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Abstract

Multiple sequence alignment is a fundamental prob-
lem in bioinformatics, which is why a large num-
ber of tools are used to align sequences under a
prescribed (biologically inspired) objective function.
Often practitioners use software’s default parame-
ters to align sequences. However, a different parame-
ter setting may provide a much higher-quality align-
ment for the specific set of input sequences. One
highly-accurate method of choosing parameter vec-
tors for specific input is Parameter Advising, which
selects from a set of alignments produced using a
carefully constructed collection of parameter con-
figurations. To choose among the candidate align-
ments, it would be ideal to use each alignment’s ac-
curacy, but in practice, a reference from which to
calculate this measure is not available. One must es-
timate the accuracy of different alignments to rank
them. The accuracy estimator Facet (short for
Feature-based accuracy estimator) computes a sin-
gle estimate of accuracy as a linear combination of
efficiently-computable feature functions. We intro-
duce Facet-NN and Facet-LR which both use the
same underlying feature functions as Facet (as they
were shown to be accurate), but since they are built
on top of highly efficient machine learning protocols,
they can take advantage of a much larger training
corpus. Not only does this evolution allow us to
train on much larger datasets, it produces an esti-
mator that is more correlated with true accuracy.
When used in Parameter Advising, Facet-NN and
Facet-LR show an increase of 6% over using only
the default parameter vector, which is a 2% increase
over using Facet for the same task.

1 Introduction

The alignment of multiple biological, specifically
protein, sequences is a key step in much of the

analysis done by computational biologists. These
alignments provide key insights into the correla-
tion of various regions in the protein, and can be
a guide to determining evolutionary history. From
a computational standpoint though the problem is
complicated, and in fact, it was proven that find-
ing an optimal alignment of a set of sequences is
NP-Complete [35, 19]. Because of this juxtaposi-
tion of the importance and complexity of the prob-
lem there are many existing heuristics that find good
(though not optimal) multiple sequence alignments
(multiple forms of Clustal [31, 30], MAFFT [16],
MUSCLE [13], T-Coffee [25], Opal [36] among others)

None of these tools address a fundamental issue:
the multiple sequence alignment problem requires
as part of its input a user-defined objective func-
tion. While there are several well-studied objectives,
the most common of which is sum-of-pairs, this still
leaves the open question of the function’s parame-
ters: the rewards and penalties associated with each
operation used to construct the alignment. Thus
when new users, or even experienced users with a
new class of inputs, approach the task of creating
a multiple sequence alignment, they are required to
choose a value for each of the tunable parameters of
the tool (the collection of parameter values used is
called a parameter vector). Making the wrong choice
can have a highly detrimental impact on downstream
analysis; manually tuning these algorithm values in
a systematic manner requires not only a more-than-
cursory understanding of the underlying application
and the data, but also substantial amounts of time.
Because of this most users rely upon the default pa-
rameter vector included with each tool. These de-
faults are specifically set to provide good results on
average across all types of input, but the most in-
teresting biological datasets are typically far from
average.

Most alignment objective functions, and in turn
the tools that utilize them, have parameters for
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both the penalty assessed for adding gaps into a
sequence and the penalty/reward for the substi-
tution (match/mismatch) of any two amino acids
(residue). This means a user needs to specify For
the 20-character amino acid alphabet used for pro-
tein sequences, 190 individual values need to be
specified for the substitutions alone. Thankfully
this is a well-studied problem, and there are many
highly-accurate pre-calculated databases of substi-
tution scores, called substitution matrices. Typi-
cally users are given a choice from a class of ma-
trices (VTML [24], BLOSUM [15], and PAM [8]). Within
each class, several matrices are available optimized
for sequences with a specific level of entropy. When
substitution matrices are used, the total number of
tunable parameters is greatly reduced, simplifying
(though not eliminating) the parameter choice prob-
lem.

One confounding factor for making an informed
parameter vector choice for multiple sequence align-
ment is that unlike some domains, such as tran-
script assembly which has a readily available quality
measurement which can be used on any input [11],
the standard method for assessing accuracy requires
comparison to a reference (ground-truth) alignment.
Thus, the accuracy of a computed alignment can
only be measured on so-called benchmark sequence
sets. Typically these benchmarks are constructed
by aligning the three-dimensional structure of pro-
teins to find amino acids that are highly correlated.
Those groups of amino acids (one from each protein)
that are within some threshold of distance in the 3D
alignment are turned into complete columns of the
sequence alignment. These anchoring positions are
called core columns. Accuracy of a computed align-
ment is then calculated as the fraction of substitu-
tions from the core columns of the reference align-
ment that are recovered. Several databases of these
benchmarks exist and are regularly used to compare
multiple sequence alignment tools [4, 14, 29, 34, 3].

When a new (non-benchmark) sequence set is pre-
sented and aligned, there is no reference alignment
from which to measure accuracy. In this case, one is
left to estimate the accuracy of the computed align-
ment. Several tools exist to do this estimation they
can be classified into two major classes: scoring-
function-based tools [17, 5, 32, 2] which calculate a
value based on the combination of measurable at-
tributes of the alignment alone; and support-based
tools [22, 21, 28] which use a collection of alignments

over the same sequences to label each one in the set.

Using one of the tools above to estimate accuracy,
a user can then begin to search for the optimal pa-
rameter vector for their input. While this can be
done by hand or using an off-the-shelf iterative opti-
mization mechanism (such as coordinate ascent [37]),
this is typically still quite time consuming. To auto-
mate this process DeBlasio and Kececioglu [10] de-
veloped the Parameter Advising framework, which
without additional wall-clock time if the appropri-
ate resources are available can make input-specific
parameter choices for multiple sequence alignment
(details of an advisor are contained in Section 2 to
make this work fully self-contained). In that work,
they show that the advisor using the Opal align-
ment tool and the Facet accuracy estimator proved
to have the highest advising accuracy.

In this study, we present Facet-NN and Facet-LR;
two new scoring-function-based accuracy estimators
which reimagine the original Facet estimator by us-
ing modern machine learning techniques for opti-
mization, rather than combinatorial optimization,
to exploit the much larger datasets we have pro-
duced. Although Facet-NN and Facet-LR rely on
the same underlying set of efficiently-computable
feature functions as Facet, their parameter advis-
ing performance is substantially better. They show
an average increase in advising accuracy of 6% over
using only the default parameter choice, this is more
than a 2% increase over original Facet on estimator-
aware advisor sets. The newly developed estimators
also show a much stronger correlation with true ac-
curacy due to the fact that we have been able to
optimize for this task specifically.

2 Summary of Prior Work

Parameter Advising, depicted in Figure 1, takes the
same input as the underlying scientific application
and returns a single result. So to the end-user it
appears to be just another tool to solve an existing
problem but in this case one without any tunable
parameters. But abstracted from this user is a pro-
cess that automatically chooses a parameter vector
for the specific input that provides a higher-than-
default accuracy.

An advisor contains two key components: a set of
candidate parameter vectors, called an advisor set ;
and an accuracy estimation tool used to choose from
among those vectors, called an advisor estimator.
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Figure 1: The parameter advising process.

The actual construction of these two components is
described in detail below.

The Parameter Advising procedure is as follows:

• The input is combined with each of the param-
eter vectors in the advisor set (and the under-
lying application), to create a set of candidate
output (alignments).

• The advisor estimator is then used to label each
of the candidate alignments with an estimated
accuracy.

• Finally, using the labeled estimated accuracy
the candidate alignment that is predicted to be
most accurate is returned to the user, and there-
fore selecting the parameter vector.

Parameter advising is an a posteriori selection
method and may not work in all cases, but in those
applications where resources can be allocated such
that each of the candidate outputs and their labels
can be produced in parallel, the advising procedure
adds only a negligible amount of wall-clock time (the
time needed run the estimator, also in parallel, and
select the best output). In addition to multiple se-
quence alignment, this framework has been shown
to work well for selecting parameters for transcript
assembly [11].

Throughout the paper it is assumed that there
is a consistent set B of benchmark sequence sets
(the precise sets themselves will be explained in Sec-
tion 3.3). Because there is bias in the sampling of
these benchmarks (as they are made by hand, ad-
ditional commentary on this in later sections), it is
assumed that at all stages each benchmark will have

a weight (or importance), wb for b ∈ B. This weight-
ing will be used to correct for the overabundance of
some types of examples.

2.1 Advisor Sets

For the task of parameter advising an advisor set
need to satisfy two main criteria: the set should be
small to reduce resource consumption, and should
contain at least one parameter vector that will work
well on each given input. These two ideas are some-
what contradictory thus a method is needed to bal-
ance the competing interests. One way to do this is
to put an actual limit on the resource consumption
by specifying k, the number of parameter vectors
to include in our set. Experiments can be used to
determine the cardinality at which there are dimin-
ishing returns, meaning adding more computational
power does not provide substantial gains in advising
accuracy.

Existing methods have been developed to accom-
plish the task of finding such sets with restricted car-
dinality. They all rely on first enumerating the entire
universe U of parameter vectors for a tool across the
entire set of benchmarks B. The combination of a
benchmark b ∈ B and a parameter from the universe
p ∈ U produces an alignment, Abp. Because the ref-
erence alignment is known the true accuracy, Abp

can be calculated. If there is a pre-existing accuracy
estimator it is assumed that the estimated accuracy
for each of these alignments is Ebp.

The oracle set finding method uses only the true
accuracy, and finds sets that are optimal if you had
an estimator function that predicted accuracy ex-
actly (an oracle). Finding optimal sets while taking
the accuracy estimator into account is not practical,
thus a greedy approximation method was developed
that works well in practice.

2.1.1 Oracle Sets

While finding optimal parameter sets is NP-
Complete [9] whether you have the estimator values
or not. For a small enough universe the Oracle set
problem can be solved exactly using an integer linear
program (ILP).1 The program contains variables sp

1As is noted in Section 4 for the much larger universe used
in most of the study is it not possible to solve these problems
exactly at the time of publication so results are shown on the
smaller parameter universe from previous studies for only the
Oracle sets.
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which indicates if parameter p is in the advisor set,
and variables vbp that will signify if the advisor using
the found set chooses parameter p for benchmark b.
Three groups of constraints then ensure that:
(1) for each benchmark has only one chosen align-
ment, ∑

p∈U
vbp = 1

(2) an alignment is only chosen if the associated pa-
rameter is chosen,

vbp ≤ sp

and (3) that only k parameters are chosen.∑
p∈U

sp ≤ k

With the constraints in place, the objective then
would be to maximize the total accuracy of all of the
chosen alignments∑

b∈B

∑
p∈U

vbp(wbAbp).

The ILP then contains O(|U ||B|) variables and con-
straints, though only O(|U |) of the variables need
to be explicitly declared as binary (integer), if the
parameter variables are binary the alignment vari-
ables must be binary valued for a solution to be op-
timal (with the exception of ties in accuracy, but this
would not impact optimality).

2.1.2 Greedy Sets

Finding optimal estimator-aware sets for large car-
dinalities is impractical, but a greedy procedure has
been shown to provide substantial accuracy increases
(over Oracle sets) in practice. Assume that an advi-
sor Aδ(P ) takes as input the set of parameter vectors
P ⊆ U , and returns the average advising accuracy
(over all benchmarks in B) of a parameter advisor
that uses P as its advisor set (it has access to the set
of benchmarks, true accuracies, and estimated accu-
racies). For generalization purposes during training
(but not for showing the results in later sections), a
margin of error on the estimator, δ, is used within the
function A. Rather than using a single alignment’s
accuracy for a benchmark (the one with highest esti-
mated accuracy), the method calculates the average
for all alignments of a benchmark that are within δ
of the maximum (details of this can be found in [9]).

The initial set P1 is the Oracle set of size 1, in other
words the best single default parameter vector. At
each step the greedy procedure finds the next best
parameter to add that is not already in the set, i.e.
the one that when added provides the highest advi-
sor accuracy. That is to say the greedy method at
iteration i first finds

pi = argmax
p′∈U\Pi−1

{
Aδ

(
Pi−1 ∪

{
p′
})}

,

then sets Pi = Pi−1 ∪ {pi} . It continues with this
procedure until Pk is found.

2.2 Advisor Estimator

The task the advisor estimator must fulfill is to rank
the candidate outputs such that the highest-ranked
alignment is the most accurate. The best estimator
is referred to as the Oracle (also used above) which
knows the true accuracy and would be able to make a
ranking based on this information. In the absence of
an Oracle something close needs to be found. There
are in theory two types of advisor “estimators”: one
that assigns an estimated accuracy to each candi-
date (as will be used here), and another that simply
chooses from the set of candidates. This second type
of advisor is yet to be explored, but would still likely
need to rely on some way to extract information (fea-
tures) from the alignment itself in order to make a
judgment.

2.2.1 Feature Functions

The feature functions used were heavily studied in
previous work, they consist of efficiently-computable
functions that extract a singular numeric value that
is correlated with accuracy. This set contains both
canonical feature functions that have been histori-
cally used for benchmarking as well as some devel-
oped specifically for this task. Because the focus is
on protein multiple sequence alignments, many of
the feature functions will exploit the predicted sec-
ondary structure of the sequences in the alignment
to calculate a value. This means each amino acid in
the alignment is labeled with both a class (α-helix, β-
strand, or coil) and a set of three probabilities which
the features utilize.

The features developed are also non-local, mean-
ing they generally use information from across the
entire alignment. This means that they contain more
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information than an alignment objective function
(which by design are local calculations).
Details of the feature computations can be found

in [17], but they are listed here for convenience as
they are a crucial component of our new methods,
roughly in order of importance:

• Secondary Structure Blockiness — max-
imum percentage of an alignment that can
be covered by a packing of contiguous two-
dimensional blocks of residues with the same
secondary structure class label.

• Percent Identity and Secondary Structure
Percent Identity — the fraction of aligned
amino acids (structure class labels) in all ex-
tracted pairwise alignments from the input that
are precisely the same.

• Average Replacement Score — average
scaled BLOSUM62 score for all aligned amino
acids from the induced pairwise alignments.

• Gap Extension Percentage and Gap Open
Percentage — percentage of characters in the
alignment that are (runs of) gap characters.

• Information Content — average over all
columns of the difference in distribution of
amino acid frequencies compared to a back-
ground distribution.

• Substitution Compatibility andGap Com-
patibility — fraction of pairs of columns that
pass the 4 gametes test when converted into 1
and 0 by use of majority/minority amino acid
character or gap/non-gap character.

• Structure Agreement — weighted sum of
structure class probabilities for a window
around each aligned pair of amino acids in in-
duced pairwise alignments.

• Gap/Coil Density — fraction of gap charac-
ters that align with the coil structure class label.

• Core Column Density — fraction of columns
that are gap-free and contain mostly the same
amino acid.

• Sequence Consensus and Gap Consensus
— fraction of pairs of columns that have the
same majority/minority amino acid character or
gap/non-gap character pattern.

All feature values are normalized to be in the range
[0, 1], and if the value cannot be defined (i.e. gap
open percentage when there are no gaps) the value
is fixed at 0.

2.2.2 The Facet Estimator

The original Facet (short for Feature-based
Accuracy Estimator) model uses a linear combina-
tion of the feature values to calculate an accuracy
estimate. Given a set of weights T = (t1, t2, ..., tn)
the Facet value is computed from a set of feature
functions F1, F2, ..., Fn as

LT (A) :=
∑

1≤i≤n

tiFi(A).

There are several methods that can be used to learn
an accuracy estimator, one can either try to match
the estimator values to the true accuracy exactly
or, what worked better in previous experiments for
the task of parameter advising for multiple sequence
alignment, focus on the objective of ranking candi-
dates.
All of the original Facet results shown will use the

methods described in [10], which learns the values
of T using combinatorial optimization (in this case
linear programming, LP). In this case for all pairs
of alignments Abp and Abq aligning the same bench-
mark using parameters p and q such that Abp > Abq,
the goal is to minimize the ranking error:

max {((Abp −Abq)− (LT (Abp)− LT (Abq))) , 0} .

Note that in this case, the only free variables are
T , because the alignments are fixed then the feature
values and true accuracies are also. Additional con-
straints are added to ensure that the estimator as
well as the values in T are in the range [0, 1].

3 Modern Machine Learning for
Accuracy Estimation

3.1 Facet-NN: Exploiting Non-Linearity

3.1.1 Learning an architecture

While network architectures are sometimes inspired
by the underlying structure of the input data [23],
when such inspiration is not viable, as is the case
here, a neural network architecture can be found em-
pirically using guided search. Using an architecture
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27 units/ReLu

14 units

3 units/ReLu

1 unit/ReLU

Figure 2: Cartoon of architecture learned for one
cross-validation fold

with too many parameters is time-consuming when
training and requires more training data. This ex-
tended resource consumption makes exploring the
set of architectures with large numbers of parame-
ters computationally expensive. Therefore, like most
works, certain architectures are excluded from this
search space that are likely to have poor perfor-
mance both resource-wise given their training time
and accuracy-wise due to the fixed set of training
examples.

The hyperparameter optimization procedure used
(from the KerasTuner package [26]) required defin-
ing a domain of possible hyperparameter values and
sampling random points from that domain based on
a random search. Thus the main task is then to
develop a search space rather than a model. Then
using a randomized sampling technique the network
architecture with the lowest mean-squared error can
be found.

The sampled hyperparameter universe consisted
of three main classes: the number of neurons for
each hidden layer, the number of hidden layers, and
the activation functions for each neuron. The final
hyperparameter universe was as follows: 3, 9, and 27
neurons in each layer, between 1 and 3 hidden layers,
and either ReLu and Sigmoid activation functions
selected independently for each layer. The procedure
was repeated independently for each cross-validation
fold.

As an example, Figure 2 shows the network used
on a single cross-validation fold (note that hidden
layer 1 is not drawn to scale for readability). Af-
ter 20 iterations the final architecture was a neural
network of 2 hidden layers, the first layer with 27
neurons and with ReLu as their activation function,
and 3 neurons for the second layer with ReLu as
their activation function. This network has a total
of 493 trainable weights.

3.1.2 Learning a model

Once an architecture was found for each cross-
validation fold, weights for the model could be
learned using the adaptive gradient algorithm (via
the AdaGrad optimizer [12]). One issue is that, as
was alluded to in Section 2, the training benchmark
sequence sets are skewed toward easy-to-align pro-
tein groups. This runs in contrast to the underly-
ing assumption of most machine learning algorithms
which is that the data is equally distributed among
observations. With imbalanced datasets, the algo-
rithm tends to skew its predictions toward the ma-
jority class (the accuracies within the class of near-
perfect alignment accuracy in our case). Without
enough data, it is impossible for the algorithm to
learn the patterns of the minority class (poor align-
ment accuracy).

As was done when training Facet, in Facet-NN

the samples are weighted to account for bias and
minimize the impact of skewed data on our training.
Weights are assigned to the samples based on the
number of observations per bin as described below,
but here the bin is not based on the accuracy of the
alignment produced using the default parameter vec-
tor but the alignment itself. That is, weights are not
determined by the underlying benchmark sequence
set but by the alignment accuracy. Alignments are
assigned evenly to n bins, spread evenly across the
range of accuracies, and a weight was assigned based
on the following formula using the balanced sample
weighting in scikits-learn [27]:

m

(n ∗ C (Abp))
,

where m is the total number of alignments in the
training set and C(Abp) gives the number of other
alignments in the same bin as alignment Abp.

A note about implementation

All of the methods above as well as the exper-
iments below were performed using GPU-enabled
TensorFlow [1] in combination with the Keras [7]
package. All models, architectures, and train-
ing scripts (written for python3 [33]) are for both
Facet-NN and Facet-LR are released on the De-
Blasio Lab GitHub, at github.com/deblasiolab/

Facet-NN.
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3.2 Facet-LR: Utilizing More Data

As mentioned in Section 2.2.2, Facet was trained to
minimize the ranking error of the accuracy predic-
tion made by the tool. This was done mainly be-
cause it showed better performance than trying to
match the accuracy value directly. One reason this
was likely the case is that the LP method used was
not able to scale to large numbers of examples prac-
tically, and thus narrowing the task to one close to
the actual use was better with that little data. But,
modern machine learning optimization tools now al-
low us to use much more data to train models, they
also enable us to fully utilize complex hardware to
accomplish this task.

Facet-LR was implemented using the Linear Re-
gression model of scikits-learn. A separate es-
timator was learned on the training set of each
cross-validation fold, minimizing the residual sum of
squares between the predicted and true accuracy of
each alignment. All results are reported as an aver-
age over all of the folds.

As an example Facet-LR trained on a single fold
is calculated using the weights in Table 1, sorted by
the absolute value of their influence. Note that some
of the features have negative weights, this was not
allowed in the original Facet. While not intuitive,
since all of the features originally trended with accu-
racy, it can be explained: for instance if an alignment
has a high sequence identity but also a high gap den-
sity, these two values (because they have opposite
signs) will counteract each other. More of the fea-
tures in Facet-LR have significant weight compared
with Facet, in the previous studies only 5 features
ended up being used while here more than 9 features
make contributions to the final score.

3.3 An Expanded Parameter Universe

Two universes of parameter vectors are used: one
containing just over 2000 parameter vectors used
for the original Facet called “original”, and an ex-
tended set of 16,896 parameter vectors called the
“extended” universe. The original set was used to
construct all of the Oracle advisor sets as well as the
original Facet estimator, the extended set was used
for training Facet-NN and for the Greedy advisor
sets.

The extended set was originally developed for use
in the original Facet methodology. It is constructed
by first selecting 8 commonly use high-accuracy re-

Table 1: Example Facet-LR Feature Weights
Feature Function Weight

Secondary Structure Percent Identity 1.232
Gap Open Percentage −0.551
Secondary Structure Blockiness 0.475
Average Replacement Score −0.455
Core Column Density −0.311

Substitution Compatibility −0.296
Gap Compatibility −0.260
Gap Consensus −0.147
Structure Agreement −0.113
Gap/Coil Density −0.072

Information Content 0.052
Percent Identity −0.049
Gap Extension Percentage 0.015
Sequence Consensus 0.005

placement matrices (VTML20, 40, 80, 120, 200, and
BLOSUM45, 62, 80). For each of the four Opal gap
penalty parameters (gap-open and gap-extension for
both terminal and non-terminal gaps) several possi-
ble values were enumerated, and the cross product of
these discrete values and the replacement matrices
produced a collection (universe) of parameter vec-
tors. Using the default parameter vector as a start-
ing (which was found via inverse parametric align-
ment [20, 18]) we sampled up to five additional val-
ues for each parameter above and below the default.
In the case of the terminal gaps, a value relative to
the corresponding non-terminal parameter value was
chosen rather than a specific penalty. This set con-
stituted approximately 2,000 choices of gap penalty
combinations, leading to the number of parameter
vectors above in our extended universe.

The original universe is then an informed sub-
sampling of this universe, used to allow the older
methods to be solved.

Building on the datasets used in [10], a carefully
curated set of 861 benchmark sequence sets consist-
ing of examples from PALI [4] and BENCH [14]
(which is itself a collection of alignments from
OxBench [29], SABRE [34], and BAliBase [3]) is
used here. Each benchmark consists of a set of
protein sequences as well as a reference alignment
which is generally induced using an alignment of the
known underlying three-dimensional protein struc-
tures. The alignment information is removed to also
retrieve the set of constituent sequences. Because
the reference is known, the accuracy can be deter-
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mined as defined earlier.

As mentioned in Section 2 the set of benchmarks is
biased toward easy-to-align sets of sequences. This is
likely because these benchmark alignments are con-
structed mostly by hand, and thus only the align-
ments with which they have the most confidence
end up being released. But, in practice, it is ex-
pected that sequence sets from across all levels of
difficulty will be input. To correct this, each bench-
mark’s ease of alignment was classified using its ac-
curacy using the Opal aligner’s default parameter
vector. This parameter vector was chosen specifi-
cally to work best on average, and it is the set of
parameter values most users will use. The range
of accuracies was then divided into 10 equally sized
bins and assigned a benchmark to the bin that cor-
responds to its accuracy when aligned using the de-
fault parameter vector. To exemplify the bias in
the sample, note that there is a more than 36x in-
crease in the size of the easiest-to-align bin (those
with accuracy above 90%, 434) and the hardest-to-
align (those ≤ 10%, 12). Unless otherwise noted,
the weights wb will be assigned to evenly distribute
among bins rather than benchmarks. This means
with this scheme the accuracy of using only the de-
fault parameter vector will be close to 50%, rather
than near 80% when weighting by benchmark.

In all cases, 12-fold cross-validation is imple-
mented to divide the data into training and testing
sets. Due to the binning described above, this num-
ber of folds is somewhat forced since the smallest
bins have 12 benchmarks a piece. In each case, each
bin was divided randomly into 12 sets, then one set
from each bin was used in each cross-validation fold
to be part of the test (hold-out) set while the oth-
ers were used for training and validation. All of the
results below show the average across all 12 cross-
validation folds.

4 Experimental Results

4.1 Accuracy of the Estimator

Figure 3 shows the comparison of the estimated
value (vertical) with the true accuracy (horizontal)
for each of the 14 million alignments in the dataset
across the two estimators. Each alignment is shown
for when the benchmark it is aligning is in the test-
ing set. To work well as an advisor estimator the
value should trend with true accuracy and the plot

Figure 3: Estimated versus true accuracy of all
alignments in the dataset for Facet, Facet-NN, and
Facet-LR.
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Figure 4: Comparison of the advising accuracy of Facet, Facet-NN, and Facet-LR using Oracle advisor
sets
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Figure 5: Comparison of the advising accuracy of Facet and Facet-NN using Greedy advisor sets
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should have high slope and low spread in order to
correctly distinguish between candidates. Facet-NN
and Facet-LR have both a steeper slope and less
spread than Facet. The trend-line is shown that
is the best linear fit to all of the alignments plot-
ted. The conclusion that Facet-NN and Facet-LR

outperform Facet on the task of matching accu-
racy is also corroborated by the R-squared values
shown, Facet-NN has a value of 0.708 and Facet-LR

0.689 while original Facet is only 0.279. The Facet
summary R-Squared is very much impacted by the
variability in the learned estimators, with a mean
of 0.631 across the 12 cross-validation folds com-
pared to 0.721 of Facet-NN and 0.691 of Facet-LR.
On every cross-validation fold, Facet-NN shows an
increase in R-squared, with an average increase of
0.090, and Facet-LR an increase of 0.060.
One contributing factor to the difference seen in

the correlation of the estimator and accuracy is that
due to the computational limitations at the time,
the Facet estimator is learned over only parameter
pairs in the Oracle set of a given size (in the case
of the results above cardinality 25), while because
Facet-NN and Facet-LR are able to take advantage
of modern GPUs, the whole training set was able to
be exploited. This change in the training set used
in Facet also means there is variation in the learned
weights at different cardinalities as well as between
folds (which will be shown in later sections). As men-
tioned in Section 3.1 unlike original Facet, Facet-NN
and Facet-LR were trained to match the accuracy of
a given alignment exactly. Therefore, the objective
of the Facet-NN and Facet-LR estimators is toward
increasing R-Squared.
One other item to note in Figure 3 is the scale

on the 3 plots. Because there is nothing tying the
estimator values of Facet to the true accuracies the
range of values ends up being quite small. In con-
trast, by training to the actual accuracy we see es-
timated accuracies across the whole range from 0 to
1; but this comes at the expense of having predicted
values that are somewhat contrary to the definition
of accuracy, as you cannot recover fewer than 0 (or
more than all) pairs of residues.

4.2 Accuracy of the Advisor

The main purpose of developing Facet-NN and
Facet-LR was to improve accuracy of the result-
ing parameter advisor. In the experiments below
Facet-NN, Facet-LR, and Facet are used as the ac-

curacy estimator to construct several advisors. In
each case, the increase in accuracy gained by us-
ing our new estimators at various advisor set sizes is
shown. Advisor-oblivious Oracle sets (using the orig-
inal universe) and advisor-aware Greedy sets (using
the extended universe) are used in combination with
the two advisors to create 4 classes of advisors. The
original Facet method relies on a parameter vec-
tor set to learn its weights, thus, in all experiments,
the Facet estimator used was trained on the Oracle
set of the specified cardinality, whereas only a sin-
gle Facet-NN and Facet-LR advisor is used for each
cross-validation fold.

4.2.1 Oracle Sets

Figure 4 shows the accuracy of the three advisors us-
ing Oracle sets on the original universe of parameter
vectors as well as accuracy of the default parameter
vector. The two plots show the use of the advisor av-
eraged across the 12 cross-validation folds’ training
(right) and testing (left) benchmarks. Each point
on the four lines represents one advisor with its po-
sition corresponding to the advisor set cardinality
(horizontal) and the advising accuracy (vertical).

Facet-NN and Facet-LR both show a higher
advising accuracy across all cardinalities both on
the training and testing benchmarks. When us-
ing Oracle advisor sets on the testing benchmarks
Facet-NN shows an average increase of 1.8% accu-
racy, and Facet-LR is similar. Because Facet-NN

and Facet-LR are trained on a much larger num-
ber of parameters as mentioned above, the results
show less variation as you increase advisor set car-
dinality; while not perfectly monotonic it shows less
variation than Facet. Also, while both accuracy es-
timation tools eventually plateau (showing little im-
provement in accuracy with increased cardinality)
Facet-NN and Facet-LR seem to do this at a larger
set size.

With respect to the training benchmarks, Facet
is trained on only the pairs of alignments from the
Oracle set being shown. Previous results had shown
that fitting Facet to differences in accuracy showed
higher advising accuracy, but when a more accurate
estimator like Facet-NN or Facet-LR is used there is
an improvement even over Facet which was specifi-
cally designed for this task.
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4.2.2 Greedy Sets

Figure 5 shows the accuracy of advisors using Greedy
advisor sets trained specifically for the individual es-
timators. Once again, the two plots show the use of
the advisor averaged across the 12 cross-validation
folds’ training (right) and testing (left) benchmarks.
Just as above, each point on the four lines represents
one advisor with its position corresponding to the
advisor set cardinality (horizontal) and the advising
accuracy (vertical).

Facet-NN nor Facet-LR benefit as much from
Greedy sets as the original Facet with respect to
the training benchmarks, seeing an average increase
of 1.3% compared to using Oracle sets. That said,
while at small cardinalities Facet-NN, Facet-LR, and
Facet show similar performance, across the cardinal-
ities shown the average increase in advising accuracy
is still 2.2%. This is mainly due to the fact that the
Facet estimator is inconsistent in its accuracy as you
vary the set cardinality; note that the curve shown
here has Greedy sets that use the larger extended
parameter universe, but this was seen on the smaller
universe as well.

On the testing benchmarks, all three advisors
show similar performance, but it seems that because
of the higher generalization value used for Facet-NN
the drop in accuracy between training and testing
is smaller. Various values of δs were tested for
Facet-NN and Facet-LR, the most accurate value
is shown here (for Facet δ = 0 was shown to be su-
perior in previous studies). Note that the training
curve for Facet-LR is cut off in Figure 5 for readabil-
ity, but can be seen in its entirety in Figure 7, this
large drop in accuracy is due to the chosen value of
δ.

4.3 Comparison of Models

It is critical to choose the right algorithm to train
a model. To compare the results of our neural net-
work with those of other popular machine learning
algorithms, models were trained using decision tree
regression and random forest regression. The esti-
mated accuracies of these three models are shown
in Figure 6. Both Facet-NN and Facet-LR have a
higher correlation (R-squared) with true accuracy
than any of the other models on the testing set.
However, both of the other models showed an almost
perfect correlation with the training data.

The estimators produced with the other machine

Figure 6: Estimated versus true accuracy of all align-
ments in the dataset for other machine learning mod-
els.
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Figure 7: Comparison of the advising accuracy of the other regressors

learning methods were also tested as advisor estima-
tors. The results are shown in Figure 7. When this
experiment is performed we see just how much the
decision tree and random forest regressors overfit to
the training benchmarks. On both the Oracle and
Greedy advising sets, they have lower performance
than Facet (and in turn Facet-NN and Facet-LR)
on the testing set while having training performances
that are significantly higher than the other methods.

5 Conclusion

When estimating the accuracy of protein multiple se-
quence alignments a major improvement can be ob-
tained by exploiting modern machine learning tools.
Previous studies have shown that when estimating
accuracy, the features that need to be extracted in
order to create an estimation for alignments of any
size are very important. While using carefully con-
structed small sets of parameter vectors for training
can have very good performance as an accuracy es-
timator for parameter advising, using large amounts
of data and models that can be trained on it shows
even better accuracy using the same feature func-
tions. When using the old training methods, along

with advisor-agnostic advisor set, you can get an in-
crease of about 4% over using the default parameter
vector alone, an increase of 6% is seen when using
Facet-NN. Additionally, by training the estimator
over the entire set of parameter vectors Facet-NN

and Facet-LR shows more stability between cross-
validation folds and is more generalizable.

5.1 Ongoing Work

Due to time constraints, we were unable to get re-
sults using other estimators (such as TCS [5] or
MOS [22]) on the larger parameter universe before
the time of submission. We do plan to include these
in any follow-up studies. But, previous studies have
shown that for the task of advising, Facet is far su-
perior, therefore we are confident that Facet-NN and
Facet-LR will also outperform them.

We also continue to explore new architectures,
while the use of fully connected networks yield a sat-
isfactory performance, some more advanced struc-
tures such as residual networks [6] are currently be-
ing explored.

While it should technically be possible, as formu-
lated, finding Oracle Sets on the extended universe
is currently intractable. As described in previous
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studies, the method uses an integer linear program,
which was solvable in the original universe despite
being technically NP-Complete. When constructed
for the extended universe we were unable to find a so-
lution within a week using either CPLEX or Gurobi
(the two commonly used tools) on a machine with
256 threads and 2 terabytes of memory. Finding
these sets would allow us to use the same universe
at all stages of this study.
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