observed between these

concentrations, the Pearson correlation coefficient resulted markedly small. More reasonable quantifications seem to have been provided by

the Jaccard and coincidence similarity indices, with the latter yielding the smallest colocalization value between them.

picted in Figure 18. The two original concentrations were

identical prior respectively imposed displacement.

A particularly interesting colocalization situation arises

when one of the concentrations corresponds to a sharp-

ening of the other, as illustrated in Figure 19. The green

concentration is so much sharper than the red that it com-

pletely predominates in the joint visualization shown in

(c), with a good deal of the red concentration not being

strongly related to the green. Still, a exceedingly high

correlation coefficient of P = 0.933 has been obtained.

A substantially smaller coincidence value was obtained

which seems to better express the colocalization relation-

ship between the two concentrations in this situation.

This interesting result stems from the interesting char-

acteristics of the similarity indices in being more accurate

when comparing relatively similar patterns [20].

The important situation in which one of the concentra-

tion profiles incorporates a markedly distinct part that

does not relate whatsoever with the other concentration,

as illustrated in Figure 20. Other than the additional spot

in the red concentration in (a), both concentrations are

identical. Thus, a substantially high colocalization value

could be expected, which was the case for the Jaccard

and coincidence similarity indices. However, at the same

time the Pearson correlation coefficient yielded the result

P = 0.734, which seems to be too small given that most

of the concentrations are nearly perfectly identical other

than in the additional spot region.

Figure 21 (a–c)illustrates the colocalization analysis re-

spectively to a situation where one of the concentrations

is the reciprocal of the other (Eq. 7). In their own ways,

all considered colocalization approaches indicate that the

two concentrations are not related: while a negative Pear-

son correlation was obtained, the Jaccard and coincidence

indices resulted very nearly zero. That is mostly a con-

sequence of the standardization adopted in the Pearson

correlation case. Indeed, in case standardization is im-

plemented prior to the application of the two similarity

indices, we get J = −0.426 and C = −0.320. Indeed,

the similarity indices start behaving in similar qualitative

manner to the Pearson when the colocalizations are pre-

liminary standardized, which allows portions of the con-

centrations to become negatively interrelated (negative

joint variations). These results again illustrate that quite

distinct results can be obtained depending on the adopted

normalization.

8 Concluding Remarks

Several real-world situations, especially in biology, in-

volves signals that present similar spatial characteristics.

The quantification of the colocalization between two or

more concentrations corresponds to an important and

frequently approach that has received substantial atten-

tion in the literature. Basically, the colocalization of two

concentrations has been typically understood as relating

to the tendency of the concentrations to vary together

along space. By measuring a directly related tendency,

the Pearson correlation coefficient has been frequently

adopted for quantifying the colocalization in biological

applications such as gene expression and protein synthe-

sis.

Based on multiset theory, similarity indices have been

described that are capable of quantifying the relationship
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Figure 18: Two identical, but relatively displaced, concentrations. Though a relatively strong displacement can be observed, a Pearson

correlation coefficient P = 0.686 was respectively obtained. The coincidence-based approach led to a smaller colocalization value.

Figure 19

between two generical mathematical structures, includ-

ing concentrations, in terms of the relative shared area.

The present work addressed the possibility to use the in-

teriority, Jaccard and coincidence indices as a means to

provide additional information about the colocalization of

concentrations that can therefore complement the more

traditional characterization in terms of the Pearson cor-

relation coefficient.

We started by addressing the colocalization problem

from a mathematical perspective of possible respective

models, with emphasis on a model where a proportional

iterrelationship is observe between the two concentra-

tions. Several other modeling variations and possibilities

were also discussed. These models can help not only bet-

ter understanding the meaning of colocalization, but also

help in choosing between normalizations as well as defin-

ing a more adequate manner to quantify the respective

colocalization. The often critical issue of defining a base-

line compatible with the poised questions was also char-

acterized and discussed, given that this choice can have

strong influence on the results obtained by the several

considered methods of colocalization analysis.

One particularly important aspect that has been pre-

sented is the tendency of the Pearson correlation colocal-

ization to be strongly biased by the presence of portions

(peaks) of one of the concentrations that has no basic re-

lationship whatsoever with the other concentration. In

the considered respective example in this work, this effect

resulted in a strong overestimation of the interrelationship

(colocalization) between the two analyzed concentrations.

This effect is mostly related to the displacement of the

concentrations as implemented by the standardization.

Indeed, the characterization of this type of concentrations

by using the coincidence approach, which allows generic

baselines (in this case that defined by the minmax nor-

malization) to be taken into account. The zero baseline
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Figure 20: Two identical concentrations, except for the additional spot in the red concentration, which bears no relationship whatsoever

with the other concentration. The presence of this localized discrepancy strongly influenced the obtained Pearson correlation coefficient of

P = 0.734, which resulted markedly small despite the fact that all other portions of the concentrations are in nearly perfect match one

another. A more consistent quantification of the colocalization in this particular case seems to have been provided by the Jaccard and

coincidence similarity indices.

Figure 21: Example of colocalization analysis where one of the concentrations is the reciprocal of the other. Near zero results are observed

for the similarity indices, with the Pearson correlation coefficient indicated negative relationship between the concentrations.

could then be considered, leading to a more meaningful

colocalization quantification in this case.

We then presented the concepts of concentration av-

erage, which is essentially important respectively to the

important concept of concentration baseline, as well as

the standardization method, which is actually an intrin-

sic part of the Pearson correlation coefficient. Several

examples of colocalization characterization by using this

approach were the presented and discussed respectively

to1D concentrations, which allow a more direct observa-

tion of the situations and effects.

The minmax normalization was then presented, fol-

lowed by a description of the multiscale-based similarity

indices.

It should be kept in mind that the choice of baseline,

normalization, and indices for quantification of colocaliza-

tion all can have strong influence on the obtained results.

In addition, neither of them are absolute adequate or in-

adequate, as illustrated by several of the discussed exam-

ples. The choice between the several existing alternative

should take into account how the data was generated, the

specific ways in which the concentrations are intrinsically

produced and interrelated by the systems of interest, as

well as the questions implied by each respective research.

A particularly interesting general approach is to con-

sider several combinations of normalization and colocal-

ization quantification approaches so that they can provide

respectively complementary information about the prob-
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lem of interest, but even so the respective interpretation

should take into account the above observed requirements

and constraints.

By presenting new concepts and methods to be possi-

bly applied for colocalization quantification, the present

work paved the way to a large number of possible future

developments. These include but are not limited to evalu-

ating the proposed approaches respectively to more types

of concentrations, considering alternative normalization

methods, and extending the several described approaches

to situations involving more than two concentrations.
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